NASA Astrophysics Data System (ADS)
McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.
2010-01-01
In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
A cloud computing based platform for sleep behavior and chronic diseases collaborative research.
Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui
2014-01-01
The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.
ERIC Educational Resources Information Center
Alkaria, Ahmed; Alhassan, Riyadh
2017-01-01
This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…
NASA Astrophysics Data System (ADS)
Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.
2012-11-01
The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
A generic, cost-effective, and scalable cell lineage analysis platform
Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud
2016-01-01
Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250
2006-04-01
and Scalability, (2) Sensors and Platforms, (3) Distributed Computing and Processing , (4) Information Management, (5) Fusion and Resource Management...use of the deployed system. 3.3 Distributed Computing and Processing Session The Distributed Computing and Processing Session consisted of three
Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli
2014-03-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.
Spiking neural networks on high performance computer clusters
NASA Astrophysics Data System (ADS)
Chen, Chong; Taha, Tarek M.
2011-09-01
In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.
Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung
2018-05-23
Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.
Analysis of outcomes in radiation oncology: An integrated computational platform
Liu, Dezhi; Ajlouni, Munther; Jin, Jian-Yue; Ryu, Samuel; Siddiqui, Farzan; Patel, Anushka; Movsas, Benjamin; Chetty, Indrin J.
2009-01-01
Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use. PMID:19544785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, X; Liu, L; Xing, L
Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less
Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application
NASA Astrophysics Data System (ADS)
Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.
2013-12-01
The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.
Auto-Generated Semantic Processing Services
NASA Technical Reports Server (NTRS)
Davis, Rodney; Hupf, Greg
2009-01-01
Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
Design and performance of the virtualization platform for offline computing on the ATLAS TDAQ Farm
NASA Astrophysics Data System (ADS)
Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Twomey, M. S.; Zaytsev, A.
2014-06-01
With the LHC collider at CERN currently going through the period of Long Shutdown 1 there is an opportunity to use the computing resources of the experiments' large trigger farms for other data processing activities. In the case of the ATLAS experiment, the TDAQ farm, consisting of more than 1500 compute nodes, is suitable for running Monte Carlo (MC) production jobs that are mostly CPU and not I/O bound. This contribution gives a thorough review of the design and deployment of a virtualized platform running on this computing resource and of its use to run large groups of CernVM based virtual machines operating as a single CERN-P1 WLCG site. This platform has been designed to guarantee the security and the usability of the ATLAS private network, and to minimize interference with TDAQ's usage of the farm. Openstack has been chosen to provide a cloud management layer. The experience gained in the last 3.5 months shows that the use of the TDAQ farm for the MC simulation contributes to the ATLAS data processing at the level of a large Tier-1 WLCG site, despite the opportunistic nature of the underlying computing resources being used.
Use of Parallel Micro-Platform for the Simulation the Space Exploration
NASA Astrophysics Data System (ADS)
Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen
The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff
1992-01-01
The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
A novel medical image data-based multi-physics simulation platform for computational life sciences.
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-04-06
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.
Fang, Xiang; Li, Ning-qiu; Fu, Xiao-zhe; Li, Kai-bin; Lin, Qiang; Liu, Li-hui; Shi, Cun-bin; Wu, Shu-qin
2015-07-01
As a key component of life science, bioinformatics has been widely applied in genomics, transcriptomics, and proteomics. However, the requirement of high-performance computers rather than common personal computers for constructing a bioinformatics platform significantly limited the application of bioinformatics in aquatic science. In this study, we constructed a bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer. The platform consisted of three functional modules, including genomic and transcriptomic sequencing data analysis, protein structure prediction, and molecular dynamics simulations. To validate the practicability of the platform, we performed bioinformatic analysis on aquatic pathogenic organisms. For example, genes of Flavobacterium johnsoniae M168 were identified and annotated via Blast searches, GO and InterPro annotations. Protein structural models for five small segments of grass carp reovirus HZ-08 were constructed by homology modeling. Molecular dynamics simulations were performed on out membrane protein A of Aeromonas hydrophila, and the changes of system temperature, total energy, root mean square deviation and conformation of the loops during equilibration were also observed. These results showed that the bioinformatic analysis platform for aquatic pathogen has been successfully built on the MilkyWay-2 supercomputer. This study will provide insights into the construction of bioinformatic analysis platform for other subjects.
TU-AB-303-08: GPU-Based Software Platform for Efficient Image-Guided Adaptive Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; McNutt, T
2015-06-15
Purpose: In this study, we develop an integrated software platform for adaptive radiation therapy (ART) that combines fast and accurate image registration, segmentation, and dose computation/accumulation methods. Methods: The proposed system consists of three key components; 1) deformable image registration (DIR), 2) automatic segmentation, and 3) dose computation/accumulation. The computationally intensive modules including DIR and dose computation have been implemented on a graphics processing unit (GPU). All required patient-specific data including the planning CT (pCT) with contours, daily cone-beam CTs, and treatment plan are automatically queried and retrieved from their own databases. To improve the accuracy of DIR between pCTmore » and CBCTs, we use the double force demons DIR algorithm in combination with iterative CBCT intensity correction by local intensity histogram matching. Segmentation of daily CBCT is then obtained by propagating contours from the pCT. Daily dose delivered to the patient is computed on the registered pCT by a GPU-accelerated superposition/convolution algorithm. Finally, computed daily doses are accumulated to show the total delivered dose to date. Results: Since the accuracy of DIR critically affects the quality of the other processes, we first evaluated our DIR method on eight head-and-neck cancer cases and compared its performance. Normalized mutual-information (NMI) and normalized cross-correlation (NCC) computed as similarity measures, and our method produced overall NMI of 0.663 and NCC of 0.987, outperforming conventional methods by 3.8% and 1.9%, respectively. Experimental results show that our registration method is more consistent and roust than existing algorithms, and also computationally efficient. Computation time at each fraction took around one minute (30–50 seconds for registration and 15–25 seconds for dose computation). Conclusion: We developed an integrated GPU-accelerated software platform that enables accurate and efficient DIR, auto-segmentation, and dose computation, thus supporting an efficient ART workflow. This work was supported by NIH/NCI under grant R42CA137886.« less
Analysis and experimental evaluation of a Stewart platform-based force/torque sensor
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
The kinematic analysis and experimentation of a force/torque sensor whose design is based on the mechanism of the Stewart Platform are discussed. Besides being used for measurement of forces/torques, the sensor also serves as a compliant platform which provides passive compliance during a robotic assembly task. It consists of two platforms, the upper compliant platform (UCP) and the lower compliant platform (LCP), coupled together through six spring-loaded pistons whose length variations are measured by six linear voltage differential transformers (LVDT) mounted along the pistons. Solutions to the forward and inverse kinematics of the force sensor are derived. Based on the known spring constant and the piston length changes, forces/torques applied to the LCP gripper are computed using vector algebra. Results of experiments conducted to evaluate the sensing capability of the force sensor are reported and discussed.
ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi
2017-08-01
With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Validation of tablet-based evaluation of color fundus images
Christopher, Mark; Moga, Daniela C.; Russell, Stephen R.; Folk, James C.; Scheetz, Todd; Abràmoff, Michael D.
2012-01-01
Purpose To compare diabetic retinopathy (DR) referral recommendations made by viewing fundus images using a tablet computer to recommendations made using a standard desktop display. Methods A tablet computer (iPad) and a desktop PC with a high-definition color display were compared. For each platform, two retinal specialists independently rated 1200 color fundus images from patients at risk for DR using an annotation program, Truthseeker. The specialists determined whether each image had referable DR, and also how urgently each patient should be referred for medical examination. Graders viewed and rated the randomly presented images independently and were masked to their ratings on the alternative platform. Tablet- and desktop display-based referral ratings were compared using cross-platform, intra-observer kappa as the primary outcome measure. Additionally, inter-observer kappa, sensitivity, specificity, and area under ROC (AUC) were determined. Results A high level of cross-platform, intra-observer agreement was found for the DR referral ratings between the platforms (κ=0.778), and for the two graders, (κ=0.812). Inter-observer agreement was similar for the two platforms (κ=0.544 and κ=0.625 for tablet and desktop, respectively). The tablet-based ratings achieved a sensitivity of 0.848, a specificity of 0.987, and an AUC of 0.950 compared to desktop display-based ratings. Conclusions In this pilot study, tablet-based rating of color fundus images for subjects at risk for DR was consistent with desktop display-based rating. These results indicate that tablet computers can be reliably used for clinical evaluation of fundus images for DR. PMID:22495326
An u-Service Model Based on a Smart Phone for Urban Computing Environments
NASA Astrophysics Data System (ADS)
Cho, Yongyun; Yoe, Hyun
In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon
2011-01-01
Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532
Raspberry Pi-powered imaging for plant phenotyping.
Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A
2018-03-01
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Technical Note: scuda: A software platform for cumulative dose assessment.
Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon
2016-10-01
Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of anatomical changes and computation of actually delivered dose to the patient, thus realizing an efficient cumulative dose computation workflow. Evaluation on HN cases demonstrated the utility of our platform for monitoring the treatment quality and detecting significant dosimetric variations that are keys to successful ART.
Technical Note: SCUDA: A software platform for cumulative dose assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seyoun; McNutt, Todd; Quon, Harry
Purpose: Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (SCUDA) that can be seamlessly integrated into the clinical workflow. Methods: SCUDA consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our imagemore » PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. Results: The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. Conclusions: The authors developed a unified software platform that provides accurate and efficient monitoring of anatomical changes and computation of actually delivered dose to the patient, thus realizing an efficient cumulative dose computation workflow. Evaluation on HN cases demonstrated the utility of our platform for monitoring the treatment quality and detecting significant dosimetric variations that are keys to successful ART.« less
Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Lanzi, Raymond J.
2010-01-01
The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.
Solving optimization problems on computational grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, S. J.; Mathematics and Computer Science
2001-05-01
Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.
In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns aremore » connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.« less
Bigdata Driven Cloud Security: A Survey
NASA Astrophysics Data System (ADS)
Raja, K.; Hanifa, Sabibullah Mohamed
2017-08-01
Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.
A cyber infrastructure for the SKA Telescope Manager
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul
2016-07-01
The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.
Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.
Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo
2017-01-01
The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.
High-Throughput Computing on High-Performance Platforms: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleynik, D; Panitkin, S; Matteo, Turilli
The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size resource. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan -- a DOE leadership facility in conjunction with traditional distributed high- throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i)more » a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner.« less
WPSS: watching people security services
NASA Astrophysics Data System (ADS)
Bouma, Henri; Baan, Jan; Borsboom, Sander; van Zon, Kasper; Luo, Xinghan; Loke, Ben; Stoeller, Bram; van Kuilenburg, Hans; Dijk, Judith
2013-10-01
To improve security, the number of surveillance cameras is rapidly increasing. However, the number of human operators remains limited and only a selection of the video streams are observed. Intelligent software services can help to find people quickly, evaluate their behavior and show the most relevant and deviant patterns. We present a software platform that contributes to the retrieval and observation of humans and to the analysis of their behavior. The platform consists of mono- and stereo-camera tracking, re-identification, behavioral feature computation, track analysis, behavior interpretation and visualization. This system is demonstrated in a busy shopping mall with multiple cameras and different lighting conditions.
Cloud@Home: A New Enhanced Computing Paradigm
NASA Astrophysics Data System (ADS)
Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco
Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).
Using a Modular Construction Kit for the Realization of an Interactive Computer Graphics Course.
ERIC Educational Resources Information Center
Klein, Reinhard; Hanisch, Frank
Recently, platform independent software components, like JavaBeans, have appeared that allow writing reusable components and composing them in a visual builder tool into new applications. This paper describes the use of such models to transform an existing course into a modular construction kit consisting of components of teaching text and program…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Southern Medical University, Guangzhou, Guangdong; Tian, Z
Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subjectmore » to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.« less
Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa
2018-06-05
Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.
The Ettention software package.
Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp
2016-02-01
We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M
2007-03-01
There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home.
Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)
1995-01-01
The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare to the CFD results; the data permitted an assessment of CFD as a design tool for the SOFIA program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C. J.; Edwards, M. J.; McCoy, M. G.
2015-07-07
Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
The Fermi Unix Environment - Dealing with Adolescence
NASA Astrophysics Data System (ADS)
Pordes, Ruth; Nicholls, Judy; Wicks, Matt
Fermilab's Computing Division started early in the definition implemention and promulgation of a common environment for Users across the Laboratory's UNIX platforms and installations. Based on our experience over nearly five years, we discuss the status of the effort ongoing developments and needs, some analysis of where we could have done better, and identify future directions to allow us to provide better and more complete service to our customers. In particular, with the power of the new PCs making enthusiastic converts of physicists to the pc world, we are faced with the challenge of expanding the paradigm to non-UNIX platforms in a uniform and consistent way.
Integrative structure modeling with the Integrative Modeling Platform.
Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej
2018-01-01
Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.
Energy Consumption Management of Virtual Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Li, Lin
2017-11-01
For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.
Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.
FORCEnet Net Centric Architecture - A Standards View
2006-06-01
SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION DATA MANAGEMENT APPLICATION...R V I C E P L A T F O R M S E R V I C E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM...E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION
Development of a cloud-based Bioinformatics Training Platform.
Revote, Jerico; Watson-Haigh, Nathan S; Quenette, Steve; Bethwaite, Blair; McGrath, Annette; Shang, Catherine A
2017-05-01
The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. © The Author 2016. Published by Oxford University Press.
Development of a cloud-based Bioinformatics Training Platform
Revote, Jerico; Watson-Haigh, Nathan S.; Quenette, Steve; Bethwaite, Blair; McGrath, Annette
2017-01-01
Abstract The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. PMID:27084333
Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses
ERIC Educational Resources Information Center
Boggs, Stacey; Shore, Mark; Shore, JoAnna
2004-01-01
Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…
NASA Astrophysics Data System (ADS)
Zou, Tianhao; Zuo, Zhengrong
2018-02-01
Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.
Development of an optoelectronic holographic platform for otolaryngology applications
NASA Astrophysics Data System (ADS)
Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael
2010-08-01
In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Boutiques: a flexible framework to integrate command-line applications in computing platforms.
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-05-01
We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.
A brief overview of NASA Langley's research program in formal methods
NASA Technical Reports Server (NTRS)
1992-01-01
An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.
NASA Technical Reports Server (NTRS)
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
The Fermi Unix environment -- Dealing with adolescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pordes, R.; Nicholls, J.; Wicks, M.
1995-10-01
Fermilab`s Computing Division started early in the definition implementation and promulgation of a common environment for Users across the Laboratory`s UNIX platforms and installations. Based on the authors experience over nearly five years, they discuss the status of the effort, ongoing developments and needs, some analysis of where they could have done better, and identify future directions to allow them to provide better and more complete service to their customers. In particular, with the power of the new PCs making enthusiastic converts of physicists to the pc world, they are faced with the challenge of expanding the paradigm to non-UNIXmore » platforms in a uniform and consistent way.« less
Boutiques: a flexible framework to integrate command-line applications in computing platforms
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-01-01
Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199
Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M
2007-01-01
Background There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Methods Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Results Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. Conclusion The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home. PMID:17331243
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, T.; Huang, Q.; Liu, Q.
2014-12-01
Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.
A spacecraft attitude and articulation control system design for the Comet Halley intercept mission
NASA Technical Reports Server (NTRS)
Key, R. W.
1981-01-01
An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.
a Linux PC Cluster for Lattice QCD with Exact Chiral Symmetry
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
A computational system for lattice QCD with overlap Dirac quarks is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present the system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of our system is estimated to be 70 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing propagators of overlap Dirac quarks.
Software Support for Transiently Powered Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Woude, Joel Matthew
With the continued reduction in size and cost of computing, power becomes an increasingly heavy burden on system designers for embedded applications. While energy harvesting techniques are an increasingly desirable solution for many deeply embedded applications where size and lifetime are a priority, previous work has shown that energy harvesting provides insufficient power for long running computation. We present Ratchet, which to the authors knowledge is the first automatic, software-only checkpointing system for energy harvesting platforms. We show that Ratchet provides a means to extend computation across power cycles, consistent with those experienced by energy harvesting devices. We demonstrate themore » correctness of our system under frequent failures and show that it has an average overhead of 58.9% across a suite of benchmarks representative for embedded applications.« less
Change Detection of Mobile LIDAR Data Using Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Kun; Boehm, Jan; Alis, Christian
2016-06-01
Change detection has long been a challenging problem although a lot of research has been conducted in different fields such as remote sensing and photogrammetry, computer vision, and robotics. In this paper, we blend voxel grid and Apache Spark together to propose an efficient method to address the problem in the context of big data. Voxel grid is a regular geometry representation consisting of the voxels with the same size, which fairly suites parallel computation. Apache Spark is a popular distributed parallel computing platform which allows fault tolerance and memory cache. These features can significantly enhance the performance of Apache Spark and results in an efficient and robust implementation. In our experiments, both synthetic and real point cloud data are employed to demonstrate the quality of our method.
NASA Technical Reports Server (NTRS)
Divito, Ben L.; Butler, Ricky W.; Caldwell, James L.
1990-01-01
A high-level design is presented for a reliable computing platform for real-time control applications. Design tradeoffs and analyses related to the development of the fault-tolerant computing platform are discussed. The architecture is formalized and shown to satisfy a key correctness property. The reliable computing platform uses replicated processors and majority voting to achieve fault tolerance. Under the assumption of a majority of processors working in each frame, it is shown that the replicated system computes the same results as a single processor system not subject to failures. Sufficient conditions are obtained to establish that the replicated system recovers from transient faults within a bounded amount of time. Three different voting schemes are examined and proved to satisfy the bounded recovery time conditions.
Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S
2014-12-01
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.
NDEC: A NEA platform for nuclear data testing, verification and benchmarking
NASA Astrophysics Data System (ADS)
Díez, C. J.; Michel-Sendis, F.; Cabellos, O.; Bossant, M.; Soppera, N.
2017-09-01
The selection, testing, verification and benchmarking of evaluated nuclear data consists, in practice, in putting an evaluated file through a number of checking steps where different computational codes verify that the file and the data it contains complies with different requirements. These requirements range from format compliance to good performance in application cases, while at the same time physical constraints and the agreement with experimental data are verified. At NEA, the NDEC (Nuclear Data Evaluation Cycle) platform aims at providing, in a user friendly interface, a thorough diagnose of the quality of a submitted evaluated nuclear data file. Such diagnose is based on the results of different computational codes and routines which carry out the mentioned verifications, tests and checks. NDEC also searches synergies with other existing NEA tools and databases, such as JANIS, DICE or NDaST, including them into its working scheme. Hence, this paper presents NDEC, its current development status and its usage in the JEFF nuclear data project.
Computer Vision Malaria Diagnostic Systems-Progress and Prospects.
Pollak, Joseph Joel; Houri-Yafin, Arnon; Salpeter, Seth J
2017-01-01
Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2005-01-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2004-12-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
Siretskiy, Alexey; Sundqvist, Tore; Voznesenskiy, Mikhail; Spjuth, Ola
2015-01-01
New high-throughput technologies, such as massively parallel sequencing, have transformed the life sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch systems that are based on high-performance computing resources; however, the bioinformatics software that is built on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting option to address the challenges of increasingly large datasets with distributed storage, distributed processing, built-in data locality, fault tolerance, and an appealing programming methodology. In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single node of conventional high-performance computing resources for the tasks of short read mapping and variant calling. We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached storage will not scale when computing resources increase in numbers. Measurements were performed using ten datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files. For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories. From our experiments we can conclude that the improved Hadoop pipeline scales better than the same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable option for the common data sizes that are currently used in massively parallel sequencing. Given that datasets are expected to increase over time, Hadoop is a framework that we envision will have an increasingly important role in future biological data analysis.
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
NASA Technical Reports Server (NTRS)
Barber, Bryan; Kahn, Laura; Wong, David
1990-01-01
Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.
Traffic information computing platform for big data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Zongtao, E-mail: ztduan@chd.edu.cn; Li, Ying, E-mail: ztduan@chd.edu.cn; Zheng, Xibin, E-mail: ztduan@chd.edu.cn
Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.
NASA Astrophysics Data System (ADS)
Beck, Jeffrey; Bos, Jeremy P.
2017-05-01
We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.
Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms
ERIC Educational Resources Information Center
Longmuir, Kenneth J.
2014-01-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…
Preparing Students for Careers in Science and Industry with Computational Physics
NASA Astrophysics Data System (ADS)
Florinski, V. A.
2011-12-01
Funded by NSF CAREER grant, the University of Alabama (UAH) in Huntsville has launched a new graduate program in Computational Physics. It is universally accepted that today's physics is done on a computer. The program blends the boundary between physics and computer science by teaching student modern, practical techniques of solving difficult physics problems using diverse computational platforms. Currently consisting of two courses first offered in the Fall of 2011, the program will eventually include 5 courses covering methods for fluid dynamics, particle transport via stochastic methods, and hybrid and PIC plasma simulations. The UAH's unique location allows courses to be shaped through discussions with faculty, NASA/MSFC researchers and local R&D business representatives, i.e., potential employers of the program's graduates. Students currently participating in the program have all begun their research careers in space and plasma physics; many are presenting their research at this meeting.
High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff
2006-01-01
High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Chen, Yousu; Wu, Di
2015-12-09
Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
Web-based reactive transport modeling using PFLOTRAN
NASA Astrophysics Data System (ADS)
Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.
2017-12-01
Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the rationale for different interfaces, implementation choices, as well as the planned path forward.
Autonomous self-organizing resource manager for multiple networked platforms
NASA Astrophysics Data System (ADS)
Smith, James F., III
2002-08-01
A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.
An open-source computational and data resource to analyze digital maps of immunopeptidomes
Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J.; ...
2015-07-08
We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.
Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing
NASA Astrophysics Data System (ADS)
Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.
2012-12-01
Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.
Rotating Desk for Collaboration by Two Computer Programmers
NASA Technical Reports Server (NTRS)
Riley, John Thomas
2005-01-01
A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming. The present desk design minimizes the stress of the collaborative work environment. It supports both quality and work flow by making it unnecessary for programmers to get in each other s way. The desk (see figure) includes a rotating platform that supports a computer video monitor, keyboard, and mouse. The desk enables one programmer to work on the keyboard for any amount of time and then the other programmer to take over without breaking the train of thought. The rotating platform is supported by a turntable bearing that, in turn, is supported by a weighted base. The platform contains weights to improve its balance. The base includes a stand for a computer, and is shaped and dimensioned to provide adequate foot clearance for both users. The platform includes an adjustable stand for the monitor, a surface for the keyboard and mouse, and spaces for work papers, drinks, and snacks. The heights of the monitor, keyboard, and mouse are set to minimize stress. The platform can be rotated through an angle of 40 to give either user a straight-on view of the monitor and full access to the keyboard and mouse. Magnetic latches keep the platform preferentially at either of the two extremes of rotation. To switch between users, one simply grabs the edge of the platform and pulls it around. The magnetic latch is easily released, allowing the platform to rotate freely to the position of the other user
Micromagnetics on high-performance workstation and mobile computational platforms
NASA Astrophysics Data System (ADS)
Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.
2015-05-01
The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.
Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.
2017-01-01
Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430
Study on the application of mobile internet cloud computing platform
NASA Astrophysics Data System (ADS)
Gong, Songchun; Fu, Songyin; Chen, Zheng
2012-04-01
The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.
Yang, Shu; Qiu, Yuyan; Shi, Bo
2016-09-01
This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.
NASA Technical Reports Server (NTRS)
1990-01-01
Lunar base projects, including a reconfigurable lunar cargo launcher, a thermal and micrometeorite protection system, a versatile lifting machine with robotic capabilities, a cargo transport system, the design of a road construction system for a lunar base, and the design of a device for removing lunar dust from material surfaces, are discussed. The emphasis on the Gulf of Mexico project was on the development of a computer simulation model for predicting vessel station keeping requirements. An existing code, used in predicting station keeping requirements for oil drilling platforms operating in North Shore (Alaska) waters was used as a basis for the computer simulation. Modifications were made to the existing code. The input into the model consists of satellite altimeter readings and water velocity readings from buoys stationed in the Gulf of Mexico. The satellite data consists of altimeter readings (wave height) taken during the spring of 1989. The simulation model predicts water velocity and direction, and wind velocity.
IoT-based flood embankments monitoring system
NASA Astrophysics Data System (ADS)
Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.
2017-08-01
In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.
Babjack, Destiny L; Cernicky, Brandon; Sobotka, Andrew J; Basler, Lee; Struthers, Devon; Kisic, Richard; Barone, Kimberly; Zuccolotto, Anthony P
2015-09-01
Using differing computer platforms and audio output devices to deliver audio stimuli often introduces (1) substantial variability across labs and (2) variable time between the intended and actual sound delivery (the sound onset latency). Fast, accurate audio onset latencies are particularly important when audio stimuli need to be delivered precisely as part of studies that depend on accurate timing (e.g., electroencephalographic, event-related potential, or multimodal studies), or in multisite studies in which standardization and strict control over the computer platforms used is not feasible. This research describes the variability introduced by using differing configurations and introduces a novel approach to minimizing audio sound latency and variability. A stimulus presentation and latency assessment approach is presented using E-Prime and Chronos (a new multifunction, USB-based data presentation and collection device). The present approach reliably delivers audio stimuli with low latencies that vary by ≤1 ms, independent of hardware and Windows operating system (OS)/driver combinations. The Chronos audio subsystem adopts a buffering, aborting, querying, and remixing approach to the delivery of audio, to achieve a consistent 1-ms sound onset latency for single-sound delivery, and precise delivery of multiple sounds that achieves standard deviations of 1/10th of a millisecond without the use of advanced scripting. Chronos's sound onset latencies are small, reliable, and consistent across systems. Testing of standard audio delivery devices and configurations highlights the need for careful attention to consistency between labs, experiments, and multiple study sites in their hardware choices, OS selections, and adoption of audio delivery systems designed to sidestep the audio latency variability issue.
Research in Wireless Networks and Communications
2008-05-01
TESTBED SETUP AND INITIAL MULTI-HOP EXPERIENCE As a proof of concept, we assembled a testbed platform of nodes based on 400MHz AMD Geode single-board...experi- ments on a testbed network consisting of 400MHz AMD Geode single-board computers made by Thecus Inc. We equipped each of these nodes with two...ground nodes were placed on a line, with about 3 feet of separation between adjacent nodes. The nodes were powered by 400MHz AMD Geode single-board
Cloud computing for comparative genomics with windows azure platform.
Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P
2012-01-01
Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.
Cloud Computing for Comparative Genomics with Windows Azure Platform
Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.
2012-01-01
Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.
2014-05-15
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
Cloud Based Applications and Platforms (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodt-Giles, D.
2014-05-15
Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.
NASA Astrophysics Data System (ADS)
Faerber, Christian
2017-10-01
The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.
Simonyan, Vahan; Mazumder, Raja
2014-09-30
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.
NASA Technical Reports Server (NTRS)
Hu, Chaumin
2007-01-01
IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.
A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittens, Alex; Kottalam, Jey; Yang, Jiyan
We investigate the performance and scalability of the randomized CX low-rank matrix factorization and demonstrate its applicability through the analysis of a 1TB mass spectrometry imaging (MSI) dataset, using Apache Spark on an Amazon EC2 cluster, a Cray XC40 system, and an experimental Cray cluster. We implemented this factorization both as a parallelized C implementation with hand-tuned optimizations and in Scala using the Apache Spark high-level cluster computing framework. We obtained consistent performance across the three platforms: using Spark we were able to process the 1TB size dataset in under 30 minutes with 960 cores on all systems, with themore » fastest times obtained on the experimental Cray cluster. In comparison, the C implementation was 21X faster on the Amazon EC2 system, due to careful cache optimizations, bandwidth-friendly access of matrices and vector computation using SIMD units. We report these results and their implications on the hardware and software issues arising in supporting data-centric workloads in parallel and distributed environments.« less
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis
Simonyan, Vahan; Mazumder, Raja
2014-01-01
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953
Platform-independent method for computer aided schematic drawings
Vell, Jeffrey L [Slingerlands, NY; Siganporia, Darius M [Clifton Park, NY; Levy, Arthur J [Fort Lauderdale, FL
2012-02-14
A CAD/CAM method is disclosed for a computer system to capture and interchange schematic drawing and associated design information. The schematic drawing and design information are stored in an extensible, platform-independent format.
A Big Data Platform for Storing, Accessing, Mining and Learning Geospatial Data
NASA Astrophysics Data System (ADS)
Yang, C. P.; Bambacus, M.; Duffy, D.; Little, M. M.
2017-12-01
Big Data is becoming a norm in geoscience domains. A platform that is capable to effiently manage, access, analyze, mine, and learn the big data for new information and knowledge is desired. This paper introduces our latest effort on developing such a platform based on our past years' experiences on cloud and high performance computing, analyzing big data, comparing big data containers, and mining big geospatial data for new information. The platform includes four layers: a) the bottom layer includes a computing infrastructure with proper network, computer, and storage systems; b) the 2nd layer is a cloud computing layer based on virtualization to provide on demand computing services for upper layers; c) the 3rd layer is big data containers that are customized for dealing with different types of data and functionalities; d) the 4th layer is a big data presentation layer that supports the effient management, access, analyses, mining and learning of big geospatial data.
The Efficacy of the Internet-Based Blackboard Platform in Developmental Writing Classes
ERIC Educational Resources Information Center
Shudooh, Yusuf M.
2016-01-01
The application of computer-assisted platforms in writing classes is a relatively new paradigm in education. The adoption of computers-assisted writing classes is gaining ground in many western and non western universities. Numerous issues can be addressed when conducting computer-assisted classes (CAC). However, a few studies conducted to assess…
SPAIDE: A Real-time Research Platform for the Clarion CII/90K Cochlear Implant
NASA Astrophysics Data System (ADS)
Van Immerseel, L.; Peeters, S.; Dykmans, P.; Vanpoucke, F.; Bracke, P.
2005-12-01
SPAIDE ( sound-processing algorithm integrated development environment) is a real-time platform of Advanced Bionics Corporation (Sylmar, Calif, USA) to facilitate advanced research on sound-processing and electrical-stimulation strategies with the Clarion CII and 90K implants. The platform is meant for testing in the laboratory. SPAIDE is conceptually based on a clear separation of the sound-processing and stimulation strategies, and, in specific, on the distinction between sound-processing and stimulation channels and electrode contacts. The development environment has a user-friendly interface to specify sound-processing and stimulation strategies, and includes the possibility to simulate the electrical stimulation. SPAIDE allows for real-time sound capturing from file or audio input on PC, sound processing and application of the stimulation strategy, and streaming the results to the implant. The platform is able to cover a broad range of research applications; from noise reduction and mimicking of normal hearing, over complex (simultaneous) stimulation strategies, to psychophysics. The hardware setup consists of a personal computer, an interface board, and a speech processor. The software is both expandable and to a great extent reusable in other applications.
Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing
NASA Astrophysics Data System (ADS)
Kim, Mooseop; Ryou, Jaecheol
The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hardware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25μm CMOS process.
An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations
NASA Technical Reports Server (NTRS)
Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.
1996-01-01
We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.
Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms
NASA Technical Reports Server (NTRS)
Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.
1997-01-01
We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.
A Web Tool for Research in Nonlinear Optics
NASA Astrophysics Data System (ADS)
Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.
2016-02-01
This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.
Ahern, Thomas P; Beck, Andrew H; Rosner, Bernard A; Glass, Ben; Frieling, Gretchen; Collins, Laura C; Tamimi, Rulla M
2017-05-01
Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumour oestrogen receptor (ER) and progesterone receptor (PR) expression. Breast tumour microarrays from the Nurses' Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumour nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (r≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUC Aperio =0.97; AUC Definiens =0.90; difference=0.07, 95% CI 0.05 to 0.09) and PR positivity (AUC Aperio =0.94; AUC Definiens =0.87; difference=0.07, 95% CI 0.03 to 0.12). Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumour biomarker discovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Design of platform for removing screws from LCD display shields
NASA Astrophysics Data System (ADS)
Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong
2017-11-01
Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing
NASA Astrophysics Data System (ADS)
Shi, X.
2017-10-01
Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.
Embedded systems for supporting computer accessibility.
Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio
2015-01-01
Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.
Consistent multiphysics simulation of a central tower CSP plant as applied to ISTORE
NASA Astrophysics Data System (ADS)
Votyakov, Evgeny V.; Papanicolas, Costas N.
2017-06-01
We present a unified consistent multiphysics approach to model a central tower CSP plant. The framework for the model includes Monte Carlo ray tracing (RT) and computational fluid dynamics (CFD) components utilizing the OpenFOAM C++ software library. The RT part works effectively with complex surfaces of engineering design given in CAD formats. The CFD simulation, which is based on 3D Navier-Stokes equations, takes into account all possible heat transfer mechanisms: radiation, conduction, and convection. Utilizing this package, the solar field of the experimental Platform for Research, Observation, and TEchnological Applications in Solar Energy (PROTEAS) and the Integrated STOrage and Receiver (ISTORE), developed at the Cyprus Institute, are being examined.
BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments
Thomas, Brandon R.; Chylek, Lily A.; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H.A.; Hlavacek, William S.; Posner, Richard G.
2016-01-01
Summary: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. Availability and implementation: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary information: Supplementary data are available at Bioinformatics online. Contact: bionetgen.help@gmail.com PMID:26556387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliaga, José I., E-mail: aliaga@uji.es; Alonso, Pedro; Badía, José M.
We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousandsmore » degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.« less
Trainable hardware for dynamical computing using error backpropagation through physical media.
Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-24
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Trainable hardware for dynamical computing using error backpropagation through physical media
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
White, Timothy C.; Sauter, Edward A.; Stewart, Duff C.
2014-01-01
Intermagnet is an international oversight group which exists to establish a global network for geomagnetic observatories. This group establishes data standards and standard operating procedures for members and prospective members. Intermagnet has proposed a new One-Second Data Standard, for that emerging geomagnetic product. The standard specifies that all data collected must have a time stamp accuracy of ±10 milliseconds of the top-of-the-second Coordinated Universal Time. Therefore, the U.S. Geological Survey Geomagnetism Program has designed and executed several tests on its current data collection system, the Personal Computer Data Collection Platform. Tests are designed to measure the time shifts introduced by individual components within the data collection system, as well as to measure the time shift introduced by the entire Personal Computer Data Collection Platform. Additional testing designed for Intermagnet will be used to validate further such measurements. Current results of the measurements showed a 5.0–19.9 millisecond lag for the vertical channel (Z) of the Personal Computer Data Collection Platform and a 13.0–25.8 millisecond lag for horizontal channels (H and D) of the collection system. These measurements represent a dynamically changing delay introduced within the U.S. Geological Survey Personal Computer Data Collection Platform.
Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander
2015-01-01
Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.
Software platform for simulation of a prototype proton CT scanner.
Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W
2017-03-01
Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.
GenomicTools: a computational platform for developing high-throughput analytics in genomics.
Tsirigos, Aristotelis; Haiminen, Niina; Bilal, Erhan; Utro, Filippo
2012-01-15
Recent advances in sequencing technology have resulted in the dramatic increase of sequencing data, which, in turn, requires efficient management of computational resources, such as computing time, memory requirements as well as prototyping of computational pipelines. We present GenomicTools, a flexible computational platform, comprising both a command-line set of tools and a C++ API, for the analysis and manipulation of high-throughput sequencing data such as DNA-seq, RNA-seq, ChIP-seq and MethylC-seq. GenomicTools implements a variety of mathematical operations between sets of genomic regions thereby enabling the prototyping of computational pipelines that can address a wide spectrum of tasks ranging from pre-processing and quality control to meta-analyses. Additionally, the GenomicTools platform is designed to analyze large datasets of any size by minimizing memory requirements. In practical applications, where comparable, GenomicTools outperforms existing tools in terms of both time and memory usage. The GenomicTools platform (version 2.0.0) was implemented in C++. The source code, documentation, user manual, example datasets and scripts are available online at http://code.google.com/p/ibm-cbc-genomic-tools.
Parametric study of microwave-powered high-altitude airplane platforms designed for linear flight
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.
1981-01-01
The performance of a class of remotely piloted, microwave powered, high altitude airplane platforms is studied. The first part of each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam; this is followed by gliding flight back to a minimum altitude above a microwave station and initiation of another cycle. Parametric variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the energy transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and the increase of lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.
Head-coupled remote stereoscopic camera system for telepresence applications
NASA Astrophysics Data System (ADS)
Bolas, Mark T.; Fisher, Scott S.
1990-09-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis
2014-12-01
We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong
2017-01-01
The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
The performance of low-cost commercial cloud computing as an alternative in computational chemistry.
Thackston, Russell; Fortenberry, Ryan C
2015-05-05
The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.
A Platform-Independent Plugin for Navigating Online Radiology Cases.
Balkman, Jason D; Awan, Omer A
2016-06-01
Software methods that enable navigation of radiology cases on various digital platforms differ between handheld devices and desktop computers. This has resulted in poor compatibility of online radiology teaching files across mobile smartphones, tablets, and desktop computers. A standardized, platform-independent, or "agnostic" approach for presenting online radiology content was produced in this work by leveraging modern hypertext markup language (HTML) and JavaScript web software technology. We describe the design and evaluation of this software, demonstrate its use across multiple viewing platforms, and make it publicly available as a model for future development efforts.
Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozacik, Stephen
Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware. PMID:21129207
ERIC Educational Resources Information Center
Mpofu, Bongeka
2016-01-01
This research was aimed at the investigation of mobile device and computer use at a higher learning institution. The goal was to determine the current use of computers and mobile devices for learning and the students' reading speed on different platforms. The research was contextualised in a sample of students at the University of South Africa.…
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
An open-source computational and data resource to analyze digital maps of immunopeptidomes
Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J; Schuster, Heiko; Ternette, Nicola; Alpízar, Adán; Schittenhelm, Ralf B; Ramarathinam, Sri H; Lindestam Arlehamn, Cecilia S; Chiek Koh, Ching; Gillet, Ludovic C; Rabsteyn, Armin; Navarro, Pedro; Kim, Sangtae; Lam, Henry; Sturm, Theo; Marcilla, Miguel; Sette, Alessandro; Campbell, David S; Deutsch, Eric W; Moritz, Robert L; Purcell, Anthony W; Rammensee, Hans-Georg; Stevanovic, Stefan; Aebersold, Ruedi
2015-01-01
We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001 PMID:26154972
Autonomous Robotic Inspection in Tunnels
NASA Astrophysics Data System (ADS)
Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.
2016-06-01
In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.
Mobile platform of altitude measurement based on a smartphone
NASA Astrophysics Data System (ADS)
Roszkowski, Paweł; Kowalczyk, Marcin
2016-09-01
The article presents a low cost, fully - functional meter of altitude and pressure changes in a form of mobile application controlled by Android OS (operating system). The measurements are possible due to pressure sensor inserted in majority of latest modern mobile phones, which are known as smartphones. Using their computing capabilities and other equipment components like GPS receiver in connection with data from the sensor enabled authors to create a sophisticated handheld measuring platform with many unique features. One of them is a drawing altitude maps mode in which user can create maps of altitude changes just by moving around examined area. Another one is a convenient mode for altitude measurement. It is also extended with analysis tools which provide a possibility to compare measured values by displaying the data in a form of plots. The platform consists of external backup server, where the user can secure all gathered data. Moreover, the results of measurement's accuracy examination process which was executed after building the solution were shown. At the end, the realized meter of altitude was compared to other popular altimeters, which are available on the market currently.
Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R
2018-05-01
The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.
GATECloud.net: a platform for large-scale, open-source text processing on the cloud.
Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina
2013-01-28
Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.
Modular Countermine Payload for Small Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman Herman; Doug Few; Roelof Versteeg
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less
Modular countermine payload for small robots
NASA Astrophysics Data System (ADS)
Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.
Optimisation of multiplet identifier processing on a PLAYSTATION® 3
NASA Astrophysics Data System (ADS)
Hattori, Masami; Mizuno, Takashi
2010-02-01
To enable high-performance computing (HPC) for applications with large datasets using a Sony® PLAYSTATION® 3 (PS3™) video game console, we configured a hybrid system consisting of a Windows® PC and a PS3™. To validate this system, we implemented the real-time multiplet identifier (RTMI) application, which identifies multiplets of microearthquakes in terms of the similarity of their waveforms. The cross-correlation computation, which is a core algorithm of the RTMI application, was optimised for the PS3™ platform, while the rest of the computation, including data input and output remained on the PC. With this configuration, the core part of the algorithm ran 69 times faster than the original program, accelerating total computation speed more than five times. As a result, the system processed up to 2100 total microseismic events, whereas the original implementation had a limit of 400 events. These results indicate that this system enables high-performance computing for large datasets using the PS3™, as long as data transfer time is negligible compared with computation time.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application.
Hanwell, Marcus D; de Jong, Wibe A; Harris, Christopher J
2017-10-30
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction-connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web-going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.
Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments
Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu
2017-01-01
High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments. PMID:28835734
Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.
Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu
2017-01-01
High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.
NSTX-U Control System Upgrades
Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; ...
2014-06-01
The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less
Post, Andrew R.; Kurc, Tahsin; Cholleti, Sharath; Gao, Jingjing; Lin, Xia; Bornstein, William; Cantrell, Dedra; Levine, David; Hohmann, Sam; Saltz, Joel H.
2013-01-01
Objective To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations. Materials and Methods We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs. Results We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30 days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in five years of data from our institution’s clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers. Discussion and Conclusion A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies. PMID:23402960
GPU-based High-Performance Computing for Radiation Therapy
Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.
2014-01-01
Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639
OpenACC performance for simulating 2D radial dambreak using FVM HLLE flux
NASA Astrophysics Data System (ADS)
Gunawan, P. H.; Pahlevi, M. R.
2018-03-01
The aim of this paper is to investigate the performances of openACC platform for computing 2D radial dambreak. Here, the shallow water equation will be used to describe and simulate 2D radial dambreak with finite volume method (FVM) using HLLE flux. OpenACC is a parallel computing platform based on GPU cores. Indeed, from this research this platform is used to minimize computational time on the numerical scheme performance. The results show the using OpenACC, the computational time is reduced. For the dry and wet radial dambreak simulations using 2048 grids, the computational time of parallel is obtained 575.984 s and 584.830 s respectively for both simulations. These results show the successful of OpenACC when they are compared with the serial time of dry and wet radial dambreak simulations which are collected 28047.500 s and 29269.40 s respectively.
Oluwagbemi, Olugbenga O; Adewumi, Adewole; Esuruoso, Abimbola
2012-01-01
Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context. MACBenAbim is available from the authors for non-commercial purposes.
Workload Characterization of CFD Applications Using Partial Differential Equation Solvers
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.
A modular and programmable development platform for capsule endoscopy system.
Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A
2014-06-01
The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.
Software platform for managing the classification of error- related potentials of observers
NASA Astrophysics Data System (ADS)
Asvestas, P.; Ventouras, E.-C.; Kostopoulos, S.; Sidiropoulos, K.; Korfiatis, V.; Korda, A.; Uzunolglu, A.; Karanasiou, I.; Kalatzis, I.; Matsopoulos, G.
2015-09-01
Human learning is partly based on observation. Electroencephalographic recordings of subjects who perform acts (actors) or observe actors (observers), contain a negative waveform in the Evoked Potentials (EPs) of the actors that commit errors and of observers who observe the error-committing actors. This waveform is called the Error-Related Negativity (ERN). Its detection has applications in the context of Brain-Computer Interfaces. The present work describes a software system developed for managing EPs of observers, with the aim of classifying them into observations of either correct or incorrect actions. It consists of an integrated platform for the storage, management, processing and classification of EPs recorded during error-observation experiments. The system was developed using C# and the following development tools and frameworks: MySQL, .NET Framework, Entity Framework and Emgu CV, for interfacing with the machine learning library of OpenCV. Up to six features can be computed per EP recording per electrode. The user can select among various feature selection algorithms and then proceed to train one of three types of classifiers: Artificial Neural Networks, Support Vector Machines, k-nearest neighbour. Next the classifier can be used for classifying any EP curve that has been inputted to the database.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments.
Thomas, Brandon R; Chylek, Lily A; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H A; Hlavacek, William S; Posner, Richard G
2016-03-01
Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary data are available at Bioinformatics online. bionetgen.help@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd
2015-04-29
A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured withmore » a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.« less
NASA Astrophysics Data System (ADS)
Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.
Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.
An integrated compact airborne multispectral imaging system using embedded computer
NASA Astrophysics Data System (ADS)
Zhang, Yuedong; Wang, Li; Zhang, Xuguo
2015-08-01
An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.
The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform
NASA Astrophysics Data System (ADS)
Xie, Qingyun
2016-06-01
This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.
State estimation improves prospects for ocean research
NASA Astrophysics Data System (ADS)
Stammer, Detlef; Wunsch, C.; Fukumori, I.; Marshall, J.
Rigorous global ocean state estimation methods can now be used to produce dynamically consistent time-varying model/data syntheses, the results of which are being used to study a variety of important scientific problems. Figure 1 shows a schematic of a complete ocean observing and synthesis system that includes global observations and state-of-the-art ocean general circulation models (OGCM) run on modern computer platforms. A global observing system is described in detail in Smith and Koblinsky [2001],and the present status of ocean modeling and anticipated improvements are addressed by Griffies et al. [2001]. Here, the focus is on the third component of state estimation: the synthesis of the observations and a model into a unified, dynamically consistent estimate.
The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science
Bruskiewich, Richard; Senger, Martin; Davenport, Guy; Ruiz, Manuel; Rouard, Mathieu; Hazekamp, Tom; Takeya, Masaru; Doi, Koji; Satoh, Kouji; Costa, Marcos; Simon, Reinhard; Balaji, Jayashree; Akintunde, Akinnola; Mauleon, Ramil; Wanchana, Samart; Shah, Trushar; Anacleto, Mylah; Portugal, Arllet; Ulat, Victor Jun; Thongjuea, Supat; Braak, Kyle; Ritter, Sebastian; Dereeper, Alexis; Skofic, Milko; Rojas, Edwin; Martins, Natalia; Pappas, Georgios; Alamban, Ryan; Almodiel, Roque; Barboza, Lord Hendrix; Detras, Jeffrey; Manansala, Kevin; Mendoza, Michael Jonathan; Morales, Jeffrey; Peralta, Barry; Valerio, Rowena; Zhang, Yi; Gregorio, Sergio; Hermocilla, Joseph; Echavez, Michael; Yap, Jan Michael; Farmer, Andrew; Schiltz, Gary; Lee, Jennifer; Casstevens, Terry; Jaiswal, Pankaj; Meintjes, Ayton; Wilkinson, Mark; Good, Benjamin; Wagner, James; Morris, Jane; Marshall, David; Collins, Anthony; Kikuchi, Shoshi; Metz, Thomas; McLaren, Graham; van Hintum, Theo
2008-01-01
The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making. PMID:18483570
Social Computing as Next-Gen Learning Paradigm: A Platform and Applications
NASA Astrophysics Data System (ADS)
Margherita, Alessandro; Taurino, Cesare; Del Vecchio, Pasquale
As a field at the intersection between computer science and people behavior, social computing can contribute significantly in the endeavor of innovating how individuals and groups interact for learning and working purposes. In particular, the generation of Internet applications tagged as web 2.0 provides an opportunity to create new “environments” where people can exchange knowledge and experience, create new knowledge and learn together. This chapter illustrates the design and application of a prototypal platform which embeds tools such as blog, wiki, folksonomy and RSS in a unique web-based system. This platform has been developed to support a case-based and project-driven learning strategy for the development of business and technology management competencies in undergraduate and graduate education programs. A set of illustrative scenarios are described to show how a learning community can be promoted, created, and sustained through the technological platform.
An interactive parallel programming environment applied in atmospheric science
NASA Technical Reports Server (NTRS)
vonLaszewski, G.
1996-01-01
This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
Cellular computational platform and neurally inspired elements thereof
Okandan, Murat
2016-11-22
A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.
On-board attitude determination for the Explorer Platform satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C.; Class, B.
1992-01-01
This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.
An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry
NASA Astrophysics Data System (ADS)
Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro
This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.
Nanoscale light–matter interactions in atomic cladding waveguides
Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel
2013-01-01
Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light–matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light–vapour interactions on a chip. Specifically, we demonstrate light–matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991
ERIC Educational Resources Information Center
Klopfer, Eric; Squire, Kurt
2008-01-01
The form factors of handheld computers make them increasingly popular among K-12 educators. Although some compelling examples of educational software for handhelds exist, we believe that the potential of this platform are just being discovered. This paper reviews innovative applications for mobile computing for both education and entertainment…
Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures
NASA Astrophysics Data System (ADS)
Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.
2010-11-01
A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.
Assessing the Decision Process towards Bring Your Own Device
ERIC Educational Resources Information Center
Koester, Richard F.
2017-01-01
Information technology continues to evolve to the point where mobile technologies--such as smart phones, tablets, and ultra-mobile computers have the embedded flexibility and power to be a ubiquitous platform to fulfill the entire user's computing needs. Mobile technology users view these platforms as adaptable enough to be the single solution for…
ERIC Educational Resources Information Center
Mather, Richard
2015-01-01
This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.; Brockhoff, R.C.
1994-04-01
The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
Concept and realization of unmanned aerial system with different modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech
2014-12-10
In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of themore » system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.« less
Portability and Cross-Platform Performance of an MPI-Based Parallel Polygon Renderer
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1999-01-01
Visualizing the results of computations performed on large-scale parallel computers is a challenging problem, due to the size of the datasets involved. One approach is to perform the visualization and graphics operations in place, exploiting the available parallelism to obtain the necessary rendering performance. Over the past several years, we have been developing algorithms and software to support visualization applications on NASA's parallel supercomputers. Our results have been incorporated into a parallel polygon rendering system called PGL. PGL was initially developed on tightly-coupled distributed-memory message-passing systems, including Intel's iPSC/860 and Paragon, and IBM's SP2. Over the past year, we have ported it to a variety of additional platforms, including the HP Exemplar, SGI Origin2OOO, Cray T3E, and clusters of Sun workstations. In implementing PGL, we have had two primary goals: cross-platform portability and high performance. Portability is important because (1) our manpower resources are limited, making it difficult to develop and maintain multiple versions of the code, and (2) NASA's complement of parallel computing platforms is diverse and subject to frequent change. Performance is important in delivering adequate rendering rates for complex scenes and ensuring that parallel computing resources are used effectively. Unfortunately, these two goals are often at odds. In this paper we report on our experiences with portability and performance of the PGL polygon renderer across a range of parallel computing platforms.
Geostationary platform systems concepts definition study. Volume 2: Technical, book 2
NASA Technical Reports Server (NTRS)
1980-01-01
A selected concept for a geostationary platform is defined in sufficient detail to identify requirements for supporting research and technology, space demonstrations, GFE interfaces, costs, and schedules. This system consists of six platforms in geostationary orbit (GEO) over the Western Hemisphere and six over the Atlantic, to satisfy the total payload set associated with the nominal traffic model. Each platform is delivered to low Earth orbit (LEO) in a single shuttle flight, already mated to its LEO to GEO transfer vehicle and ready for deployment and transfer to GEO. An alternative concept is looked at briefly for comparison of configuration and technology requirements. This alternative consists of two large platforms, one over the Western Hemisphere consisting of three docked modules, and one over the Atlantic (two docked modules), to satisfy a high traffic model. The modules are full length orbiter cargo bay payloads, mated at LEO to orbital transfer vehicles (OTVs) delivered in other shuttle flights, for transfer to GEO, rendezvous, and docking. A preliminary feasibility study of an experimental platform is also performed to demonstrate communications and platform technologies required for the operational platforms of the 1990s.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966
Performance of MCNP4A on seven computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.; Brockhoff, R.C.
1994-12-31
The performance of seven computer platforms has been evaluated with the MCNP4A Monte Carlo radiation transport code. For the first time we report timing results using MCNP4A and its new test set and libraries. Comparisons are made on platforms not available to us in previous MCNP timing studies. By using MCNP4A and its 325-problem test set, a widely-used and readily-available physics production code is used; the timing comparison is not limited to a single ``typical`` problem, demonstrating the problem dependence of timing results; the results are reproducible at the more than 100 installations around the world using MCNP; comparison ofmore » performance of other computer platforms to the ones tested in this study is possible because we present raw data rather than normalized results; and a measure of the increase in performance of computer hardware and software over the past two years is possible. The computer platforms reported are the Cray-YMP 8/64, IBM RS/6000-560, Sun Sparc10, Sun Sparc2, HP/9000-735, 4 processor 100 MHz Silicon Graphics ONYX, and Gateway 2000 model 4DX2-66V PC. In 1991 a timing study of MCNP4, the predecessor to MCNP4A, was conducted using ENDF/B-V cross-section libraries, which are export protected. The new study is based upon the new MCNP 25-problem test set which utilizes internationally available data. MCNP4A, its test problems and the test data library are available from the Radiation Shielding and Information Center in Oak Ridge, Tennessee, or from the NEA Data Bank in Saclay, France. Anyone with the same workstation and compiler can get the same test problem sets, the same library files, and the same MCNP4A code from RSIC or NEA and replicate our results. And, because we report raw data, comparison of the performance of other compute platforms and compilers can be made.« less
Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade
NASA Astrophysics Data System (ADS)
Fäerber, Christian; Schwemmer, Rainer; Machen, Jonathan; Neufeld, Niko
2017-07-01
The current LHCb readout system will be upgraded in 2018 to a “triggerless” readout of the entire detector at the Large Hadron Collider collision rate of 40 MHz. The corresponding bandwidth from the detector down to the foreseen dedicated computing farm (event filter farm), which acts as the trigger, has to be increased by a factor of almost 100 from currently 500 Gb/s up to 40 Tb/s. The event filter farm will preanalyze the data and will select the events on an event by event basis. This will reduce the bandwidth down to a manageable size to write the interesting physics data to tape. The design of such a system is a challenging task, and the reason why different new technologies are considered and have to be investigated for the different parts of the system. For the usage in the event building farm or in the event filter farm (trigger), an experimental field programmable gate array (FPGA) accelerated computing platform is considered and, therefore, tested. FPGA compute accelerators are used more and more in standard servers such as for Microsoft Bing search or Baidu search. The platform we use hosts a general Intel CPU and a high-performance FPGA linked via the high-speed Intel QuickPath Interconnect. An accelerator is implemented on the FPGA. It is very likely that these platforms, which are built, in general, for high-performance computing, are also very interesting for the high-energy physics community. First, the performance results of smaller test cases performed at the beginning are presented. Afterward, a part of the existing LHCb RICH particle identification is tested and is ported to the experimental FPGA accelerated platform. We have compared the performance of the LHCb RICH particle identification running on a normal CPU with the performance of the same algorithm, which is running on the Xeon-FPGA compute accelerator platform.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.
Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System
NASA Astrophysics Data System (ADS)
Gao, Hai-Tao; Yang, Sheng-Bo; Zhu, Er-Lin; Sun, Qing-Lin; Chen, Zeng-Qiang; Kang, Xiao-Feng
2013-11-01
Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.
Benchmarking real-time RGBD odometry for light-duty UAVs
NASA Astrophysics Data System (ADS)
Willis, Andrew R.; Sahawneh, Laith R.; Brink, Kevin M.
2016-06-01
This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Astrophysics Data System (ADS)
Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.
2011-12-01
Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.
A Dedicated Computational Platform for Cellular Monte Carlo T-CAD Software Tools
2015-07-14
computer that establishes an encrypted Virtual Private Network ( OpenVPN [44]) based on the Secure Socket Layer (SSL) paradigm. Each user is given a...security certificate for each device used to connect to the computing nodes. Stable OpenVPN clients are available for Linux, Microsoft Windows, Apple OSX...platform is granted by an encrypted connection base on the Secure Socket Layer (SSL) protocol, and implemented in the OpenVPN Virtual Personal Network
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro
2018-06-01
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja
A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application
Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.
2017-10-30
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less
ERIC Educational Resources Information Center
Anderson, George W.
2010-01-01
The purpose of this study was to relate the strength of Chief Information Officer (CIO) transformational leadership behaviors to 1 of 5 computing platform operating systems (OSs) that may be selected for a firm's Enterprise Resource Planning (ERP) business system. Research shows executive leader behaviors may promote innovation through the use of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Yu, G.; Wang, K.
The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less
Modular HPC I/O characterization with Darshan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Shane; Carns, Philip; Harms, Kevin
2016-11-13
Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientificmore » applications and computing platforms calls for greater flexibililty and scope in I/O characterization.« less
NASA Astrophysics Data System (ADS)
Yu, Xiaoyuan; Yuan, Jian; Chen, Shi
2013-03-01
Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
Design Strategy for a Formally Verified Reliable Computing Platform
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Caldwell, James L.; DiVito, Ben L.
1991-01-01
This paper presents a high-level design for a reliable computing platform for real-time control applications. The design tradeoffs and analyses related to the development of a formally verified reliable computing platform are discussed. The design strategy advocated in this paper requires the use of techniques that can be completely characterized mathematically as opposed to more powerful or more flexible algorithms whose performance properties can only be analyzed by simulation and testing. The need for accurate reliability models that can be related to the behavior models is also stressed. Tradeoffs between reliability and voting complexity are explored. In particular, the transient recovery properties of the system are found to be fundamental to both the reliability analysis as well as the "correctness" models.
Superconducting Optoelectronic Circuits for Neuromorphic Computing
NASA Astrophysics Data System (ADS)
Shainline, Jeffrey M.; Buckley, Sonia M.; Mirin, Richard P.; Nam, Sae Woo
2017-03-01
Neural networks have proven effective for solving many difficult computational problems, yet implementing complex neural networks in software is computationally expensive. To explore the limits of information processing, it is necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density (1 mW /cm2 at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates comparing the proposed hardware platform to a human brain show that with the same number of neurons (1 011) and 700 independent connections per neuron, the hardware presented here may achieve an order of magnitude improvement in synaptic events per second per watt.
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.
Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan
2017-01-01
Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.
Interfacing HTCondor-CE with OpenStack
NASA Astrophysics Data System (ADS)
Bockelman, B.; Caballero Bejar, J.; Hover, J.
2017-10-01
Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.
2013-01-01
elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Zeise, Frederick F.
1993-07-01
A second generation digital optical computer (DOC II) has been developed which utilizes a RISC based operating system as its host. This 32 bit, high performance (12.8 GByte/sec), computing platform demonstrates a number of basic principals that are inherent to parallel free space optical interconnects such as speed (up to 1012 bit operations per second) and low power 1.2 fJ per bit). Although DOC II is a general purpose machine, special purpose applications have been developed and are currently being evaluated on the optical platform.
SOI layout decomposition for double patterning lithography on high-performance computer platforms
NASA Astrophysics Data System (ADS)
Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir
2014-12-01
In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Technical Reports Server (NTRS)
Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce
2011-01-01
Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong
2013-05-01
The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Shujiang; Kline, Keith L; Nair, S. Surendran
A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less
Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O
2013-01-01
Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.
Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A. Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R.; Nestle, Frank O.
2013-01-01
Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases. PMID:23843942
Making Spatial Statistics Service Accessible On Cloud Platform
NASA Astrophysics Data System (ADS)
Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.
2014-04-01
Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.
High performance GPU processing for inversion using uniform grid searches
NASA Astrophysics Data System (ADS)
Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios
2017-04-01
Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin
2000-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises
ERIC Educational Resources Information Center
O'Brien, Myles
2012-01-01
The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…
Two-dimensional chiral topological superconductivity in Shiba lattices
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-01-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127
20170312 - Computer Simulation of Developmental ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Computer Simulation of Developmental Processes and ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Waggle: A Framework for Intelligent Attentive Sensing and Actuation
NASA Astrophysics Data System (ADS)
Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.
2014-12-01
Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
NASA Astrophysics Data System (ADS)
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-01
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-16
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, John Nicolas; Lin, Paul Tinphone
2009-01-01
This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling andmore » multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.« less
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Implementation and performance test of cloud platform based on Hadoop
NASA Astrophysics Data System (ADS)
Xu, Jingxian; Guo, Jianhong; Ren, Chunlan
2018-01-01
Hadoop, as an open source project for the Apache foundation, is a distributed computing framework that deals with large amounts of data and has been widely used in the Internet industry. Therefore, it is meaningful to study the implementation of Hadoop platform and the performance of test platform. The purpose of this subject is to study the method of building Hadoop platform and to study the performance of test platform. This paper presents a method to implement Hadoop platform and a test platform performance method. Experimental results show that the proposed test performance method is effective and it can detect the performance of Hadoop platform.
A contact-force regulated photoplethysmography (PPG) platform
NASA Astrophysics Data System (ADS)
Sim, Jai Kyoung; Ahn, Bongyoung; Doh, Il
2018-04-01
A photoplethysmography (PPG) platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA) was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.
TERRA REF: Advancing phenomics with high resolution, open access sensor and genomics data
NASA Astrophysics Data System (ADS)
LeBauer, D.; Kooper, R.; Burnette, M.; Willis, C.
2017-12-01
Automated plant measurement has the potential to improve understanding of genetic and environmental controls on plant traits (phenotypes). The application of sensors and software in the automation of high throughput phenotyping reflects a fundamental shift from labor intensive hand measurements to drone, tractor, and robot mounted sensing platforms. These tools are expected to speed the rate of crop improvement by enabling plant breeders to more accurately select plants with improved yields, resource use efficiency, and stress tolerance. However, there are many challenges facing high throughput phenomics: sensors and platforms are expensive, currently there are few standard methods of data collection and storage, and the analysis of large data sets requires high performance computers and automated, reproducible computing pipelines. To overcome these obstacles and advance the science of high throughput phenomics, the TERRA Phenotyping Reference Platform (TERRA-REF) team is developing an open-access database of high resolution sensor data. TERRA REF is an integrated field and greenhouse phenotyping system that includes: a reference field scanner with fifteen sensors that can generate terrabytes of data each day at mm resolution; UAV, tractor, and fixed field sensing platforms; and an automated controlled-environment scanner. These platforms will enable investigation of diverse sensing modalities, and the investigation of traits under controlled and field environments. It is the goal of TERRA REF to lower the barrier to entry for academic and industry researchers by providing high-resolution data, open source software, and online computing resources. Our project is unique in that all data will be made fully public in November 2018, and is already available to early adopters through the beta-user program. We will describe the datasets and how to use them as well as the databases and computing pipeline and how these can be reused and remixed in other phenomics pipelines. Finally, we will describe the National Data Service workbench, a cloud computing platform that can access the petabyte scale data while supporting reproducible research.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-01
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. PMID:27899624
NASA Astrophysics Data System (ADS)
Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin
2016-06-01
CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.
The impact of Docker containers on the performance of genomic pipelines
Palumbo, Emilio; Chatzou, Maria; Prieto, Pablo; Heuer, Michael L.; Notredame, Cedric
2015-01-01
Genomic pipelines consist of several pieces of third party software and, because of their experimental nature, frequent changes and updates are commonly necessary thus raising serious deployment and reproducibility issues. Docker containers are emerging as a possible solution for many of these problems, as they allow the packaging of pipelines in an isolated and self-contained manner. This makes it easy to distribute and execute pipelines in a portable manner across a wide range of computing platforms. Thus, the question that arises is to what extent the use of Docker containers might affect the performance of these pipelines. Here we address this question and conclude that Docker containers have only a minor impact on the performance of common genomic pipelines, which is negligible when the executed jobs are long in terms of computational time. PMID:26421241
The impact of Docker containers on the performance of genomic pipelines.
Di Tommaso, Paolo; Palumbo, Emilio; Chatzou, Maria; Prieto, Pablo; Heuer, Michael L; Notredame, Cedric
2015-01-01
Genomic pipelines consist of several pieces of third party software and, because of their experimental nature, frequent changes and updates are commonly necessary thus raising serious deployment and reproducibility issues. Docker containers are emerging as a possible solution for many of these problems, as they allow the packaging of pipelines in an isolated and self-contained manner. This makes it easy to distribute and execute pipelines in a portable manner across a wide range of computing platforms. Thus, the question that arises is to what extent the use of Docker containers might affect the performance of these pipelines. Here we address this question and conclude that Docker containers have only a minor impact on the performance of common genomic pipelines, which is negligible when the executed jobs are long in terms of computational time.
Guzik, Przemyslaw; Malik, Marek
Mobile electrocardiographs consist of three components: a mobile device (e.g. a smartphone), an electrocardiographic device or accessory, and a mobile application. Mobile platforms are small computers with sufficient computational power, good quality display, suitable data storage, and several possibilities of data transmission. Electrocardiographic electrodes and sensors for mobile use utilize unconventional materials, e.g. rubber, e-textile, and inkjet-printed nanoparticle electrodes. Mobile devices can be handheld, worn as vests or T-shirts, or attached to patient's skin as biopatches. Mobile electrocardiographic devices and accessories may additionally record other signals including respiratory rate, activity level, and geolocation. Large-scale clinical studies that utilize electrocardiography are easier to conduct using mobile technologies and the collected data are suitable for "big data" processing. This is expected to reveal phenomena so far inaccessible by standard electrocardiographic techniques. Copyright © 2016 Elsevier Inc. All rights reserved.
Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)
NASA Astrophysics Data System (ADS)
Nebert, D. D.; Huang, Q.; Yang, C.
2013-12-01
The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
Circuit design advances for ultra-low power sensing platforms
NASA Astrophysics Data System (ADS)
Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis
2010-04-01
This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.
Balloon platform for extended-life astronomy research
NASA Technical Reports Server (NTRS)
Ostwald, L. T.
1974-01-01
A configuration has been developed for a long-life balloon platform to carry pointing telescopes weighing as much as 80 pounds (36 kg) to point at selected celestial targets. A platform of this configuration weighs about 375 pounds (170 kg) gross and can be suspended from a high altitude super pressure balloon for a lifetime of several months. The balloon platform contains a solar array and storage batteries for electrical power, up and down link communications equipment, and navigational and attitude control systems for orienting the scientific instrument. A biaxial controller maintains the telescope attitude in response to look-angle data stored in an on-board computer memory which is updated periodically by ground command. Gimbal angles are computed by using location data derived by an on-board navigational receiver.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Divito, Ben L.
1992-01-01
The design and formal verification of the Reliable Computing Platform (RCP), a fault tolerant computing system for digital flight control applications is presented. The RCP uses N-Multiply Redundant (NMR) style redundancy to mask faults and internal majority voting to flush the effects of transient faults. The system is formally specified and verified using the Ehdm verification system. A major goal of this work is to provide the system with significant capability to withstand the effects of High Intensity Radiated Fields (HIRF).
Flynn, Allen J; Bahulekar, Namita; Boisvert, Peter; Lagoze, Carl; Meng, George; Rampton, James; Friedman, Charles P
2017-01-01
Throughout the world, biomedical knowledge is routinely generated and shared through primary and secondary scientific publications. However, there is too much latency between publication of knowledge and its routine use in practice. To address this latency, what is actionable in scientific publications can be encoded to make it computable. We have created a purpose-built digital library platform to hold, manage, and share actionable, computable knowledge for health called the Knowledge Grid Library. Here we present it with its system architecture.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Sequence stratigraphic control on prolific HC reservoir development, Southwest Iran
Lasemi, Y.; Kondroud, K.N.
2008-01-01
An important carbonate formation in the Persian Gulf and the onshore oil fields of Southwest Iran is the Lowermost Cretaceous Fahliyan formation. The formation in Darkhowain field consists of unconformity-bounded depositional sequences containing prolific hydrocarbon reservoirs of contrasting origin. Located in the high stand systems tract (HST) of the lower sequence encompassing over 200m of oil column are the most prolific reservoir. Another reservoir is over 80m thick consisting of shallowing-upward cycles that are best developed within the transgressive systems tract of the upper sequence. Vertical facies distribution and their paleobathymetry and geophysical log signatures of the Fahliyan formation in the Darkhowain platform reveal the presence of two unconformity-bounded depositional sequences in Vail et al., Van Wagoner et al., and Sarg. The Fahliyan formation mainly consists of platform carbonates composed of restricted bioclastic lime mudstone to packstone of the platform interior, Lithocodium boundstone or ooid-intraclast-bioclast grainstone of the high energy platform margin and the bioclast packstone to lime mudstone related to the off-platform setting.
CBESW: sequence alignment on the Playstation 3.
Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil
2008-09-17
The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. For large datasets, our implementation on the PlayStation 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. The results from our experiments demonstrate that the PlayStation 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.
CBESW: Sequence Alignment on the Playstation 3
Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil
2008-01-01
Background The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. Results For large datasets, our implementation on the PlayStation® 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. Conclusion The results from our experiments demonstrate that the PlayStation® 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications. PMID:18798993
Computer-operated analytical platform for the determination of nutrients in hydroponic systems.
Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier
2014-03-15
Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.
CFD and Neutron codes coupling on a computational platform
NASA Astrophysics Data System (ADS)
Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.; Scardovelli, R.
2017-01-01
In this work we investigate the thermal-hydraulics behavior of a PWR nuclear reactor core, evaluating the power generation distribution taking into account the local temperature field. The temperature field, evaluated using a self-developed CFD module, is exchanged with a neutron code, DONJON-DRAGON, which updates the macroscopic cross sections and evaluates the new neutron flux. From the updated neutron flux the new peak factor is evaluated and the new temperature field is computed. The exchange of data between the two codes is obtained thanks to their inclusion into the computational platform SALOME, an open-source tools developed by the collaborative project NURESAFE. The numerical libraries MEDmem, included into the SALOME platform, are used in this work, for the projection of computational fields from one problem to another. The two problems are driven by a common supervisor that can access to the computational fields of both systems, in every time step, the temperature field, is extracted from the CFD problem and set into the neutron problem. After this iteration the new power peak factor is projected back into the CFD problem and the new time step can be computed. Several computational examples, where both neutron and thermal-hydraulics quantities are parametrized, are finally reported in this work.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
Assembly Platform For Use In Outer Space
NASA Technical Reports Server (NTRS)
Rao, Niranjan S.; Buddington, Patricia A.
1995-01-01
Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.
Development of embedded real-time and high-speed vision platform
NASA Astrophysics Data System (ADS)
Ouyang, Zhenxing; Dong, Yimin; Yang, Hua
2015-12-01
Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.
Hoeck, W G
1994-06-01
InfoTrac TFD provides a graphical user interface (GUI) for viewing and manipulating datasets in the Transcription Factor Database, TFD. The interface was developed in Filemaker Pro 2.0 by Claris Corporation, which provides cross platform compatibility between Apple Macintosh computers running System 7.0 and higher and IBM-compatibles running Microsoft Windows 3.0 and higher. TFD ASCII-tables were formatted to fit data into several custom data tables using Add/Strip, a shareware utility and Filemaker Pro's lookup feature. The lookup feature was also put to use to allow TFD data tables to become linked within a flat-file database management system. The 'Navigator', consisting of several pop-up menus listing transcription factor abbreviations, facilitates the search for transcription factor entries. Data are presented onscreen in several layouts, that can be further customized by the user. InfoTrac TFD makes the transcription factor database accessible to a much wider community of scientists by making it available on two popular microcomputer platforms.
Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars
2015-07-15
Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Coordinating complex decision support activities across distributed applications
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1994-01-01
Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.
Final Report. Center for Scalable Application Development Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
2014-10-26
The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codesmore » for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.« less
A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers
NASA Technical Reports Server (NTRS)
Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)
1997-01-01
The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.
2016-09-01
and network. The computing and network hardware are identified and include routers, servers, firewalls, laptops , backup hard drives, smart phones...deployable hardware units will be necessary. This includes the use of ruggedized laptops and desktop computers , a projector system, communications system...ENGINEERING STUDY AND CONCEPT DEVELOPMENT FOR A HUMANITARIAN AID AND DISASTER RELIEF OPERATIONS MANAGEMENT PLATFORM by Julie A. Reed September
On the Impact of Execution Models: A Case Study in Computational Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Halappanavar, Mahantesh; Krishnamoorthy, Sriram
2015-05-25
Efficient utilization of high-performance computing (HPC) platforms is an important and complex problem. Execution models, abstract descriptions of the dynamic runtime behavior of the execution stack, have significant impact on the utilization of HPC systems. Using a computational chemistry kernel as a case study and a wide variety of execution models combined with load balancing techniques, we explore the impact of execution models on the utilization of an HPC system. We demonstrate a 50 percent improvement in performance by using work stealing relative to a more traditional static scheduling approach. We also use a novel semi-matching technique for load balancingmore » that has comparable performance to a traditional hypergraph-based partitioning implementation, which is computationally expensive. Using this study, we found that execution model design choices and assumptions can limit critical optimizations such as global, dynamic load balancing and finding the correct balance between available work units and different system and runtime overheads. With the emergence of multi- and many-core architectures and the consequent growth in the complexity of HPC platforms, we believe that these lessons will be beneficial to researchers tuning diverse applications on modern HPC platforms, especially on emerging dynamic platforms with energy-induced performance variability.« less
Escott, Edward J; Rubinstein, David
2004-01-01
It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.
NASA Astrophysics Data System (ADS)
Moore, R. T.; Hansen, M. C.
2011-12-01
Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.
Na, Y; Suh, T; Xing, L
2012-06-01
Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.
A Platform for Scalable Satellite and Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.
2017-12-01
At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.
FPGA platform for prototyping and evaluation of neural network automotive applications
NASA Technical Reports Server (NTRS)
Aranki, N.; Tawel, R.
2002-01-01
In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.
An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung
2011-01-01
In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less
NASA Astrophysics Data System (ADS)
Yoon, S.
2016-12-01
To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.
Structure-from-motion for MAV image sequence analysis with photogrammetric applications
NASA Astrophysics Data System (ADS)
Schönberger, J. L.; Fraundorfer, F.; Frahm, J.-M.
2014-08-01
MAV systems have found increased attention in the photogrammetric community as an (autonomous) image acquisition platform for accurate 3D reconstruction. For an accurate reconstruction in feasible time, the acquired imagery requires specialized SfM software. Current systems typically use high-resolution sensors in pre-planned flight missions from far distance. We describe and evaluate a new SfM pipeline specifically designed for sequential, close-distance, and low-resolution imagery from mobile cameras with relatively high frame-rate and high overlap. Experiments demonstrate reduced computational complexity by leveraging the temporal consistency, comparable accuracy and point density with respect to state-of-the-art systems.
2000 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2001-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2000 by the High Performance Computing and Communications Program.
2001 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2002-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2001 by the High Performance Computing and Communications Program.
A hybrid computational strategy to address WGS variant analysis in >5000 samples.
Huang, Zhuoyi; Rustagi, Navin; Veeraraghavan, Narayanan; Carroll, Andrew; Gibbs, Richard; Boerwinkle, Eric; Venkata, Manjunath Gorentla; Yu, Fuli
2016-09-10
The decreasing costs of sequencing are driving the need for cost effective and real time variant calling of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant calling strategies either fail to scale up to large datasets or abandon joint calling strategies. We present a high throughput framework including multiple variant callers for single nucleotide variant (SNV) calling, which leverages hybrid computing infrastructure consisting of cloud AWS, supercomputers and local high performance computing infrastructures. We present a novel binning approach for large scale joint variant calling and imputation which can scale up to over 10,000 samples while producing SNV callsets with high sensitivity and specificity. As a proof of principle, we present results of analysis on Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under 6 weeks using four state-of-the-art callers. The callers used were SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper and GotCloud. We used Amazon AWS, a 4000-core in-house cluster at Baylor College of Medicine, IBM power PC Blue BioU at Rice and Rhea at Oak Ridge National Laboratory (ORNL) for the computation. AWS was used for joint calling of 180 TB of BAM files, and ORNL and Rice supercomputers were used for the imputation and phasing step. All other steps were carried out on the local compute cluster. The entire operation used 5.2 million core hours and only transferred a total of 6 TB of data across the platforms. Even with increasing sizes of whole genome datasets, ensemble joint calling of SNVs for low coverage data can be accomplished in a scalable, cost effective and fast manner by using heterogeneous computing platforms without compromising on the quality of variants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; Gough, Sean T.
This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.
NASA Technical Reports Server (NTRS)
Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.
1992-01-01
Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.
Development of a Very Dense Liquid Cooled Compute Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Phillip N.; Lipp, Robert J.
2013-12-10
The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.
Design Tools for Accelerating Development and Usage of Multi-Core Computing Platforms
2014-04-01
Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey...multicore PDSP platforms. The GPU- based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute Unified Device Architecture...CUDA) programming language [ NVIDIA 2007], which can be viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented
GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data
NASA Astrophysics Data System (ADS)
Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.
2016-12-01
Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.
Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.
Fang, Chao; Zhong, Huanzi; Lin, Yuxiang; Chen, Bing; Han, Mo; Ren, Huahui; Lu, Haorong; Luber, Jacob M; Xia, Min; Li, Wangsheng; Stein, Shayna; Xu, Xun; Zhang, Wenwei; Drmanac, Radoje; Wang, Jian; Yang, Huanming; Hammarström, Lennart; Kostic, Aleksandar D; Kristiansen, Karsten; Li, Junhua
2018-03-01
More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance with that of 2 Illumina platforms. Using fecal samples from 20 healthy individuals, we evaluated the intra-platform reproducibility for metagenomic sequencing on the BGISEQ-500 platform in a setup comprising 8 library replicates and 8 sequencing replicates. Cross-platform consistency was evaluated by comparing 20 pairwise replicates on the BGISEQ-500 platform vs the Illumina HiSeq 2000 platform and the Illumina HiSeq 4000 platform. In addition, we compared the performance of the 2 Illumina platforms against each other. By a newly developed overall accuracy quality control method, an average of 82.45 million high-quality reads (96.06% of raw reads) per sample, with 90.56% of bases scoring Q30 and above, was obtained using the BGISEQ-500 platform. Quantitative analyses revealed extremely high reproducibility between BGISEQ-500 intra-platform replicates. Cross-platform replicates differed slightly more than intra-platform replicates, yet a high consistency was observed. Only a low percentage (2.02%-3.25%) of genes exhibited significant differences in relative abundance comparing the BGISEQ-500 and HiSeq platforms, with a bias toward genes with higher GC content being enriched on the HiSeq platforms. Our study provides the first set of performance metrics for human gut metagenomic sequencing data using BGISEQ-500. The high accuracy and technical reproducibility confirm the applicability of the new platform for metagenomic studies, though caution is still warranted when combining metagenomic data from different platforms.
Climate@Home: Crowdsourcing Climate Change Research
NASA Astrophysics Data System (ADS)
Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.
2011-12-01
Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.
Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan
2011-01-01
The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.
Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan
2011-01-01
The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.
2014-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
Morphological computation of multi-gaited robot locomotion based on free vibration.
Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya
2013-01-01
In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.
Semiautonomous teleoperation system with vision guidance
NASA Astrophysics Data System (ADS)
Yu, Wai; Pretlove, John R. G.
1998-12-01
This paper describes the ongoing research work on developing a telerobotic system in Mechatronic Systems and Robotics Research group at the University of Surrey. As human operators' manual control of remote robots always suffer from reduced performance and difficulties in perceiving information from the remote site, a system with a certain level of intelligence and autonomy will help to solve some of these problems. Thus, this system has been developed for this purpose. It also serves as an experimental platform to test the idea of using the combination of human and computer intelligence in teleoperation and finding out the optimum balance between them. The system consists of a Polhemus- based input device, a computer vision sub-system and a graphical user interface which communicates the operator with the remote robot. The system description is given in this paper as well as the preliminary experimental results of the system evaluation.
ERIC Educational Resources Information Center
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
ERIC Educational Resources Information Center
Conn, Samuel S.; Reichgelt, Han
2013-01-01
Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…
Choudhri, Asim F; Radvany, Martin G
2011-04-01
Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.
Atomdroid: a computational chemistry tool for mobile platforms.
Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M
2012-04-23
We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.
A Wearable Mobile Sensor Platform to Assist Fruit Grading
Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.
2013-01-01
Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134
ibex: An open infrastructure software platform to facilitate collaborative work in radiomics
Zhang, Lifei; Fried, David V.; Fave, Xenia J.; Hunter, Luke A.; Court, Laurence E.
2015-01-01
Purpose: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (ibex), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. Methods: The ibex software package was developed using the matlab and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, ibex is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, ibex provides an integrated development environment on top of matlab and c/c++, so users are not limited to its built-in functions. In the ibex developer studio, users can plug in, debug, and test new algorithms, extending ibex’s functionality. ibex also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the ibex workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Results: Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the ibex software to be intuitive, powerful, and easy to use. ibex can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone ibex and ibex’s source code can be downloaded. Conclusions: The authors successfully implemented ibex, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation. PMID:25735289
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.
Zhang, Lifei; Fried, David V; Fave, Xenia J; Hunter, Luke A; Yang, Jinzhong; Court, Laurence E
2015-03-01
Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the IBEX software to be intuitive, powerful, and easy to use. IBEX can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone IBEX and IBEX's source code can be downloaded. The authors successfully implemented IBEX, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation.
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-04
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel
2017-01-01
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758
Migrating the STARLINK Network from VMS to Unix
NASA Astrophysics Data System (ADS)
Clayton, C.
The Starlink Project is a UK-wide astronomical computing service consisting of a network of computers used by UK astronomers at over 25 sites, a collection of software to calibrate and analyze astronomical data, and a team of people to give hardware, software, and administrative support. In order to exploit the most cost-effective hardware and to maintain compatibility with the international community, Starlink is migrating from an entirely VAX/VMS based service to UNIX-based systems. This migration is almost complete, and this paper describes some of the solutions adopted for the wide variety of problems which were encountered. Migration of the hardware platform is discussed first. Equipment which can be re-used under Unix is identified. System software and non-astronomical applications which are required to allow a smooth transition from VMS to Unix are considered next. While many VMS functions can be replaced with Unix equivalents, it has become apparent that there is a small number of key VMS applications which must be provided on the replacement Unix platform to avoid considerable disruption to users. Various strategies for moving the users themselves from VMS to UNIX are considered and their relative merits compared. Fast migration routes are considered to be more effective as long as certain key applications and user aids are already in place. The porting of the Starlink Software Collection is discussed, as is the problem of migrating large quantities of private user code.
Cooperative high-performance storage in the accelerated strategic computing initiative
NASA Technical Reports Server (NTRS)
Gary, Mark; Howard, Barry; Louis, Steve; Minuzzo, Kim; Seager, Mark
1996-01-01
The use and acceptance of new high-performance, parallel computing platforms will be impeded by the absence of an infrastructure capable of supporting orders-of-magnitude improvement in hierarchical storage and high-speed I/O (Input/Output). The distribution of these high-performance platforms and supporting infrastructures across a wide-area network further compounds this problem. We describe an architectural design and phased implementation plan for a distributed, Cooperative Storage Environment (CSE) to achieve the necessary performance, user transparency, site autonomy, communication, and security features needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a Department of Energy (DOE) program attempting to apply terascale platforms and Problem-Solving Environments (PSEs) toward real-world computational modeling and simulation problems. The ASCI mission must be carried out through a unified, multilaboratory effort, and will require highly secure, efficient access to vast amounts of data. The CSE provides a logically simple, geographically distributed, storage infrastructure of semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of highperformance data storage and access at the user desktop.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M
2016-01-01
The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.
Applications integration in a hybrid cloud computing environment: modelling and platform
NASA Astrophysics Data System (ADS)
Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang
2013-08-01
With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei
Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less
The role of atomic lines in radiation heating of the experimental space vehicle Fire-II
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2015-10-01
The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.
BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations
NASA Astrophysics Data System (ADS)
Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I.; Strydis, Christos
2017-12-01
Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload’s performance characteristics. Main results. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. Significance. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.
BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations.
Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I; Strydis, Christos
2017-12-01
The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.
Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics
NASA Astrophysics Data System (ADS)
Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey
2018-02-01
We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.
ERIC Educational Resources Information Center
Valencia, Heriberto Gonzalez; Villota Enriquez, Jackeline Amparo; Agredo, Patricia Medina
2017-01-01
This study consisted in characterizing the strategies used by professors; implemented through virtual educational platforms. The context of this research were the classrooms of the Santiago de Cali University and the virtual space of the Chamilo virtual platform, where two professors from the Faculty of Education of the same university…
Development of a Web-Enabled Informatics Platform for Manipulation of Gene Expression Data
2004-12-01
genomic platforms such as metabolomics and proteomics , and to federated databases for knowledge management. A successful SBIR Phase I completed...measurements that require sophisticated bioinformatic platforms for data archival, management, integration, and analysis if researchers are to derive...web-enabled bioinformatic platform consisting of a Laboratory Information Management System (LIMS), an Analysis Information Management System (AIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2017-01-01
This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general.
Software-defined optical network for metro-scale geographically distributed data centers.
Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren
2016-05-30
The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.
A Conceptual Design for a Reliable Optical Bus (ROBUS)
NASA Technical Reports Server (NTRS)
Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo
2002-01-01
The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Collard, Patrick
2015-10-27
From January 2015 to July 2015, I was doing research at Sandia National Laboratories in Albuquerque, United States. My work there consisted of performing experimental measurements using Sandia’s unique silicon quantum computing platform. The project is about coupling donor spin quantum bits, or qubits, to quantum dots in a silicon nanostructure based on conventional microchip technology. During the project, I devised a new quantum state readout mechanism that allow better, longer lived measurement signals. The measurement (or readout) mechanism is key to any qubit architecture. Next, I was able to demonstrate a quantum manipulation of the two-electron spin states ofmore » the coupled donor and quantum dot system. This constitutes a breakthrough for donor spin qubits in silicon because it could enable larger systems consisting of many qubits. This project will lead to publications in scientific journals, presentations in international conferences, and generates exciting new opportunities for manipulating nature at the nanoscale.« less
e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi
2014-05-01
The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.
Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing
NASA Technical Reports Server (NTRS)
Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane
2012-01-01
Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.
Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment
2013-01-01
Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814
Security screening via computational imaging using frequency-diverse metasurface apertures
NASA Astrophysics Data System (ADS)
Smith, David R.; Reynolds, Matthew S.; Gollub, Jonah N.; Marks, Daniel L.; Imani, Mohammadreza F.; Yurduseven, Okan; Arnitz, Daniel; Pedross-Engel, Andreas; Sleasman, Timothy; Trofatter, Parker; Boyarsky, Michael; Rose, Alec; Odabasi, Hayrettin; Lipworth, Guy
2017-05-01
Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.
Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.
2013-01-01
The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276
Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.
2016-11-01
Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.
Message Passing vs. Shared Address Space on a Cluster of SMPs
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak
2000-01-01
The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Embedded Web Technology: Internet Technology Applied to Real-Time System Control
NASA Technical Reports Server (NTRS)
Daniele, Carl J.
1998-01-01
The NASA Lewis Research Center is developing software tools to bridge the gap between the traditionally non-real-time Internet technology and the real-time, embedded-controls environment for space applications. Internet technology has been expanding at a phenomenal rate. The simple World Wide Web browsers (such as earlier versions of Netscape, Mosaic, and Internet Explorer) that resided on personal computers just a few years ago only enabled users to log into and view a remote computer site. With current browsers, users not only view but also interact with remote sites. In addition, the technology now supports numerous computer platforms (PC's, MAC's, and Unix platforms), thereby providing platform independence.In contrast, the development of software to interact with a microprocessor (embedded controller) that is used to monitor and control a space experiment has generally been a unique development effort. For each experiment, a specific graphical user interface (GUI) has been developed. This procedure works well for a single-user environment. However, the interface for the International Space Station (ISS) Fluids and Combustion Facility will have to enable scientists throughout the world and astronauts onboard the ISS, using different computer platforms, to interact with their experiments in the Fluids and Combustion Facility. Developing a specific GUI for all these users would be cost prohibitive. An innovative solution to this requirement, developed at Lewis, is to use Internet technology, where the general problem of platform independence has already been partially solved, and to leverage this expanding technology as new products are developed. This approach led to the development of the Embedded Web Technology (EWT) program at Lewis, which has the potential to significantly reduce software development costs for both flight and ground software.
Converged photonic data storage and switch platform for exascale disaggregated data centers
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Worrall, A.
2017-02-01
We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.
Strategies for Sharing Seismic Data Among Multiple Computer Platforms
NASA Astrophysics Data System (ADS)
Baker, L. M.; Fletcher, J. B.
2001-12-01
Seismic waveform data is readily available from a variety of sources, but it often comes in a distinct, instrument-specific data format. For example, data may be from portable seismographs, such as those made by Refraction Technology or Kinemetrics, from permanent seismograph arrays, such as the USGS Parkfield Dense Array, from public data centers, such as the IRIS Data Center, or from personal communication with other researchers through e-mail or ftp. A computer must be selected to import the data - usually whichever is the most suitable for reading the originating format. However, the computer best suited for a specific analysis may not be the same. When copies of the data are then made for analysis, a proliferation of copies of the same data results, in possibly incompatible, computer-specific formats. In addition, if an error is detected and corrected in one copy, or some other change is made, all the other copies must be updated to preserve their validity. Keeping track of what data is available, where it is located, and which copy is authoritative requires an effort that is easy to neglect. We solve this problem by importing waveform data to a shared network file server that is accessible to all our computers on our campus LAN. We use a Network Appliance file server running Sun's Network File System (NFS) software. Using an NFS client software package on each analysis computer, waveform data can then be read by our MatLab or Fortran applications without first copying the data. Since there is a single copy of the waveform data in a single location, the NFS file system hierarchy provides an implicit complete waveform data catalog and the single copy is inherently authoritative. Another part of our solution is to convert the original data into a blocked-binary format (known historically as USGS DR100 or VFBB format) that is interpreted by MatLab or Fortran library routines available on each computer so that the idiosyncrasies of each machine are not visible to the user. Commercial software packages, such as MatLab, also have the ability to share data in their own formats across multiple computer platforms. Our Fortran applications can create plot files in Adobe PostScript, Illustrator, and Portable Document Format (PDF) formats. Vendor support for reading these files is readily available on multiple computer platforms. We will illustrate by example our strategies for sharing seismic data among our multiple computer platforms, and we will discuss our positive and negative experiences. We will include our solutions for handling the different byte ordering, floating-point formats, and text file ``end-of-line'' conventions on the various computer platforms we use (6 different operating systems on 5 processor architectures).
Diamond, Alan; Nowotny, Thomas; Schmuker, Michael
2016-01-01
Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for scalability, maximum throughput, and minimum latency. Moreover, our results indicate that special attention should be paid to minimize host-device communication when designing and implementing networks for efficient neuromorphic computing. PMID:26778950
FLAME: A platform for high performance computing of complex systems, applied for three case studies
Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...
2011-01-01
FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
Operational flash flood forecasting platform based on grid technology
NASA Astrophysics Data System (ADS)
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.
Utilising Raspberry Pi as a cheap and easy do it yourself streaming device for astronomy
NASA Astrophysics Data System (ADS)
Maulana, F.; Soegijoko, W.; Yamani, A.
2016-11-01
Recent developments in personal computing platforms have been revolutionary. With the advent of the Raspberry Pi series and the Arduino series, sub USD 100 computing platforms have changed the playing field altogether. It used to be that you would need a PC or an FPGA platform costing thousands of USD to create a dedicated device for a a dedicated task. Combining a PiCam with the Raspberry Pi allows for smaller budgets to be able to stream live images to the internet and to the public in general. This paper traces our path in designing and adapting the PiCam to a common sized eyepiece and telescope in preparation for the TSE in Indonesia this past March.
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
CTserver: A Computational Thermodynamics Server for the Geoscience Community
NASA Astrophysics Data System (ADS)
Kress, V. C.; Ghiorso, M. S.
2006-12-01
The CTserver platform is an Internet-based computational resource that provides on-demand services in Computational Thermodynamics (CT) to a diverse geoscience user base. This NSF-supported resource can be accessed at ctserver.ofm-research.org. The CTserver infrastructure leverages a high-quality and rigorously tested software library of routines for computing equilibrium phase assemblages and for evaluating internally consistent thermodynamic properties of materials, e.g. mineral solid solutions and a variety of geological fluids, including magmas. Thermodynamic models are currently available for 167 phases. Recent additions include Duan, Møller and Weare's model for supercritical C-O-H-S, extended to include SO2 and S2 species, and an entirely new associated solution model for O-S-Fe-Ni sulfide liquids. This software library is accessed via the CORBA Internet protocol for client-server communication. CORBA provides a standardized, object-oriented, language and platform independent, fast, low-bandwidth interface to phase property modules running on the server cluster. Network transport, language translation and resource allocation are handled by the CORBA interface. Users access server functionality in two principal ways. Clients written as browser- based Java applets may be downloaded which provide specific functionality such as retrieval of thermodynamic properties of phases, computation of phase equilibria for systems of specified composition, or modeling the evolution of these systems along some particular reaction path. This level of user interaction requires minimal programming effort and is ideal for classroom use. A more universal and flexible mode of CTserver access involves making remote procedure calls from user programs directly to the server public interface. The CTserver infrastructure relieves the user of the burden of implementing and testing the often complex thermodynamic models of real liquids and solids. A pilot application of this distributed architecture involves CFD computation of magma convection at Volcan Villarrica with magma properties and phase proportions calculated at each spatial node and at each time step via distributed function calls to MELTS-objects executing on the CTserver. Documentation and programming examples are provided at http://ctserver.ofm- research.org.
A DVE Time Management Simulation and Verification Platform Based on Causality Consistency Middleware
NASA Astrophysics Data System (ADS)
Zhou, Hangjun; Zhang, Wei; Peng, Yuxing; Li, Sikun
During the course of designing a time management algorithm for DVEs, the researchers always become inefficiency for the distraction from the realization of the trivial and fundamental details of simulation and verification. Therefore, a platform having realized theses details is desirable. However, this has not been achieved in any published work to our knowledge. In this paper, we are the first to design and realize a DVE time management simulation and verification platform providing exactly the same interfaces as those defined by the HLA Interface Specification. Moreover, our platform is based on a new designed causality consistency middleware and might offer the comparison of three kinds of time management services: CO, RO and TSO. The experimental results show that the implementation of the platform only costs small overhead, and that the efficient performance of it is highly effective for the researchers to merely focus on the improvement of designing algorithms.
NASA Astrophysics Data System (ADS)
Guo, Jie; Zhu, Chang`an
2016-01-01
The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.
ERIC Educational Resources Information Center
Stock, Steven E.; Davies, Daniel K.; Davies, Katelyn R.; Wehmeyer, Michael L.
2006-01-01
Background: Palmtop computers provide a promising mobile platform to address barriers to computer-based supports for people with intellectual disabilities. This study evaluated a specially designed interface to make navigation and features of palmtop computers more accessible to users with intellectual disabilities. Method: The specialised…
Control mechanism of double-rotator-structure ternary optical computer
NASA Astrophysics Data System (ADS)
Kai, SONG; Liping, YAN
2017-03-01
Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Hostetler, Chris; Kuo, Kwo-Sen; Matsui, Toshihisa; Jacob, Joseph C.; Niamsuwam, Noppasin; Johnson, Michael P.; Hair, John; Butler, Carolyn;
2011-01-01
Forward simulation is an indispensable tool for evaluation of precipitation retrieval algorithms as well as for studying snow/ice microphysics and their radiative properties. The main challenge of the implementation arises due to the size of the problem domain. To overcome this hurdle, assumptions need to be made to simplify compiles cloud microphysics. It is important that these assumptions are applied consistently throughout the simulation process. ISSARS addresses this issue by providing a computationally efficient and modular framework that can integrate currently existing models and is also capable of expanding for future development. ISSARS is designed to accommodate the simulation needs of the Aerosol/Clouds/Ecosystems (ACE) mission and the Global Precipitation Measurement (GPM) mission: radars, microwave radiometers, and optical instruments such as lidars and polarimeter. ISSARS's computation is performed in three stages: input reconditioning (IRM), electromagnetic properties (scattering/emission/absorption) calculation (SEAM), and instrument simulation (ISM). The computation is implemented as a web service while its configuration can be accessed through a web-based interface.
Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul
2012-01-01
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information. Copyright © 2012 Wiley Periodicals, Inc.
Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans
Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin
2013-01-01
Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638
VCF-Explorer: filtering and analysing whole genome VCF files.
Akgün, Mete; Demirci, Hüseyin
2017-11-01
The decreasing cost in high-throughput technologies led to a number of sequencing projects consisting of thousands of whole genomes. The paradigm shift from exome to whole genome brings a significant increase in the size of output files. Most of the existing tools which are developed to analyse exome files are not adequate for larger VCF files produced by whole genome studies. In this work we present VCF-Explorer, a variant analysis software capable of handling large files. Memory efficiency and avoiding computationally costly pre-processing step enable to carry out the analysis to be performed with ordinary computers. VCF-Explorer provides an easy to use environment where users can define various types of queries based on variant and sample genotype level annotations. VCF-Explorer can be run in different environments and computational platforms ranging from a standard laptop to a high performance server. VCF-Explorer is freely available at: http://vcfexplorer.sourceforge.net/. mete.akgun@tubitak.gov.tr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Message Passing and Shared Address Space Parallelism on an SMP Cluster
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.
Distributed state machine supervision for long-baseline gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org
The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less
OMPC: an Open-Source MATLAB®-to-Python Compiler
Jurica, Peter; van Leeuwen, Cees
2008-01-01
Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577
Lensfree Computational Microscopy Tools and their Biomedical Applications
NASA Astrophysics Data System (ADS)
Sencan, Ikbal
Conventional microscopy has been a revolutionary tool for biomedical applications since its invention several centuries ago. Ability to non-destructively observe very fine details of biological objects in real time enabled to answer many important questions about their structures and functions. Unfortunately, most of these advance microscopes are complex, bulky, expensive, and/or hard to operate, so they could not reach beyond the walls of well-equipped laboratories. Recent improvements in optoelectronic components and computational methods allow creating imaging systems that better fulfill the specific needs of clinics or research related biomedical applications. In this respect, lensfree computational microscopy aims to replace bulky and expensive optical components with compact and cost-effective alternatives through the use of computation, which can be particularly useful for lab-on-a-chip platforms as well as imaging applications in low-resource settings. Several high-throughput on-chip platforms are built with this approach for applications including, but not limited to, cytometry, micro-array imaging, rare cell analysis, telemedicine, and water quality screening. The lack of optical complexity in these lensfree on-chip imaging platforms is compensated by using computational techniques. These computational methods are utilized for various purposes in coherent, incoherent and fluorescent on-chip imaging platforms e.g. improving the spatial resolution, to undo the light diffraction without using lenses, localization of objects in a large volume and retrieval of the phase or the color/spectral content of the objects. For instance, pixel super resolution approaches based on source shifting are used in lensfree imaging platforms to prevent under sampling, Bayer pattern, and aliasing artifacts. Another method, iterative phase retrieval, is utilized to compensate the lack of lenses by undoing the diffraction and removing the twin image noise of in-line holograms. This technique enables recovering the complex optical field from its intensity measurement(s) by using additional constraints in iterations, such as spatial boundaries and other known properties of objects. Another computational tool employed in lensfree imaging is compressive sensing (or decoding), which is a novel method taking advantage of the fact that natural signals/objects are mostly sparse or compressible in known bases. This inherent property of objects enables better signal recovery when the number of measurement is low, even below the Nyquist rate, and increases the additive noise immunity of the system.
A cell-phone-based brain-computer interface for communication in daily life
NASA Astrophysics Data System (ADS)
Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping
2011-04-01
Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908
A cell-phone-based brain-computer interface for communication in daily life.
Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping
2011-04-01
Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.
Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.
Using Raspberry Pi to Teach Computing "Inside Out"
ERIC Educational Resources Information Center
Jaokar, Ajit
2013-01-01
This article discusses the evolution of computing education in preparing for the next wave of computing. With the proliferation of mobile devices, most agree that we are living in a "post-PC" world. Using the Raspberry Pi computer platform, based in the UK, as an example, the author discusses computing education in a world where the…
The TeraShake Computational Platform for Large-Scale Earthquake Simulations
NASA Astrophysics Data System (ADS)
Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas
Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.
NASA Astrophysics Data System (ADS)
Moon, Hongsik
What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.
1981-01-01
Each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam, followed by gliding flight back to a minimum altitude. Parameter variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the power transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and increase the lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.
Space Transportation System/Spacelab accommodations
NASA Technical Reports Server (NTRS)
De Sanctis, C. E.
1978-01-01
A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.
Wang, Xingce; Bie, Rongfang; Wu, Zhongke; Zhou, Mingquan; Cao, Rongfei; Xie, Lizhi; Zhang, Dong
2013-01-01
Background In recent years, cerebrovascular disease has been the leading cause of death and adult disability in the world. This study describes an efficient approach to detect cerebrovascular disease. Objective In order to improve cerebrovascular treatment, prevention, and care, an automatic cerebrovascular disease detection eHealth platform is designed and studied. Methods We designed an automatic eHealth platform for cerebrovascular disease detection with a four-level architecture: object control layer, data transmission layer, service supporting layer, and application service layer. The platform has eight main functions: cerebrovascular database management, preprocessing of cerebral image data, image viewing and adjustment model, image cropping compression and measurement, cerebrovascular segmentation, 3-dimensional cerebrovascular reconstruction, cerebrovascular rendering, cerebrovascular virtual endoscope, and automatic detection. Several key technologies were employed for the implementation of the platform. The anisotropic diffusion model was used to reduce the noise. Statistics segmentation with Gaussian-Markov random field model (G-MRF) and Stochastic Estimation Maximization (SEM) parameter estimation method were used to realize the cerebrovascular segmentation. Ball B-Spline curve was proposed to model the cerebral blood vessels. Compute unified device architecture (CUDA) based on ray-casting volume rendering presented by curvature enhancement and boundary enhancement were used to realize the volume rendering model. We implemented the platform with a network client and mobile phone client to fit different users. Results The implemented platform is running on a common personal computer. Experiments on 32 patients’ brain computed tomography data or brain magnetic resonance imaging data stored in the system verified the feasibility and validity of each model we proposed. The platform is partly used in the cranial nerve surgery of the First Hospital Affiliated to the General Hospital of People's Liberation Army and radiology of Beijing Navy General Hospital. At the same time it also gets some applications in medical imaging specialty teaching of Tianjin Medical University. The application results have also been validated by our neurosurgeon and radiologist. Conclusions The platform appears beneficial in diagnosis of the cerebrovascular disease. The long-term benefits and additional applications of this technology warrant further study. The research built a diagnosis and treatment platform of the human tissue with complex geometry and topology such as brain vessel based on the Internet of things. PMID:25098861
High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms
Teodoro, George; Pan, Tony; Kurc, Tahsin M.; Kong, Jun; Cooper, Lee A. D.; Podhorszki, Norbert; Klasky, Scott; Saltz, Joel H.
2014-01-01
Analysis of large pathology image datasets offers significant opportunities for the investigation of disease morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. The application is implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and scheduled for computation on CPUs and GPUs using performance aware scheduling techniques along with several optimizations, including architecture aware process placement, data locality conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up to 1.6×) and that the execution of the application as a set of fine-grain operations provides more opportunities for runtime optimizations and attains better performance than coarser-grain, monolithic implementations used in other works. An implementation of the cancer image analysis pipeline using the runtime support was able to process an image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system. PMID:25419546
MSIX - A general and user-friendly platform for RAM analysis
NASA Astrophysics Data System (ADS)
Pan, Z. J.; Blemel, Peter
The authors present a CAD (computer-aided design) platform supporting RAM (reliability, availability, and maintainability) analysis with efficient system description and alternative evaluation. The design concepts, implementation techniques, and application results are described. This platform is user-friendly because of its graphic environment, drawing facilities, object orientation, self-tutoring, and access to the operating system. The programs' independency and portability make them generally applicable to various analysis tasks.
Many-core computing for space-based stereoscopic imaging
NASA Astrophysics Data System (ADS)
McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry
The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2016-05-01
We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
RAPPORT: running scientific high-performance computing applications on the cloud.
Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt
2013-01-28
Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.
ENFIN--A European network for integrative systems biology.
Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan
2009-11-01
Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.
Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.
This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responsesmore » are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.« less
Systematic Analysis of Rocky Shore Morphology along 700km of Coastline Using LiDAR-derived DEMs
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Dickson, M. E.; Masselink, G.
2016-12-01
Rock shore platforms occur along much of the world's coast and have a long history of study; however, uncertainty remains concerning the relative importance of various formative controls in different settings (e.g. wave erosion, weathering, tidal range, rock resistance, inheritance). Ambiguity is often attributed to intrinsic natural variability and the lack of preserved evidence on eroding rocky shores, but it could also be argued that previous studies are limited in scale, focusing on a small number of local sites, which restricts the potential for insights from broad, regional analyses. Here we describe a method, using LiDAR-derived digital elevation models (DEMs), for analysing shore platform morphology over an unprecedentedly wide area in which there are large variations in environmental conditions. The new method semi-automatically extracts shore platform profiles and systematically conducts morphometric analysis. We apply the method to 700 km of coast in the SW UK that is exposed to (i) highly energetic swell waves to local wind waves, (ii) macro to mega tidal ranges, and (iii) highly resistant igneous rocks to moderately hard sedimentary rocks. Computer programs are developed to estimate mean sea level, mean spring tidal range, wave height, and rock strength along the coastline. Filtering routines automatically select and remove profiles that are unsuitable for analysis. The large data-set of remaining profiles supports broad and systematic investigation of possible controls on platform morphology. Results, as expected, show wide scatter, because many formative controls are in play, but several trends exist that are generally consistent with relationships that have been inferred from local site studies. This paper will describe correlation analysis on platform morphology in relation to environmental conditions and also present a multi-variable empirical model derived from multi linear regression analysis. Interesting matches exist between platform gradients obtained from the field, and empirical model predictions, particularly when morphological variability found in LiDAR-based shore platform morphology analysis is considered. These findings frame a discussion on formative controls of rocky shore morphology.
Production experience with the ATLAS Event Service
NASA Astrophysics Data System (ADS)
Benjamin, D.; Calafiura, P.; Childers, T.; De, K.; Guan, W.; Maeno, T.; Nilsson, P.; Tsulaia, V.; Van Gemmeren, P.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The ATLAS Event Service (AES) has been designed and implemented for efficient running of ATLAS production workflows on a variety of computing platforms, ranging from conventional Grid sites to opportunistic, often short-lived resources, such as spot market commercial clouds, supercomputers and volunteer computing. The Event Service architecture allows real time delivery of fine grained workloads to running payload applications which process dispatched events or event ranges and immediately stream the outputs to highly scalable Object Stores. Thanks to its agile and flexible architecture the AES is currently being used by grid sites for assigning low priority workloads to otherwise idle computing resources; similarly harvesting HPC resources in an efficient back-fill mode; and massively scaling out to the 50-100k concurrent core level on the Amazon spot market to efficiently utilize those transient resources for peak production needs. Platform ports in development include ATLAS@Home (BOINC) and the Google Compute Engine, and a growing number of HPC platforms. After briefly reviewing the concept and the architecture of the Event Service, we will report the status and experience gained in AES commissioning and production operations on supercomputers, and our plans for extending ES application beyond Geant4 simulation to other workflows, such as reconstruction and data analysis.
An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform
NASA Technical Reports Server (NTRS)
Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak
2012-01-01
The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.
Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.
2016-12-01
The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.
Experimental research on a vibration isolation platform for momentum wheel assembly
NASA Astrophysics Data System (ADS)
Zhou, Weiyong; Li, Dongxu
2013-03-01
This paper focuses on experimental research on a vibration isolation platform for momentum wheel assembly (MWA). A vibration isolation platform, consisting of four folded beams, was designed to isolate the microvibrations produced by MWA during operation. The performance of the platform was investigated with an impact test to verify the natural frequencies and damping coefficients of the system when the MWA was at rest, and with a measurement system consisting of a Kistler table and an optical tabletop to monitor the microvibrations produced when the MWA operated at stable speed. The results show that although the sixth natural frequency of the system is 26.29 Hz (1577 rev/min) when the MWA is at rest, the critical speed occurs at 2600 rev/min due to the gyroscopic effect of the flywheel, and that the platform can effectively isolate the high frequency disturbances in the 100-300 Hz range in all six degrees of freedom. Thus, the gyroscopic effect force deserves more attention in the design and analysis of vibration isolation platform for rotating wheel assembly, and the platform in this paper is particularly effective for MWA, which generally operates at high rotating speed range.
Hamlet, Jason R; Bauer, Todd M; Pierson, Lyndon G
2014-09-30
Deterrence of device subversion by substitution may be achieved by including a cryptographic fingerprint unit within a computing device for authenticating a hardware platform of the computing device. The cryptographic fingerprint unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware platform. The PUF circuit is used to generate a PUF value. A key generator is coupled to generate a private key and a public key based on the PUF value while a decryptor is coupled to receive an authentication challenge posed to the computing device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Computational toxicology using the OpenTox application programming interface and Bioclipse
2011-01-01
Background Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. Findings This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. Conclusions A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. PMID:22075173
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.
ERIC Educational Resources Information Center
Yelamarthi, Kumar
2012-01-01
Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…
Spiral: Automated Computing for Linear Transforms
NASA Astrophysics Data System (ADS)
Püschel, Markus
2010-09-01
Writing fast software has become extraordinarily difficult. For optimal performance, programs and their underlying algorithms have to be adapted to take full advantage of the platform's parallelism, memory hierarchy, and available instruction set. To make things worse, the best implementations are often platform-dependent and platforms are constantly evolving, which quickly renders libraries obsolete. We present Spiral, a domain-specific program generation system for important functionality used in signal processing and communication including linear transforms, filters, and other functions. Spiral completely replaces the human programmer. For a desired function, Spiral generates alternative algorithms, optimizes them, compiles them into programs, and intelligently searches for the best match to the computing platform. The main idea behind Spiral is a mathematical, declarative, domain-specific framework to represent algorithms and the use of rewriting systems to generate and optimize algorithms at a high level of abstraction. Experimental results show that the code generated by Spiral competes with, and sometimes outperforms, the best available human-written code.
NASA Astrophysics Data System (ADS)
Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.
2017-12-01
Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).
Platform Architecture for Decentralized Positioning Systems.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-04-26
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.
Hardware design and implementation of fast DOA estimation method based on multicore DSP
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-10-01
In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.
Platform Architecture for Decentralized Positioning Systems
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-01-01
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414
A Software Development Platform for Wearable Medical Applications.
Zhang, Ruikai; Lin, Wei
2015-10-01
Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Heterogeneous scalable framework for multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Karla Vanessa
2013-09-01
Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
NASA Astrophysics Data System (ADS)
Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.
2017-11-01
The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.
Chakrabortty, S; Sen, M; Pal, P
2014-03-01
A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.
Managing the computational chemistry big data problem: the ioChem-BD platform.
Álvarez-Moreno, M; de Graaf, C; López, N; Maseras, F; Poblet, J M; Bo, C
2015-01-26
We present the ioChem-BD platform ( www.iochem-bd.org ) as a multiheaded tool aimed to manage large volumes of quantum chemistry results from a diverse group of already common simulation packages. The platform has an extensible structure. The key modules managing the main tasks are to (i) upload of output files from common computational chemistry packages, (ii) extract meaningful data from the results, and (iii) generate output summaries in user-friendly formats. A heavy use of the Chemical Mark-up Language (CML) is made in the intermediate files used by ioChem-BD. From them and using XSL techniques, we manipulate and transform such chemical data sets to fulfill researchers' needs in the form of HTML5 reports, supporting information, and other research media.
Wiens, Andrew D; Prahalad, Sampath; Inan, Omer T
2016-08-01
Vibroarthrography, a method for interpreting the sounds emitted by a knee during movement, has been studied for several joint disorders since 1902. However, to our knowledge, the usefulness of this method for management of Juvenile Idiopathic Arthritis (JIA) has not been investigated. To study joint sounds as a possible new biomarker for pediatric cases of JIA we designed and built VibroCV, a platform to capture vibroarthrograms from four accelerometers; electromyograms (EMG) and inertial measurements from four wireless EMG modules; and joint angles from two Sony Eye cameras and six light-emitting diodes with commercially-available off-the-shelf parts and computer vision via OpenCV. This article explains the design of this turn-key platform in detail, and provides a sample recording captured from a pediatric subject.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
Integration of a neuroimaging processing pipeline into a pan-canadian computing grid
NASA Astrophysics Data System (ADS)
Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.
2012-02-01
The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.
The potential benefits of photonics in the computing platform
NASA Astrophysics Data System (ADS)
Bautista, Jerry
2005-03-01
The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
Application of online measures to monitor and evaluate multiplatform fusion performance
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kowalski, Charlene; Klamer, Dale M.
1999-07-01
A primary concern of multiplatform data fusion is assessing the quality and utility of data shared among platforms. Constraints such as platform and sensor capability and task load necessitate development of an on-line system that computes a metric to determine which other platform can provide the best data for processing. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. Entropy measures quality of processed information such as localization, classification, and ambiguity in measurement-to-track association. Lower entropy scores imply less uncertainty about a particular target. When new information is provided, we compuete the level of improvement a particular track obtains from one measurement to another. The measure permits us to evaluate the utility of the new information. We couple entropy with intelligent agents that provide two main data gathering functions: estimation of another platform's performance and evaluation of the new measurement data's quality. Both functions result from the entropy metric. The intelligent agent on a platform makes an estimate of another platform's measurement and provides it to its own fusion system, which can then incorporate it, for a particular target. A resulting entropy measure is then calculated and returned to its own agent. From this metric, the agent determines a perceived value of the offboard platform's measurement. If the value is satisfactory, the agent requests the measurement from the other platform, usually by interacting with the other platform's agent. Once the actual measurement is received, again entropy is computed and the agent assesses its estimation process and refines it accordingly.
Brodin, N. Patrik; Guha, Chandan; Tomé, Wolfgang A.
2015-01-01
Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first six months experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (± 3 %) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis. PMID:26425981
Brodin, N Patrik; Guha, Chandan; Tomé, Wolfgang A
2015-11-01
Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first 6-mo experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (±3%) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis.
Lasemi, Y.; Jalilian, A.H.
2010-01-01
The lower part of the Lower to Upper Jurassic Surmeh Formation consists of a succession of shallow marine carbonates (Toarcian-Aalenian) overlain by a deep marine basinal succession (Aalenian-Bajocian) that grades upward to Middle to Upper Jurassic platform carbonates. The termination of shallow marine carbonate deposition of the lower part of the Surmeh Formation and the establishment of deep marine sedimentation indicate a change in the style of sedimentation in the Neotethys passive margin of southwest Iran during the Middle Jurassic. To evaluate the reasons for this change and to assess the basin configuration during the Middle Jurassic, this study focuses on facies analysis and sequence stratigraphy of the basinal deposits (pelagic and calciturbidite facies) of the Surmeh Formation, referred here as 'lower shaley unit' in the Central Zagros region. The upper Aalenian-Bajocian 'lower shaley unit' overlies, with an abrupt contact, the Toarcian-lower Aalenian platform carbonates. It consists of pelagic (calcareous shale and limestone) and calciturbidite facies grading to upper Bajocian-Bathonian platform carbonates. Calciturbidite deposits in the 'lower shaley unit' consist of various graded grainstone to lime mudstone facies containing mixed deep marine fauna and platform-derived material. These facies include quartz-bearing lithoclast/intraclast grainstone to lime mudstone, bioclast/ooid/peloid intraclast grainstone, ooid grainstone to packstone, and lime wackestone to mudstone. The calciturbidite layers are erosive-based and commonly exhibit graded bedding, incomplete Bouma turbidite sequence, flute casts, and load casts. They consist chiefly of platform-derived materials including ooids, intraclasts/lithoclasts, peloids, echinoderms, brachiopods, bivalves, and open-ocean biota, such as planktonic bivalves, crinoids, coccoliths, foraminifers, and sponge spicules. The 'lower shaley unit' constitutes the late transgressive and the main part of the highstand systems tract of a depositional sequence and grades upward to platform margin and platform interior facies as a result of late highstand basinward progradation. The sedimentary record of the 'lower shaley unit' in the Central Zagros region reveals the existence of a northwest-southeast trending platform margin during the Middle Jurassic that faced a deep basin, the 'Pars intrashelf basin' in the northeast. The thinning of calciturbidite layers towards the northeast and the widespread Middle Jurassic platform carbonates in the southern Persian Gulf states and in the Persian Gulf area support the existence of a southwest platform margin and platform interior source area. The platform margin was formed as a result of tectonic activity along the preexisting Mountain Front fault associated with Cimmerian continental rifting in northeast Gondwana. Flooding of the southwest platform margin during early to middle Bajocian resulted in the reestablishment of the carbonate sediment factory and overproduction of shallow marine carbonates associated with sea-level highstand, which led to vertical and lateral expansion of the platform and gradual infilling of the Pars intrashelf basin by late Bajocian time. ?? 2010 Springer-Verlag.
A software platform for phase contrast x-ray breast imaging research.
Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I
2015-06-01
To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations
NASA Astrophysics Data System (ADS)
Demir, I.; Agliamzanov, R.
2014-12-01
Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.
Design of a prototype flow microreactor for synthetic biology in vitro.
Boehm, Christian R; Freemont, Paul S; Ces, Oscar
2013-09-07
As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
3D Viewer Platform of Cloud Clustering Management System: Google Map 3D
NASA Astrophysics Data System (ADS)
Choi, Sung-Ja; Lee, Gang-Soo
The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].
Programming distributed medical applications with XWCH2.
Ben Belgacem, Mohamed; Niinimaki, Marko; Abdennadher, Nabil
2010-01-01
Many medical applications utilise distributed/parallel computing in order to cope with demands of large data or computing power requirements. In this paper, we present a new version of the XtremWeb-CH (XWCH) platform, and demonstrate two medical applications that run on XWCH. The platform is versatile in a way that it supports direct communication between tasks. When tasks cannot communicate directly, warehouses are used as intermediary nodes between "producer" and "consumer" tasks. New features have been developed to provide improved support for writing powerfull distributed applications using an easy API.
Educational process in modern climatology within the web-GIS platform "Climate"
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.
Tools for Creating Mobile Applications for Extension
ERIC Educational Resources Information Center
Drill, Sabrina L.
2012-01-01
Considerations and tools for developing mobile applications for Extension include evaluating the topic, purpose, and audience. Different computing platforms may be used, and apps designed as modified Web pages or implicitly programmed for a particular platform. User privacy is another important consideration, especially for data collection apps.…
Android Based Mobile Environment for Moodle Users
ERIC Educational Resources Information Center
de Clunie, Gisela T.; Clunie, Clifton; Castillo, Aris; Rangel, Norman
2013-01-01
This paper is about the development of a platform that eases, throughout Android based mobile devices, mobility of users of virtual courses at Technological University of Panama. The platform deploys computational techniques such as "web services," design patterns, ontologies and mobile technologies to allow mobile devices communicate…
Planetary-Scale Geospatial Data Analysis Techniques in Google's Earth Engine Platform (Invited)
NASA Astrophysics Data System (ADS)
Hancher, M.
2013-12-01
Geoscientists have more and more access to new tools for large-scale computing. With any tool, some tasks are easy and other tasks hard. It is natural to look to new computing platforms to increase the scale and efficiency of existing techniques, but there is a more exiting opportunity to discover and develop a new vocabulary of fundamental analysis idioms that are made easy and effective by these new tools. Google's Earth Engine platform is a cloud computing environment for earth data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog includes a nearly complete archive of scenes from Landsat 4, 5, 7, and 8 that have been processed by the USGS, as well as a wide variety of other remotely-sensed and ancillary data products. Earth Engine supports a just-in-time computation model that enables real-time preview during algorithm development and debugging as well as during experimental data analysis and open-ended data exploration. Data processing operations are performed in parallel across many computers in Google's datacenters. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, resampling, and associating image metadata with pixel data. Early applications of Earth Engine have included the development of Google's global cloud-free fifteen-meter base map and global multi-decadal time-lapse animations, as well as numerous large and small experimental analyses by scientists from a range of academic, government, and non-governmental institutions, working in a wide variety of application areas including forestry, agriculture, urban mapping, and species habitat modeling. Patterns in the successes and failures of these early efforts have begun to emerge, sketching the outlines of a new set of simple and effective approaches to geospatial data analysis.
DETAIL VIEW OF COMPUTER PANELS, ROOM 8A Cape Canaveral ...
DETAIL VIEW OF COMPUTER PANELS, ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Development of a Micro-UAV Hyperspectral Imaging Platform for Assessing Hydrogeological Hazards
NASA Astrophysics Data System (ADS)
Chen, Z.; Alabsi, M.
2015-12-01
The exacerbating global weather changes have cast significant impacts upon the proportion of water supplied to agriculture. Therefore, one of the 21stCentury Grant Challenges faced by global population is securing water for food. However, the soil-water behavior in an agricultural environment is complex; among others, one of the key properties we recognize is water repellence or hydrophobicity, which affects many hydrogeological and hazardous conditions such as excessive water infiltration, runoff, and soil erosion. Under a US-Israel research program funded by USDA and BARD at Israel, we have proposed the development of a novel micro-unmanned aerial vehicle (micro-UAV or drone) based hyperspectral imaging platform for identifying and assessing soil repellence at low altitudes with enhanced flexibility, much reduced cost, and ultimately easy use. This aerial imaging system consists of a generic micro-UAV, hyperspectral sensor aided by GPS/IMU, on-board computing units, and a ground station. The target benefits of this system include: (1) programmable waypoint navigation and robotic control for multi-view imaging; (2) ability of two- or three-dimensional scene reconstruction for complex terrains; and (3) fusion with other sensors to realize real-time diagnosis (e.g., humidity and solar irradiation that may affect soil-water sensing). In this talk we present our methodology and processes in integration of hyperspectral imaging, on-board sensing and computing, hyperspectral data modeling, and preliminary field demonstration and verification of the developed prototype.
Design of an Axisymmetric Afterbody Test Case for CFD Validation
NASA Technical Reports Server (NTRS)
Disotell, Kevin J.; Rumsey, Christopher L.
2017-01-01
As identified in the CFD Vision 2030 Study commissioned by NASA, validation of advanced RANS models and scale-resolving methods for computing turbulent flow fields must be supported by continuous improvements in fundamental, high-fidelity experiments designed specifically for CFD implementation. In accordance with this effort, the underpinnings of a new test platform referred to herein as the NASA Axisymmetric Afterbody are presented. The devised body-of-revolution is a modular platform consisting of a forebody section and afterbody section, allowing for a range of flow behaviors to be studied on interchangeable afterbody geometries. A body-of-revolution offers advantages in shape definition and fabrication, in avoiding direct contact with wind tunnel sidewalls, and in tail-sting integration to facilitate access to higher Reynolds number tunnels. The current work is focused on validation of smooth-body turbulent flow separation, for which a six-parameter body has been developed. A priori RANS computations are reported for a risk-reduction test configuration in order to demonstrate critical variation among turbulence model results for a given afterbody, ranging from barely-attached to mild separated flow. RANS studies of the effects of forebody nose (with/without) and wind tunnel boundary (slip/no-slip) on the selected afterbody are presented. Representative modeling issues that can be explored with this configuration are the effect of higher Reynolds number on separation behavior, flow physics of the progression from attached to increasingly-separated afterbody flows, and the effect of embedded longitudinal vortices on turbulence structure.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
User Inspired Management of Scientific Jobs in Grids and Clouds
ERIC Educational Resources Information Center
Withana, Eran Chinthaka
2011-01-01
From time-critical, real time computational experimentation to applications which process petabytes of data there is a continuing search for faster, more responsive computing platforms capable of supporting computational experimentation. Weather forecast models, for instance, process gigabytes of data to produce regional (mesoscale) predictions on…
Consistency of biological networks inferred from microarray and sequencing data.
Vinciotti, Veronica; Wit, Ernst C; Jansen, Rick; de Geus, Eco J C N; Penninx, Brenda W J H; Boomsma, Dorret I; 't Hoen, Peter A C
2016-06-24
Sparse Gaussian graphical models are popular for inferring biological networks, such as gene regulatory networks. In this paper, we investigate the consistency of these models across different data platforms, such as microarray and next generation sequencing, on the basis of a rich dataset containing samples that are profiled under both techniques as well as a large set of independent samples. Our analysis shows that individual node variances can have a remarkable effect on the connectivity of the resulting network. Their inconsistency across platforms and the fact that the variability level of a node may not be linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to networks that are not reproducible across different platforms and that may be misleading. Moreover, we show how the reproducibility of networks across different platforms is significantly higher if networks are summarised in terms of enrichment amongst functional groups of interest, such as pathways, rather than at the level of individual edges. Careful pre-processing of transcriptional data and summaries of networks beyond individual edges can improve the consistency of network inference across platforms. However, caution is needed at this stage in the (over)interpretation of gene regulatory networks inferred from biological data.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
Cytobank: providing an analytics platform for community cytometry data analysis and collaboration.
Chen, Tiffany J; Kotecha, Nikesh
2014-01-01
Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.
xdamp Version 6 : an IDL-based data and image manipulation program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, William Parker
2012-04-01
The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sign)-based workstations, a replacement was needed. This package uses the IDL(reg sign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets tomore » manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sign) workstations, Hewlett Packard workstations, SUN(reg sign) workstations, Microsoft(reg sign) Windows{trademark} computers, Macintosh(reg sign) computers and Digital Equipment Corporation VMS(reg sign) and Alpha(reg sign) systems. Thus, xdamp is portable across many platforms. We have verified operation, albeit with some minor IDL bugs, on personal computers using Windows 7 and Windows Vista; Unix platforms; and Macintosh computers. Version 6 is an update that uses the IDL Virtual Machine to resolve the need for licensing IDL.« less
OMPC: an Open-Source MATLAB-to-Python Compiler.
Jurica, Peter; van Leeuwen, Cees
2009-01-01
Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.
Multi-source Geospatial Data Analysis with Google Earth Engine
NASA Astrophysics Data System (ADS)
Erickson, T.
2014-12-01
The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org
Bussery, Justin; Denis, Leslie-Alexandre; Guillon, Benjamin; Liu, Pengfeï; Marchetti, Gino; Rahal, Ghita
2018-04-01
We describe the genesis, design and evolution of a computing platform designed and built to improve the success rate of biomedical translational research. The eTRIKS project platform was developed with the aim of building a platform that can securely host heterogeneous types of data and provide an optimal environment to run tranSMART analytical applications. Many types of data can now be hosted, including multi-OMICS data, preclinical laboratory data and clinical information, including longitudinal data sets. During the last two years, the platform has matured into a robust translational research knowledge management system that is able to host other data mining applications and support the development of new analytical tools. Copyright © 2018 Elsevier Ltd. All rights reserved.
2012-05-01
cloud computing 17 NASA Nebula Platform • Cloud computing pilot program at NASA Ames • Integrates open-source components into seamless, self...Mission support • Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research • Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 • NASA Nebula (2010). Retrieved from
An optical sensor network for vegetation phenology monitoring and satellite data calibration.
Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal
2011-01-01
We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.
Applying a cloud computing approach to storage architectures for spacecraft
NASA Astrophysics Data System (ADS)
Baldor, Sue A.; Quiroz, Carlos; Wood, Paul
As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.
An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration
Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal
2011-01-01
We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity. PMID:22164039
Haplotype Reconstruction in Large Pedigrees with Many Untyped Individuals
NASA Astrophysics Data System (ADS)
Li, Xin; Li, Jing
Haplotypes, as they specify the linkage patterns between dispersed genetic variations, provide important information for understanding the genetics of human traits. However haplotypes are not directly available from current genotyping platforms, and hence there are extensive investigations of computational methods to recover such information. Two major computational challenges arising in current family-based disease studies are large family sizes and many ungenotyped family members. Traditional haplotyping methods can neither handle large families nor families with missing members. In this paper, we propose a method which addresses these issues by integrating multiple novel techniques. The method consists of three major components: pairwise identical-bydescent (IBD) inference, global IBD reconstruction and haplotype restoring. By reconstructing the global IBD of a family from pairwise IBD and then restoring the haplotypes based on the inferred IBD, this method can scale to large pedigrees, and more importantly it can handle families with missing members. Compared with existing methods, this method demonstrates much higher power to recover haplotype information, especially in families with many untyped individuals.
NASA Astrophysics Data System (ADS)
Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.
2016-03-01
Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
Dynamic online surveys and experiments with the free open-source software dynQuest.
Rademacher, Jens D M; Lippke, Sonia
2007-08-01
With computers and the World Wide Web widely available, collecting data through Web browsers is an attractive method utilized by the social sciences. In this article, conducting PC- and Web-based trials with the software package dynQuest is described. The software manages dynamic questionnaire-based trials over the Internet or on single computers, possibly as randomized control trials (RCT), if two or more groups are involved. The choice of follow-up questions can depend on previous responses, as needed for matched interventions. Data are collected in a simple text-based database that can be imported easily into other programs for postprocessing and statistical analysis. The software consists of platform-independent scripts written in the programming language PERL that use the common gateway interface between Web browser and server for submission of data through HTML forms. Advantages of dynQuest are parsimony, simplicity in use and installation, transparency, and reliability. The program is available as open-source freeware from the authors.
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tock, Yoav; Mandler, Benjamin; Moreira, Jose
2013-01-01
As HPC systems and applications get bigger and more complex, we are approaching an era in which resiliency and run-time elasticity concerns be- come paramount.We offer a building block for an alternative resiliency approach in which computations will be able to make progress while components fail, in addition to enabling a dynamic set of nodes throughout a computation lifetime. The core of our solution is a hierarchical scalable membership service provid- ing eventual consistency semantics. An attribute replication service is used for hierarchy organization, and is exposed to external applications. Our solution is based on P2P technologies and provides resiliencymore » and elastic runtime support at ultra large scales. Resulting middleware is general purpose while exploiting HPC platform unique features and architecture. We have implemented and tested this system on BlueGene/P with Linux, and using worst-case analysis, evaluated the service scalability as effective for up to 1M nodes.« less
Filippini, D; Tejle, K; Lundström, I
2005-08-15
The computer screen photo-assisted technique (CSPT), a method for substance classification based on spectral fingerprinting, which involves just a computer screen and a web camera as measuring platform is used here for the evaluation of a prospective enzyme-linked immunosorbent assay (ELISA). A anti-neutrophil cytoplasm antibodies (ANCA-ELISA) test, typically used for diagnosing patients suffering from chronic inflammatory disorders in the skin, joints, blood vessels and other tissues is comparatively tested with a standard microplate reader and CSPT, yielding equivalent results at a fraction of the instrumental costs. The CSPT approach is discussed as a distributed measuring platform allowing decentralized measurements in routine applications, whereas keeping centralized information management due to its natural network embedded operation.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Divito, Ben L.; Holloway, C. Michael
1994-01-01
In this paper the design and formal verification of the lower levels of the Reliable Computing Platform (RCP), a fault-tolerant computing system for digital flight control applications, are presented. The RCP uses NMR-style redundancy to mask faults and internal majority voting to flush the effects of transient faults. Two new layers of the RCP hierarchy are introduced: the Minimal Voting refinement (DA_minv) of the Distributed Asynchronous (DA) model and the Local Executive (LE) Model. Both the DA_minv model and the LE model are specified formally and have been verified using the Ehdm verification system. All specifications and proofs are available electronically via the Internet using anonymous FTP or World Wide Web (WWW) access.
Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation
NASA Astrophysics Data System (ADS)
Anisenkov, A. V.
2018-03-01
In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).
Bioinformatics on the cloud computing platform Azure.
Shanahan, Hugh P; Owen, Anne M; Harrison, Andrew P
2014-01-01
We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development.
Bioinformatics on the Cloud Computing Platform Azure
Shanahan, Hugh P.; Owen, Anne M.; Harrison, Andrew P.
2014-01-01
We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development. PMID:25050811
NASA Astrophysics Data System (ADS)
Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.
2013-10-01
In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming
NASA Astrophysics Data System (ADS)
Fisher, Ward
2014-05-01
Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.
A New Biogeochemical Computational Framework Integrated within the Community Land Model
NASA Astrophysics Data System (ADS)
Fang, Y.; Li, H.; Liu, C.; Huang, M.; Leung, L.
2012-12-01
Terrestrial biogeochemical processes, particularly carbon cycle dynamics, have been shown to significantly influence regional and global climate changes. Modeling terrestrial biogeochemical processes within the land component of Earth System Models such as the Community Land model (CLM), however, faces three major challenges: 1) extensive efforts in modifying modeling structures and rewriting computer programs to incorporate biogeochemical processes with increasing complexity, 2) expensive computational cost to solve the governing equations due to numerical stiffness inherited from large variations in the rates of biogeochemical processes, and 3) lack of an efficient framework to systematically evaluate various mathematical representations of biogeochemical processes. To address these challenges, we introduce a new computational framework to incorporate biogeochemical processes into CLM, which consists of a new biogeochemical module with a generic algorithm and reaction database. New and updated biogeochemical processes can be incorporated into CLM without significant code modification. To address the stiffness issue, algorithms and criteria will be developed to identify fast processes, which will be replaced with algebraic equations and decoupled from slow processes. This framework can serve as a generic and user-friendly platform to test out different mechanistic process representations and datasets and gain new insight on the behavior of the terrestrial ecosystems in response to climate change in a systematic way.
NASA Astrophysics Data System (ADS)
Destefano, Anthony; Heerikhuisen, Jacob
2015-04-01
Fully 3D particle simulations can be a computationally and memory expensive task, especially when high resolution grid cells are required. The problem becomes further complicated when parallelization is needed. In this work we focus on computational methods to solve these difficulties. Hilbert curves are used to map the 3D particle space to the 1D contiguous memory space. This method of organization allows for minimized cache misses on the GPU as well as a sorted structure that is equivalent to an octal tree data structure. This type of sorted structure is attractive for uses in adaptive mesh implementations due to the logarithm search time. Implementations using the Message Passing Interface (MPI) library and NVIDIA's parallel computing platform CUDA will be compared, as MPI is commonly used on server nodes with many CPU's. We will also compare static grid structures with those of adaptive mesh structures. The physical test bed will be simulating heavy interstellar atoms interacting with a background plasma, the heliosphere, simulated from fully consistent coupled MHD/kinetic particle code. It is known that charge exchange is an important factor in space plasmas, specifically it modifies the structure of the heliosphere itself. We would like to thank the Alabama Supercomputer Authority for the use of their computational resources.
A software platform for continuum modeling of ion channels based on unstructured mesh
NASA Astrophysics Data System (ADS)
Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.
FAST: framework for heterogeneous medical image computing and visualization.
Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-11-01
Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N
2017-03-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.
Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.
2016-01-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692
Characterizing Crowd Participation and Productivity of Foldit Through Web Scraping
2016-03-01
Berkeley Open Infrastructure for Network Computing CDF Cumulative Distribution Function CPU Central Processing Unit CSSG Crowdsourced Serious Game...computers at once can create a similar capacity. According to Anderson [6], principal investigator for the Berkeley Open Infrastructure for Network...extraterrestrial life. From this project, a software-based distributed computing platform called the Berkeley Open Infrastructure for Network Computing
Computers are stepping stones to improved imaging.
Freiherr, G
1991-02-01
Never before has the radiology industry embraced the computer with such enthusiasm. Graphics supercomputers as well as UNIX- and RISC-based computing platforms are turning up in every digital imaging modality and especially in systems designed to enhance and transmit images, says author Greg Freiherr on assignment for Computers in Healthcare at the Radiological Society of North America conference in Chicago.
GPUs: An Emerging Platform for General-Purpose Computation
2007-08-01
programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and
Network-based drug discovery by integrating systems biology and computational technologies
Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua
2013-01-01
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768
Modeling and Analysis of Mixed Synchronous/Asynchronous Systems
NASA Technical Reports Server (NTRS)
Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan
2012-01-01
Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE
Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less
Time and Space Partition Platform for Safe and Secure Flight Software
NASA Astrophysics Data System (ADS)
Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons
2012-08-01
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
Real-time depth processing for embedded platforms
NASA Astrophysics Data System (ADS)
Rahnama, Oscar; Makarov, Aleksej; Torr, Philip
2017-05-01
Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
Bioinformatics and Microarray Data Analysis on the Cloud.
Calabrese, Barbara; Cannataro, Mario
2016-01-01
High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.
NASA Astrophysics Data System (ADS)
Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang
2017-08-01
This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students' "pre-job training barriers" between school and work, with graduation design as the comprehensive training and testing link.
Kinematics and dynamics of robotic systems with multiple closed loops
NASA Astrophysics Data System (ADS)
Zhang, Chang-De
The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
Control system design for the large space systems technology reference platform
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1982-01-01
Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.
Crowd computing: using competitive dynamics to develop and refine highly predictive models.
Bentzien, Jörg; Muegge, Ingo; Hamner, Ben; Thompson, David C
2013-05-01
A recent application of a crowd computing platform to develop highly predictive in silico models for use in the drug discovery process is described. The platform, Kaggle™, exploits a competitive dynamic that results in model optimization as the competition unfolds. Here, this dynamic is described in detail and compared with more-conventional modeling strategies. The complete and full structure of the underlying dataset is disclosed and some thoughts as to the broader utility of such 'gamification' approaches to the field of modeling are offered. Copyright © 2013 Elsevier Ltd. All rights reserved.
LLNL Partners with IBM on Brain-Like Computing Chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Essen, Brian
Lawrence Livermore National Laboratory (LLNL) will receive a first-of-a-kind brain-inspired supercomputing platform for deep learning developed by IBM Research. Based on a breakthrough neurosynaptic computer chip called IBM TrueNorth, the scalable platform will process the equivalent of 16 million neurons and 4 billion synapses and consume the energy equivalent of a hearing aid battery – a mere 2.5 watts of power. The brain-like, neural network design of the IBM Neuromorphic System is able to infer complex cognitive tasks such as pattern recognition and integrated sensory processing far more efficiently than conventional chips.
LLNL Partners with IBM on Brain-Like Computing Chip
Van Essen, Brian
2018-06-25
Lawrence Livermore National Laboratory (LLNL) will receive a first-of-a-kind brain-inspired supercomputing platform for deep learning developed by IBM Research. Based on a breakthrough neurosynaptic computer chip called IBM TrueNorth, the scalable platform will process the equivalent of 16 million neurons and 4 billion synapses and consume the energy equivalent of a hearing aid battery â a mere 2.5 watts of power. The brain-like, neural network design of the IBM Neuromorphic System is able to infer complex cognitive tasks such as pattern recognition and integrated sensory processing far more efficiently than conventional chips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinda, Peter August
2015-03-17
This report describes the activities, findings, and products of the Northwestern University component of the "Enabling Exascale Hardware and Software Design through Scalable System Virtualization" project. The purpose of this project has been to extend the state of the art of systems software for high-end computing (HEC) platforms, and to use systems software to better enable the evaluation of potential future HEC platforms, for example exascale platforms. Such platforms, and their systems software, have the goal of providing scientific computation at new scales, thus enabling new research in the physical sciences and engineering. Over time, the innovations in systems softwaremore » for such platforms also become applicable to more widely used computing clusters, data centers, and clouds. This was a five-institution project, centered on the Palacios virtual machine monitor (VMM) systems software, a project begun at Northwestern, and originally developed in a previous collaboration between Northwestern University and the University of New Mexico. In this project, Northwestern (including via our subcontract to the University of Pittsburgh) contributed to the continued development of Palacios, along with other team members. We took the leadership role in (1) continued extension of support for emerging Intel and AMD hardware, (2) integration and performance enhancement of overlay networking, (3) connectivity with architectural simulation, (4) binary translation, and (5) support for modern Non-Uniform Memory Access (NUMA) hosts and guests. We also took a supporting role in support for specialized hardware for I/O virtualization, profiling, configurability, and integration with configuration tools. The efforts we led (1-5) were largely successful and executed as expected, with code and papers resulting from them. The project demonstrated the feasibility of a virtualization layer for HEC computing, similar to such layers for cloud or datacenter computing. For effort (3), although a prototype connecting Palacios with the GEM5 architectural simulator was demonstrated, our conclusion was that such a platform was less useful for design space exploration than anticipated due to inherent complexity of the connection between the instruction set architecture level and the microarchitectural level. For effort (4), we found that a code injection approach proved to be more fruitful. The results of our efforts are publicly available in the open source Palacios codebase and published papers, all of which are available from the project web site, v3vee.org. Palacios is currently one of the two codebases (the other being Sandia’s Kitten lightweight kernel) that underlies the node operating system for the DOE Hobbes Project, one of two projects tasked with building a systems software prototype for the national exascale computing effort.« less
Missile signal processing common computer architecture for rapid technology upgrade
NASA Astrophysics Data System (ADS)
Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul
2004-10-01
Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.
Reprogramming Microbes for the Remote Detection of Environmental Threats
2013-10-15
Riboswitches consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in...vitro selection, it is possible to screen large (~10^13 member) libraries of RNA sequences to discover new aptamers . However, limitations in...consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in
Design of sensor node platform for wireless biomedical sensor networks.
Xijun, Chen; -H Meng, Max; Hongliang, Ren
2005-01-01
Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.
Using "Quipper" as an Online Platform for Teaching and Learning English as a Foreign Language
ERIC Educational Resources Information Center
Mulyono, Herri
2016-01-01
This paper evaluates the affordability of "Quipper" as an online platform for teaching and learning English as a foreign language (EFL). It focuses on the extent to which features available in "Quipper" may correspond to fundamental components of Computer-Assisted Language Learning (CALL) pedagogy, as suggested by Chapelle…
A Service-Based Program Evaluation Platform for Enhancing Student Engagement in Assignments
ERIC Educational Resources Information Center
Wu, Ye-Chi; Ma, Lee Wei; Jiau, Hewijin Christine
2013-01-01
Programming assignments are commonly used in computer science education to encourage students to practice target concepts and evaluate their learning status. Ensuring students are engaged in such assignments is critical in attracting and retaining students. To this end, WebHat, a service-based program evaluation platform, is introduced in this…
PC vs. Mac--Which Way Should You Go?
ERIC Educational Resources Information Center
Wodarz, Nan
1997-01-01
Outlines the factors in hardware, software, and administration to consider in developing specifications for choosing a computer operating system. Compares Microsoft Windows 95/NT that runs on PC/Intel-based systems and System 7.5 that runs on the Apple-based systems. Lists reasons why the Microsoft platform clearly stands above the Apple platform.…
Near real time water resources data for river basin management
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.
Inertial Pointing and Positioning System
NASA Technical Reports Server (NTRS)
Yee, Robert (Inventor); Robbins, Fred (Inventor)
1998-01-01
An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.
Computational evolution: taking liberties.
Correia, Luís
2010-09-01
Evolution has, for a long time, inspired computer scientists to produce computer models mimicking its behavior. Evolutionary algorithm (EA) is one of the areas where this approach has flourished. EAs have been used to model and study evolution, but they have been especially developed for their aptitude as optimization tools for engineering. Developed models are quite simple in comparison with their natural sources of inspiration. However, since EAs run on computers, we have the freedom, especially in optimization models, to test approaches both realistic and outright speculative, from the biological point of view. In this article, we discuss different common evolutionary algorithm models, and then present some alternatives of interest. These include biologically inspired models, such as co-evolution and, in particular, symbiogenetics and outright artificial operators and representations. In each case, the advantages of the modifications to the standard model are identified. The other area of computational evolution, which has allowed us to study basic principles of evolution and ecology dynamics, is the development of artificial life platforms for open-ended evolution of artificial organisms. With these platforms, biologists can test theories by directly manipulating individuals and operators, observing the resulting effects in a realistic way. An overview of the most prominent of such environments is also presented. If instead of artificial platforms we use the real world for evolving artificial life, then we are dealing with evolutionary robotics (ERs). A brief description of this area is presented, analyzing its relations to biology. Finally, we present the conclusions and identify future research avenues in the frontier of computation and biology. Hopefully, this will help to draw the attention of more biologists and computer scientists to the benefits of such interdisciplinary research.
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
Large Scale Document Inversion using a Multi-threaded Computing System
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2018-01-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701
Large Scale Document Inversion using a Multi-threaded Computing System.
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2017-06-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.
Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS
NASA Technical Reports Server (NTRS)
Callegari, Andres C.
1990-01-01
This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
Background As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Methods Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Results Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Conclusions Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. PMID:24464852
The Advance of Computing from the Ground to the Cloud
ERIC Educational Resources Information Center
Breeding, Marshall
2009-01-01
A trend toward the abstraction of computing platforms that has been developing in the broader IT arena over the last few years is just beginning to make inroads into the library technology scene. Cloud computing offers for libraries many interesting possibilities that may help reduce technology costs and increase capacity, reliability, and…