Sample records for computing burnup credit

  1. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enercon Services, Inc.

    2011-03-14

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnupmore » Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the costs of code data library updating, the use of S/U analysis methodologies could be accomplished on a shorter schedule and a lower cost than the gathering of sufficient experimental data. ENERCON estimates of the costs of an updated S/U computer code and data suite are $5M to $10M with a schedule of two to three years. Recent ORNL analyses using the S/U analysis method show that the bias and uncertainty values for fission product cross sections are smaller than previously expected. This result is confirmed by a similar EPRI approach using different data and computer codes. ENERCON also found that some issues regarding the implementation of burnup credit appear to have been successfully resolved especially the axial burnup profile issue and the depletion parameter issue. These issues were resolved through data gathering activities at the Yucca Mountain Project and ORNL.« less

  2. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.« less

  3. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Parks, Cecil V; Mueller, Don

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transportmore » and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and operational issues and data related to assembly burnup confirmation. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details, and provide a useful resource to others in the burnup credit community.« less

  4. Development of Technical Basis for Burnup Credit Regulatory Guidance in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Cecil V; Wagner, John C; Mueller, Don

    2011-01-01

    In the United States (U.S.) there has been and continues to be considerable interest in the increased use of burnup credit as part of the safety basis for SNF systems and this interest has motivated numerous technical studies related to the application of burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission initiated a burnup credit research program, with support from the Oak Ridge National Laboratory, to develop regulatory guidance and the supporting technical basis for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Themore » objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details.« less

  5. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k eff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of latticemore » design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup credit at peak reactivity requires a different set of experiments than for pressurized-water reactor burnup credit analysis because of differences in actinide compositions, presence of residual gadolinium absorber, and lower fission product concentrations. A survey of available critical experiments is presented along with a sample criticality code validation and determination of undercoverage penalties for some nuclides. The validation of depleted fuel compositions at peak reactivity presents many challenges which largely result from a lack of radiochemical assay data applicable to BWR fuel in this burnup range. In addition, none of the existing low burnup measurement data include residual gadolinium measurements. An example bias and uncertainty associated with validation of actinide-only fuel compositions is presented.« less

  6. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of anymore » cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.« less

  7. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  8. U.S. regulatory research program for implementation of burnup credit in transport casks

    DOT National Transportation Integrated Search

    2001-09-10

    In 1999 the U.S. Nuclear Regulatory Commission (U.S. NRC) initiated a research program to : support the development of technical bases and guidance that would facilitate the implementation of : burnup credit into licensing activities for transport an...

  9. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  10. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  11. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staffmore » has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they do demonstrate that the effect of BPRs is generally well behaved and that independent codes and cross-section libraries predict similar results. The report concludes with a discussion of the issues for consideration and recommendations for inclusion of SNF assemblies exposed to BPRs in criticality safety analyses using burnup credit for dry cask storage and transport.« less

  12. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  13. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less

  14. Evaluation of Fission Product Critical Experiments and Associated Biases for Burnup Credit Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T; Reed, Davis Allan

    2010-01-01

    One of the challenges associated with implementation of burnup credit is the validation of criticality calculations used in the safety evaluation; in particular the availability and use of applicable critical experiment data. The purpose of the validation is to quantify the relationship between reality and calculated results. Validation and determination of bias and bias uncertainty require the identification of sets of critical experiments that are similar to the criticality safety models. A principal challenge for crediting fission products (FP) in a burnup credit safety evaluation is the limited availability of relevant FP critical experiments for bias and bias uncertainty determination.more » This paper provides an evaluation of the available critical experiments that include FPs, along with bounding, burnup-dependent estimates of FP biases generated by combining energy dependent sensitivity data for a typical burnup credit application with the nuclear data uncertainty information distributed with SCALE 6. A method for determining separate bias and bias uncertainty values for individual FPs and illustrative results is presented. Finally, a FP bias calculation method based on data adjustment techniques and reactivity sensitivity coefficients calculated with the SCALE sensitivity/uncertainty tools and some typical results is presented. Using the methods described in this paper, the cross-section bias for a representative high-capacity spent fuel cask associated with the ENDF/B-VII nuclear data for 16 most important stable or near stable FPs is predicted to be no greater than 2% of the total worth of the 16 FPs, or less than 0.13 % k/k.« less

  15. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less

  16. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    NASA Astrophysics Data System (ADS)

    Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.

    2017-09-01

    In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  17. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion,more » thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.« less

  18. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only ismore » based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission product LCE data to predict and verify individual biases for relevant minor actinides and fission products. This paper (1) provides a detailed description of the approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data, and (4) provides recommendations for application of the results and methods to other code and data packages.« less

  19. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  20. 77 FR 48556 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... would use a combination of partial credit for soluble boron, Boral\\TM\\ for Region 1, burnup, rod cluster... storage racks or the new fuel handling processes. Operation of the SFP utilizes soluble boron; crediting this boron for criticality control does not change the probability of any accident. The proposed...

  1. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San-Felice, L.; Eschbach, R.; Bourdot, P.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less

  2. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP K eff calculations for PWR burnup credit casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don E.; Marshall, William J.; Wagner, John C.

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less

  3. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...

  4. Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation

    NASA Astrophysics Data System (ADS)

    Husnayani, I.; Udiyani, P. M.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) is a high temperature gas-cooled reactor which employs graphite as a moderator and helium as a coolant. In a multi-pass PBR, burnup of the fuel pebble must be measured in each cycle by online measurement in order to determine whether the fuel pebble should be reloaded into the core for another cycle or moved out of the core into spent fuel storage. One of the well-known methods for measuring burnup is based on the activity of radionuclide decay inside the fuel pebble. In this work, the activity and gamma emission of Kr-85m were studied in order to investigate the feasibility of Kr-85m as burnup measurement indicator in a PBR. The activity and gamma emission of Kr-85 were estimated using ORIGEN2.1 computer code. The parameters of HTR-10 were taken as a case study in performing ORIGEN2.1 simulation. The results show that the activity revolution of Kr-85m has a good relationship with the burnup of the pebble fuel in each cycle. The Kr-85m activity reduction in each burnup step,in the range of 12% to 4%, is considered sufficient to show the burnup level in each cycle. The gamma emission of Kr-85m is also sufficiently high which is in the order of 1010 photon/second. From these results, it can be concluded that Kr-85m is suitable to be used as burnup measurement indicator in a pebble bed reactor.

  5. 76 FR 27094 - Notice; Applications and Amendments to Facility Operating Licenses Involving Proposed No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... the Region I fuel storage racks reflect credit for fuel assembly burnup and soluble boron. Based on... boron concentration of 850 parts per million (ppm) during normal operations, and 1350 ppm during...) racks when considering the presence of soluble boron in the pool water for criticality control and the...

  6. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20% FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.« less

  7. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20% FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.« less

  8. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less

  9. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertyurek, Ugur; Gauld, Ian C.

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  10. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGES

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  11. Numerical Tests for the Problem of U-Pu Fuel Burnup in Fuel Rod and Polycell Models Using the MCNP Code

    NASA Astrophysics Data System (ADS)

    Muratov, V. G.; Lopatkin, A. V.

    An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.

  12. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less

  13. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    DOE PAGES

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less

  14. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Bowen, Douglas G; Marshall, William BJ J

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members acceptmore » the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk eff (ISG-8, Rev. 3, Recommendation 4).« less

  15. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  16. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  17. Introduction to Reactor Statics Modules, RS-1. Nuclear Engineering Computer Modules.

    ERIC Educational Resources Information Center

    Edlund, Milton C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burn-up for both slow neutron and fast neutron fission reactors. The diffusion…

  18. Equalization of energy density in boiling water reactors (as exemplified by WB-50). Development and testing of WB -50 computational model on the basis of MCU-RR code

    NASA Astrophysics Data System (ADS)

    Chertkov, Yu B.; Disyuk, V. V.; Pimenov, E. Yu; Aksenova, N. V.

    2017-01-01

    Within the framework of research in possibility and prospects of power density equalization in boiling water reactors (as exemplified by WB-50) a work was undertaken to improve prior computational model of the WB-50 reactor implemented in MCU-RR software. Analysis of prior works showed that critical state calculations have deviation of calculated reactivity exceeding ±0.3 % (ΔKef/Kef) for minimum concentrations of boric acid in the reactor water and reaching 2 % for maximum concentration values. Axial coefficient of nonuniform burnup distribution reaches high values in the WB-50 reactor. Thus, the computational model needed refinement to take into account burnup inhomogeneity along the fuel assembly height. At this stage, computational results with mean square deviation of less than 0.7 % (ΔKef/Kef) and dispersion of design values of ±1 % (ΔK/K) shall be deemed acceptable. Further lowering of these parameters apparently requires root cause analysis of such large values and paying more attention to experimental measurement techniques.

  19. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  20. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  1. Underwater characterization of control rods for waste disposal using SMOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.

    Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performingmore » radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including {sup 60}Co, {sup 110m}Ag and {sup 108m}Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were performed and these demonstrate the validity of the techniques. The results are described and analysed in the context of the measurement performance of the equipment. Different casks were fully characterized using a 60 mm{sup 3} CZT detector, to determine the total activities and spatial profiles. A total activity range measurement of 1x10{sup 8} - 1x10{sup 13} Bq/cm was found to be achievable. Finally, comments are made, based on our measurements, on the ability of this equipment for performing in-situ characterisation of wastes in the harsh environments typical of fuel assembly and waste storage ponds and silos. (authors)« less

  2. Modified Laser and Thermos cell calculations on microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.

    1987-01-01

    In the course of designing and operating nuclear reactors, many fuel pin cell calculations are required to obtain homogenized cell cross sections as a function of burnup. In the interest of convenience and cost, it would be very desirable to be able to make such calculations on microcomputers. In addition, such a microcomputer code would be very helpful for educational course work in reactor computations. To establish the feasibility of making detailed cell calculations on a microcomputer, a mainframe cell code was compiled and run on a microcomputer. The computer code Laser, originally written in Fortran IV for the IBM-7090more » class of mainframe computers, is a cylindrical, one-dimensional, multigroup lattice cell program that includes burnup. It is based on the MUFT code for epithermal and fast group calculations, and Thermos for the thermal calculations. There are 50 fast and epithermal groups and 35 thermal groups. Resonances are calculated assuming a homogeneous system and then corrected for self-shielding, Dancoff, and Doppler by self-shielding factors. The Laser code was converted to run on a microcomputer. In addition, the Thermos portion of Laser was extracted and compiled separately to have available a stand alone thermal code.« less

  3. 26 CFR 1.9001-4 - Adjustments required in computing excess-profits credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Adjustments required in computing excess... Adjustments required in computing excess-profits credit. (a) In general. Subsection (f) of the Act provides adjustments required to be made in computing the excess-profits credit for any taxable year under the Excess...

  4. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column weremore » observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.« less

  5. Local Burn-Up Effects in the NBSR Fuel Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less

  6. Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation andmore » evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.« less

  7. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven Craig

    While low burn-up fuel [that characterized as having a burn-up of less than 45 gigawatt days per metric ton uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burn-up used fuels is more recent. The DOE has funded a High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burn-up fuel. As part of that project, 25 “sister”more » fuel rods have been selected, removed from assemblies, and placed in a fuel container ready for shipment to a national laboratory. This report documents that status of readiness to receive the fuel if that fuel were to be sent to Idaho National Laboratory (INL).« less

  9. Development of an extended-burnup Mark B design. First semi-annual progress report, July-December 1978. Report BAW-1532-1. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-10-01

    The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less

  10. 22 CFR 19.4 - Special rules for computing creditable service for purposes of payments to former spouses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Special rules for computing creditable service for purposes of payments to former spouses. 19.4 Section 19.4 Foreign Relations DEPARTMENT OF STATE... DISABILITY SYSTEM § 19.4 Special rules for computing creditable service for purposes of payments to former...

  11. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    ERIC Educational Resources Information Center

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  12. High Burnup Effects Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the coursemore » of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs.« less

  13. Conceptual Designing of a Reduced Moderation Pressurized Water Reactor by Use of MVP and MVP-BURN

    NASA Astrophysics Data System (ADS)

    Kugo, T.

    A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer.

  14. Extension of the TRANSURANUS burnup model to heavy water reactor conditions

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Walker, C. T.; van de Laar, J.

    1998-06-01

    The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.

  15. 31 CFR 29.105 - Computation of time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... annuity computation purposes— (i) The service of a participant under the Police and Firefighters Plan who... pay (LWOP) that is creditable service. (1) Under the Police and Firefighters Plan, credit is allowed...'s credit under a formal leave system; and (ii) The service of a participant under the Teachers Plan...

  16. 31 CFR 29.105 - Computation of time.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annuity computation purposes— (i) The service of a participant under the Police and Firefighters Plan who... pay (LWOP) that is creditable service. (1) Under the Police and Firefighters Plan, credit is allowed...'s credit under a formal leave system; and (ii) The service of a participant under the Teachers Plan...

  17. 31 CFR 29.105 - Computation of time.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... annuity computation purposes— (i) The service of a participant under the Police and Firefighters Plan who... pay (LWOP) that is creditable service. (1) Under the Police and Firefighters Plan, credit is allowed...'s credit under a formal leave system; and (ii) The service of a participant under the Teachers Plan...

  18. 31 CFR 29.105 - Computation of time.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... annuity computation purposes— (i) The service of a participant under the Police and Firefighters Plan who... pay (LWOP) that is creditable service. (1) Under the Police and Firefighters Plan, credit is allowed...'s credit under a formal leave system; and (ii) The service of a participant under the Teachers Plan...

  19. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (k eff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (k eff) evaluations based on best-available data andmore » methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate k eff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the application model. Finally, this paper provides a detailed description of the approach and its technical bases, describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models, and provides reference bias results based on the prerelease SCALE 6.1 code package and ENDF/B-VII nuclear cross-section data.« less

  20. Fission-gas-release rates from irradiated uranium nitride specimens

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    Fission-gas-release rates from two 93 percent dense UN specimens were measured using a sweep gas facility. Specimen burnup rates averaged .0045 and .0032 percent/hr, and the specimen temperatures ranged from 425 to 1323 K and from 552 to 1502 K, respectively. Burnups up to 7.8 percent were achieved. Fission-gas-release rates first decreased then increased with burnup. Extensive interconnected intergranular porosity formed in the specimen operated at over 1500 K. Release rate variation with both burnup and temperature agreed with previous irradiation test results.

  1. Deconstructing the Discourse of Opportunity: Computer-Assisted Credit Recovery in Alternative Education

    ERIC Educational Resources Information Center

    Miller, Elizabeth R.

    2013-01-01

    Alternative schools educate students who have previously been unsuccessful in the traditional school setting. Many alternative school students are behind on high school credits, and the schools provide options for credit recovery. Computer-assisted instruction is often used for this purpose. Using case study methodology and a critical theoretical…

  2. Steady-State Thermal-Hydraulics Analyses for the Conversion of BR2 to Low Enriched Uranium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    The code PLTEMP/ANL version 4.2 was used to perform the steady-state thermal-hydraulic analyses of the BR2 research reactor for conversion from Highly-Enriched to Low Enriched Uranium fuel (HEU and LEU, respectively). Calculations were performed to evaluate different fuel assemblies with respect to the onset of nucleate boiling (ONB), flow instability (FI), critical heat flux (CHF) and fuel temperature at beginning of cycle conditions. The fuel assemblies were characteristic of fresh fuel (0% burnup), highest heat flux (16% burnup), highest power (32% burnup) and highest burnup (46% burnup). Results show that the high heat flux fuel element is limiting for ONB,more » FI, and CHF, for both HEU and LEU fuel, but that the high power fuel element produces similar margin in a few cases. The maximum fuel temperature similarly occurs in both the high heat flux and high power fuel assemblies for both HEU and LEU fuel. A sensitivity study was also performed to evaluate the variation in fuel temperature due to uncertainties in the thermal conductivity degradation associated with burnup.« less

  3. Fission gas release during power bumping at high burnup

    NASA Astrophysics Data System (ADS)

    Cunningham, M. E.; Freshley, M. D.; Lanning, D. D.

    1993-03-01

    Research to define the behavior of Zircaloy-clad light-water reactor fuel irradiated to high burnup levels was conducted by the High Burnup Effects Program (HBEP). One activity conducted by the HBEP was to "bump" the power level of irradiated, commercial light-water reactor fuel rods to design limit linear heat generation rates at end-of-life. These bumping irradiations simulated end-of-life design limit linear heat generation rates and provided data on the effects of short-term, high power irradiations at high burnup applicable to the design and operating constraints imposed by maximum allowable fuel rod internal gas pressure limits. Based on net fission gas release during the bumping irradiations, it was observed that higher burnup rods had greater rod-average fractional fission gas release than lower burnup rods at equal bumping powers. It was also observed that a hold period of 48 hours at the peak power was insufficient to achieve equilibrium fission gas release. Finally, differences in the prebump location of fission gas, i.e., within the UO 2 matrix or at grain boundaries, affected the fission gas release during the bumping irradiations.

  4. Nuclear safety. Technical progress journal, October 1996--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less

  5. High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi

    2007-02-01

    The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.

  6. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Passive activity credit (temporary). 1.469-3T... TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.469-3T Passive activity credit (temporary). (a) Computation of passive activity credit. The taxpayer's passive activity credit...

  7. 5 CFR 847.905 - How is the present value of an immediate annuity with credit for NAFI service computed?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false How is the present value of an immediate....905 How is the present value of an immediate annuity with credit for NAFI service computed? (a) OPM will determine the present value of the immediate annuity including service credit for NAFI service by...

  8. 12 CFR 567.12 - Purchased credit card relationships, servicing assets, intangible assets (other than purchased...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and core capital. (b) Computation of core and tangible capital. (1) Purchased credit card relationships may be included (that is, not deducted) in computing core capital in accordance with the... restrictions in this section, mortgage servicing assets may be included in computing core and tangible capital...

  9. 20 CFR 225.35 - When a PIA used in computing a retirement annuity can be increased for DRC's.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false When a PIA used in computing a retirement... Credits § 225.35 When a PIA used in computing a retirement annuity can be increased for DRC's. Delayed retirement credits earned at different times are added to the PIA used in computing a retirement annuity as...

  10. Least-Squares Neutron Spectral Adjustment with STAYSL PNNL

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Johnson, C. D.

    2016-02-01

    The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator workbook for use in correcting the measured activities. Output from the SigPhi Calculator is automatically produced, and consists of a portion of the STAYSL PNNL input file data that is required to run the spectral adjustment calculations. Within STAYSL PNNL, the least-squares process is performed in one step, without iteration, and provides rapid results on PC platforms. STAYSL PNNL creates multiple output files with tabulated results, data suitable for plotting, and data formatted for use in subsequent radiation damage calculations using the SPECTER computer code (which is not included in the STAYSL PNNL suite). All components of the software suite have undergone extensive testing and validation prior to release and test cases are provided with the package.

  11. 26 CFR 1.37-1 - General rules for the credit for the elderly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true General rules for the credit for the elderly. 1... INCOME TAXES Credits Against Tax § 1.37-1 General rules for the credit for the elderly. (a) In general... computation of the credit for the elderly provided under section 37 for taxable years beginning after 1975...

  12. 26 CFR 1.37-1 - General rules for the credit for the elderly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true General rules for the credit for the elderly. 1... INCOME TAXES Credits Against Tax § 1.37-1 General rules for the credit for the elderly. (a) In general... computation of the credit for the elderly provided under section 37 for taxable years beginning after 1975...

  13. 12 CFR Appendix C to Part 704 - Risk-Based Capital Credit Risk-Weight Categories

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corporate credit union must compute its risk-weighted assets for purposes of determining its capital ratios.... Depository institution means a financial institution that engages in the business of providing financial... substitute. Direct credit substitutes include: (1) Financial standby letters of credit that support financial...

  14. Credit Cards: What You Don't Know Can Cost You!

    ERIC Educational Resources Information Center

    Detweiler, Gerri

    1993-01-01

    The role of credit cards in personal finance has increased dramatically over the past two decades. Complex interest computation methods and additional fees often boost the price of credit card loans and help make credit cards the most profitable type of consumer loan for many lenders. (Author/JOW)

  15. 28 CFR 523.30 - What is educational good time sentence credit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.30 What is educational good time sentence credit? Educational good time sentence credit is... 28 Judicial Administration 2 2013-07-01 2013-07-01 false What is educational good time sentence...

  16. 28 CFR 523.30 - What is educational good time sentence credit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.30 What is educational good time sentence credit? Educational good time sentence credit is... 28 Judicial Administration 2 2014-07-01 2014-07-01 false What is educational good time sentence...

  17. 28 CFR 523.30 - What is educational good time sentence credit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.30 What is educational good time sentence credit? Educational good time sentence credit is... 28 Judicial Administration 2 2012-07-01 2012-07-01 false What is educational good time sentence...

  18. 26 CFR 1.469-3T - Passive activity credit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Passive activity credit (temporary). 1.469-3T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-3T Passive activity credit (temporary). (a) Computation of passive activity credit. The taxpayer's passive activity...

  19. Gamma-Ray Simulated Spectrum Deconvolution of a LaBr₃ 1-in. x 1-in. Scintillator for Nondestructive ATR Fuel Burnup On-Site Predictions

    DOE PAGES

    Navarro, Jorge; Ring, Terry A.; Nigg, David W.

    2015-03-01

    A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less

  20. Spent fuel burnup estimation by Cerenkov glow intensity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki

    1994-10-01

    The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to themore » declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.« less

  1. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, B. D.

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and themore » mechanical properties of the rods will be tested and analyzed.« less

  2. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true New markets tax credit. 1.45D-1 Section 1.45D-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Current year credit. The current year genera...

  3. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 1 2013-04-01 2013-04-01 false New markets tax credit. 1.45D-1 Section 1.45D-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Current year credit. The current year...

  4. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 1 2012-04-01 2012-04-01 false New markets tax credit. 1.45D-1 Section 1.45D-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Current year credit. The current year...

  5. Need for higher fuel burnup at the Hatch Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckhman, J.T.

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less

  6. 5 CFR 847.907 - How is the monthly annuity rate used to compute the present value of the deferred annuity without...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... compute the present value of the deferred annuity without credit for NAFI service determined? 847.907... the present value of the deferred annuity without credit for NAFI service determined? (a) The monthly annuity rate used to compute the present value of the deferred annuity under § 847.906 of this subpart for...

  7. A One-Credit Hands-On Introductory Course in Electrical and Computer Engineering Using a Variety of Topic Modules

    ERIC Educational Resources Information Center

    Pierre, J. W.; Tuffner, F. K.; Anderson, J. R.; Whitman, D. L.; Ula, A. H. M. S.; Kubichek, R. F.; Wright, C. H. G.; Barrett, S. F.; Cupal, J. J.; Hamann, J. C.

    2009-01-01

    This paper describes a one-credit laboratory course for freshmen majoring in electrical and computer engineering (ECE). The course is motivational in nature and exposes the students to a wide range of areas of electrical and computer engineering. The authors believe it is important to give freshmen a broad perspective of what ECE is all about, and…

  8. 12 CFR 1402.21 - Categories of requesters-fees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... searches made by computer, the Farm Credit System Insurance Corporation will determine the hourly cost of... the cost of search (including the operator time and the cost of operating the computer to process a... 1402.21 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for...

  9. 12 CFR 1402.21 - Categories of requesters-fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... searches made by computer, the Farm Credit System Insurance Corporation will determine the hourly cost of... the cost of search (including the operator time and the cost of operating the computer to process a... 1402.21 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for...

  10. 12 CFR 1402.21 - Categories of requesters-fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... searches made by computer, the Farm Credit System Insurance Corporation will determine the hourly cost of... the cost of search (including the operator time and the cost of operating the computer to process a... 1402.21 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for...

  11. 12 CFR 1402.21 - Categories of requesters-fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... searches made by computer, the Farm Credit System Insurance Corporation will determine the hourly cost of... the cost of search (including the operator time and the cost of operating the computer to process a... 1402.21 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for...

  12. 12 CFR 1402.21 - Categories of requesters-fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... searches made by computer, the Farm Credit System Insurance Corporation will determine the hourly cost of... the cost of search (including the operator time and the cost of operating the computer to process a... 1402.21 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for...

  13. 13 CFR 107.1520 - How a Licensee computes and allocates Prioritized Payments to SBA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false How a Licensee computes and allocates Prioritized Payments to SBA. 107.1520 Section 107.1520 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees...

  14. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less

  15. 78 FR 35660 - Proposed Collection; Comment Request for Form 1116

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... 1116, Foreign Tax Credit. DATES: Written comments should be received on or before August 12, 2013 to be...: Foreign Tax Credit. OMB Number: 1545-0121. Form Number: 1116. Abstract: Form 1116 is used by individuals... compute the foreign tax credit. This information is used by the IRS to determine if the foreign tax credit...

  16. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Fission-gas release from uranium nitride at high fission rate density

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.

  18. 12 CFR Appendix F - Optional Annual Percentage Rate Computations for Creditors Offering Open-End Plans Subject to the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End Credit... balance (previous balance less payments and credits) and the consumer made a payment of $50 at the...

  19. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  20. A semi-empirical model for the formation and depletion of the high burnup structure in UO 2

    DOE PAGES

    Pizzocri, D.; Cappia, F.; Luzzi, L.; ...

    2017-01-31

    In the rim zone of UO 2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. To this end, we per-formed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Moreover, based on these new experimental data, we assume an exponential reduction of the average grain size withmore » local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.« less

  1. Irradiation effects on thermal properties of LWR hydride fuel

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  2. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies inmore » the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The other two benchmark critical calculations were the beginning-of-cycle (BOC) startup at both hot, zero-power (HZP) and HFP critical conditions. These latter calculations were used to check for consistency in the calculated results for different burnups and downtimes. The k{sub eff} results were in the range of 1.00014 to 1.00259 with a standard deviation of less than 0.001.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing anmore » annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.« less

  4. 5 CFR 847.903 - How is the monthly reduction to the retirement annuity computed?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reduction to the retirement annuity computed? (a) The reduction equals: (1) The difference in the present value of the immediate annuity with credit for NAFI service and the deferred annuity without credit for NAFI service, divided by (2) The present value factor for the retiree's attained age (in full years) at...

  5. 12 CFR Optional Annual Percentage... - End Plans Subject to the Requirements of § 226.5b

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....5b Annual Optional Annual Percentage Rate Computations for Creditors Offering Open Banks and Banking... LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End Credit Offered to... Computations for Creditors Offering Open-End Plans Subject to the Requirements of § 226.5b In determining the...

  6. 26 CFR 1.383-2 - Limitations on certain capital losses and excess credits in computing alternative minimum tax...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Limitations on certain capital losses and excess credits in computing alternative minimum tax. [Reserved] 1.383-2 Section 1.383-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency...

  7. Incorporating Partial Credit in Computer-Aided Assessment of Mathematics in Secondary Education

    ERIC Educational Resources Information Center

    Ashton, Helen S.; Beevers, Cliff E.; Korabinski, Athol A.; Youngson, Martin A.

    2006-01-01

    In a mathematical examination on paper, partial credit is normally awarded for an answer that is not correct, but, nevertheless, contains some of the correct working. Assessment on computer normally marks an incorrect answer wrong and awards no marks. This can lead to discrepancies between marks awarded for the same examination given in the two…

  8. 12 CFR Appendix A to Subpart A of... - Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interest rate and foreign exchange rate contracts are computed on the basis of the credit equivalent amounts of such contracts. Credit equivalent amounts are computed for each of the following off-balance... Equivalent Amounts a. The minimum capital components for interest rate and foreign exchange rate contracts...

  9. 75 FR 44846 - Proposed Collection; Comment Request for Form 8874-A

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... comments concerning Form 8874-A, Notice of Qualified Equity Investment for New Markets Credit. DATES... Investment for New Markets Credit. OMB Number: 1545-2065. Form Number: 8874-A. Abstract: New modernized e... the qualified mining company to compute and claim the credit. Current Actions: There are no changes...

  10. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel inmore » dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.« less

  11. CFD analysis of gas explosions vented through relief pipes.

    PubMed

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  12. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE PAGES

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek; ...

    2017-03-27

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  13. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  14. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  15. Post-irradiation examinations of Li 4SiO 4 pebbles irradiated in the EXOTIC-7 experiment

    NASA Astrophysics Data System (ADS)

    Piazza, G.; Scaffidi-Argentina, F.; Werle, H.

    2000-12-01

    Extraction of tritium in ceramics-7 (EXOTIC-7) was the first in-pile test with 6Li-enriched (50%) lithium orthosilicate (Li 4SiO 4) pebbles and with DEMO representative Li-burnup. Post-irradiation examinations (PIEs) of the Li 4SiO 4 have been performed at the Forschungszentrum Karlsruhe (FZK) to investigate the tritium release kinetics, the effects of Li-burnup, of the contact with beryllium during irradiation and the changes in the mechanical stability of the pebbles due to irradiation. Based on these data one can conclude that neither the contact with beryllium nor a burnup up to 13% have a detrimental effect on the tritium release of Li 4SiO 4 pebbles, but at 18% Li-burnup the residence time is increased by about a factor of 3. The mechanical strength of both irradiated and unirradiated pebbles has been examined by means of crush tests. According to the PIE no significant changes in the mechanical stability of the pebbles have been observed.

  16. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  17. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic usedmore » fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this work are artificially low, because the models were trained, optimized, and tested on simulated, noise-free data. However, these results indicate that the developed models may generalize well to new data and that the proposed approach constitutes a viable first step in developing a fuel characterization algorithm based on gamma spectra.« less

  18. High-energy synchrotron study of in-pile-irradiated U–Mo fuels

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Ye, Bei; ...

    2015-12-30

    We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.

  19. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is a corporation that operates an insurance company in a low-income community (as defined in section... Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Table... original issue (c) Qualified equity investment (1) In general (2) Equity investment (3) Equity investments...

  20. 26 CFR 1.46-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Stat. 962, 26 U.S.C. 38)) [T.D. 7751, 46 FR 1679, Jan. 7, 1981] ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-2 Carryback and... application of the rules of this section to regular and ESOP credits are separate from their application to...

  1. 26 CFR 1.46-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Stat. 962, 26 U.S.C. 38)) [T.D. 7751, 46 FR 1679, Jan. 7, 1981] ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-2 Carryback and... application of the rules of this section to regular and ESOP credits are separate from their application to...

  2. 26 CFR 1.46-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Stat. 962, 26 U.S.C. 38)) [T.D. 7751, 46 FR 1679, Jan. 7, 1981] ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-2 Carryback and... application of the rules of this section to regular and ESOP credits are separate from their application to...

  3. 26 CFR 1.46-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Stat. 962, 26 U.S.C. 38)) [T.D. 7751, 46 FR 1679, Jan. 7, 1981] ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-2 Carryback and... application of the rules of this section to regular and ESOP credits are separate from their application to...

  4. 26 CFR 1.46-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Stat. 962, 26 U.S.C. 38)) [T.D. 7751, 46 FR 1679, Jan. 7, 1981] ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-2 Carryback and... application of the rules of this section to regular and ESOP credits are separate from their application to...

  5. 75 FR 44850 - Proposed Collection; Comment Request for Form 1116

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... 1116, Foreign Tax Credit. DATES: Written comments should be received on or before September 27, 2010 to... INFORMATION: Title: Foreign Tax Credit. OMB Number: 1545-0121. Form Number: 1116. Abstract: Form 1116 is used....S. taxable income, to compute the foreign tax credit. This information is used by the IRS to...

  6. 28 CFR 523.2 - Good time credit for violators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.2 Good time credit for violators. (a) An... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Good time credit for violators. 523.2... good time, upon being returned to custody for violation of supervised release, based on the number of...

  7. 28 CFR 523.2 - Good time credit for violators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.2 Good time credit for violators. (a) An... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Good time credit for violators. 523.2... good time, upon being returned to custody for violation of supervised release, based on the number of...

  8. 28 CFR 523.2 - Good time credit for violators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.2 Good time credit for violators. (a) An... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Good time credit for violators. 523.2... good time, upon being returned to custody for violation of supervised release, based on the number of...

  9. 28 CFR 523.2 - Good time credit for violators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.2 Good time credit for violators. (a) An... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Good time credit for violators. 523.2... good time, upon being returned to custody for violation of supervised release, based on the number of...

  10. 28 CFR 523.2 - Good time credit for violators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.2 Good time credit for violators. (a) An... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Good time credit for violators. 523.2... good time, upon being returned to custody for violation of supervised release, based on the number of...

  11. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.

  12. Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  13. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  14. 26 CFR 20.2056A-7 - Allowance of prior transfer credit under section 2013.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2013. 20.2056A-7 Section 20.2056A-7 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Taxable Estate § 20.2056A-7 Allowance of prior transfer credit under section 2013. (a) Property subject to QDOT election. Section 2056(d)(3) provides special rules for computing the section 2013 credit allowed...

  15. At NREL, Even the Ones and Zeros Are Green | News | NREL

    Science.gov Websites

    containment aisle. Credit: Dennis Schroeder Data is something computer users often take for granted. As you practices, NREL organizes the cables in back of the cabinets. Credit: Dennis Schroeder Power usage repeated in existing data centers. Credit: Dennis Schroeder The data center is arranged with hot aisle

  16. Credit by Examination at the University of Texas at Austin, 1985-1986.

    ERIC Educational Resources Information Center

    Mahoney, Susan S.

    The University of Texas (UT) at Austin's credit by examination program is described. In 1985-86, credit by examination was offered in 55 subjects. Details were provided for each of 18 subject areas in which over 20 tests were administered: Biology; Chemistry; Chinese; Computer Science; Economics; Electrical Engineering; English; French; German;…

  17. Non-Destructive Analysis of Natural Uranium Pellet

    NASA Astrophysics Data System (ADS)

    Wigley, Samantha; Glennon, Kevin; Kitcher, Evans; Folden, Cody

    2017-09-01

    As part of ongoing nuclear forensics research, samples of natUO2 have been irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) with the goal of simulating a pressurized heavy water reactor. Non-destructive gamma ray analysis has been performed on the samples to assay various nuclides in order to determine the burnup and time since irradiation. The quantity of 137Cs was used to determine the burnup directly, and a maximum likelihood method has been used to estimate both the burnup and the time since irradiation. This poster will discuss the most recent results of these analyses. National Science Foundation (PHY-1659847), Department of Energy (DE-FG02-93ER40773).

  18. Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Strumpell

    2004-12-31

    Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiationmore » examination (PIE).« less

  19. 10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...

  20. 10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...

  1. 10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements. (3... Cases. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...

  2. Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB

    NASA Astrophysics Data System (ADS)

    Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.

    2018-01-01

    Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.

  3. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    NASA Astrophysics Data System (ADS)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  4. 26 CFR 1.47-1 - Recomputation of credit allowed by section 38.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., giving effect to such reduction in the computation of carryovers or carrybacks of unused credit. If the..., the taxpayer must maintain records for each recycling facility indicating the percentage of virgin...

  5. 26 CFR 1.47-1 - Recomputation of credit allowed by section 38.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., giving effect to such reduction in the computation of carryovers or carrybacks of unused credit. If the..., the taxpayer must maintain records for each recycling facility indicating the percentage of virgin...

  6. 26 CFR 1.47-1 - Recomputation of credit allowed by section 38.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., giving effect to such reduction in the computation of carryovers or carrybacks of unused credit. If the..., the taxpayer must maintain records for each recycling facility indicating the percentage of virgin...

  7. 26 CFR 1.47-1 - Recomputation of credit allowed by section 38.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., giving effect to such reduction in the computation of carryovers or carrybacks of unused credit. If the..., the taxpayer must maintain records for each recycling facility indicating the percentage of virgin...

  8. 26 CFR 1.47-1 - Recomputation of credit allowed by section 38.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., giving effect to such reduction in the computation of carryovers or carrybacks of unused credit. If the..., the taxpayer must maintain records for each recycling facility indicating the percentage of virgin...

  9. 26 CFR 20.2056A-7 - Allowance of prior transfer credit under section 2013.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section 2013. 20.2056A-7 Section 20.2056A-7 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Taxable Estate § 20.2056A-7 Allowance of prior transfer credit under section 2013. (a) Property subject to QDOT election. Section 2056(d)(3) provides special rules for computing the section 2013 credit allowed...

  10. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  11. 10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... amendment under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements... Case-284. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...

  12. 10 CFR Appendix D to Part 52 - Design Certification Rule for the AP1000 Design

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... amendment under 10 CFR 50.90. (1) Maximum fuel rod average burn-up. (2) Fuel principal design requirements... Case-284. (3) Design Summary of Critical Sections. (4) American Concrete Institute (ACI) 318, ACI 349... control system, except burn-up limit. (8) Motor-operated and power-operated valves. (9) Instrumentation...

  13. 75 FR 43572 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ..., and would have no adverse effect on the probability of any accident. For the accidents that involve... extended burnup under consideration; therefore, the probability of an accident will not be affected. For the accidents in which core remains intact, the increased burnup may slightly change the mix of...

  14. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  15. The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250°C

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Won; McEachern, Rod J.; Taylor, Peter; Wood, Donald D.

    1996-06-01

    The effect of fission products on the rate of U3O8 formation was investigated by oxidizing UO2-based SIMFUEL (simulated high burnup nuclear fuel) and unirradiated UO2 fuel specimens in air at 250°C for different times (1-317 days). The progress of oxidation was monitored by X-ray diffraction, revealing that the rate of U3O8 formation declines with increasing burnup. An expression was derived to describe quantitatively the time for U3O8 powder formation as a function of simulated burnup. These findings were supported by additional isochronal oxidation experiments conducted between 200 and 300°C.

  16. 5 CFR 847.606 - Methodology for determining the present value of annuity without service credit-credit not needed...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., OPM will determine the present value of the annuity without credit for the NAFI service under... service as of the date of computation under § 847.603 times the present value factor for the retiree's age on that date. (c) In cases in which the annuity is payable to a survivor, the present value under...

  17. 12 CFR Appendix F to Part 226 - Annual Percentage Rate Computations for Certain Open-End Credit Plans

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... adjusted balance (previous balance less payments and credits) and the consumer made a payment of $50 at the... convenience of the user, the revised text is set forth as follows: Pt. 226, App. F, Nt. Appendix F to Part 226... rate applies only to an adjusted balance (previous balance less payments and credits) and the consumer...

  18. Faster Finances

    NASA Technical Reports Server (NTRS)

    1976-01-01

    TRW has applied the Apollo checkout procedures to retail-store and bank-transaction systems, as well as to control systems for electric power transmission grids -- reducing the chance of power blackouts. Automatic checkout equipment for Apollo Spacecraft is one of the most complex computer systems in the world. Used to integrate extensive Apollo checkout procedures from manufacture to launch, it has spawned major advances in computer systems technology. Store and bank credit system has caused significant improvement in speed and accuracy of transactions, credit authorization, and inventory control. A similar computer service called "Validata" is used nationwide by airlines, airline ticket offices, car rental agencies, and hotels.

  19. Data mining technique for a secure electronic payment transaction using MJk-RSA in mobile computing

    NASA Astrophysics Data System (ADS)

    G. V., Ramesh Babu; Narayana, G.; Sulaiman, A.; Padmavathamma, M.

    2012-04-01

    Due to the evolution of the Electronic Learning (E-Learning), one can easily get desired information on computer or mobile system connected through Internet. Currently E-Learning materials are easily accessible on the desktop computer system, but in future, most of the information shall also be available on small digital devices like Mobile, PDA, etc. Most of the E-Learning materials are paid and customer has to pay entire amount through credit/debit card system. Therefore, it is very important to study about the security of the credit/debit card numbers. The present paper is an attempt in this direction and a security technique is presented to secure the credit/debit card numbers supplied over the Internet to access the E-Learning materials or any kind of purchase through Internet. A well known method i.e. Data Cube Technique is used to design the security model of the credit/debit card system. The major objective of this paper is to design a practical electronic payment protocol which is the safest and most secured mode of transaction. This technique may reduce fake transactions which are above 20% at the global level.

  20. 40 CFR Appendix A to Part 191 - Table for Subpart B

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM; (b) The high... heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel...

  1. 40 CFR Appendix A to Part 191 - Table for Subpart B

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM; (b) The high... heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel...

  2. 40 CFR Appendix A to Part 191 - Table for Subpart B

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM; (b) The high... heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel...

  3. 40 CFR Appendix A to Part 191 - Table for Subpart B

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM; (b) The high... heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel...

  4. 40 CFR Appendix A to Part 191 - Table for Subpart B

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM; (b) The high... heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel...

  5. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  6. Staff Development Resources, 1989-90. ITV Connection.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Instructional Technology.

    This staff development resource guide includes listings of television and radio broadcasts categorized by topical emphasis. Television program topics include: administration; adult education; arts; career education; certificate-renewal credit courses; college credit courses; computer education and new technology; custodial training; early…

  7. Phishing

    MedlinePlus

    ... Money & Credit Homes & Mortgages Health & Fitness Jobs & Making Money Privacy, Identity & Online Security Limiting Unwanted Calls and Emails Online Security "Free" Security Scans Computer Security Disposing of Old Computers ...

  8. Preparing for Computer Use. Revised.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    Intended to assist school districts in designing high school credit courses, preparing staff development activities related to computer utilization, and selecting and evaluating instructional software, this document offers outlines for the following student courses: (1) Introduction to Computers, a computer literacy course covering computer…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Warmann, Stephan A.; Rusch, Chris

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The UFDC Storage and Transportation staffs are responsible for addressing issues regarding the extended or long-term storage of UNFmore » and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While low burnup fuel [that characterized as having a burnup of less than 45 gigawatt days per metric tonne uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burnup used fuels is more recent. The DOE has funded a demonstration project to confirm the behavior of used high burnup fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burnup fuel. The Draft Test Plan for the demonstration outlines the data to be collected; the high burnup fuel to be included; the technical data gaps the data will address; and the storage system design, procedures, and licensing necessary to implement the Test Plan. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must closely mimic real conditions high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.« less

  10. 26 CFR 1.6014-2 - Tax not computed by taxpayer for taxable years beginning after December 31, 1969.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... household or a surviving spouse; (ii) The credit under section 31 (relating to tax withheld on wages); (iii... (relating to investment in certain depreciable property); (v) The credit under section 39 (relating to...

  11. 26 CFR 1.6014-2 - Tax not computed by taxpayer for taxable years beginning after December 31, 1969.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... household or a surviving spouse; (ii) The credit under section 31 (relating to tax withheld on wages); (iii... (relating to investment in certain depreciable property); (v) The credit under section 39 (relating to...

  12. Computer Education for Engineers, Part III.

    ERIC Educational Resources Information Center

    McCullough, Earl S.; Lofy, Frank J.

    1989-01-01

    Reports the results of the third survey of computer use in engineering education conducted in the fall of 1987 in comparing with 1981 and 1984 results. Summarizes survey data on computer course credits, languages, equipment use, CAD/CAM instruction, faculty access, and computer graphics. (YP)

  13. Thermal property change of MOX and UO2 irradiated up to high burnup of 74 GWd/t

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro; Kurematsu, Shigeru; Kosaka, Yuji; Yoshino, Aya; Kitagawa, Takaaki

    2013-09-01

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO2 fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO2. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO2 is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO2 at high burnup under the condition that the pellet-cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO2 before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO2. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  14. Hacked E-mail

    MedlinePlus

    ... Money & Credit Homes & Mortgages Health & Fitness Jobs & Making Money Privacy, Identity & Online Security Limiting Unwanted Calls and Emails Online Security "Free" Security Scans Computer Security Disposing of Old Computers ...

  15. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  16. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik, E-mail: menikariani@gmail.com; Satya, Octavianus Cakra; Monado, Fiber

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactorsmore » with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).« less

  17. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  18. Effect of fission rate on the microstructure of coated UMo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenaers, A.; Parthoens, Y.; Cornelis, G.

    Compared to previous irradiation experiments containing UMo/Al dispersion fuel plates, the SELENIUM irradiation experiment performed at the SCK.CEN BR2 reactor in 2012 showed an improved plate swelling behavior. However, in the high burn-up area of the plates a significant increase in meat thickness was still measured. The origin of this increase is currently not firmly established, but it is clear from the observed microstructure that the swelling rate still is too high for practical purposes and needs to be reduced. It was stipulated that the swelling occurred at the high burnup areas which are also the high power zones atmore » beginning of life. For that reason, an experiment was proposed to investigate the influence of fission rate (i.e. power) on some of the observed phenomena. For this purpose, a sibling plate to a high power (BOL>470 W/cm(2)) SELENIUM plate was irradiated during four BR2 cycles. The SELENIUM 1a fuel plate was submitted to a local maximum heat flux below 350 W/cm(2), throughout the full irradiation. At the end of the last cycle, the SELENIUM 1a fuel plate reached a maximum local burnup value of close to 75%U-235 compared to 70%U-235 for the SELENIUM high power plates. When comparing to the results on the SELENIUM plates, the non-destructive tests clearly show a continued linear swelling behavior of the low power irradiated fuel plate SELENIUM 1a in the high burn-up region. The influence of the fission rate is also evidenced in the microstructural examination of the fuel showing that there is no formation of interaction layer at the high burn-up region.« less

  19. Effect of fission rate on the microstructure of coated UMo dispersion fuel

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Parthoens, Y.; Cornelis, G.; Kuzminov, V.; Koonen, E.; Van den Berghe, S.; Ye, B.; Hofman, G. L.; Schulthess, Jason

    2017-10-01

    Compared to previous irradiation experiments containing UMo/Al dispersion fuel plates, the SELENIUM irradiation experiment performed at the SCK·CEN BR2 reactor in 2012 showed an improved plate swelling behavior. However, in the high burn-up area of the plates a significant increase in meat thickness was still measured. The origin of this increase is currently not firmly established, but it is clear from the observed microstructure that the swelling rate still is too high for practical purposes and needs to be reduced. It was stipulated that the swelling occurred at the high burnup areas which are also the high power zones at beginning of life. For that reason, an experiment was proposed to investigate the influence of fission rate (i.e. power) on some of the observed phenomena. For this purpose, a sibling plate to a high power (BOL>470 W/cm2) SELENIUM plate was irradiated during four BR2 cycles. The SELENIUM 1a fuel plate was submitted to a local maximum heat flux below 350 W/cm2, throughout the full irradiation. At the end of the last cycle, the SELENIUM 1a fuel plate reached a maximum local burnup value of close to 75%235U compared to 70%235U for the SELENIUM high power plates. When comparing to the results on the SELENIUM plates, the non-destructive tests clearly show a continued linear swelling behavior of the low power irradiated fuel plate SELENIUM 1a in the high burn-up region. The influence of the fission rate is also evidenced in the microstructural examination of the fuel showing that there is no formation of interaction layer at the high burn-up region.

  20. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, Brady

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened andmore » the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.« less

  1. A high burnup model developed for the DIONISIO code

    NASA Astrophysics Data System (ADS)

    Soba, A.; Denis, A.; Romero, L.; Villarino, E.; Sardella, F.

    2013-02-01

    A group of subroutines, designed to extend the application range of the fuel performance code DIONISIO to high burn up, has recently been included in the code. The new calculation tools, which are tuned for UO2 fuels in LWR conditions, predict the radial distribution of power density, burnup, and concentration of diverse nuclides within the pellet. The balance equations of all the isotopes involved in the fission process are solved in a simplified manner, and the one-group effective cross sections of all of them are obtained as functions of the radial position in the pellet, burnup, and enrichment in 235U. In this work, the subroutines are described and the results of the simulations performed with DIONISIO are presented. The good agreement with the data provided in the FUMEX II/III NEA data bank can be easily recognized.

  2. Credit Recovery Hits the Mainstream

    ERIC Educational Resources Information Center

    Carr, Sarah

    2014-01-01

    In communities including New Orleans, Los Angeles, and Chicago, educators are creating alternative schools for struggling students that employ online credit-recovery programs as a core portion, or all, of their curriculum. The growth in online learning generally, including blended learning, has fueled the proliferation of computer-based credit…

  3. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2016-12-01

    Radioactive iodine is the Achilles' heel in the design for the safe geological disposal of spent uranium oxide (UO2) nuclear fuel. Furthermore, iodine's high volatility and aqueous solubility were mainly responsible for the high early doses released during the accident at Fukushima Daiichi in 2011. Studies Kienzler et al., however, have indicated that the instant release fraction (IRF) of radioiodine (131/129I) does not correlate directly with increasing fuel burn-up. In fact, there is a peak in the release of iodine at around 50-60 MW d/kgU, and with increasing burn-up, the IRF of 131/129I decreases. The reasons for this decrease have not fully been understood. We have performed microscopic analysis of chemically processed high burn-up UO2 fuel (80 MW d/kgU) and have found recalcitrant nano-particles containing, Pd, Ag, I, and Br, possibly consistent with a high pressure phase of silver iodide in the undissolved residue. It is likely that increased levels of Ag and Pd from 239Pu fission in high burnup fuels leads to the formation of these metal halides. The occurrence of these phases in UO2 nuclear fuels may reduce the impact of long-lived 129I on the repository performance assessment calculations.

  4. 26 CFR 1.45G-1 - Railroad track maintenance credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.45G-1 Railroad track... extensions) Federal income tax return for the taxable year the RTMC is claimed. Paragraph (b) of this section..., accounting and bookkeeping, marketing, legal services; janitorial services; office building rental; banking...

  5. 28 CFR 523.30 - What is educational good time sentence credit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false What is educational good time sentence credit? 523.30 Section 523.30 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time...

  6. 12 CFR 747.12 - Construction of time limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Construction of time limits. 747.12 Section 747.12 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS... of Practice and Procedure § 747.12 Construction of time limits. (a) General rule. In computing any...

  7. 7 CFR 1007.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Before making such a finding, the market administrator shall notify the Deputy Administrator of Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  8. 7 CFR 1005.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Before making such a finding, the Market Administrator shall notify the Deputy Administrator of the Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  9. 7 CFR 1005.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Before making such a finding, the Market Administrator shall notify the Deputy Administrator of the Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  10. 7 CFR 1007.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Before making such a finding, the market administrator shall notify the Deputy Administrator of Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  11. 7 CFR 1005.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Before making such a finding, the Market Administrator shall notify the Deputy Administrator of the Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  12. 7 CFR 1007.82 - Payments from the transportation credit balancing fund.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Before making such a finding, the market administrator shall notify the Deputy Administrator of Dairy... paragraph (b) of this section, the market administrator shall pay to each handler that received, and... credits computed pursuant to this section, the market administrator shall distribute the balance available...

  13. Buy Now, Pay Later? Teacher's Guide [and] Student Materials.

    ERIC Educational Resources Information Center

    Estes, Cynthia

    This consumer education capsule focuses on credit financing, with emphasis on the rights and responsibilities of using credit. It is intended for use in conjunction with seventh or eighth grade mathematics textbooks when teaching computation of simple interest. Activities require from four to six hours of instructional time. Specific objectives…

  14. 28 CFR 523.30 - What is educational good time sentence credit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false What is educational good time sentence credit? 523.30 Section 523.30 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time...

  15. 75 FR 4449 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Number: 1545-2025. Type of Review: Revision of a currently approved collection. Title: Clean Renewable Energy Bond Credit and Gulf Bond Credit. Form: 8912. Description: Form 8912, Clean Renewable Energy Bond... 54 and 1400N(l). The form provides a means for the taxpayer to compute the clean renewable energy...

  16. Environment-based pin-power reconstruction method for homogeneous core calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-07-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  18. A Genesis breakup and burnup analysis in off-nominal Earth return and atmospheric entry

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; Ling, Lisa; McRonald, Angus

    2005-01-01

    The Genesis project conducted a detailed breakup/burnup analysis before the Earth return to determine if any spacecraft component could survive and reach the ground intact in case of an off-nominal entry. In addition, an independent JPL team was chartered with the responsibility of analyzing several definitive breakup scenarios to verify the official project analysis. This paper presents the analysis and results of this independent team.

  19. Extended burnup core management for once-through uranium fuel cycles in LWRS. First annual report for the period 1 July 1979-30 June 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesonske, A.

    1980-08-01

    Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent.

  20. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T.H.; Holland, J.W.

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less

  1. A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, G.G.; Golochtchapov, S.; Glazov, A.G.

    1995-12-31

    The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less

  2. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  3. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  4. The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.

    The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for puremore » deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.« less

  5. Examination of UC-ZrC after long term irradiation at thermionic temperature

    NASA Technical Reports Server (NTRS)

    Yang, L.; Johnson, H. O.

    1972-01-01

    Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.

  6. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  7. Modelling of pore coarsening in the high burn-up structure of UO2 fuel

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Tarasov, V. I.

    2017-05-01

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO2 fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  8. Credit scoring analysis using kernel discriminant

    NASA Astrophysics Data System (ADS)

    Widiharih, T.; Mukid, M. A.; Mustafid

    2018-05-01

    Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.

  9. 12 CFR Appendix C to Part 704 - Risk-Based Capital Credit Risk-Weight Categories

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... determining its capital ratios. (2) Risk-weighted assets equal risk-weighted on-balance sheet assets (computed... similar transactions. Depository institution means a financial institution that engages in the business of providing financial services; that is recognized as a bank or a credit union by the supervisory or monetary...

  10. 12 CFR Appendix C to Part 704 - Risk-Based Capital Credit Risk-Weight Categories

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... determining its capital ratios. (2) Risk-weighted assets equal risk-weighted on-balance sheet assets (computed... similar transactions. Depository institution means a financial institution that engages in the business of providing financial services; that is recognized as a bank or a credit union by the supervisory or monetary...

  11. 12 CFR Appendix C to Part 704 - Risk-Based Capital Credit Risk-Weight Categories

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... determining its capital ratios. (2) Risk-weighted assets equal risk-weighted on-balance sheet assets (computed... similar transactions. Depository institution means a financial institution that engages in the business of providing financial services; that is recognized as a bank or a credit union by the supervisory or monetary...

  12. 7 CFR 1785.70 - Application of RETRF cushion of credit payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Application of RETRF cushion of credit payments. 1785.70 Section 1785.70 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) LOAN ACCOUNT COMPUTATIONS, PROCEDURES AND POLICIES FOR ELECTRIC AND TELEPHONE BORROWERS RUS...

  13. 7 CFR 1785.70 - Application of RETRF cushion of credit payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Application of RETRF cushion of credit payments. 1785.70 Section 1785.70 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) LOAN ACCOUNT COMPUTATIONS, PROCEDURES AND POLICIES FOR ELECTRIC AND TELEPHONE BORROWERS RUS...

  14. 7 CFR 1785.70 - Application of RETRF cushion of credit payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Application of RETRF cushion of credit payments. 1785.70 Section 1785.70 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) LOAN ACCOUNT COMPUTATIONS, PROCEDURES AND POLICIES FOR ELECTRIC AND TELEPHONE BORROWERS RUS...

  15. 7 CFR 1785.70 - Application of RETRF cushion of credit payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Application of RETRF cushion of credit payments. 1785.70 Section 1785.70 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) LOAN ACCOUNT COMPUTATIONS, PROCEDURES AND POLICIES FOR ELECTRIC AND TELEPHONE BORROWERS RUS...

  16. 7 CFR 1785.70 - Application of RETRF cushion of credit payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Application of RETRF cushion of credit payments. 1785.70 Section 1785.70 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) LOAN ACCOUNT COMPUTATIONS, PROCEDURES AND POLICIES FOR ELECTRIC AND TELEPHONE BORROWERS RUS Cushio...

  17. 26 CFR 1.36B-1 - Premium tax credit definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... meaning as in 45 CFR 155.20. (h) Federal poverty line. The Federal poverty line means the most recently published poverty guidelines (updated periodically in the Federal Register by the Secretary of Health and... Federal poverty line for computing the premium tax credit for a taxable year is the Federal poverty line...

  18. 26 CFR 1.36B-1 - Premium tax credit definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... meaning as in 45 CFR 155.20. (h) Federal poverty line. The Federal poverty line means the most recently published poverty guidelines (updated periodically in the Federal Register by the Secretary of Health and... Federal poverty line for computing the premium tax credit for a taxable year is the Federal poverty line...

  19. Student Hotline Procedural Manual. Instructional Technology and Design. Rio Salado Community College. Revised.

    ERIC Educational Resources Information Center

    Rio Salado Community Coll., AZ.

    Rio Salado Community College offers a variety of alternative delivery courses utilizing different forms of instructional technology (e.g., broadcast and cable television, radio, audio and video cassettes, and computer-managed instruction) for both credit and non-credit instruction. This manual provides information for student operators of a…

  20. 28 CFR 523.20 - Good conduct time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Good Conduct Time § 523.20 Good conduct time. (a) For inmates serving a... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Good conduct time. 523.20 Section 523.20... will award 54 days credit toward service of sentence (good conduct time credit) for each year served...

  1. 28 CFR 523.20 - Good conduct time.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Good Conduct Time § 523.20 Good conduct time. (a) For inmates serving a... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Good conduct time. 523.20 Section 523.20... will award 54 days credit toward service of sentence (good conduct time credit) for each year served...

  2. 28 CFR 523.20 - Good conduct time.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Good Conduct Time § 523.20 Good conduct time. (a) For inmates serving a... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Good conduct time. 523.20 Section 523.20... will award 54 days credit toward service of sentence (good conduct time credit) for each year served...

  3. 28 CFR 523.20 - Good conduct time.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Good Conduct Time § 523.20 Good conduct time. (a) For inmates serving a... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Good conduct time. 523.20 Section 523.20... will award 54 days credit toward service of sentence (good conduct time credit) for each year served...

  4. 13 CFR 120.194 - Use of computer forms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Use of computer forms. 120.194... Applying to All Business Loans Computerized Sba Forms § 120.194 Use of computer forms. Any Applicant or Participant may use computer generated SBA application forms, closing forms, and other forms designated by SBA...

  5. 13 CFR 120.194 - Use of computer forms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Use of computer forms. 120.194... Applying to All Business Loans Computerized Sba Forms § 120.194 Use of computer forms. Any Applicant or Participant may use computer generated SBA application forms, closing forms, and other forms designated by SBA...

  6. 13 CFR 120.194 - Use of computer forms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Use of computer forms. 120.194... Applying to All Business Loans Computerized Sba Forms § 120.194 Use of computer forms. Any Applicant or Participant may use computer generated SBA application forms, closing forms, and other forms designated by SBA...

  7. 13 CFR 102.40 - Computer matching.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Computer matching. 102.40 Section...

  8. 13 CFR 102.40 - Computer matching.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Computer matching. 102.40 Section...

  9. 13 CFR 102.40 - Computer matching.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Computer matching. 102.40 Section...

  10. 13 CFR 102.40 - Computer matching.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Computer matching. 102.40 Section...

  11. 13 CFR 102.40 - Computer matching.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Computer matching. 102.40 Section...

  12. 13 CFR 120.194 - Use of computer forms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Use of computer forms. 120.194... Applying to All Business Loans Computerized Sba Forms § 120.194 Use of computer forms. Any Applicant or Participant may use computer generated SBA application forms, closing forms, and other forms designated by SBA...

  13. 13 CFR 120.194 - Use of computer forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Use of computer forms. 120.194... Applying to All Business Loans Computerized Sba Forms § 120.194 Use of computer forms. Any Applicant or Participant may use computer generated SBA application forms, closing forms, and other forms designated by SBA...

  14. THE DETERMINATION OF URANIUM BURNUP IN MWD/TON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rider, B.F.; Russell, J.L. Jr.; Harris, D.W.

    The mass-spectrometric and radiochemical methods for the determination of burn-up in nuclear fuel are compared for reliability in the range of 5000 to 15,000 Mwd/ton. Neither appears to be clearly superior to the other. Each appears to have an uncertainty of approximately 6 to 8%. It is concluded that both methods of analysis should be employed where reliability is of great concern. Agreement between both methods is the best possible indication of reliable results. (auth)

  15. Thermal conductivity of fresh and irradiated U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.C. Ryman

    This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-00006 REV 01. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operatingmore » conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 7.28). The performance of the calculation and development of this document are carried out in accordance with AP-3.124, ''Design Calculation and Analyses'' (Ref. 7.29).« less

  17. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  18. U.S. Commercial Spent Nuclear Fuel Assembly Characteristics - 1968-2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Peterson, Joshua L.; Gauld, Ian C.

    2016-09-01

    Activities related to management of spent nuclear fuel (SNF) are increasing in the US and many other countries. Over 240,000 SNF assemblies have been discharged from US commercial reactors since the late 1960s. The enrichment and burnup of SNF have changed significantly over the past 40 years, and fuel assembly designs have also evolved. Understanding the general characteristics of SNF helps regulators and other stakeholders form overall strategies towards the final disposal of US SNF. This report documents a survey of all US commercial SNF assemblies in the GC-859 database and provides reference SNF source terms (e.g., nuclide inventories, decaymore » heat, and neutron/photon emission) at various cooling times up to 200 years after fuel discharge. This study reviews the distribution and evolution of fuel parameters of all SNF assemblies discharged over the past 40 years. Assemblies were categorized into three groups based on discharge year, and the median burnups and enrichments of each group were used to establish representative cases. An extended burnup case was created for boiling water reactor (BWR) fuels, and another was created for the pressurized water reactor (PWR) fuels. Two additional cases were developed to represent the eight mixed oxide (MOX) fuel assemblies in the database. Burnup calculations were performed for each representative case. Realistic parameters for fuel design and operations were used to model the SNF and to provide reference fuel characteristics representative of the current inventory. Burnup calculations were performed using the ORIGEN code, which is part of the SCALE nuclear modeling and simulation code system. Results include total activity, decay heat, photon emission, neutron flux, gamma heat, and plutonium content, as well as concentrations for 115 significant nuclides. These quantities are important in the design, regulation, and operations of SNF storage, transportation, and disposal systems.« less

  19. 13 CFR 108.1840 - Computation of NMVC Company's Capital Impairment Percentage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Capital Impairment Percentage. 108.1840 Section 108.1840 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM NMVC Company's Noncompliance With Terms of Leverage Computation of Nmvc Company's Capital Impairment § 108.1840 Computation of NMVC Company's Capital Impairment...

  20. Ferguson Uses a Computer on Atlantis Middeck

    NASA Image and Video Library

    2011-07-13

    S135-E-007705 (13 July 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, inputs data on a computer on Atlantis' middeck during the sixth day in space for him and three crewmates. Photo credit: NASA

  1. Chemical state of fission products in irradiated uranium carbide fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  2. 26 CFR 1.861-11T - Special rules for allocating and apportioning interest expense of an affiliated group of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or Z's direct assets is exclusively financial services income. The foreign source income generated by... computation of foreign source taxable income for purposes of section 904 (relating to various limitations on the foreign tax credit). Section 904 imposes separate foreign tax credit limitations on passive income...

  3. 26 CFR 1.50A-3 - Recomputation of credit allowed by section 40.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....50A-3 Section 1.50A-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Expenses of Work Incentive Programs § 1.50A-3 Recomputation...) In general. If the employment of any employee, with respect to whom work incentive program (WIN...

  4. 12 CFR Optional Annual Percentage... - End Plans Subject to the Requirements of § 226.5b

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....5b Annual Optional Annual Percentage Rate Computations for Creditors Offering Open Banks and Banking... (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End Credit Offered to College... Creditors Offering Open-End Plans Subject to the Requirements of § 226.5b In determining the denominator of...

  5. 12 CFR Optional Annual Percentage... - End Plans Subject to the Requirements of § 226.5b

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....5b Annual Optional Annual Percentage Rate Computations for Creditors Offering Open Banks and Banking... (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End Credit Offered to College... Creditors Offering Open-End Plans Subject to the Requirements of § 226.5b In determining the denominator of...

  6. 31 CFR 29.105 - Computation of time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s credit under a formal leave system; and (ii) The service of a participant under the Teachers Plan... work days, and no additional leave credit is earned for that period). (3) If an employee's tour of duty... and the last day of a 29-day month counts as 2 days. (c) For counting unused sick leave. (1) For...

  7. Critical Safe Disposal of Spent Fuel: Behavior of Neutron Poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kienzler, Bernhard; Gmal, Bernhard

    2007-07-01

    In contrast to Yucca Mountain, European repository concepts rely on deep underground conditions which guarantee permanently a reducing geochemical environment. As long as no water comes into contact with the disposed nuclear fuel, criticality is excluded by compliance with the disposal conditions (limitation of U/Pu in the canisters). Penetration of water into the canister may also be considered as a scenario. However, water in a disposal results in geochemical reactions proceeding over very long periods of time: (1) Presence of water allows the corrosion of the steel of the canister material forming hydrogen and iron corrosion products. (2) Hydrogen pressuresmore » affect the zircaloy cladding even at low temperatures. Failure of fuel cladding and spacers leads to changes in the geometrical configuration. (3) UO{sub 2} matrix corrosion results in geochemically controlled reformation of secondary phase. (4) Even if the dissolution rate of UO{sub 2} is low, elements accounting for burnup credit do not behave similar as uranium. Geochemical reactions are analyzed in detail and compositions are presented which have a high probability to be formed in the long-term needing to be analyzed with respect to K{sub eff}. (authors)« less

  8. 20 CFR 225.4 - Limitation on amount of earnings used to compute a PIA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... compute a PIA. 225.4 Section 225.4 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE... earnings used to compute a PIA. Certain PIA's used by the Board are based on a combination of compensation... purposes of crediting earnings when computing any PIA, compensation is always treated as wages. Regardless...

  9. A Model Instructional Computing Course for Preservice Teachers.

    ERIC Educational Resources Information Center

    Cimikowski, Linda; Cook, Joan

    Foundations of Instructional Computing is a required one-semester, two credit course in the Education Department of Montana State University (Bozeman). The major objective of the course is to help preservice teachers develop use of computer technology that is confident, thoughtful, and integrated into their individual teaching philosophy and…

  10. Computer Applications and Technology 105.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg.

    Designed to promote Manitoba students' familiarity with computer technology and their ability to interact with that technology, the Computer Applications and Technology 105 course is a one-credit course presented in 15 topical, non-sequential units that require 110-120 hours of instruction time. It has been developed with the assumption that each…

  11. Computer Academy. Western Michigan University: Summer 1985-Present.

    ERIC Educational Resources Information Center

    Kramer, Jane E.

    The Computer Academy at Western Michigan University (Kalamazoo) is a series of intensive, one-credit-hour workshops to assist professionals in increasing their level of computer competence. At the time they were initiated, in 1985, the workshops targeted elementary and secondary school teachers and administrators, were offered on Apple IIe…

  12. Investigating a New Way To Teach Law: A Computer-based Commercial Law Course.

    ERIC Educational Resources Information Center

    Lloyd, Robert M.

    2000-01-01

    Describes the successful use of an interactive, computer-based format supplemented by online chats to provide a two-credit-hour commercial law course at the University of Tennessee College of Law. (EV)

  13. 27 CFR 40.286 - Refund of overpayment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... computational error, he shall do so on TTB F 5620.8, in duplicate. The original shall be filed with the... tobacco products results from other than a computational error any claim for refund or credit shall be...

  14. 27 CFR 40.286 - Refund of overpayment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... computational error, he shall do so on TTB F 5620.8, in duplicate. The original shall be filed with the... tobacco products results from other than a computational error any claim for refund or credit shall be...

  15. 27 CFR 40.286 - Refund of overpayment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... computational error, he shall do so on TTB F 5620.8, in duplicate. The original shall be filed with the... tobacco products results from other than a computational error any claim for refund or credit shall be...

  16. 27 CFR 40.286 - Refund of overpayment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... computational error, he shall do so on TTB F 5620.8, in duplicate. The original shall be filed with the... tobacco products results from other than a computational error any claim for refund or credit shall be...

  17. 27 CFR 40.286 - Refund of overpayment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... computational error, he shall do so on Form 2635 (5620.8), in duplicate. The original shall be filed with the... tobacco products results from other than a computational error any claim for refund or credit shall be...

  18. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.

  19. Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa

    2002-07-01

    A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled coremore » has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)« less

  20. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initialmore » density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.« less

  1. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  2. On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM

    NASA Astrophysics Data System (ADS)

    Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C. T.

    2016-12-01

    Post-irradiation examination results are presented for UO2 fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain.

  3. Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockman, Christine T.; Alsaed, Halim A.; Bryan, Charles R.

    2015-03-26

    This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed basedmore » on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.« less

  4. Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.

    2017-06-01

    Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of < 38 pm has been used to record the complex spectra of the SIMFUEL samples. By using spectrum comparison and database matching > 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.

  5. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.

    Radioactive iodine is the Achilles’ heel in the design for the safe geological disposal of spent UO2 nuclear fuel. Iodine’s high solubility and anticipated instant release during waste package compromise jeopardize performance assessment calculations. However, dissolution studies have indicated that the instant release fraction (IRF) of radioiodine (I) does not correlate with increasing fuel burn-up. In fact, there is a peak in the release iodine at around 50-60 Mwd/kgU and with increasing burn-up the instant release of iodine decreases. Detailed electron microscopy analysis of high burn-up fuel (~80 MWd/kgU) has revealed the presence of (Pd,Ag)(I,Br) nano-particles. As UO2 fuels aremore » irradiated, the Ag and Pd content increases, from 239Pu fission, enabling radioiodine to be retained. The occurrence of these phases in nuclear fuels may have significant implications for the long-term behavior of iodine.« less

  6. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beammore » milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.« less

  7. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa Teague; Michael Tonks; Stephen Novascone

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less

  8. High burnup fuel behavior related to fission gas effects under reactivity initiated accidents (RIA) conditions

    NASA Astrophysics Data System (ADS)

    Lemoine, F.

    1997-09-01

    Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.

  9. A credit card verifier structure using diffraction and spectroscopy concepts

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2008-04-01

    We propose and experimentally demonstrate an angle-multiplexing based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we choose to shine one at a time a number of broadband lightsources, each at different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam is diffracted and separated in space. In this way, the number of pixels of each color plane is investigated. Then we apply a feed forward back propagation neural network configuration to separate the counterfeit credit card from the real one. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, a 3-layer neural network, and a notebook computer can identify all 69 counterfeit credit cards from eight real credit cards.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Rose; Scaglione, John M; Bevard, Bruce Balkcom

    The High Burnup Spent Fuel Data project pulled 25 sister rods (9 from the project assemblies and 16 from similar HBU assemblies) for characterization. The 25 sister rods are all high burnup and cover the range of modern domestic cladding alloys. The 25 sister rods were shipped to Oak Ridge National Laboratory (ORNL) in early 2016 for detailed non-destructive and destructive examination. Examinations are intended to provide baseline data on the initial physical state of the cladding and fuel prior to the loading, drying, and long-term dry storage process. Further examinations are focused on determining the effects of temperatures encounteredmore » during and following drying. Similar tests will be performed on rods taken from the project assemblies at the end of their long-term storage in a TN-32 dry storage cask (the cask rods ) to identify any significant changes in the fuel rods that may have occurred during the dry storage period. Additionally, some of the sister rods will be used for separate effects testing to expand the applicability of the project data to the fleet, and to address some of the data-related gaps associated with extended storage and subsequent transportation of high burnup fuel. A draft test plan is being developed that describes the experimental work to be conducted on the sister rods. This paper summarizes the draft test plan and necessary coordination activities for the multi-year experimental program to supply data relevant to the assessment of the safety of long-term storage followed by transportation of high burnup spent fuel.« less

  11. Thermal conductivity of fresh and irradiated U-Mo fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, the thermal conductivity of fresh dispersion fuel at a temperature of 150°C decreases from 59 W/m ·K down to 18  W/m ·K at a burn-up of 4.9 ·10 21 f/cc and further down to 9 W/m·K at a burn-up of 6.1·10 21 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep as for the dispersion fuel. For a burn-up ofmore » 3.5·10 21 f /cc of monolithic fuel 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. The difference of the decrease of both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increasing burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice affects both dispersion and monolithic fuel.« less

  12. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE PAGES

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; ...

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  13. A Pruning Neural Network Model in Credit Classification Analysis

    PubMed Central

    Tang, Yajiao; Ji, Junkai; Dai, Hongwei; Yu, Yang; Todo, Yuki

    2018-01-01

    Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs) have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN) and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs) to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency. PMID:29606961

  14. Understanding Mobile Apps

    MedlinePlus

    ... share personal information let your kids spend real money — even if the app is free include ads link to social media What’s more, ... Money & Credit Homes & Mortgages Health & Fitness Jobs & Making ... Security "Free" Security Scans Computer Security Disposing of Old Computers ...

  15. 26 CFR 1.50A-2 - Carryback and carryover of unused credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 1.50A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Expenses of Work Incentive Programs § 1.50A-2 Carryback and... limitation based on amount of tax for such taxable year (as determined under paragraph (b) of § 1.50A-1...

  16. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    NASA Astrophysics Data System (ADS)

    Navarro, Jorge

    The goal of this study presented is to determine the best available nondestructive technique necessary to collect validation data as well as to determine burnup and cooling time of the fuel elements on-site at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal, the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements nondestructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed were used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results, it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however, in order to enhance the quality of the spectra collected using this scintillator, a deconvolution method was developed. Following the development of the deconvolution method for ATR applications, the technique was tested using one-isotope, multi-isotope, and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr 3 detector in an above the water configuration and deconvolution algorithms.

  17. Computer Literacy Curriculum Guide. Bulletin 1739.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    Developed in response to a ruling by the Louisiana State Board of Elementary and Secondary Education that freshmen entering high school in 1985-86 must have one-half credit in computer literacy as a graduation requirement, this curriculum guide outlines a basal course in computer literacy for ninth grade students. The course may also be offered to…

  18. Allocation of Resources to Computer Support in Two-Year Colleges: 1979-80.

    ERIC Educational Resources Information Center

    Arth, Maurice P.

    1982-01-01

    Data on levels of computer-related expenditures for two-year colleges are presented. The data show institutions whether their computer-related expenditures, as a percentage of total operating expenditures and in dollars per credit headcount student, are high, medium, or low relative to expenditures of other similarly sized institutions. (MLW)

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Montgomery, Rose; Bevard, Bruce Balkcom

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  20. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  1. Annuity-estimating program

    NASA Technical Reports Server (NTRS)

    Jillie, D. W.

    1979-01-01

    Program computes benefits and other relevant factors for Federal Civil Service employees. Computed information includes retirement annuity, survivor annuity for each retirement annuity, highest average annual consecutive 3-year salary, length of service including credit for unused sick leave, amount of deposit and redeposit plus interest.

  2. NAVAIR Information Technology Case Study

    DTIC Science & Technology

    2010-09-01

    straightforward procedure in which an authorized government credit card buyer can make the purchase. Since this price category covers a wide range of items...that employs approximately 35,000 people, with products such as iPod (portable music player), MAC computer, iTunes (music program), and MAC OS...for approval. After approval, the software can be purchased with a company credit card . To complete the transaction, a reimbursement is submitted

  3. Do At-Risk Students Benefit When NovaNET Is Used for Credit Recovery?

    ERIC Educational Resources Information Center

    Volkerding, Rebecca Lynn

    2012-01-01

    The purpose of this study was to determine if it is effective and appropriate to place all students needing credit recovery in computer-based classes regardless of age, risk ratio, and their previous failing grade. Driven by the NCLB mandate for schools to produce greater gains and graduate all students in 4.5 years, districts are now using online…

  4. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE PAGES

    Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...

    2016-02-27

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  5. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Jr., Joe W.

    A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20,more » 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/ 137Cs 134Cs/ 154Eu, and 154Eu/ 137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the FA models serve as source materials for the pre- and postelectrorefining models to be reported in Parts 2 and 3.« less

  6. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.

    2016-05-01

    Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  7. 5 CFR 847.906 - How is the present value of a deferred annuity without credit for NAFI service computed?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Computing the Retirement... of the exponential function in which— (1) The base is one plus the assumed interest rate under 5 CFR...

  8. Campus Computing Looks Ahead: Tracking the Digital Puck.

    ERIC Educational Resources Information Center

    Green, Kenneth C.

    2002-01-01

    Examines data from the 2002 Campus Computing Survey to determine trends in information technology in higher education and future possibilities. Discusses Web portals; electronic commerce capabilities, including use of credit cards; budget challenges, including budget cuts; and mobile technology and wireless networks. (LRW)

  9. 5 CFR 846.304 - Computing FERS annuities for persons with CSRS service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) and (c). (d)(1) Except as specified in § 846.305, the average pay for computations under paragraphs (b... basic pay in effect over any 3 consecutive years of creditable service or, in the case of an annuity...

  10. 5 CFR 846.304 - Computing FERS annuities for persons with CSRS service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) and (c). (d)(1) Except as specified in § 846.305, the average pay for computations under paragraphs (b... basic pay in effect over any 3 consecutive years of creditable service or, in the case of an annuity...

  11. 5 CFR 847.906 - How is the present value of a deferred annuity without credit for NAFI service computed?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED FUND INSTRUMENTALITIES Computing the Retirement... of the exponential function in which— (1) The base is one plus the assumed interest rate under 5 CFR...

  12. 20 CFR 345.302 - Definition of terms and phrases used in experience-rating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for the current calendar year. This ratio is computed to four decimal places. (k) Pooled credit ratio... employer for the calendar year involved in the computation. This ratio is computed to four decimal places... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Definition of terms and phrases used in...

  13. Computational Thinking in Secondary Education: Where Does It Fit? A Systematic Literary Review

    ERIC Educational Resources Information Center

    Lockwood, James; Mooney, Aidan

    2018-01-01

    Computational Thinking has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert (Papert, 1980) is credited as concretising Computational Thinking in 1980 but Jeanette Wing (Wing, 2006) popularised the term in 2006 and brought it to the international community's attention.…

  14. 26 CFR 301.6231(f)-1 - Disallowance of losses and credits in certain cases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... United States. (b) Computational adjustment permitted if return is not filed after mailing of notice... computational adjustment to that partner to reflect the disallowance of any loss (including a capital loss) or... computational adjustment referred to in paragraph (b) of this section may be mailed on a day on which— (1) The...

  15. 26 CFR 301.6231(f)-1 - Disallowance of losses and credits in certain cases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... United States. (b) Computational adjustment permitted if return is not filed after mailing of notice... computational adjustment to that partner to reflect the disallowance of any loss (including a capital loss) or... computational adjustment referred to in paragraph (b) of this section may be mailed on a day on which— (1) The...

  16. 26 CFR 301.6231(f)-1 - Disallowance of losses and credits in certain cases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... United States. (b) Computational adjustment permitted if return is not filed after mailing of notice... computational adjustment to that partner to reflect the disallowance of any loss (including a capital loss) or... computational adjustment referred to in paragraph (b) of this section may be mailed on a day on which— (1) The...

  17. 26 CFR 301.6231(f)-1 - Disallowance of losses and credits in certain cases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... United States. (b) Computational adjustment permitted if return is not filed after mailing of notice... computational adjustment to that partner to reflect the disallowance of any loss (including a capital loss) or... computational adjustment referred to in paragraph (b) of this section may be mailed on a day on which— (1) The...

  18. 26 CFR 301.6231(f)-1 - Disallowance of losses and credits in certain cases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... United States. (b) Computational adjustment permitted if return is not filed after mailing of notice... computational adjustment to that partner to reflect the disallowance of any loss (including a capital loss) or... computational adjustment referred to in paragraph (b) of this section may be mailed on a day on which— (1) The...

  19. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    ERIC Educational Resources Information Center

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  20. Neutronics calculations on the impact of burnable poisons to safety and non-proliferation aspects of inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Pistner, C.; Liebert, W.; Fujara, F.

    2006-06-01

    Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.

  1. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    NASA Astrophysics Data System (ADS)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  2. [Changing the internal cost allocation (ICA) on DRG shares : Example of computed tomography in a university radiology setting].

    PubMed

    Wirth, K; Zielinski, P; Trinter, T; Stahl, R; Mück, F; Reiser, M; Wirth, S

    2016-08-01

    In hospitals, the radiological services provided to non-privately insured in-house patients are mostly distributed to requesting disciplines through internal cost allocation (ICA). In many institutions, computed tomography (CT) is the modality with the largest amount of allocation credits. The aim of this work is to compare the ICA to respective DRG (Diagnosis Related Groups) shares for diagnostic CT services in a university hospital setting. The data from four CT scanners in a large university hospital were processed for the 2012 fiscal year. For each of the 50 DRG groups with the most case-mix points, all diagnostic CT services were documented including their respective amount of GOÄ allocation credits and invoiced ICA value. As the German Institute for Reimbursement of Hospitals (InEK) database groups the radiation disciplines (radiology, nuclear medicine and radiation therapy) together and also lacks any modality differentiation, the determination of the diagnostic CT component was based on the existing institutional distribution of ICA allocations. Within the included 24,854 cases, 63,062,060 GOÄ-based performance credits were counted. The ICA relieved these diagnostic CT services by € 819,029 (single credit value of 1.30 Eurocent), whereas accounting by using DRG shares would have resulted in € 1,127,591 (single credit value of 1.79 Eurocent). The GOÄ single credit value is 5.62 Eurocent. The diagnostic CT service was basically rendered as relatively inexpensive. In addition to a better financial result, changing the current ICA to DRG shares might also mean a chance for real revenues. However, the attractiveness considerably depends on how the DRG shares are distributed to the different radiation disciplines of one institution.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahanani, Nursinta Adi, E-mail: sintaadi@batan.go.id; Natsir, Khairina, E-mail: sintaadi@batan.go.id; Hartini, Entin, E-mail: sintaadi@batan.go.id

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this softwaremore » 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.« less

  4. Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, P.; Guenther-Leopold, I.; Berger, H. D.

    2006-07-01

    The isotopic compositions of 5 UO{sub 2} samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostlymore » predicted within {+-}10%, the two codes giving quite different results, except for {sup 242}Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)« less

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less

  7. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  8. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiawati, Nina, E-mail: nina-widiawati28@yahoo.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uraniummore » fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.« less

  9. 26 CFR 1.47-6 - Partnerships.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Credit for Investment in Certain Depreciable Property § 1.47-6 Partnerships. (a) In general—(1... computing qualified investment with respect to such property, a recapture determination shall be made with... (or cost) of such property taken into account by such partner in computing his qualified investment...

  10. CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrer, R.; Rhodes, J.; Smith, K.

    2012-07-01

    The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)

  11. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent tomore » the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.« less

  12. 5 CFR 831.703 - Computation of annuities for part-time service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... during those periods of creditable service. Pre-April 7, 1986, average pay means the largest annual rate..., 1986, service is computed in accordance with 5 U.S.C. 8339 using the pre-April 7, 1986, average pay and... computed in accordance with 5 U.S.C. 8339 using the post-April 6, 1986, average pay and length of service...

  13. Case Study: Creation of a Degree Program in Computer Security. White Paper.

    ERIC Educational Resources Information Center

    Belon, Barbara; Wright, Marie

    This paper reports on research into the field of computer security, and undergraduate degrees offered in that field. Research described in the paper reveals only one computer security program at the associate's degree level in the entire country. That program, at Texas State Technical College in Waco, is a 71-credit-hour program leading to an…

  14. Fission product release and survivability of UN-kernel LWR TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. M. Besmann; M. K. Ferber; H.-T. Lin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner andmore » outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  15. 20 CFR 226.3 - Other regulations related to this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES General § 226.3 Other regulations related to this... primary insurance amounts (PIA's) used in computing the employee, spouse and divorced spouse annuity rates... increased under the social security overall minimum. The creditable service and compensation used in...

  16. Measurement and Interpretation of DT Neutron Emission from Tftr.

    NASA Astrophysics Data System (ADS)

    McCauley, John Scott, Jr.

    A fast-ion diffusion coefficient of 0.1 +/- 0.1 m^2s ^{-1} has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University's Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p triton burnup reaction. These tritons "burn up" with deuterons and emit a 14 MeV neutron by the d(t, alpha)n reaction. The measured radial profiles of DT emission were compared with the predictions of a computer transport code. The ratio of the measured-to -calculated DT yield is typically 70%. The measured DT profile width is typically 5 cm larger than predicted by the transport code. The radial 14 MeV neutron profile was measured by a radial array of helium-4 recoil neutron spectrometers installed in the TFTR Multichannel Neutron Collimator (MCNC). The spectrometers are capable of measuring the primary and secondary neutron fluxes from deuterium discharges. The response to 14 MeV neutrons of the array has been measured by cross calibrating with the MCNC ZnS detector array when the emission from TFTR is predominantly DT neutrons. The response was also checked by comparing a model of the recoil spectrum based on nuclear physics data to the observed spectrum from ^{252 }Cf, ^{238}Pu -Be, and DT neutron sources. Extensions of this diagnostic to deuterium-tritium plasma and the implications for fusion research are discussed.

  17. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles,more » especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the interaction between the pebbles and the immobile graphite reflector as well as the geometry of the discharge conus near the bottom of the core. In this paper, the coupling between the temperature profile and the pebble flow dynamics was analyzed by using PEBBED/THERMIX and PEBBLES codes by modeling the HTR-10 reactor in China. Two extreme and opposing velocity profiles are used as a starting point for the iterations. The PEBBED/THERMIX code is used to calculate the burnup, power and temperature profiles with one of the velocity profiles as input. The resulting temperature profile is then passed to PEBBLES code to calculate the updated pebble velocity profile taking the new temperature profile into account. If the aforementioned hypothesis is correct, the strong temperature effect upon the friction coefficients would cause the two cases to converge to different final velocity and temperature profiles. The results of this analysis indicates that a single zone pebble bed core is self-stabilizing in terms of the pebble velocity profile and the effect of the temperature profile on the pebble flow is insignificant. (authors)« less

  18. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  19. High density dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G.L.

    1996-09-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm{sup 3} of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm{sup {minus}3} with U{sub 3}Si{sub 2} as fuel. High-density uranium compounds offer no real density advantage over U{sub 3}Si{sub 2} and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U{sub 3}Si has approximately a 30% higher uranium density but the density of the U{sub 6}X compounds would yield the factormore » 1.5 needed to achieve 9 g cm{sup {minus}3} uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure {alpha}-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic {gamma} phase at low temperatures where normally {alpha} phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing.« less

  20. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now.more » The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)« less

  1. Office of Inspector General audit report on credit card usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    In 1994 the Department of Energy (Department) obtained the services of Rocky Mountain BankCard System, through the use of a General Services Administration contract, as a means for the Department and its contractors to make small purchases. The use of credit cards was expected to simplify small purchase procedures and improve cash management. The Ohio Field Office (Field Office) uses the credit card system and oversees usage by its area offices. Contractors under the Field Office also use the credit card system to make small purchases. The Office of Inspector General (OIG) has issued one audit report concerning the usemore » of credit cards. In April 1996, the OIG issued Report WR-B-96-06, Audit of Bonneville Power Administration`s Management of Information Resources. The audit concluded that improvements could be made in implementing credit card and property procedures in Bonneville`s management of computer-related equipment. Specifically, many credit card purchases were made by employees whose authority to buy was not properly documented, and the purchasing files often lacked invoices that would show what was purchased. Additionally, some cardholders split purchases to avoid credit card limits. The objective of this audit was to determine whether the Field Office, Fernald and Miamisburg Environmental Management Projects, Fluor Daniel, and B and W were using credit cards for the appropriate purposes and within the limitations established by Federal and Departmental regulations.« less

  2. 26 CFR 1.469-11 - Effective date and transition rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... passive activity for any taxable year of the taxpayer beginning before January 1, 1988. (ii) Property... apply the rules in § 1.469-7 in computing the taxpayer's passive activity loss and passive activity... compute the taxpayer's passive activity loss and passive activity credit. Items from nonlending...

  3. Pre-counseling education for low literacy women at risk of Hereditary Breast and Ovarian Cancer (HBOC): patient experiences using the Cancer Risk Education Intervention Tool (CREdIT).

    PubMed

    Joseph, Galen; Beattie, Mary S; Lee, Robin; Braithwaite, Dejana; Wilcox, Carolina; Metrikin, Maya; Lamvik, Kate; Luce, Judith

    2010-10-01

    The Cancer Risk Education Intervention Tool (CREdIT) is a computer-based (non-interactive) slide presentation designed to educate low-literacy, and ethnically and racially diverse public hospital patients at risk of Hereditary Breast and Ovarian Cancer (HBOC) about genetics. To qualitatively evaluate participants' experience with and perceptions of a genetic education program as an adjunct to genetic counseling, we conducted direct observations of the intervention, semi-structured in person interviews with 11 women who viewed CREdIT, and post-counseling questionnaires with the two participating genetic counselors. Five themes emerged from the analysis of interviews: (1) genetic counseling and testing for breast/ovarian cancer was a new concept; (2) CREdIT's story format was particularly appealing; (3) changes in participants' perceived risk for breast cancer varied; (4) some misunderstandings about individual risk and heredity persisted after CREdIT and counseling; (5) the context for viewing CREdIT shaped responses to the presentation. Observations demonstrated ways to make the information provided in CREdIT and by genetic counselors more consistent. In a post-session counselor questionnaire, counselors' rating of the patient's preparedness before the session was significantly higher for patients who viewed CREdIT prior to their appointments than for other patients. This novel educational tool fills a gap in HBOC education by tailoring information to women of lower literacy and diverse ethnic/racial backgrounds. The tool was well received by interview participants and counselors alike. Further study is needed to examine the varied effects of CREdIT on risk perception. In addition, the implementation of CREdIT in diverse clinical settings and the cultural adaptation of CREdIT to specific populations reflect important areas for future work.

  4. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t 1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  5. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    DOE PAGES

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; ...

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t 1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  6. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, David M.; Lindquist, Lloyd O.

    1985-01-01

    Given are a method and apparatus for measuring nondestructively and non-invasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. No external neutron-emitting interrogation source or fissile material is used and no scanning is required, although if a profile is desired scanning can be used. As in active assays, here both reactivity and content of fissionable material can be measured. The assay is accomplished by altering the return flux of neutrons into the fuel assembly. The return flux is altered by changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  7. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.P.C. Wong; B. Merrill

    2014-10-01

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a systemmore » code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.« less

  8. EBSD and TEM characterization of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  9. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost themore » same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)« less

  10. Determination of uncertainties of PWR spent fuel radionuclide inventory based on real operational history data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Ivan; Bosbach, Dirk; Aksyutina, Yuliya

    A requisite for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the values of the radionuclide (RN) activities and their uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, the details of the irradiation history are often not well known, which complicates the assessment of declared RN inventories. Here, we have compiled a set of burnup calculationsmore » accounting for the operational history of 339 published or anonymized real PWR fuel assemblies (FA). These histories were used as a basis for a 'SRP analysis', to provide information about the range of the values of the associated secondary reactor parameters (SRP's). Hence, we can calculate the realistic variation or spectrum of RN inventories. SCALE 6.1 has been employed for the burn-up calculations. The results have been validated using experimental data from the online database - SFCOMPO-1 and -2. (authors)« less

  11. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K.; Bai, X.; Zhang, Y.

    2016-09-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growthmore » of recrystallized flat and circular grains. The model reults were shown to agree well with theorrtical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agrrement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.« less

  12. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    NASA Astrophysics Data System (ADS)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  13. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less

  14. Further observations on OCOM MOX fuel: microstructure in the vicinity of the pellet rim and fuel — cladding interaction

    NASA Astrophysics Data System (ADS)

    Walker, C. T.; Goll, W.; Matsumura, T.

    1997-06-01

    The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.

  15. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  16. Testing in Support of Space Fission System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bragg-Sitton, Shannon; Garber, Anne; Godfrey, Tom; Martin, Jim; Pearson, Boise; Webster, Kenny

    2007-01-01

    Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.

  17. 20 CFR 234.20 - Computation of the employee's 1937 Act LSDP basic amount.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... compensation and section 209 of the Social Security Act for a definition of creditable wages.) Closing date... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Computation of the employee's 1937 Act LSDP basic amount. 234.20 Section 234.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE...

  18. Introducing Creativity in a Design Laboratory for a Freshman Level Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah

    2014-01-01

    Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…

  19. Impact of the Shodan Computer Search Engine on Internet-facing Industrial Control System Devices

    DTIC Science & Technology

    2014-03-27

    bridge implementation. The transparent bridge is designed using a Raspberry Pi configured with Linux IPtables and bridge-utils to bridge the on board...Ethernet card and a second USB Ethernet adapter. A Raspberry Pi is a credit-card-sized single-board computer running a version of Debian Linux. There

  20. Automating a Massive Online Course with Cluster Computing

    ERIC Educational Resources Information Center

    Haas, Timothy C.

    2016-01-01

    Before massive numbers of students can take online courses for college credit, the challenges of providing tutoring support, answers to student-posed questions, and the control of cheating will need to be addressed. These challenges are taken up here by developing an online course delivery system that runs in a cluster computing environment and is…

  1. 34 CFR 410.5 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... student has enrolled. Credit earned by the student for purposes of obtaining a high school degree or its... classes offered during a summer term must be counted toward the computation of the Indian student count in... summer term must be counted toward the computation of the Indian student count if the institution at...

  2. 34 CFR 410.5 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... student has enrolled. Credit earned by the student for purposes of obtaining a high school degree or its... classes offered during a summer term must be counted toward the computation of the Indian student count in... summer term must be counted toward the computation of the Indian student count if the institution at...

  3. Maintaining Privacy in Pervasive Computing - Enabling Acceptance of Sensor-based Services

    NASA Astrophysics Data System (ADS)

    Soppera, A.; Burbridge, T.

    During the 1980s, Mark Weiser [1] predicted a world in which computing was so pervasive that devices embedded in the environment could sense their relationship to us and to each other. These tiny ubiquitous devices would continually feed information from the physical world into the information world. Twenty years ago, this vision was the exclusive territory of academic computer scientists and science fiction writers. Today this subject has become of interest to business, government, and society. Governmental authorities exercise their power through the networked environment. Credit card databases maintain our credit history and decide whether we are allowed to rent a house or obtain a loan. Mobile telephones can locate us in real time so that we do not miss calls. Within another 10 years, all sorts of devices will be connected through the network. Our fridge, our food, together with our health information, may all be networked for the purpose of maintaining diet and well-being. The Internet will move from being an infrastructure to connect computers, to being an infrastructure to connect everything [2, 3].

  4. Pre-counseling Education for Low Literacy Women at Risk of Hereditary Breast and Ovarian Cancer (HBOC): Patient Experiences Using the Cancer Risk Education Intervention Tool (CREdIT)

    PubMed Central

    Beattie, Mary S.; Lee, Robin; Braithwaite, Dejana; Wilcox, Carolina; Metrikin, Maya; Lamvik, Kate; Luce, Judith

    2010-01-01

    The Cancer Risk Education Intervention Tool (CREdIT) is a computer-based (non-interactive) slide presentation designed to educate low-literacy, and ethnically and racially diverse public hospital patients at risk of Hereditary Breast and Ovarian Cancer (HBOC) about genetics. To qualitatively evaluate participants’ experience with and perceptions of a genetic education program as an adjunct to genetic counseling, we conducted direct observations of the intervention, semi-structured in person interviews with 11 women who viewed CREdIT, and post-counseling questionnaires with the two participating genetic counselors. Five themes emerged from the analysis of interviews: (1) genetic counseling and testing for breast/ovarian cancer was a new concept; (2) CREdIT’s story format was particularly appealing; (3) changes in participants’ perceived risk for breast cancer varied; (4) some misunderstandings about individual risk and heredity persisted after CREdIT and counseling; (5) the context for viewing CREdIT shaped responses to the presentation. Observations demonstrated ways to make the information provided in CREdIT and by genetic counselors more consistent. In a post-session counselor questionnaire, counselors’ rating of the patient’s preparedness before the session was significantly higher for patients who viewed CREdIT prior to their appointments than for other patients. This novel educational tool fills a gap in HBOC education by tailoring information to women of lower literacy and diverse ethnic/racial backgrounds. The tool was well received by interview participants and counselors alike. Further study is needed to examine the varied effects of CREdIT on risk perception. In addition, the implementation of CREdIT in diverse clinical settings and the cultural adaptation of CREdIT to specific populations reflect important areas for future work. PMID:20490636

  5. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine

    NASA Astrophysics Data System (ADS)

    Adem, ACIR; Eşref, BAYSAL

    2018-07-01

    In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod①, Mod② and Mod③, respectively. The operation period was computed as ∼21 years when the reference TBR > 1.05 for a self-sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The burnup (BU) values were obtained as ∼1230, ∼1550 and ∼1060 GWd tM–1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.

  6. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  7. 12 CFR 5.35 - Bank service companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and deposit posting and sorting; computation and posting of interest and other credits and charges... OCC concludes that an application presents significant and novel policy, supervisory, or legal issues...

  8. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-07-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less

  9. Multidimensional Fuel Performance Code: BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  10. RERTR-12 Post-irradiation Examination Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine; Williams, Walter; Robinson, Adam

    2015-02-01

    The following report contains the results and conclusions for the post irradiation examinations performed on RERTR-12 Insertion 2 experiment plates. These exams include eddy-current testing to measure oxide growth; neutron radiography for evaluating the condition of the fuel prior to sectioning and determination of fuel relocation and geometry changes; gamma scanning to provide relative measurements for burnup and indication of fuel- and fission-product relocation; profilometry to measure dimensional changes of the fuel plate; analytical chemistry to benchmark the physics burnup calculations; metallography to examine the microstructural changes in the fuel, interlayer and cladding; and microhardness testing to determine the material-propertymore » changes of the fuel and cladding.« less

  11. Fabrication of 12% {sup 240}Pu calorimetry standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, S.M.; Hildner, S.; Gutierrez, D.

    1995-08-01

    Throughout the DOE complex, laboratories are performing calorimetric assays on items containing high burnup plutonium. These materials contain higher isotopic range and higher wattages than materials previously encountered in vault holdings. Currently, measurement control standards have been limited to utilizing 6% {sup 240}Pu standards. The lower isotopic and wattage value standards do not complement the measurement of the higher burnup material. Participants of the Calorimetry Exchange (CALEX) Program have identified the need for new calorimetric assay standards with a higher wattage and isotopic range. This paper describes the fabrication and verification measurements of the new CALEX standard containing 12% {supmore » 240}Pu oxide with a wattage of about 6 to 8 watts.« less

  12. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  13. Pellet fuelling requirements to allow self-burning on a helical-type fusion reactor

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Miyazawa, J.; Yamada, H.; Masuzaki, S.; Sagara, A.; the FFHR Design Group

    2012-08-01

    Pellet refuelling conditions to sustain a self-burning plasma have been investigated by extrapolating the confinement property of the LHD plasma, which appears to be governed by a gyro-Bohm-type confinement property. The power balance of the burning plasma is calculated taking into account the profile change with pellet deposition and subsequent density relaxation. A self-burning plasma is achieved within the scope of conventional pellet injection technology. However, a very small burn-up rate of 0.18% is predicted. Higher velocity pellet injection is effective in improving the burn-up rate by deepening particle deposition, whereas deep fuelling leads to undesirable fluctuation of the fusion output.

  14. At Their Own Pace: Interim Findings from an Evaluation of a Computer-Assisted, Modular Approach to Developmental Math

    ERIC Educational Resources Information Center

    Gardenhire, Alissa; Diamond, John; Headlam, Camielle; Weiss, Michael J.

    2016-01-01

    Community colleges nationwide are looking for solutions to help students complete developmental (remedial) math--a known barrier to graduation. Some are offering computer-assisted, modular developmental math courses that allow students to earn credits incrementally and move through the curriculum at their own pace. One of these modularized…

  15. A Comparison of Computer-Based Classification Testing Approaches Using Mixed-Format Tests with the Generalized Partial Credit Model

    ERIC Educational Resources Information Center

    Kim, Jiseon

    2010-01-01

    Classification testing has been widely used to make categorical decisions by determining whether an examinee has a certain degree of ability required by established standards. As computer technologies have developed, classification testing has become more computerized. Several approaches have been proposed and investigated in the context of…

  16. 26 CFR 1.46-4 - Limitations with respect to certain persons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-4... building and loan association)— (1) The qualified investment with respect to each section 38 property shall... qualified investment for 1963 with respect to such property computed under § 1.46-3 is $20,000 (662/3...

  17. 26 CFR 1.46-4 - Limitations with respect to certain persons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-4... building and loan association)— (1) The qualified investment with respect to each section 38 property shall... qualified investment for 1963 with respect to such property computed under § 1.46-3 is $20,000 (662/3...

  18. Computer Processing 10-20-30. Business Education Curriculum Guide.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This curriculum guide is one of nine such guides developed for an Alberta high school business education program. Its content covers the main subject area or strand of computer processing. Subject to the constraints outlined in the guide, the modules are to be formatted into three- or four-credit courses within each strand. Introductory materials…

  19. Power Monitoring Using the Raspberry Pi

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    2014-01-01

    The Raspberry Pi is a credit card size low powered compute board with Ethernet connection, HDMI video output, audio, full Linux operating system run from an SD card, and more, all for $45. With cables, SD card, etc., the cost is about $70. Originally designed to help teach computer science principles to low income children and students, the Pi has…

  20. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  1. Radioactivity of spent TRIGA fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  2. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less

  3. Deterministic methods for multi-control fuel loading optimization

    NASA Astrophysics Data System (ADS)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  4. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no.more » 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)« less

  5. Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi

    According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.

  6. A high gain energy amplifier operated with fast neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubbia, C.

    1995-10-01

    The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results frommore » the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.« less

  7. Demographic Differences and Attitudes toward Computers among Healthcare Professionals Earning Continuing Education Credits On-Line

    ERIC Educational Resources Information Center

    Mitra, Ananda; Joshi, Suchi; Kemper, Kathi J.; Woods, Charles; Gobble, Jessica

    2006-01-01

    The use of technology, such as the Web, has become an increasingly popular means for disseminating professional development and continuing education. Often, these methods assume a set of attitudes and skills related to the computer as a pedagogic and communication tool. We argue that it is, however, important to measure the actual attitudes of…

  8. Support Expressed in Congress for U.S. High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-06-01

    Advocates for a stronger U.S. position in high-performance computing-which could help with a number of grand challenges in the Earth sciences and other disciplines-hope that legislation recently introduced in the House of Representatives, and, will help to revitalize U.S. efforts. The High-Performance Computing Revitalization Act of 2004 would amend the earlier High-Performance Computing Act of 1991 (Public Law 102-194), which is partially credited with helping to strengthen U.S. capabilities in this area. The bill has the support of the Bush administration.

  9. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  10. New Temperature Monitoring Devices for High-Temperature Irradiation Experiments in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M.; Fourrez, S.; Morice, R.

    2011-10-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some R&D for further improvement of thermocouples and other on-line instrumentation will be outlined.

  11. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less

  12. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An; Wang, Hong

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less

  13. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirectmore » SNM signatures sometimes have commonalities with the natural gamma-ray background.« less

  14. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  15. Approach to recognition of flexible form for credit card expiration date recognition as example

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Nikolaev, Dmitry P.; Ingacheva, Anastasia; Skoryukina, Natalya

    2015-12-01

    In this paper we consider a task of finding information fields within document with flexible form for credit card expiration date field as example. We discuss main difficulties and suggest possible solutions. In our case this task is to be solved on mobile devices therefore computational complexity has to be as low as possible. In this paper we provide results of the analysis of suggested algorithm. Error distribution of the recognition system shows that suggested algorithm solves the task with required accuracy.

  16. 5 CFR 831.2205 - Computation of alternative form of annuity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equal to the retiree's lump-sum credit divided by the present value factor for the retiree's attained... Register announcing any proposed adjustments in present value factors at least 30 days before the effective...

  17. 5 CFR 842.706 - Computation of alternative form of annuity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... credit, excluding interest, divided by the applicable present value factor for the retiree's attained age... announcing any proposed adjustments in present value factors at least 30 days before the effective date of...

  18. State solar initiatives. Volume 2: A review

    NASA Astrophysics Data System (ADS)

    Koontz, R.; Neuendorffer, J.; Green, B.; Myring, G.; Myring, L.; Perwin, E.; Gordon, N.; Small, D.; Poster, B.

    1981-09-01

    Background material supporting the solar energy recommendations and conclusions is provided. Research methodology, results of a computer program on state and federal tax credits, state energy goals, program lists, energy and demographic factors are contained.

  19. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  20. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  1. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  2. 26 CFR 1.874-1 - Allowance of deductions and credits to nonresident alien individuals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Nonresident alien with effectively connected income. In Year 1, A, a computer programmer, opened an office in... failure to file. In Year 1, A, a computer programmer, opened an office in the United States to market and.... Example 6. Nonresident alien with prior filing history. A began a U.S. trade or business in Year 1 as a...

  3. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    At the Atucha-I pressurized heavy water reactor in Argentina, fuel assemblies in the spent fuel pools are stored by suspending them in two vertically stacked layers. This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Since much of the fuel is very old, Cerenkov viewing devices are often not very useful even for the top layer. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 w% {sup 235}U, and has been in operation since 1974, a wide range of burnups and cooling times canmore » exist in any given pool. A spent fuel neutron counting tool consisting of a fission chamber, SFNC, has been used at the site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups to levels up 11,000 MWd/t, the existing signal processing software of the tool was found to fail due to non-linearity of the source term with burnup. A new Graphical User Interface software package based on the LabVIEW platform was developed to predict expected neutron signals covering all ranges of burnups and cooling times and establish maps of expected signals at various pool locations. The algorithm employed in the software uses a set of transfer functions in a 47-energy group structure which are coupled with a 47-energy group neutron source spectrum based on various cooling times and burnups for each of the two enrichment levels. The database of the software consists of these transfer functions for the three different inter-assembly pitches that the fuel is stored in at the site. The transfer functions were developed for a 6 by 6 matrix of fuel assemblies with the detector placed at the center surrounded by four near neighbors, eight next nearest neighbors and so on for the 36 assemblies. These calculations were performed using Monte Carlo radiation transport methods. The basic methodology consisted of starting sources in each of the assemblies and tallying the contribution to the detector by a single neutron in each of the 47 energy groups used. Thus for the single existing symmetric pitch in the pools, where the vertical and horizontal separations are equal, only 6 sets of transfer functions are required. For the two asymmetrical pitches, nine sets of transfer functions are stored. In addition, source spectra at burnups ranging from 4000 to 20000 MWd/t and cooling times up to 40 years are stored. These source terms were established based on CANDU 37-rod fuel that is very similar to the Atucha fuel. Linear interpolation is used by the software for both burnup and cooling time to establish source terms at any intermediate condition. Using the burnup, cooling time and initial enrichment of the surrounding assemblies a set of source strengths in the 47-group structure for each of the 36 assemblies is established and multiplied group-wise with the appropriate transfer function set. The grand total over the 47 groups for all 36 assemblies is the predicted signal at the detector. The software was initially calibrated against a set of typically 5-6 measurements chosen from among the measured data at each level of the six pools and calibration factors were established. The set used for calibration is chosen such that it is fairly representative of the range of spent fuel assembly characteristics present in each level. Once established, these calibration factors can be repeatedly used for verification purposes. Recalibration will be required if the hardware or pool configurations has changed. It will also be required if a long enough time has elapsed since they were established thus making a cooling time correction necessary. The objective of the inspection is to detect missing fuel from one or more nearest neighbors of the detector. During the verification mode of the software, the predicted and measured signals are compared and the inspector is alerted if the difference between the two signals is beyond a set tolerance limit. Based on the uncertainties associated with both the calculations and measurements, a lower limit of the tolerance will be 15% with an upper limit of 20%. For the most part a 20% tolerance limit will be able to detect a missing assembly since in the vast majority of cases the drop in signal due to a single missing nearest neighbor assembly will be in the range 24-27%. The software was benchmarked against an extensive set of measured data taken at the site in 2004. Overall, 326 data points were examined and the prediction of the calibrated software was compared to the measurements within a set tolerance of ±20%. Of these, 283 of the predicted signals representing 87% of the total matched the measured data within ±10%. A further 27 or 8% were in the range of ±10-15% and 8 or 2.5% were in the range of ±15-20%. Thus, 97.5% of the data matched the measurements within the set tolerance limit of 20%, with 95% matching measured data with the lowest allowed tolerance limit of ±15%. The remaining 2.5% had measured signals that were very different from those at locations with very similar surrounding assemblies and the cause of these discrepancies could not be ascertained from the measurement logs. In summary, 97.5% of the predictions matched the measurements within the set 20% tolerance limit providing proof of the robustness of the software. This software package linked to SFNC will be deployed at the site and will enhance the capability of gross defect verification for the whole range of burnup, cooling time and initial enrichments of the spent fuel being discharged into the various pools at the Atucha-I reactor site.« less

  4. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bays; W. Skerjanc; M. Pope

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch averagemore » discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.« less

  6. Surface engineering of low enriched uranium-molybdenum

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2013-09-01

    Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% 235U. The root cause of the failures is clearly related directly to the formation of the U(Mo)-Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm2 until a maximum local burn-up of approximately 70% 235U (˜50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.

  7. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m 2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation,more » so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.« less

  8. Performance of low smeared density sodium-cooled fast reactor metal fuel

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  9. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  10. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less

  11. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    DOE PAGES

    Yankov, Artem; Collins, Benjamin; Klein, Markus; ...

    2012-01-01

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor andmore » in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.« less

  12. Programmers, professors, and parasites: credit and co-authorship in computer science.

    PubMed

    Solomon, Justin

    2009-12-01

    This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.

  13. 10 CFR 766.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Enrichment Services System, which is the database that tracks uranium enrichment services transactions of the... invoicing and historical tracking of SWU deliveries. Use and burnup charges mean lease charges for the...

  14. Microgravity

    NASA Image and Video Library

    1999-05-26

    Looking for a faster computer? How about an optical computer that processes data streams simultaneously and works with the speed of light? In space, NASA researchers have formed optical thin-film. By turning these thin-films into very fast optical computer components, scientists could improve computer tasks, such as pattern recognition. Dr. Hossin Abdeldayem, physicist at NASA/Marshall Space Flight Center (MSFC) in Huntsville, Al, is working with lasers as part of an optical system for pattern recognition. These systems can be used for automated fingerprinting, photographic scarning and the development of sophisticated artificial intelligence systems that can learn and evolve. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. A Pebble-Bed Breed-and-Burn Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, Ehud

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactorsmore » and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.« less

  16. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díez, C.J., E-mail: cj.diez@upm.es; Cabellos, O.; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, 28006 Madrid

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has tomore » be performed in order to analyse the limitations of using one-group uncertainties.« less

  17. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.

    2015-01-01

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  18. Assessment of the radionuclide composition of "hot particles" sampled in the Chernobyl nuclear power plant fourth reactor unit.

    PubMed

    Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.

  19. Flux Renormalization in Constant Power Burnup Calculations

    DOE PAGES

    Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...

    2016-06-15

    To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less

  20. Antarctica's Larsen C Ice Shelf Crack

    Atmospheric Science Data Center

    2016-12-30

    ... square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to ... Virginia. JPL is a division of the California Institute of Technology in Pasadena.   Image Credit: NASA/GSFC/LaRC/JPL, ...

  1. Business Statistics at the Top 50 US Business Programmes

    ERIC Educational Resources Information Center

    Haskin, Heather N.; Krehbiel, Timothy C.

    2012-01-01

    We surveyed fifty leading undergraduate business schools concerning their statistics requirements. We report on many aspects including credit-hours required, topics covered, computer integration, faculty background, teaching pedagogy, textbooks, and recent and proposed changes. (Contains 8 tables.)

  2. 76 FR 7213 - ACRAnet, Inc.; SettlementOne Credit Corporation, and Sackett National Holdings, Inc.; Fajilan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... allege that hackers were able to exploit vulnerabilities in the computer networks of multiple end user clients, putting all consumer reports in those networks at risk. In multiple breaches, hackers accessed...

  3. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Yan, Yong; Wang, Hong

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydridesmore » in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of hydrided Zircaloy-4 cladding, which served as a guideline to prepare in-cell hydride reorientation samples with high burnup HBR fuel segments. This report also provides the Phase II CIRFT test data for the hydride reorientation irradiated samples. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The CIRFT results appear to indicate that hydride reoriented treatment (HRT) have a negative effect on fatigue life, in addition to hydride reorientation effect. For HR4 specimen that had no pressurization procedure applied, the thermal annealing treatment alone showed a negative impact on the fatigue life compared to the HBR rod.« less

  4. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  5. Two Validity Studies of CLEP Subject Examination in Elementary Computer Programming: Fortran IV, U. T. Austin, Spring 1979 and Spring 1982. Research Bulletin 82-8.

    ERIC Educational Resources Information Center

    Appenzellar, Anne B.; Kelley, H. Paul

    Two validity studies of the College Board College-Level Examination Program (CLEP) Subject Examination in Elementary Computer Programming: Fortran IV determined that CLEP scores are appropriate for granting examination credit at the University of Texas at Austin. The standard-setting administration was in the spring of 1979, with a re-evaluation…

  6. Corrosion and hydrogen pick-up behaviors of cladding and structural components in BWR high burnup 9x9 lead use assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyashita, Toshiyasu; Nakae, Nobuo; Ogata, Keizo

    The high burnup BWR 9x9 lead use fuel assemblies, which have been designed for maximum assembly burnup of 55 GWd/t in Japan, have been examined after irradiations to confirm the reliability of the current safety evaluation methodology, and to accumulate data to judge the adequacy to apply it to the future higher burnup fuel. After 3 and 5 cycle irradiations, post irradiation examinations were performed for both 9x9 Type-A and Type-B fuel assemblies. Both Type LUAs utilize Zry-2 claddings, while there are deviation in the contents of impurity and alloying elements between Type-A and Type-B, especially in Fe and Simore » concentration. Measured oxide thicknesses of fuel rods showed no significant difference between after 3 and 5 cycle irradiation except for some rods at corner position in Type B LUA. The axial profile of hydrogen concentration and oxide thickness for the corner rods in Type B LUA after 5 cycle irradiation had peaks at the second lowest span from the bottom. The maximum oxide thickness is about 50 {mu}m on the surface facing the bundle outside at the second lowest span and dense hydrides layer (Hydride rim) is observed in peripheral region of cladding showing unexpected high hydrogen concentration. The results of calculated thermal-hydraulic conditions show that the thermal neutron flux at the corner position was higher than the other position. On the other hand, the void fraction and the mass flux were relatively lower at the corner position. The oxide thickness on spacer band and spacer cell of Zry-2 increases from 3 to 5 cycle irradiations. Spacer band of Zry-4 showed significantly thick oxide after 5 cycle irradiations but Hydrogen concentration was relatively small in contrast its obviously thick oxide in comparison with Zry-2 spacer bands. The large increase in hydrogen concentration was measured in Zry-2 spacers after 5 cycle irradiations and the evaluated hydrogen pick-up rate also increased remarkably. (authors)« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less

  8. Developmental status of thermionic materials.

    NASA Technical Reports Server (NTRS)

    Yang, L.; Chin, J.

    1972-01-01

    Description of the reference materials selected for the major components of the unit cell of a thermionic pile element (TFE), the out-of-pile and in-pile test results, and current efforts for improving the life and performance of thermionic fuel elements. The component materials are required to withstand the fuel burnup and fast neutron fluence dictated by the thermionic reactor system. Tungsten was selected as the cladding material because of its compatibility with both the carbide and the oxide fuel materials. Niobium was selected as the collector material because its thermal expansion coefficient matches closely with that of the thin aluminum oxide layer used to electrically insulate the collector from the TFE sheath. An unfueled converter has performed stably over 41,000 hr. Accelerated irradiation tests have attained burnups equivalent to that for 40,000 hr of the thermionic reactor under consideration.

  9. ASSESSMENT OF THE RADIONUCLIDE COMPOSITION OF "HOT PARTICLES" SAMPLED IN THE CHERNOBYL NUCLEAR POWER PLANT FOURTH REACTOR UNIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.; Marra, J.

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuelmore » samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.« less

  10. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    DOE PAGES

    Hayes, A. C.; Ricard-McCutchan, E. A.; Jungman, Gerard; ...

    2018-01-12

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured 235U/ 239Pu ratio of the fission beta spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment beta-decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation methodmore » still predicts an anomaly. Thus, we conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.« less

  11. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  12. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  13. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Seiichi; Kido, Toshiya; Arakawa, Yasushi

    2007-07-01

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO{sub 2} emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup ismore » 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)« less

  14. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE PAGES

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  15. Computer-assisted instruction in programming: AID

    NASA Technical Reports Server (NTRS)

    Friend, J.; Atkinson, R. C.

    1971-01-01

    Lessons for training students on how to program and operate computers to and AID language are given. The course consists of a set of 50 lessons, plus summaries, reviews, tests, and extra credit problems. No prior knowledge is needed for the course, the only requirement being a strong background in algebra. A student manual, which includes instruction for operating the instructional program and a glossary of terms used in the course, is included in the appendices.

  16. 7 CFR 1980.452 - FmHA or its successor agency under Public Law 103-354 evaluation of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... National Officer that the Statements of Personal History(s) have been processed and cleared. FmHA or its... borrower, individual customer credit file, installment Loan Ledger Card or Computer printouts and other...

  17. Diagnosing Undersampling Biases in Monte Carlo Eigenvalue and Flux Tally Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M.; Rearden, Bradley T.; Marshall, William J.

    2017-02-08

    Here, this study focuses on understanding the phenomena in Monte Carlo simulations known as undersampling, in which Monte Carlo tally estimates may not encounter a sufficient number of particles during each generation to obtain unbiased tally estimates. Steady-state Monte Carlo simulations were performed using the KENO Monte Carlo tools within the SCALE code system for models of several burnup credit applications with varying degrees of spatial and isotopic complexities, and the incidence and impact of undersampling on eigenvalue and flux estimates were examined. Using an inadequate number of particle histories in each generation was found to produce a maximum bias of ~100 pcm in eigenvalue estimates and biases that exceeded 10% in fuel pin flux tally estimates. Having quantified the potential magnitude of undersampling biases in eigenvalue and flux tally estimates in these systems, this study then investigated whether Markov Chain Monte Carlo convergence metrics could be integrated into Monte Carlo simulations to predict the onset and magnitude of undersampling biases. Five potential metrics for identifying undersampling biases were implemented in the SCALE code system and evaluated for their ability to predict undersampling biases by comparing the test metric scores with the observed undersampling biases. Finally, of the five convergence metrics that were investigated, three (the Heidelberger-Welch relative half-width, the Gelman-Rubin more » $$\\hat{R}_c$$ diagnostic, and tally entropy) showed the potential to accurately predict the behavior of undersampling biases in the responses examined.« less

  18. Where Is the Research on Negative Messages?

    ERIC Educational Resources Information Center

    DeKay, Sam H.

    2012-01-01

    Most business communication textbooks treat "unfavorable" communications as written documents--denials of credit, collection requests, rejections for employment, inability to meet deadlines, etc. These written "unfavorable" documents are no longer actually written by most employees. In fact, many of these communications are computer generated and…

  19. The Computer and Personal Privacy, Part I: The Individual under Assault.

    ERIC Educational Resources Information Center

    Rubin, Michael Rogers

    1987-01-01

    Describes the development and current uses of computerized databases of information about individuals by the government and private agencies, especially credit bureaus, and discusses three major categories of abusive information practices that threaten personal privacy: information collection, information dissemination, and information management…

  20. Innovation in Open Systems: A Comparative Study of Banks.

    ERIC Educational Resources Information Center

    Young, Robert L.; And Others

    1981-01-01

    Explains the extent to which the innovativeness of banks (as measured by the adoption of credit cards and computers) is affected by competition, growth, size, and departmentalization. Notes that size and growth are more significantly related to innovation than are departmentalization and competition. (SB)

  1. 7 CFR 274.4 - Reconciliation and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... posted to household accounts on the central computer against benefits on the Issuance Authorization File... posting to POS transactions at retailers through settlement of retailer credits. (b) Management reports... FNS to the FNS Account Management Agent as the benefits become available to recipients. This data will...

  2. 26 CFR 1.46-10 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true [Reserved] 1.46-10 Section 1.46-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-10 [Reserved] ...

  3. Science and the Citizen.

    ERIC Educational Resources Information Center

    Scientific American, 1978

    1978-01-01

    Describes scientific events: computed tomography (CT) scanner and its costs, existence of Upsilon particle in its lowest excited state, animal psychology to determine their capabilities of symbolic communication, findings of Viking mission about Mars and its two moons, and finally gives credit to first discoverer of penicillin. (GA)

  4. Parametric sensitivity study for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  5. Estimating Skin Cancer Risk: Evaluating Mobile Computer-Adaptive Testing.

    PubMed

    Djaja, Ngadiman; Janda, Monika; Olsen, Catherine M; Whiteman, David C; Chien, Tsair-Wei

    2016-01-22

    Response burden is a major detriment to questionnaire completion rates. Computer adaptive testing may offer advantages over non-adaptive testing, including reduction of numbers of items required for precise measurement. Our aim was to compare the efficiency of non-adaptive (NAT) and computer adaptive testing (CAT) facilitated by Partial Credit Model (PCM)-derived calibration to estimate skin cancer risk. We used a random sample from a population-based Australian cohort study of skin cancer risk (N=43,794). All 30 items of the skin cancer risk scale were calibrated with the Rasch PCM. A total of 1000 cases generated following a normal distribution (mean [SD] 0 [1]) were simulated using three Rasch models with three fixed-item (dichotomous, rating scale, and partial credit) scenarios, respectively. We calculated the comparative efficiency and precision of CAT and NAT (shortening of questionnaire length and the count difference number ratio less than 5% using independent t tests). We found that use of CAT led to smaller person standard error of the estimated measure than NAT, with substantially higher efficiency but no loss of precision, reducing response burden by 48%, 66%, and 66% for dichotomous, Rating Scale Model, and PCM models, respectively. CAT-based administrations of the skin cancer risk scale could substantially reduce participant burden without compromising measurement precision. A mobile computer adaptive test was developed to help people efficiently assess their skin cancer risk.

  6. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys wasmore » performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.« less

  7. The Application of U-Np Fuel and {sup 6}Li Burnable Poison for Space Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, Konstantin L.; Saito, Masaki; Artisyuk, Vladimir V.

    2003-11-15

    The possible application of {sup 6}Li as a burnable poison and U-Np nitride as a fuel for space nuclear reactors has been studied. The analysis was performed for an infinite lattice with a leakage in the form of buckling and (U-Np)N fuel with 20% uranium enrichment. The combination of {sup 7}Li as a coolant and {sup 6}Li as a burnable poison results in a favorable criticality behavior during burnup. The parameters taken into consideration include the different fuel and coolant compositions, the form of absorber material, and the various absorber mass and concentrations. It was found that absorption properties ofmore » {sup 6}Li allow reaching the burnup value up to 67 GWd/tHM while reactivity swing is comparable with {beta}{sub eff}. The corresponding reactor lifetime is {approx}10 to 30 yr.« less

  8. M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.

    2015-09-01

    Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less

  9. IRRADIATION-CAPSULE STUDY OF URANIUM MONOCARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.B.; Stahl, D.; Stang, J.H.

    1960-03-01

    Small cylindrical specimens of enriched UC were irradiated to evaluate usefulness as a high-temperature fuel for stationary power reactors. Detailed thermal and nuclear analyses were made to arrive at an appropriate capsule design on the basis of target specimen center-line temperature ( approximately 1500 deg F), specimen surface temperature (1100 deg F), specimen composition (U--5 wt.% C), and acapsule o.d. of 1.125 in. Temperature data from thermocouples inside the capsule indicated that five of the six capsules irradiated operated at close to the design conditions. Irradiation periods for individual capsules were varied to give burnups ranging from 1,000 to 20,000more » Mwd/t of U. Preliminary evidence indicates that this range of burnups was achieved. By using temperature and heat-flux data from the actual irradiations to estimate effective in-pile specimen thermal conductivities, it was found that the conductivity did not appear to vary during the exposures. (auth)« less

  10. Inert matrix fuel in dispersion type fuel elements

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  11. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard; McCutchan, E. A.; Sonzogni, A. A.; Garvey, G. T.; Wang, X. B.

    2018-01-01

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured U 235 /Pu 239 ratio of the fission β spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.

  12. Verifying Safeguards Declarations with INDEPTH: A Sensitivity Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogan, Brandon R; Richards, Scott

    2017-01-01

    A series of ORIGEN calculations were used to simulate the irradiation and decay of a number of spent fuel assemblies. These simulations focused on variations in the irradiation history that achieved the same terminal burnup through a different set of cycle histories. Simulated NDA measurements were generated for each test case from the ORIGEN data. These simulated measurement types included relative gammas, absolute gammas, absolute gammas plus neutrons, and concentrations of a set of six isotopes commonly measured by NDA. The INDEPTH code was used to reconstruct the initial enrichment, cooling time, and burnup for each irradiation using each simulatedmore » measurement type. The results were then compared to the initial ORIGEN inputs to quantify the size of the errors induced by the variations in cycle histories. Errors were compared based on the underlying changes to the cycle history, as well as the data types used for the reconstructions.« less

  13. Unrestrained swelling of uranium-nitride fuel irradiated at temperatures ranging from 1100 to 1400 K (1980 to 2520 R)

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.

    1973-01-01

    Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.

  14. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  15. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  16. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  17. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  18. Development and verification of NRC`s single-rod fuel performance codes FRAPCON-3 AND FRAPTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, C.E.; Cunningham, M.E.; Lanning, D.D.

    1998-03-01

    The FRAPCON and FRAP-T code series, developed in the 1970s and early 1980s, are used by the US Nuclear Regulatory Commission (NRC) to predict fuel performance during steady-state and transient power conditions, respectively. Both code series are now being updated by Pacific Northwest National Laboratory to improve their predictive capabilities at high burnup levels. The newest versions of the codes are called FRAPCON-3 and FRAPTRAN. The updates to fuel property and behavior models are focusing on providing best estimate predictions under steady-state and fast transient power conditions up to extended fuel burnups (> 55 GWd/MTU). Both codes will be assessedmore » against a data base independent of the data base used for code benchmarking and an estimate of code predictive uncertainties will be made based on comparisons to the benchmark and independent data bases.« less

  19. A Simple Global View of Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Reactor physics and fuel burnup are discussed in order to obtain a simple global view of the effects of nuclear reactor characteristics to fuel cycle system performance. It may provide some idea of free thinking and overall vision, though it is still a small part of nuclear energy system. At the beginning of this lecture, governing equations for nuclear reactors are presented. Since the set of these equations is so big and complicated, it is simplified by imposing some extreme conditions and the nuclear equilibrium equation is derived. Some features of future nuclear equilibrium state are obtained by solving this equation. The contribution of a nucleus charged into reactor core to the system performance indexes such as criticality is worth for understanding the importance of each nuclide. It is called nuclide importance and can be evaluated by using the equations adjoint to the nuclear equilibrium equation. Examples of some importances and their application to criticalily search problem are presented.

  20. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  1. Terminal Time in the Classroom.

    ERIC Educational Resources Information Center

    Snider, Robert C.

    1983-01-01

    Satirical projection of the future of education up to 1994 when, says the author, public school enrollment will have dropped to only 13.2 percent of all school children and tuition tax credits will have led to a greatly expanded enrollment in private schools and increasing computer sales. (JBM)

  2. Present Status and Extensions of the Monte Carlo Performance Benchmark

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Petrovic, Bojan; Martin, William R.

    2014-06-01

    The NEA Monte Carlo Performance benchmark started in 2011 aiming to monitor over the years the abilities to perform a full-size Monte Carlo reactor core calculation with a detailed power production for each fuel pin with axial distribution. This paper gives an overview of the contributed results thus far. It shows that reaching a statistical accuracy of 1 % for most of the small fuel zones requires about 100 billion neutron histories. The efficiency of parallel execution of Monte Carlo codes on a large number of processor cores shows clear limitations for computer clusters with common type computer nodes. However, using true supercomputers the speedup of parallel calculations is increasing up to large numbers of processor cores. More experience is needed from calculations on true supercomputers using large numbers of processors in order to predict if the requested calculations can be done in a short time. As the specifications of the reactor geometry for this benchmark test are well suited for further investigations of full-core Monte Carlo calculations and a need is felt for testing other issues than its computational performance, proposals are presented for extending the benchmark to a suite of benchmark problems for evaluating fission source convergence for a system with a high dominance ratio, for coupling with thermal-hydraulics calculations to evaluate the use of different temperatures and coolant densities and to study the correctness and effectiveness of burnup calculations. Moreover, other contemporary proposals for a full-core calculation with realistic geometry and material composition will be discussed.

  3. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  4. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less

  5. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.

    2016-09-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact,more » and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.« less

  6. A study on the sensitivity of self-powered neutron detectors (SPNDs)

    NASA Astrophysics Data System (ADS)

    Lee, Wanno; Cho, Gyuseong; Kim, Kwanghyun; Kim, Hee Joon; choi, Yuseon; Park, Moon Chu; Kim, Soongpyung

    2001-08-01

    Self-powered neutron detectors (SPNDs) are widely used in reactors to monitor neutron flux, while they have several advantages such as small size, and relatively simple electronics required in conjunction with those usages, they have some intrinsic problems of the low level of output current-a slow response time and the rapid change of sensitivity-that make it difficult to use for a long term. Monte Carlo simulation was used to calculate the escape probability as a function of the birth position of emitted beta particle for geometry of rhodium-based SPNDs. A simple numerical method calculated the initial generation rate of beta particles and the change of generation rate due to rhodium burnup. Using results of the simulation and the simple numerical method, the burnup profile of rhodium number density and the neutron sensitivity were calculated as a function of burnup time in reactors. This method was verified by the comparison of this and other papers, and data of YGN3.4 (Young Gwang Nuclear plant 3, 4) about the initial sensitivity. In addition, for improvement of some properties of rhodium-based SPNDs, which are currently used, a modified geometry is proposed. The proposed geometry, which is tube-type, is able to increase the initial sensitivity due to increase of the escape probability. The escape probability was calculated by changing the thickness of the insulator and compared solid-type with tube-type about each insulator thickness. The method used here can be applied to the analysis and design of other types of SPNDs.

  7. Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu

    A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which hasmore » the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.« less

  8. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; ...

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  9. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  10. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  11. 75 FR 1831 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... renewal, power uprates, and the use of mixed oxide and high burnup fuels. An increased emphasis is being... race, color, religion, national origin, sex, age, or disabilities. Candidates must be citizens of the...

  12. Sea King SHOL Support for Post-HCM/FELEX HALIFAX Class Ships

    DTIC Science & Technology

    2014-05-01

    correct this, a Network Time Protocol (NTP) time server was installed on two Raspberry - Pi computers3 (one used as a backup). Time was set to GPS time...data is needed, a wave buoy would be deployed for direct measurement. However, the launch & recovery of a 3The Raspberry Pi is an inexpensive credit...card-sized single-board computer developed in the UK by the Raspberry Pi Foundation. DRDC-RDDC-2014-R18 15 wave buoy was not practical in conjunction

  13. Process Defects in Composites.

    DTIC Science & Technology

    1995-01-30

    mean velocity, U, a high kinematic viscosity, v , and a small diameter of the fibers, D , lead to a very small Reynolds number Re = UD << 1 (1) where p is...partial credit to ARO). 9. D . Krajcinovic and S . Mastilovic, "Damage Evolution and Failure Modes", in: Proc. of the Int. Conf. on Computational...34Computer Simulation of a Model for Irreversible Gelation", Journal of Physics A, Vol. 16., pp. 1221-1239. Kuksenko, V . S . and Tamuzs, V . P., 1981

  14. 40 CFR 86.1837-01 - Rounding of emission measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... additional significant figure, in accordance with 40 CFR 1065.20. (b) Fleet average NOX value calculations... calculating credits generated or needed as follows: manufacturers must round to the same number of significant figures that are contained in the quantity of vehicles in the denominator of the equation used to compute...

  15. 28 CFR 523.32 - How much DCEGT can I earn?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

  16. 28 CFR 523.31 - Who is eligible for DCEGT?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Who is eligible for DCEGT? 523.31 Section 523.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.31...

  17. 28 CFR 523.33 - How is eligibility for DCEGT limited?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false How is eligibility for DCEGT limited? 523.33 Section 523.33 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.33...

  18. 26 CFR 1.904-1 - Limitation on credit for foreign taxes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) bears to his entire taxable income for the same taxable year. For special rules regarding the... without deductions for personal exemptions) from sources within Great Britain 25,000 Total taxable income... deductions for personal exemptions) from sources within Great Britain 15,000 Taxable income (computed without...

  19. 26 CFR 1.904-1 - Limitation on credit for foreign taxes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... income) bears to his entire taxable income for the same taxable year. For special rules regarding the... without deductions for personal exemptions) from sources within Great Britain 25,000 Total taxable income... deductions for personal exemptions) from sources within Great Britain 15,000 Taxable income (computed without...

  20. 26 CFR 1.904-1 - Limitation on credit for foreign taxes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... income) bears to his entire taxable income for the same taxable year. For special rules regarding the... without deductions for personal exemptions) from sources within Great Britain 25,000 Total taxable income... deductions for personal exemptions) from sources within Great Britain 15,000 Taxable income (computed without...

  1. 26 CFR 1.904-1 - Limitation on credit for foreign taxes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... income) bears to his entire taxable income for the same taxable year. For special rules regarding the... without deductions for personal exemptions) from sources within Great Britain 25,000 Total taxable income... deductions for personal exemptions) from sources within Great Britain 15,000 Taxable income (computed without...

  2. 26 CFR 1.904-1 - Limitation on credit for foreign taxes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... income) bears to his entire taxable income for the same taxable year. For special rules regarding the... without deductions for personal exemptions) from sources within Great Britain 25,000 Total taxable income... deductions for personal exemptions) from sources within Great Britain 15,000 Taxable income (computed without...

  3. 12 CFR 1750.13 - Risk-based capital level computation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during the stress period. In making this determination, the Director shall take into account any... to this subpart. The stress period has the following characteristics: (1) Credit risk—With respect to... paragraph (a)(2)(iii) of this section, whichever would require more capital in the stress test for the...

  4. 12 CFR 1750.13 - Risk-based capital level computation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... during the stress period. In making this determination, the Director shall take into account any... to this subpart. The stress period has the following characteristics: (1) Credit risk—With respect to... paragraph (a)(2)(iii) of this section, whichever would require more capital in the stress test for the...

  5. 12 CFR 1750.13 - Risk-based capital level computation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... during the stress period. In making this determination, the Director shall take into account any... to this subpart. The stress period has the following characteristics: (1) Credit risk—With respect to... paragraph (a)(2)(iii) of this section, whichever would require more capital in the stress test for the...

  6. 12 CFR 1750.13 - Risk-based capital level computation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... during the stress period. In making this determination, the Director shall take into account any... to this subpart. The stress period has the following characteristics: (1) Credit risk—With respect to... paragraph (a)(2)(iii) of this section, whichever would require more capital in the stress test for the...

  7. 12 CFR 1750.13 - Risk-based capital level computation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... during the stress period. In making this determination, the Director shall take into account any... to this subpart. The stress period has the following characteristics: (1) Credit risk—With respect to... paragraph (a)(2)(iii) of this section, whichever would require more capital in the stress test for the...

  8. 13 CFR 107.1830 - Licensee's Capital Impairment-definition and general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 301(c) Licensees If the percentage of equity capital investments (at cost) in your portfolio is: And... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Licensee's Capital Impairment... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Licensee's Noncompliance With Terms of Leverage Computation of...

  9. 48 CFR 49.112-1 - Partial payments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., purchased parts, supplies, and direct labor; (4) 90 percent of other allowable costs (including settlement... terminated portion of the contract; and (2) The amounts of all credits arising from the purchase, retention... interest shall be computed at the rate established by the Secretary of the Treasury under 50 U.S.C. App...

  10. 43 CFR 418.28 - Conditions of delivery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... particulars including the known or estimated location and amounts; (3) The amount will not be included as a valid headgate delivery for purposes of computing the Project efficiency and resultant incentive credit... treated directly as a debit to Lahontan storage in the same manner as an efficiency debit. (b) District...

  11. Streamlining Compliance Validation Through Automation Processes

    DTIC Science & Technology

    2014-03-01

    up to 16 data storage registers. By contrast, the Raspberry Pi is a credit card sized computer that is sold for $35 and comes “stock” with 512MB... Raspberry Pi Foundation. Raspberry Pi FAQs. [Online]. Available: http://www.raspberrypi.org/faqs [5] R. Meulen and C. Pettey. (2008, June). Gartner

  12. Software Engineering Basics: A Primer for the Project Manager.

    DTIC Science & Technology

    1982-06-01

    computer software (45, 46]. It is named after Ada Augusta who is generally credited as having been the first programmer as an assistant to Charles ... Babbage , and is called, appropriately enough, ADA. The development of one common programming language for tactical software clearly has the p-.tential for

  13. 12 CFR 1402.22 - Fees to be charged.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for Provision of...) (i.e., basic pay plus 16 percent of that rate) of the employee(s) making the search. (c) Computer... the cost of operating the central processing unit for that portion of operating time that is directly...

  14. 12 CFR 1402.22 - Fees to be charged.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for Provision of...) (i.e., basic pay plus 16 percent of that rate) of the employee(s) making the search. (c) Computer... the cost of operating the central processing unit for that portion of operating time that is directly...

  15. 12 CFR 1402.22 - Fees to be charged.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for Provision of...) (i.e., basic pay plus 16 percent of that rate) of the employee(s) making the search. (c) Computer... the cost of operating the central processing unit for that portion of operating time that is directly...

  16. 12 CFR 1402.22 - Fees to be charged.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for Provision of...) (i.e., basic pay plus 16 percent of that rate) of the employee(s) making the search. (c) Computer... the cost of operating the central processing unit for that portion of operating time that is directly...

  17. 12 CFR 1402.22 - Fees to be charged.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Fees for Provision of...) (i.e., basic pay plus 16 percent of that rate) of the employee(s) making the search. (c) Computer... the cost of operating the central processing unit for that portion of operating time that is directly...

  18. The Computer "Discredit Bureau": An Extension of a Community Information Utility.

    ERIC Educational Resources Information Center

    Carroll, John M.

    The "Discredit" Bureau borrows some of the computerized information-processing techniques adopted by credit-reporting agencies and uses them in the interest of consumers to help them press complaints against suppliers and prospective employers. This is an additional service currently being incorporated into those already afforded by a…

  19. 13 CFR 108.1830 - NMVC Company's Capital Impairment definition and general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM NMVC Company's Noncompliance With Terms of Leverage Computation of Nmvc Company's Capital Impairment § 108.1830 NMVC Company's Capital Impairment definition and... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false NMVC Company's Capital Impairment...

  20. 28 CFR 523.32 - How much DCEGT can I earn?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

  1. 28 CFR 523.33 - How is eligibility for DCEGT limited?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false How is eligibility for DCEGT limited? 523.33 Section 523.33 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.33...

  2. 28 CFR 523.31 - Who is eligible for DCEGT?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Who is eligible for DCEGT? 523.31 Section 523.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.31...

  3. 76 FR 44332 - Privacy Act of 1974; Notice of Updated Systems of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... are safeguarded in accordance with the requirements of the Privacy Act, the Computer Security Act, and... Security Numbers, birth dates and credit card numbers or other banking information, and (2) contract... bidders and buyers, including, but not limited to, names, phone numbers, addresses, Social Security...

  4. 28 CFR 523.10 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.10 Purpose and scope. (a) The Bureau of Prisons awards extra good time credit for performing exceptionally meritorious service, or for performing duties... of extra good time award at a time (e.g., an inmate earning industrial or camp good time is not...

  5. 28 CFR 523.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.1 Definitions. (a) Statutory good time means a credit to a sentence as authorized by 18 U.S.C. 4161. The total amount of statutory good time which an inmate is entitled to have...

  6. 28 CFR 523.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.1 Definitions. (a) Statutory good time means a credit to a sentence as authorized by 18 U.S.C. 4161. The total amount of statutory good time which an inmate is entitled to have...

  7. 28 CFR 523.10 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.10 Purpose and scope. (a) The Bureau of Prisons awards extra good time credit for performing exceptionally meritorious service, or for performing duties... of extra good time award at a time (e.g., an inmate earning industrial or camp good time is not...

  8. 28 CFR 523.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.1 Definitions. (a) Statutory good time means a credit to a sentence as authorized by 18 U.S.C. 4161. The total amount of statutory good time which an inmate is entitled to have...

  9. 28 CFR 523.10 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.10 Purpose and scope. (a) The Bureau of Prisons awards extra good time credit for performing exceptionally meritorious service, or for performing duties... of extra good time award at a time (e.g., an inmate earning industrial or camp good time is not...

  10. 28 CFR 523.10 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.10 Purpose and scope. (a) The Bureau of Prisons awards extra good time credit for performing exceptionally meritorious service, or for performing duties... of extra good time award at a time (e.g., an inmate earning industrial or camp good time is not...

  11. 28 CFR 523.33 - How is eligibility for DCEGT limited?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false How is eligibility for DCEGT limited? 523.33 Section 523.33 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.33...

  12. 28 CFR 523.31 - Who is eligible for DCEGT?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Who is eligible for DCEGT? 523.31 Section 523.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.31...

  13. 28 CFR 523.10 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.10 Purpose and scope. (a) The Bureau of Prisons awards extra good time credit for performing exceptionally meritorious service, or for performing duties... of extra good time award at a time (e.g., an inmate earning industrial or camp good time is not...

  14. 28 CFR 523.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.1 Definitions. (a) Statutory good time means a credit to a sentence as authorized by 18 U.S.C. 4161. The total amount of statutory good time which an inmate is entitled to have...

  15. 28 CFR 523.32 - How much DCEGT can I earn?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

  16. 28 CFR 523.31 - Who is eligible for DCEGT?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Who is eligible for DCEGT? 523.31 Section 523.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.31...

  17. 28 CFR 523.33 - How is eligibility for DCEGT limited?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false How is eligibility for DCEGT limited? 523.33 Section 523.33 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.33...

  18. 28 CFR 523.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE Good Time § 523.1 Definitions. (a) Statutory good time means a credit to a sentence as authorized by 18 U.S.C. 4161. The total amount of statutory good time which an inmate is entitled to have...

  19. 28 CFR 523.32 - How much DCEGT can I earn?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

  20. 28 CFR 523.32 - How much DCEGT can I earn?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

Top