Sample records for computing symmetric boolean

  1. Circulant Matrices and Affine Equivalence of Monomial Rotation Symmetric Boolean Functions

    DTIC Science & Technology

    2015-01-01

    definitions , including monomial rotation symmetric (MRS) Boolean functions and affine equivalence, and a known result for such quadratic functions...degree of the MRS is, we have a similar result as [40, Theorem 1.1] for n = 4p (p prime), or squarefree integers n, which along with our Theorem 5.2

  2. On the Computation of Comprehensive Boolean Gröbner Bases

    NASA Astrophysics Data System (ADS)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  3. Graphene-based non-Boolean logic circuits

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  4. Multilayer neural networks with extensively many hidden units.

    PubMed

    Rosen-Zvi, M; Engel, A; Kanter, I

    2001-08-13

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.

  5. Computational complexity of Boolean functions

    NASA Astrophysics Data System (ADS)

    Korshunov, Aleksei D.

    2012-02-01

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  6. Post optimization paradigm in maximum 3-satisfiability logic programming

    NASA Astrophysics Data System (ADS)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.

  7. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  8. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    PubMed Central

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  9. Algebraic model checking for Boolean gene regulatory networks.

    PubMed

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  10. Affine Equivalence and Constructions of Cryptographically Strong Boolean Functions

    DTIC Science & Technology

    2013-09-01

    manner is crucial for today’s global citizen. We want our financial transactions over the Internet to get processed without error. Cyber warfare between...encryption and decryption processes . An asymmetric cipher uses different keys to encrypt and decrypt a message, and the connection between the encryption and...Depending on how a symmetric cipher processes a message before encryption or de- cryption, a symmetric cipher can be further classified into a block or

  11. Describing the What and Why of Students' Difficulties in Boolean Logic

    ERIC Educational Resources Information Center

    Herman, Geoffrey L.; Loui, Michael C.; Kaczmarczyk, Lisa; Zilles, Craig

    2012-01-01

    The ability to reason with formal logic is a foundational skill for computer scientists and computer engineers that scaffolds the abilities to design, debug, and optimize. By interviewing students about their understanding of propositional logic and their ability to translate from English specifications to Boolean expressions, we characterized…

  12. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  13. On spectral techniques in analysis of Boolean networks

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-06-01

    In this work we present results that can be used for analysis of Boolean networks. The results utilize Fourier spectra of the functions in the network. An accurate formula is given for Derrida plots of networks of finite size N based on a result on Boolean functions presented in another context. Derrida plots are widely used to examine the stability issues of Boolean networks. For the limit N→∞, we give a computationally simple form that can be used as a good approximation for rather small networks as well. A formula for Derrida plots of random Boolean networks (RBNs) presented earlier in the literature is given an alternative derivation. It is shown that the information contained in the Derrida plot is equal to the average Fourier spectrum of the functions in the network. In the case of random networks the mean Derrida plot can be obtained from the mean spectrum of the functions. The method is applied to real data by using the Boolean functions found in genetic regulatory networks of eukaryotic cells in an earlier study. Conventionally, Derrida plots and stability analysis have been computed with statistical sampling resulting in poorer accuracy.

  14. Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines

    DTIC Science & Technology

    1989-09-01

    Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas

  15. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    PubMed

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  16. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query.

    PubMed

    Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing

    2014-05-06

    The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.

  17. State feedback control design for Boolean networks.

    PubMed

    Liu, Rongjie; Qian, Chunjiang; Liu, Shuqian; Jin, Yu-Fang

    2016-08-26

    Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.

  18. Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).

    ERIC Educational Resources Information Center

    Roy, Rob

    The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…

  19. Computing preimages of Boolean networks.

    PubMed

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  20. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  1. Energy and criticality in random Boolean networks

    NASA Astrophysics Data System (ADS)

    Andrecut, M.; Kauffman, S. A.

    2008-06-01

    The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the ‘energy’ associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a ‘dissipative’ regime, performing mostly ‘downhill’ moves on the ‘energy’ landscape. Also, we show that in the disordered phase the RBNs have to ‘hillclimb’ on the ‘energy’ landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations.

  2. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    NASA Astrophysics Data System (ADS)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  3. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  4. Reliable computation from contextual correlations

    NASA Astrophysics Data System (ADS)

    Oestereich, André L.; Galvão, Ernesto F.

    2017-12-01

    An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.

  5. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  6. 3D Boolean operations in virtual surgical planning.

    PubMed

    Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun

    2017-10-01

    Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.

  7. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  8. PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.

    PubMed

    Klarner, Hannes; Streck, Adam; Siebert, Heike

    2017-03-01

    The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. The computational core and fixed point organization in Boolean networks

    NASA Astrophysics Data System (ADS)

    Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2006-03-01

    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.

  10. Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.

    PubMed

    Zhang, Jianming; Sclaroff, Stan

    2016-05-01

    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.

  11. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  12. Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases

    NASA Astrophysics Data System (ADS)

    Zengler, Christoph; Küchlin, Wolfgang

    We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.

  13. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks.

    PubMed

    Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A

    2018-01-01

    Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin , a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ "symbolic" techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as "clause learning" considerably increasing Griffin 's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

  14. Automatic Screening for Perturbations in Boolean Networks.

    PubMed

    Schwab, Julian D; Kestler, Hans A

    2018-01-01

    A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.

  15. Quantum algorithms on Walsh transform and Hamming distance for Boolean functions

    NASA Astrophysics Data System (ADS)

    Xie, Zhengwei; Qiu, Daowen; Cai, Guangya

    2018-06-01

    Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.

  16. Tracking perturbations in Boolean networks with spectral methods

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-08-01

    In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.

  17. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.

    PubMed

    Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C

    2016-11-01

    Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  19. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  20. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying, E-mail: chengying@nju.edu.cn

    2015-03-16

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logicmore » and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.« less

  1. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    NASA Astrophysics Data System (ADS)

    Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  2. Predictive computation of genomic logic processing functions in embryonic development

    PubMed Central

    Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.

    2012-01-01

    Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416

  3. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  4. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  5. Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.

    PubMed

    Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping

    2018-01-01

    Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.

  6. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  7. Network dynamics and systems biology

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes A.

    The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.

  8. Optical programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  9. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  10. Solving a discrete model of the lac operon using Z3

    NASA Astrophysics Data System (ADS)

    Gutierrez, Natalia A.

    2014-05-01

    A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.

  11. Identification of control targets in Boolean molecular network models via computational algebra.

    PubMed

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  12. Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array.

    PubMed

    Zhou, Ya-Xiong; Li, Yi; Su, Yu-Ting; Wang, Zhuo-Rui; Shih, Ling-Yi; Chang, Ting-Chang; Chang, Kuan-Chang; Long, Shi-Bing; Sze, Simon M; Miao, Xiang-Shui

    2017-05-25

    Resistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO 2 -based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics. During the logic computing processes, the RRAM devices in an array are flexibly configured in a bipolar or complementary structure. The validity was demonstrated by experimentally implemented NAND and XOR logic functions and a theoretically designed 1-bit full adder. With the trade-off between temporal and spatial computing complexity, our method makes better use of limited computing resources, thus provides an attractive scheme for the construction of logic-in-memory systems.

  13. Simultaneous G-Quadruplex DNA Logic.

    PubMed

    Bader, Antoine; Cockroft, Scott L

    2018-04-03

    A fundamental principle of digital computer operation is Boolean logic, where inputs and outputs are described by binary integer voltages. Similarly, inputs and outputs may be processed on the molecular level as exemplified by synthetic circuits that exploit the programmability of DNA base-pairing. Unlike modern computers, which execute large numbers of logic gates in parallel, most implementations of molecular logic have been limited to single computing tasks, or sensing applications. This work reports three G-quadruplex-based logic gates that operate simultaneously in a single reaction vessel. The gates respond to unique Boolean DNA inputs by undergoing topological conversion from duplex to G-quadruplex states that were resolved using a thioflavin T dye and gel electrophoresis. The modular, addressable, and label-free approach could be incorporated into DNA-based sensors, or used for resolving and debugging parallel processes in DNA computing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  15. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    PubMed

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-07

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.

  16. Community Information Centers and the Computer.

    ERIC Educational Resources Information Center

    Carroll, John M.; Tague, Jean M.

    Two computer data bases have been developed by the Computer Science Department at the University of Western Ontario for "Information London," the local community information center. One system, called LONDON, permits Boolean searches of a file of 5,000 records describing human service agencies in the London area. The second system,…

  17. Therapeutic target discovery using Boolean network attractors: improvements of kali

    PubMed Central

    Guziolowski, Carito

    2018-01-01

    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890

  18. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-03-10

    their nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k correlation im- mune, (respectively...further balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions...Theorem 3. The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2

  19. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  20. Synthesizing biomolecule-based Boolean logic gates.

    PubMed

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  1. "Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis

    PubMed Central

    2011-01-01

    Background In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. Results We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche. There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs. Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. Conclusions We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL. PMID:22192526

  2. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  3. An Automated Design Framework for Multicellular Recombinase Logic.

    PubMed

    Guiziou, Sarah; Ulliana, Federico; Moreau, Violaine; Leclere, Michel; Bonnet, Jerome

    2018-05-18

    Tools to systematically reprogram cellular behavior are crucial to address pressing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently encode Boolean and history-dependent logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we present an automated workflow for designing recombinase logic devices executing Boolean functions. Our theoretical framework uses a reduced library of computational devices distributed into different cellular subpopulations, which are then composed in various manners to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin ). We anticipate that this automated design workflow will streamline the implementation of Boolean functions in many organisms and for various applications.

  4. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  5. Computing smallest intervention strategies for multiple metabolic networks in a boolean model.

    PubMed

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2015-02-01

    This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online.

  6. A survey of SAT solver

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Zhou, Xu

    2017-06-01

    In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.

  7. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-07-24

    nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k corre- lation immune, (respectively, further...balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions. Theorem 3...The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2 ( n n−1

  8. Phase transitions in restricted Boltzmann machines with generic priors

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2017-10-01

    We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.

  9. Electrical Circuits in the Mathematics/Computer Science Classroom.

    ERIC Educational Resources Information Center

    McMillan, Robert D.

    1988-01-01

    Shows how, with little or no electrical background, students can apply Boolean algebra concepts to design and build integrated electrical circuits in the classroom that will reinforce important ideas in mathematics. (PK)

  10. Development of a computer-aided design software for dental splint in orthognathic surgery

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  11. Development of a computer-aided design software for dental splint in orthognathic surgery

    PubMed Central

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-01-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated. PMID:27966601

  12. Development of a computer-aided design software for dental splint in orthognathic surgery.

    PubMed

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-14

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  13. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  14. Computing Smallest Intervention Strategies for Multiple Metabolic Networks in a Boolean Model

    PubMed Central

    Lu, Wei; Song, Jiangning; Akutsu, Tatsuya

    2015-01-01

    Abstract This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online. PMID:25684199

  15. Computer Program Development Specification for Ada Integrated Environment. Ada Compiler Phases B5-AIE (1). COMP (1).

    DTIC Science & Technology

    1982-11-05

    routines required by the Back End. 3.3 Detailed Functional Requirements 3.3.1 Front End 3.3.1.1 DRIVER The DRIVER is the primary user interface to the...Main 2. Exam ple" !.i ,, , ,vari able • id -: go for B Boolean Ai ’ A" ’ I type d 1 I , for Boolean I (from Standard) i I - - for A function i fuction ...TN in. If a TN cannot be allocated to the primary area of storage it needs(such as a register) it is allocated to the spill area reserved in the local

  16. A solution to the surface intersection problem. [Boolean functions in geometric modeling

    NASA Technical Reports Server (NTRS)

    Timer, H. G.

    1977-01-01

    An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.

  17. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  18. Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.

    PubMed

    Bandyopadhyay, Sanghamitra; Mallik, Saurav

    2018-01-01

    Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.

  19. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

    PubMed Central

    Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.

    2010-01-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238

  20. The Boolean Is Dead, Long Live the Boolean! Natural Language versus Boolean Searching in Introductory Undergraduate Instruction

    ERIC Educational Resources Information Center

    Lowe, M. Sara; Maxson, Bronwen K.; Stone, Sean M.; Miller, Willie; Snajdr, Eric; Hanna, Kathleen

    2018-01-01

    Boolean logic can be a difficult concept for first-year, introductory students to grasp. This paper compares the results of Boolean and natural language searching across several databases with searches created from student research questions. Performance differences between databases varied. Overall, natural search language is at least as good as…

  1. Boolean and brain-inspired computing using spin-transfer torque devices

    NASA Astrophysics Data System (ADS)

    Fan, Deliang

    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or 'spin-neuron') in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing "human-like" cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching.

  2. Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.

    PubMed

    Grossi, Giuliano

    2009-08-01

    Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.

  3. Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.

  4. Cryptographic Boolean Functions with Biased Inputs

    DTIC Science & Technology

    2015-07-31

    theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the

  5. Presentation of Repeated Phrases in a Computer-Assisted Abstracting Tool Kit.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2001-01-01

    Discusses automatic indexing methods and describes the development of a prototype computerized abstractor's assistant. Highlights include the text network management system, TEXNET; phrase selection that follows indexing; phrase display, including Boolean capabilities; results of preliminary testing; and availability of TEXNET software. (LRW)

  6. Investigating Cell Criticality

    NASA Astrophysics Data System (ADS)

    Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.

    Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.

  7. A Simple Blueprint for Automatic Boolean Query Processing.

    ERIC Educational Resources Information Center

    Salton, G.

    1988-01-01

    Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…

  8. Guide to Human Factors Information Sources.

    DTIC Science & Technology

    1984-11-01

    intermediary, a computer search is sometimes unnecessary. A lucid way of presenting a search objective is either by Boolean (and/or) expressions or by Venn...1965). Human factors evaluation in system development. New York: John Wiley & Sons. 56. Murray, E. J. (1965). Sleep, dreams , and arousal. New York

  9. Massive Query Resolution for Rapid Selective Dissemination of Information.

    ERIC Educational Resources Information Center

    Cohen, Jonathan D.

    1999-01-01

    Outlines an efficient approach to performing query resolution which, when matched with a keyword scanner, offers rapid selecting and routing for massive Boolean queries, and which is suitable for implementation on a desktop computer. Demonstrates the system's operation with large examples in a practical setting. (AEF)

  10. Optimal stabilization of Boolean networks through collective influence

    NASA Astrophysics Data System (ADS)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  11. Effect of memory in non-Markovian Boolean networks illustrated with a case study: A cell cycling process

    NASA Astrophysics Data System (ADS)

    Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.

    2016-11-01

    The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.

  12. Mining TCGA Data Using Boolean Implications

    PubMed Central

    Sinha, Subarna; Tsang, Emily K.; Zeng, Haoyang; Meister, Michela; Dill, David L.

    2014-01-01

    Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/. PMID:25054200

  13. Dataflow Computation for the J-Machine

    DTIC Science & Technology

    1990-06-01

    MOVE 8. 1 CALL ClrTVCTO1 ;((:LkBEL (:LITERAL (:SYIBOL : BBD -IF-4)))) ZIDIF.4: ROVE [1,133, 3.3 ROV 13. A2 ((:TERIXATM)) SUSPEND ;((:LAEL (:LITBUAL...deftostant syn 0) (detconstant int-tag ’int) (detconatant Int 1) (detconstant id-tag ’ td ) (defconstant td 9) (Aotconstaut boolean-tag lbool

  14. Exploiting the Maximum Entropy Principle to Increase Retrieval Effectiveness.

    ERIC Educational Resources Information Center

    Cooper, William S.

    1983-01-01

    Presents information retrieval design approach in which queries of computer-based system consist of sets of terms, either unweighted or weighted with subjective term precision estimates, and retrieval outputs ranked by probability of usefulness estimated by "maximum entropy principle." Boolean and weighted request systems are discussed.…

  15. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  16. A Hypermedia Computer-Aided Parasitology Tutoring System.

    ERIC Educational Resources Information Center

    Theodoropoulos, Georgios; Loumos, Vassili

    A hypermedia tutoring system for teaching parasitology to college students was developed using an object oriented software development tool, Knowledge Pro. The program was designed to meet four objectives: knowledge incorporation, tutoring, indexing of key words for Boolean search, and random generation of quiz questions with instant scoring. The…

  17. Synchronization of coupled large-scale Boolean networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fangfei, E-mail: li-fangfei@163.com

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  18. JPRS Report, Science & Technology. China.

    DTIC Science & Technology

    1989-03-29

    Commun ., Vol COM-29, No 6, pp 895-901, June 1981. [4] R.C. Titsworth , "A Boolean-Function-Multiplexed Telemetry System," IEEE Trans, on SET, pp 42...Reagents 39 Gene-Engineered Human Epithelium Growth Factor (hEGF) 39 Superfine Snake Venom 39 COMPUTERS Ai Computer System LISP-MI [Zheng Shouqi, et...XUEBAO, No 3, Jun 88] 134 Coordinated Development of Microwave, Optical Communications [Zhang Xu; DIANXIN KUAIBAO, No 11, Nov 88] 143 Error

  19. Computing the Algebraic Immunity of Boolean Functions on the SRC-6 Reconfigurable Computer

    DTIC Science & Technology

    2012-03-01

    and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2 . REPORT DATE March 2012 3. REPORT... CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING...developed for this conversion. This reduced form requires many fewer gates and has ( )n delay versus ( 2 ) n delay for a full transeunt triangle

  20. State feedback controller design for the synchronization of Boolean networks with time delays

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Li, Jianning; Shen, Lijuan

    2018-01-01

    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  1. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    PubMed

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.

  2. Development of Boolean calculus and its application

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1979-01-01

    Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.

  3. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  4. Networks and games for precision medicine.

    PubMed

    Biane, Célia; Delaplace, Franck; Klaudel, Hanna

    2016-12-01

    Recent advances in omics technologies provide the leverage for the emergence of precision medicine that aims at personalizing therapy to patient. In this undertaking, computational methods play a central role for assisting physicians in their clinical decision-making by combining data analysis and systems biology modelling. Complex diseases such as cancer or diabetes arise from the intricate interplay of various biological molecules. Therefore, assessing drug efficiency requires to study the effects of elementary perturbations caused by diseases on relevant biological networks. In this paper, we propose a computational framework called Network-Action Game applied to best drug selection problem combining Game Theory and discrete models of dynamics (Boolean networks). Decision-making is modelled using Game Theory that defines the process of drug selection among alternative possibilities, while Boolean networks are used to model the effects of the interplay between disease and drugs actions on the patient's molecular system. The actions/strategies of disease and drugs are focused on arc alterations of the interactome. The efficiency of this framework has been evaluated for drug prediction on a model of breast cancer signalling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Two Methods for Efficient Solution of the Hitting-Set Problem

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh; Fijany, Amir

    2005-01-01

    A paper addresses much of the same subject matter as that of Fast Algorithms for Model-Based Diagnosis (NPO-30582), which appears elsewhere in this issue of NASA Tech Briefs. However, in the paper, the emphasis is more on the hitting-set problem (also known as the transversal problem), which is well known among experts in combinatorics. The authors primary interest in the hitting-set problem lies in its connection to the diagnosis problem: it is a theorem of model-based diagnosis that in the set-theory representation of the components of a system, the minimal diagnoses of a system are the minimal hitting sets of the system. In the paper, the hitting-set problem (and, hence, the diagnosis problem) is translated from a combinatorial to a computational problem by mapping it onto the Boolean satisfiability and integer- programming problems. The paper goes on to describe developments nearly identical to those summarized in the cited companion NASA Tech Briefs article, including the utilization of Boolean-satisfiability and integer- programming techniques to reduce the computation time and/or memory needed to solve the hitting-set problem.

  6. Boolean integral calculus

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  7. Modeling the Normal and Neoplastic Cell Cycle with 'Realistic Boolean Genetic Networks': Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies

    NASA Technical Reports Server (NTRS)

    Szallasi, Zoltan; Liang, Shoudan

    2000-01-01

    In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.

  8. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  9. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Signal to Noise Ratio SPICE Simulation Program with Integrated Circuit Emphasis TIFF Tagged Image File Format USC University of Southern California xvii...sources can create errors in digital circuits. These effects can be simulated using Simulation Program with Integrated Circuit Emphasis ( SPICE ) or...compute summary statistics. 4.1 Circuit Simulations Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software via noisy voltage

  10. Piezo-phototronic Boolean logic and computation using photon and strain dual-gated nanowire transistors.

    PubMed

    Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin

    2015-02-04

    Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring symmetry as an avenue to the computational design of large protein domains.

    PubMed

    Fortenberry, Carie; Bowman, Elizabeth Anne; Proffitt, Will; Dorr, Brent; Combs, Steven; Harp, Joel; Mizoue, Laura; Meiler, Jens

    2011-11-16

    It has been demonstrated previously that symmetric, homodimeric proteins are energetically favored, which explains their abundance in nature. It has been proposed that such symmetric homodimers underwent gene duplication and fusion to evolve into protein topologies that have a symmetric arrangement of secondary structure elements--"symmetric superfolds". Here, the ROSETTA protein design software was used to computationally engineer a perfectly symmetric variant of imidazole glycerol phosphate synthase and its corresponding symmetric homodimer. The new protein, termed FLR, adopts the symmetric (βα)(8) TIM-barrel superfold. The protein is soluble and monomeric and exhibits two-fold symmetry not only in the arrangement of secondary structure elements but also in sequence and at atomic detail, as verified by crystallography. When cut in half, FLR dimerizes readily to form the symmetric homodimer. The successful computational design of FLR demonstrates progress in our understanding of the underlying principles of protein stability and presents an attractive strategy for the in silico construction of larger protein domains from smaller pieces.

  12. Analysis Tools for Interconnected Boolean Networks With Biological Applications.

    PubMed

    Chaves, Madalena; Tournier, Laurent

    2018-01-01

    Boolean networks with asynchronous updates are a class of logical models particularly well adapted to describe the dynamics of biological networks with uncertain measures. The state space of these models can be described by an asynchronous state transition graph, which represents all the possible exits from every single state, and gives a global image of all the possible trajectories of the system. In addition, the asynchronous state transition graph can be associated with an absorbing Markov chain, further providing a semi-quantitative framework where it becomes possible to compute probabilities for the different trajectories. For large networks, however, such direct analyses become computationally untractable, given the exponential dimension of the graph. Exploiting the general modularity of biological systems, we have introduced the novel concept of asymptotic graph , computed as an interconnection of several asynchronous transition graphs and recovering all asymptotic behaviors of a large interconnected system from the behavior of its smaller modules. From a modeling point of view, the interconnection of networks is very useful to address for instance the interplay between known biological modules and to test different hypotheses on the nature of their mutual regulatory links. This paper develops two new features of this general methodology: a quantitative dimension is added to the asymptotic graph, through the computation of relative probabilities for each final attractor and a companion cross-graph is introduced to complement the method on a theoretical point of view.

  13. Intelligent machines in the twenty-first century: foundations of inference and inquiry.

    PubMed

    Knuth, Kevin H

    2003-12-15

    The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.

  14. Intelligent machines in the twenty-first century: foundations of inference and inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.

  15. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    NASA Astrophysics Data System (ADS)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  16. Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.

    PubMed

    Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad

    2017-12-19

    Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.

  17. Analysis of Polarizing Optical Systems for Digital Optical Computing with Symmetric Self Electrooptic Devices

    DTIC Science & Technology

    1991-03-31

    I AD-A232 768 I Annual Report Analysis of Polarizing Optical Systems for Digital Optical Computing with I ’ Symmetric Self Electrooptic Devices I To...TTU AND SuSiIU S. PUNDIN mUMBERS Polarizing Optical Systems for Digital Optical Computing with Symmetric Self Electrooptic Devices AFOSR-89-0542 C...UTION COO$ UNLIMITED 13. ABSTRACT (MAxnum00woUw Two architectural approaches have dominated the field of optical computing . The first appAch uses

  18. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks

    PubMed Central

    Mushthofa, Mushthofa; Torres, Gustavo; Van de Peer, Yves; Marchal, Kathleen; De Cock, Martine

    2014-01-01

    Motivation: Boolean network models are suitable to simulate GRNs in the absence of detailed kinetic information. However, reducing the biological reality implies making assumptions on how genes interact (interaction rules) and how their state is updated during the simulation (update scheme). The exact choice of the assumptions largely determines the outcome of the simulations. In most cases, however, the biologically correct assumptions are unknown. An ideal simulation thus implies testing different rules and schemes to determine those that best capture an observed biological phenomenon. This is not trivial because most current methods to simulate Boolean network models of GRNs and to compute their attractors impose specific assumptions that cannot be easily altered, as they are built into the system. Results: To allow for a more flexible simulation framework, we developed ASP-G. We show the correctness of ASP-G in simulating Boolean network models and obtaining attractors under different assumptions by successfully recapitulating the detection of attractors of previously published studies. We also provide an example of how performing simulation of network models under different settings help determine the assumptions under which a certain conclusion holds. The main added value of ASP-G is in its modularity and declarativity, making it more flexible and less error-prone than traditional approaches. The declarative nature of ASP-G comes at the expense of being slower than the more dedicated systems but still achieves a good efficiency with respect to computational time. Availability and implementation: The source code of ASP-G is available at http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Information_Musthofa_2014/asp-g.zip. Contact: Kathleen.Marchal@UGent.be or Martine.DeCock@UGent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028722

  19. To Boolean or Not To Boolean.

    ERIC Educational Resources Information Center

    Hildreth, Charles R.

    1983-01-01

    This editorial addresses the issue of whether or not to provide free-text, keyword/boolean search capabilities in the information retrieval mechanisms of online public access catalogs and discusses online catalogs developed prior to 1980--keyword searching, phrase searching, and precoordination and postcoordination. (EJS)

  20. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  1. Identifying a Probabilistic Boolean Threshold Network From Samples.

    PubMed

    Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya

    2018-04-01

    This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.

  2. On the Run-Time Optimization of the Boolean Logic of a Program.

    ERIC Educational Resources Information Center

    Cadolino, C.; Guazzo, M.

    1982-01-01

    Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…

  3. Boolean integral calculus for digital systems

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1985-01-01

    The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.

  4. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  5. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  6. Polynomial algebra of discrete models in systems biology.

    PubMed

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  7. A Comparison of Two Methods for Boolean Query Relevancy Feedback.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1984-01-01

    Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)

  8. Verification of VLSI designs

    NASA Technical Reports Server (NTRS)

    Windley, P. J.

    1991-01-01

    In this paper we explore the specification and verification of VLSI designs. The paper focuses on abstract specification and verification of functionality using mathematical logic as opposed to low-level boolean equivalence verification such as that done using BDD's and Model Checking. Specification and verification, sometimes called formal methods, is one tool for increasing computer dependability in the face of an exponentially increasing testing effort.

  9. An Analysis of Cryptographically Significant Boolean Functions With High Correlation Immunity by Reconfigurable Computer

    DTIC Science & Technology

    2010-12-01

    with high correlation immunity and then evaluate these functions for other desirable cryptographic features. C. METHOD The only known primary methods...out if not used) # ---------------------------------- # PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1...finding the fuction value for a //set u and for each value of v. end end

  10. Visualizing a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  11. Boolean Classes and Qualitative Inquiry. WCER Working Paper No. 2006-3

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Jackson, Kristi

    2006-01-01

    The prominent role of Boolean classes in qualitative data analysis software is viewed by some as an encroachment of logical positivism on qualitative research methodology. The authors articulate an embodiment perspective, in which Boolean classes are viewed as conceptual metaphors for apprehending and manipulating data, concepts, and categories in…

  12. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation.

    PubMed

    Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing

    2017-09-19

    The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.

  13. Information processing in dendrites I. Input pattern generalisation.

    PubMed

    Gurney, K N

    2001-10-01

    In this paper and its companion, we address the question as to whether there are any general principles underlying information processing in the dendritic trees of biological neurons. In order to address this question, we make two assumptions. First, the key architectural feature of dendrites responsible for many of their information processing abilities is the existence of independent sub-units performing local non-linear processing. Second, any general functional principles operate at a level of abstraction in which neurons are modelled by Boolean functions. To accommodate these assumptions, we therefore define a Boolean model neuron-the multi-cube unit (MCU)-which instantiates the notion of the discrete functional sub-unit. We then use this model unit to explore two aspects of neural functionality: generalisation (in this paper) and processing complexity (in its companion). Generalisation is dealt with from a geometric viewpoint and is quantified using a new metric-the set of order parameters. These parameters are computed for threshold logic units (TLUs), a class of random Boolean functions, and MCUs. Our interpretation of the order parameters is consistent with our knowledge of generalisation in TLUs and with the lack of generalisation in randomly chosen functions. Crucially, the order parameters for MCUs imply that these functions possess a range of generalisation behaviour. We argue that this supports the general thesis that dendrites facilitate input pattern generalisation despite any local non-linear processing within functionally isolated sub-units.

  14. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.

    PubMed

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2015-11-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.

  15. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata

    PubMed Central

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2016-01-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours’ values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level. PMID:27660398

  16. E-Referencer: Transforming Boolean OPACs to Web Search Engines.

    ERIC Educational Resources Information Center

    Khoo, Christopher S. G.; Poo, Danny C. C.; Toh, Teck-Kang; Hong, Glenn

    E-Referencer is an expert intermediary system for searching library online public access catalogs (OPACs) on the World Wide Web. It is implemented as a proxy server that mediates the interaction between the user and Boolean OPACs. It transforms a Boolean OPAC into a retrieval system with many of the search capabilities of Web search engines.…

  17. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the

  18. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm Using Probabilistic Boolean Logic Applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the

  19. Generalized Boolean Functions as Combiners

    DTIC Science & Technology

    2017-06-01

    unable to find an analytically way of calculating a number for the complexity. Given the data we presented, there is not a obvious way to predict what...including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...backbone of many computer functions. Cryptography drives online commerce and allows privileged information safe transit between two parties as well as many

  20. Nonlinear dynamics based digital logic and circuits.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.

  1. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  2. Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.

    PubMed

    Mori, Fumito; Mochizuki, Atsushi

    2017-07-14

    Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.

  3. SETS. Set Equation Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrell, R.B.

    1992-01-13

    SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less

  4. Monotone Boolean approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less

  5. Evolution-Inspired Computational Design of Symmetric Proteins.

    PubMed

    Voet, Arnout R D; Simoncini, David; Tame, Jeremy R H; Zhang, Kam Y J

    2017-01-01

    Monomeric proteins with a number of identical repeats creating symmetrical structures are potentially very valuable building blocks with a variety of bionanotechnological applications. As such proteins do not occur naturally, the emerging field of computational protein design serves as an excellent tool to create them from nonsymmetrical templates. Existing pseudo-symmetrical proteins are believed to have evolved from oligomeric precursors by duplication and fusion of identical repeats. Here we describe a computational workflow to reverse-engineer this evolutionary process in order to create stable proteins consisting of identical sequence repeats.

  6. Computing with motile bio-agents

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Burrage, Kevin; Nicolau, Dan V.

    2007-12-01

    We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.

  7. On the inherent competition between valid and spurious inductive inferences in Boolean data

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.

  8. Specialty functions singularity mechanics problems

    NASA Technical Reports Server (NTRS)

    Sarigul, Nesrin

    1989-01-01

    The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.

  9. An Improvement to a Multi-Client Searchable Encryption Scheme for Boolean Queries.

    PubMed

    Jiang, Han; Li, Xue; Xu, Qiuliang

    2016-12-01

    The migration of e-health systems to the cloud computing brings huge benefits, as same as some security risks. Searchable Encryption(SE) is a cryptography encryption scheme that can protect the confidentiality of data and utilize the encrypted data at the same time. The SE scheme proposed by Cash et al. in Crypto2013 and its follow-up work in CCS2013 are most practical SE Scheme that support Boolean queries at present. In their scheme, the data user has to generate the search tokens by the counter number one by one and interact with server repeatedly, until he meets the correct one, or goes through plenty of tokens to illustrate that there is no search result. In this paper, we make an improvement to their scheme. We allow server to send back some information and help the user to generate exact search token in the search phase. In our scheme, there are only two round interaction between server and user, and the search token has [Formula: see text] elements, where n is the keywords number in query expression, and [Formula: see text] is the minimum documents number that contains one of keyword in query expression, and the computation cost of server is [Formula: see text] modular exponentiation operation.

  10. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.

    PubMed

    Park, Inho; Lee, Kwang H; Lee, Doheon

    2010-06-15

    Gene set analysis has become an important tool for the functional interpretation of high-throughput gene expression datasets. Moreover, pattern analyses based on inferred gene set activities of individual samples have shown the ability to identify more robust disease signatures than individual gene-based pattern analyses. Although a number of approaches have been proposed for gene set-based pattern analysis, the combinatorial influence of deregulated gene sets on disease phenotype classification has not been studied sufficiently. We propose a new approach for inferring combinatorial Boolean rules of gene sets for a better understanding of cancer transcriptome and cancer classification. To reduce the search space of the possible Boolean rules, we identify small groups of gene sets that synergistically contribute to the classification of samples into their corresponding phenotypic groups (such as normal and cancer). We then measure the significance of the candidate Boolean rules derived from each group of gene sets; the level of significance is based on the class entropy of the samples selected in accordance with the rules. By applying the present approach to publicly available prostate cancer datasets, we identified 72 significant Boolean rules. Finally, we discuss several identified Boolean rules, such as the rule of glutathione metabolism (down) and prostaglandin synthesis regulation (down), which are consistent with known prostate cancer biology. Scripts written in Python and R are available at http://biosoft.kaist.ac.kr/~ihpark/. The refined gene sets and the full list of the identified Boolean rules are provided in the Supplementary Material. Supplementary data are available at Bioinformatics online.

  11. Solving satisfiability problems using a novel microarray-based DNA computer.

    PubMed

    Lin, Che-Hsin; Cheng, Hsiao-Ping; Yang, Chang-Biau; Yang, Chia-Ning

    2007-01-01

    An algorithm based on a modified sticker model accompanied with an advanced MEMS-based microarray technology is demonstrated to solve SAT problem, which has long served as a benchmark in DNA computing. Unlike conventional DNA computing algorithms needing an initial data pool to cover correct and incorrect answers and further executing a series of separation procedures to destroy the unwanted ones, we built solutions in parts to satisfy one clause in one step, and eventually solve the entire Boolean formula through steps. No time-consuming sample preparation procedures and delicate sample applying equipment were required for the computing process. Moreover, experimental results show the bound DNA sequences can sustain the chemical solutions during computing processes such that the proposed method shall be useful in dealing with large-scale problems.

  12. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    NASA Astrophysics Data System (ADS)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.

  13. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  14. The symmetric MSD encoder for one-step adder of ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  15. Co Modeling and Co Synthesis of Safety Critical Multi threaded Embedded Software for Multi Core Embedded Platforms

    DTIC Science & Technology

    2017-03-20

    computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing   data sources, gathering and

  16. A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood

    PubMed Central

    Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan

    2015-01-01

    Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500

  17. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    PubMed

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-08-29

    Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates stationary distributions. Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular, transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.

  18. Non-Boolean computing with nanomagnets for computer vision applications

    NASA Astrophysics Data System (ADS)

    Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  19. Theory and calculus of cubical complexes

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1973-01-01

    Combination switching networks with multiple outputs may be represented by Boolean functions. Report has been prepared which describes derivation and use of extraction algorithm that may be adapted to simplification of such simultaneous Boolean functions.

  20. Dynamic Boolean Mathematics

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen

    2016-01-01

    Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…

  1. Total Parenteral Nutrition

    MedlinePlus

    ... Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy) at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess ...

  2. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  3. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  4. Selective monitoring

    NASA Astrophysics Data System (ADS)

    Homem-de-Mello, Luiz S.

    1992-04-01

    While in NASA's earlier space missions such as Voyager the number of sensors was in the hundreds, future platforms such as the Space Station Freedom will have tens of thousands sensors. For these planned missions it will be impossible to use the comprehensive monitoring strategy that was used in the past in which human operators monitored all sensors all the time. A selective monitoring strategy must be substituted for the current comprehensive strategy. This selective monitoring strategy uses computer tools to preprocess the incoming data and direct the operators' attention to the most critical parts of the physical system at any given time. There are several techniques that can be used to preprocess the incoming information. This paper presents an approach to using diagnostic reasoning techniques to preprocess the sensor data and detect which parts of the physical system require more attention because components have failed or are most likely to have failed. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that assertions can be made from instantaneous measurements. And the system must be such that changes are slow enough to allow the computation.

  5. Performance Benchmark for a Prismatic Flow Solver

    DTIC Science & Technology

    2007-03-26

    Gauss- Seidel (LU-SGS) implicit method is used for time integration to reduce the computational time. A one-equation turbulence model by Goldberg and...numerical flux computations. The Lower-Upper-Symmetric Gauss- Seidel (LU-SGS) implicit method [1] is used for time integration to reduce the...Sharov, D. and Nakahashi, K., “Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss- Seidel Computations,” AIAA Journal, Vol. 36

  6. Jimena: efficient computing and system state identification for genetic regulatory networks.

    PubMed

    Karl, Stefan; Dandekar, Thomas

    2013-10-11

    Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.

  7. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  8. Optical Neural Classification Of Binary Patterns

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.; Little, Gordon R.

    1988-05-01

    Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.

  9. A genetic code Boolean structure. II. The genetic information system as a Boolean information system.

    PubMed

    Sanchez, Robersy; Grau, Ricardo

    2005-09-01

    A Boolean structure of the genetic code where Boolean deductions have biological and physicochemical meanings was discussed in a previous paper. Now, from these Boolean deductions we propose to define the value of amino acid information in order to consider the genetic information system as a communication system and to introduce the semantic content of information ignored by the conventional information theory. In this proposal, the value of amino acid information is proportional to the molecular weight of amino acids with a proportional constant of about 1.96 x 10(25) bits per kg. In addition to this, for the experimental estimations of the minimum energy dissipation in genetic logic operations, we present two postulates: (1) the energy Ei (i=1,2,...,20) of amino acids in the messages conveyed by proteins is proportional to the value of information, and (2) amino acids are distributed according to their energy Ei so the amino acid population in proteins follows a Boltzmann distribution. Specifically, in the genetic message carried by the DNA from the genomes of living organisms, we found that the minimum energy dissipation in genetic logic operations was close to kTLn(2) joules per bit.

  10. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    PubMed

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  11. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    NASA Astrophysics Data System (ADS)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  12. Volumetric T-spline Construction Using Boolean Operations

    DTIC Science & Technology

    2013-07-01

    SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF

  13. Computational design of a self-assembling symmetrical β-propeller protein.

    PubMed

    Voet, Arnout R D; Noguchi, Hiroki; Addy, Christine; Simoncini, David; Terada, Daiki; Unzai, Satoru; Park, Sam-Yong; Zhang, Kam Y J; Tame, Jeremy R H

    2014-10-21

    The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.

  14. The logical primitives of thought: Empirical foundations for compositional cognitive models.

    PubMed

    Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D

    2016-07-01

    The notion of a compositional language of thought (LOT) has been central in computational accounts of cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015). Recent modeling work shows how statistical inferences over compositionally structured hypothesis spaces might explain learning and development across a variety of domains. However, the primitive components of such representations are typically assumed a priori by modelers and theoreticians rather than determined empirically. We show how different sets of LOT primitives, embedded in a psychologically realistic approximate Bayesian inference framework, systematically predict distinct learning curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of large-scale concept learning experiments that can determine the most likely primitives for psychological concepts involving Boolean connectives and quantification. Subjects' inferences are most consistent with a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification. Our results more generally show how specific LOT theories can be distinguished empirically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Boolean networks with veto functions

    NASA Astrophysics Data System (ADS)

    Ebadi, Haleh; Klemm, Konstantin

    2014-08-01

    Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., Proc. Natl. Acad. Sci. USA 105, 1913 (2008), 10.1073/pnas.0705088105], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Li et al., Proc. Natl. Acad. Sci. USA 101, 4781 (2004), 10.1073/pnas.0305937101; Davidich et al., PLoS ONE 3, e1672 (2008), 10.1371/journal.pone.0001672], no or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.

  16. Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing.

    PubMed

    Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao

    2017-04-01

    Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.

  17. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  18. Microelectromechanical reprogrammable logic device.

    PubMed

    Hafiz, M A A; Kosuru, L; Younis, M I

    2016-03-29

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  19. Analog Computation by DNA Strand Displacement Circuits.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2016-08-19

    DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture.

  20. Microelectromechanical reprogrammable logic device

    PubMed Central

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  1. Using Volunteer Computing to Study Some Features of Diagonal Latin Squares

    NASA Astrophysics Data System (ADS)

    Vatutin, Eduard; Zaikin, Oleg; Kochemazov, Stepan; Valyaev, Sergey

    2017-12-01

    In this research, the study concerns around several features of diagonal Latin squares (DLSs) of small order. Authors of the study suggest an algorithm for computing minimal and maximal numbers of transversals of DLSs. According to this algorithm, all DLSs of a particular order are generated, and for each square all its transversals and diagonal transversals are constructed. The algorithm was implemented and applied to DLSs of order at most 7 on a personal computer. The experiment for order 8 was performed in the volunteer computing project Gerasim@home. In addition, the problem of finding pairs of orthogonal DLSs of order 10 was considered and reduced to Boolean satisfiability problem. The obtained problem turned out to be very hard, therefore it was decomposed into a family of subproblems. In order to solve the problem, the volunteer computing project SAT@home was used. As a result, several dozen pairs of described kind were found.

  2. A Branch-and-Bound Algorithm for Fitting Anti-Robinson Structures to Symmetric Dissimilarity Matrices.

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2002-01-01

    Developed a branch-and-bound algorithm that can be used to seriate a symmetric dissimilarity matrix by identifying a reordering of rows and columns of the matrix optimizing an anti-Robinson criterion. Computational results suggest that with respect to computational efficiency, the approach is generally competitive with dynamic programming. (SLD)

  3. A transition calculus for Boolean functions. [logic circuit analysis

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.; Bennett, A. W.

    1974-01-01

    A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.

  4. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  5. Playing Tic-Tac-Toe with a Sugar-Based Molecular Computer.

    PubMed

    Elstner, M; Schiller, A

    2015-08-24

    Today, molecules can perform Boolean operations and circuits at a level of higher complexity. However, concatenation of logic gates and inhomogeneous inputs and outputs are still challenging tasks. Novel approaches for logic gate integration are possible when chemical programming and software programming are combined. Here it is shown that a molecular finite automaton based on the concatenated implication function (IMP) of a fluorescent two-component sugar probe via a wiring algorithm is able to play tic-tac-toe.

  6. Cryptographic Properties of Monotone Boolean Functions

    DTIC Science & Technology

    2016-01-01

    Algebraic attacks on stream ciphers with linear feedback, in: Advances in Cryptology (Eurocrypt 2003), Lecture Notes in Comput. Sci. 2656, Springer, Berlin...spectrum, algebraic immu- nity MSC 2010: 06E30, 94C10, 94A60, 11T71, 05E99 || Communicated by: Carlo Blundo 1 Introduction Let F 2 be the prime eld of...7]. For the reader’s convenience, we recall some basic notions below. Any f ∈ Bn can be expressed in algebraic normal form (ANF) as f(x 1 , x 2

  7. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    DOE PAGES

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...

    2016-07-05

    Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.

  8. Inferring Boolean network states from partial information

    PubMed Central

    2013-01-01

    Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954

  9. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  10. Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.

    PubMed

    Yilmaz, Ozgur

    2015-12-01

    This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?

  11. Quantum Vertex Model for Reversible Classical Computing

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  12. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  13. Development of Boolean calculus and its applications. [digital systems design

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  14. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  15. Compact universal logic gates realized using quantization of current in nanodevices.

    PubMed

    Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua

    2007-12-12

    This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

  16. Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility

    NASA Astrophysics Data System (ADS)

    Zertuche, Federico

    2014-05-01

    In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0

  17. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  18. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  19. On Emulation of Flueric Devices in Excitable Chemical Medium.

    PubMed

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  20. Toxicological Tipping Points: Learning Boolean Networks from High-Content Imaging Data. (BOSC meeting)

    EPA Science Inventory

    The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...

  1. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  2. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  3. Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Provazza, Justin; Coker, David F.

    2018-05-01

    The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.

  4. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  5. Construction of a fuzzy and Boolean logic gates based on DNA.

    PubMed

    Zadegan, Reza M; Jepsen, Mette D E; Hildebrandt, Lasse L; Birkedal, Victoria; Kjems, Jørgen

    2015-04-17

    Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA-based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA-based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phased-mission system analysis using Boolean algebraic methods

    NASA Technical Reports Server (NTRS)

    Somani, Arun K.; Trivedi, Kishor S.

    1993-01-01

    Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.

  7. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    NASA Astrophysics Data System (ADS)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  8. Rubbery computing

    NASA Astrophysics Data System (ADS)

    Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.

    2017-04-01

    Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.

  9. Discrete Dynamics Lab

    NASA Astrophysics Data System (ADS)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  10. Fast and Exact Continuous Collision Detection with Bernstein Sign Classification

    PubMed Central

    Tang, Min; Tong, Ruofeng; Wang, Zhendong; Manocha, Dinesh

    2014-01-01

    We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits. PMID:25568589

  11. Evolution of canalizing Boolean networks

    NASA Astrophysics Data System (ADS)

    Szejka, A.; Drossel, B.

    2007-04-01

    Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.

  12. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  13. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  14. Supervised Learning of Two-Layer Perceptron under the Existence of External Noise — Learning Curve of Boolean Functions of Two Variables in Tree-Like Architecture —

    NASA Astrophysics Data System (ADS)

    Uezu, Tatsuya; Kiyokawa, Shuji

    2016-06-01

    We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α C)bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.

  15. User Practices in Keyword and Boolean Searching on an Online Public Access Catalog.

    ERIC Educational Resources Information Center

    Ensor, Pat

    1992-01-01

    Discussion of keyword and Boolean searching techniques in online public access catalogs (OPACs) focuses on a study conducted at Indiana State University that examined users' attitudes toward searching on NOTIS (Northwestern Online Total Integrated System). Relevant literature is reviewed, and implications for library instruction are suggested. (17…

  16. Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Winett, Sheila G.

    1990-01-01

    Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…

  17. A Construction of Boolean Functions with Good Cryptographic Properties

    DTIC Science & Technology

    2014-01-01

    be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum

  18. Mechanics of Constriction during Cell Division: A Variational Approach

    PubMed Central

    Almendro-Vedia, Victor G.; Monroy, Francisco; Cao, Francisco J.

    2013-01-01

    During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of , we calculate constriction forces in the range . The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of , thus evidencing that cells need a robust mechanism to stabilize constriction at midcell. PMID:23990888

  19. Generalization and capacity of extensively large two-layered perceptrons.

    PubMed

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2002-09-01

    The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.

  20. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  1. Affine Equivalence of Quartic Monomial Rotation Symmetric Boolean Functions in Prime Power Dimension

    DTIC Science & Technology

    2015-01-27

    the contribution to E(p`)(·) in this case is E(p`)1,5,7,11 ←− 1 2 (p`−1 − 1)(p` − 2p`−1 − 1) 2 + 1 3 (p`−1 − 1)(p`−1 − 2) 2 = (p`−1 − 1)(3p` − 4p `−1...remaining number of pairs (of class cardinality 8) is exactly (p`−s−1 − 1)(p`−s−1 − 2)− (p`−s−1 − 1) = p2`−2s−2 − 4p `−s−1 + 3. Thus, the contribution to E(p...of class C is E(p`)1,5,7,11 ←− `−2∑ s=1 ( p`−s−1 − 1 2 + p2`−2s−2 − 4p `−s−1 + 3 8 ) = `−2∑ s=1 p2`−2s−2 − 1 8 = p2`−2 − 1 8(p2 − 1) − `− 1 8

  2. A GPU-based symmetric non-rigid image registration method in human lung.

    PubMed

    Haghighi, Babak; D Ellingwood, Nathan; Yin, Youbing; Hoffman, Eric A; Lin, Ching-Long

    2018-03-01

    Quantitative computed tomography (QCT) of the lungs plays an increasing role in identifying sub-phenotypes of pathologies previously lumped into broad categories such as chronic obstructive pulmonary disease and asthma. Methods for image matching and linking multiple lung volumes have proven useful in linking structure to function and in the identification of regional longitudinal changes. Here, we seek to improve the accuracy of image matching via the use of a symmetric multi-level non-rigid registration employing an inverse consistent (IC) transformation whereby images are registered both in the forward and reverse directions. To develop the symmetric method, two similarity measures, the sum of squared intensity difference (SSD) and the sum of squared tissue volume difference (SSTVD), were used. The method is based on a novel generic mathematical framework to include forward and backward transformations, simultaneously, eliminating the need to compute the inverse transformation. Two implementations were used to assess the proposed method: a two-dimensional (2-D) implementation using synthetic examples with SSD, and a multi-core CPU and graphics processing unit (GPU) implementation with SSTVD for three-dimensional (3-D) human lung datasets (six normal adults studied at total lung capacity (TLC) and functional residual capacity (FRC)). Success was evaluated in terms of the IC transformation consistency serving to link TLC to FRC. 2-D registration on synthetic images, using both symmetric and non-symmetric SSD methods, and comparison of displacement fields showed that the symmetric method gave a symmetrical grid shape and reduced IC errors, with the mean values of IC errors decreased by 37%. Results for both symmetric and non-symmetric transformations of human datasets showed that the symmetric method gave better results for IC errors in all cases, with mean values of IC errors for the symmetric method lower than the non-symmetric methods using both SSD and SSTVD. The GPU version demonstrated an average of 43 times speedup and ~5.2 times speedup over the single-threaded and 12-threaded CPU versions, respectively. Run times with the GPU were as fast as 2 min. The symmetric method improved the inverse consistency, aiding the use of image registration in the QCT-based evaluation of the lung.

  3. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  4. Interpolation of the Extended Boolean Retrieval Model.

    ERIC Educational Resources Information Center

    Zanger, Daniel Z.

    2002-01-01

    Presents an interpolation theorem for an extended Boolean information retrieval model. Results show that whenever two or more documents are similarly ranked at any two points for a query containing exactly two terms, then they are similarly ranked at all points in between; and that results can fail for queries with more than two terms. (Author/LRW)

  5. The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Tomaszewski, Robert

    2016-01-01

    Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…

  6. A genetic programming approach for Burkholderia Pseudomallei diagnostic pattern discovery

    PubMed Central

    Yang, Zheng Rong; Lertmemongkolchai, Ganjana; Tan, Gladys; Felgner, Philip L.; Titball, Richard

    2009-01-01

    Motivation: Finding diagnostic patterns for fighting diseases like Burkholderia pseudomallei using biomarkers involves two key issues. First, exhausting all subsets of testable biomarkers (antigens in this context) to find a best one is computationally infeasible. Therefore, a proper optimization approach like evolutionary computation should be investigated. Second, a properly selected function of the antigens as the diagnostic pattern which is commonly unknown is a key to the diagnostic accuracy and the diagnostic effectiveness in clinical use. Results: A conversion function is proposed to convert serum tests of antigens on patients to binary values based on which Boolean functions as the diagnostic patterns are developed. A genetic programming approach is designed for optimizing the diagnostic patterns in terms of their accuracy and effectiveness. During optimization, it is aimed to maximize the coverage (the rate of positive response to antigens) in the infected patients and minimize the coverage in the non-infected patients while maintaining the fewest number of testable antigens used in the Boolean functions as possible. The final coverage in the infected patients is 96.55% using 17 of 215 (7.4%) antigens with zero coverage in the non-infected patients. Among these 17 antigens, BPSL2697 is the most frequently selected one for the diagnosis of Burkholderia Pseudomallei. The approach has been evaluated using both the cross-validation and the Jack–knife simulation methods with the prediction accuracy as 93% and 92%, respectively. A novel approach is also proposed in this study to evaluate a model with binary data using ROC analysis. Contact: z.r.yang@ex.ac.uk PMID:19561021

  7. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03892a Click here for additional data file.

    PubMed Central

    Lilienthal, S.; Klein, M.; Orbach, R.; Willner, I.; Remacle, F.

    2017-01-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series. PMID:28507669

  8. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  9. Symmetric quantum fully homomorphic encryption with perfect security

    NASA Astrophysics Data System (ADS)

    Liang, Min

    2013-12-01

    Suppose some data have been encrypted, can you compute with the data without decrypting them? This problem has been studied as homomorphic encryption and blind computing. We consider this problem in the context of quantum information processing, and present the definitions of quantum homomorphic encryption (QHE) and quantum fully homomorphic encryption (QFHE). Then, based on quantum one-time pad (QOTP), we construct a symmetric QFHE scheme, where the evaluate algorithm depends on the secret key. This scheme permits any unitary transformation on any -qubit state that has been encrypted. Compared with classical homomorphic encryption, the QFHE scheme has perfect security. Finally, we also construct a QOTP-based symmetric QHE scheme, where the evaluate algorithm is independent of the secret key.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei

    Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution thatmore » can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.« less

  11. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications

    PubMed Central

    Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh

    2014-01-01

    Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423

  12. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  13. Data Auditor: Analyzing Data Quality Using Pattern Tableaux

    NASA Astrophysics Data System (ADS)

    Srivastava, Divesh

    Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.

  14. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  15. The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Hajarian, Masoud

    2012-08-01

    A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.

  16. Parallel solution of the symmetric tridiagonal eigenproblem. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1989-10-01

    This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less

  17. Parallel solution of the symmetric tridiagonal eigenproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1989-01-01

    This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed memory MIMD multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues, and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-cube multiprocessor reveal that Cuppen's method is the most accuratemore » approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effects of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptations of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less

  18. Designing Networks that are Capable of Self-Healing and Adapting

    DTIC Science & Technology

    2017-04-01

    from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol

  19. Equilibrium and nonequilibrium properties of Boolean decision problems on scale-free graphs with competing interactions with external biases

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.

    2013-03-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.

  20. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  1. Higher rank ABJM Wilson loops from matrix models

    DOE PAGES

    Cookmeyer, Jonathan; Liu, James T.; Pando Zayas, Leopoldo A.

    2016-11-21

    We compute the vacuum expectation values of 1/6 supersymmetric Wilson loops in higher dimensional representations of the gauge group in ABJM theory. We then present results for the m-symmetric and m-antisymmetric representations by exploiting standard matrix model techniques. At leading order, in the saddle point approximation, our expressions reproduce holographic results from both D6 and D2 branes corresponding to the antisymmetric and symmetric representations, respectively. We also compute 1/N corrections to the leading saddle point results.

  2. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less

  4. Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2009-03-01

    Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.

  5. Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Huang, Ching-Yu

    2017-09-01

    Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.

  6. Majority logic gate for 3D magnetic computing.

    PubMed

    Eichwald, Irina; Breitkreutz, Stephan; Ziemys, Grazvydas; Csaba, György; Porod, Wolfgang; Becherer, Markus

    2014-08-22

    For decades now, microelectronic circuits have been exclusively built from transistors. An alternative way is to use nano-scaled magnets for the realization of digital circuits. This technology, known as nanomagnetic logic (NML), may offer significant improvements in terms of power consumption and integration densities. Further advantages of NML are: non-volatility, radiation hardness, and operation at room temperature. Recent research focuses on the three-dimensional (3D) integration of nanomagnets. Here we show, for the first time, a 3D programmable magnetic logic gate. Its computing operation is based on physically field-interacting nanometer-scaled magnets arranged in a 3D manner. The magnets possess a bistable magnetization state representing the Boolean logic states '0' and '1.' Magneto-optical and magnetic force microscopy measurements prove the correct operation of the gate over many computing cycles. Furthermore, micromagnetic simulations confirm the correct functionality of the gate even for a size in the nanometer-domain. The presented device demonstrates the potential of NML for three-dimensional digital computing, enabling the highest integration densities.

  7. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.

    PubMed

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent

    2016-08-01

    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  8. Affine Kac-Moody symmetric spaces related with A{sub 1}{sup (1)}, A{sub 2}{sup (1)}, A{sub 2}{sup (2)}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  9. Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior

    PubMed Central

    Kochemazov, Stepan; Semenov, Alexander

    2014-01-01

    In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612

  10. Small-Noise Analysis and Symmetrization of Implicit Monte Carlo Samplers

    DOE PAGES

    Goodman, Jonathan; Lin, Kevin K.; Morzfeld, Matthias

    2015-07-06

    Implicit samplers are algorithms for producing independent, weighted samples from multivariate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algorithms that leads to improved implicit sampling schemes at a relatively small additional cost. Here, computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems.

  11. A computer program for calculating symmetrical aerodynamic characteristics and lateral-directional stability derivatives of wing-body combinations with blowing jets

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Mehrotra, S. C.; Fox, C. H., Jr.

    1978-01-01

    The necessary information for using a computer program to calculate the aerodynamic characteristics under symmetrical flight conditions and the lateral-directional stability derivatives of wing-body combinations with upper-surface-blowing (USB) or over-wing-blowing (OWB) jets are described. The following new features were added to the program: (1) a fuselage of arbitrary body of revolution has been included. The effect of wing-body interference can now be investigated, and (2) all nine lateral-directional stability derivatives can be calculated. The program is written in FORTRAN language and runs on CDC Cyber 175 and Honeywell 66/60 computers.

  12. Process-driven inference of biological network structure: feasibility, minimality, and multiplicity

    NASA Astrophysics Data System (ADS)

    Zeng, Chen

    2012-02-01

    For a given dynamic process, identifying the putative interaction networks to achieve it is the inference problem. In this talk, we address the computational complexity of inference problem in the context of Boolean networks under dominant inhibition condition. The first is a proof that the feasibility problem (is there a network that explains the dynamics?) can be solved in polynomial-time. Second, while the minimality problem (what is the smallest network that explains the dynamics?) is shown to be NP-hard, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Third, the theoretical framework also leads to a fast polynomial-time heuristic to estimate the number of network solutions with reasonable accuracy. We will apply these approaches to two simplified Boolean network models for the cell cycle process of budding yeast (Li 2004) and fission yeast (Davidich 2008). Our results demonstrate that each of these networks contains a giant backbone motif spanning all the network nodes that provides the desired main functionality, while the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. Moreover, we show that the bioprocesses of these two cell cycle models differ considerably from a typically generated process and are intrinsically cascade-like.

  13. Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs

    NASA Technical Reports Server (NTRS)

    Raimondi, Franco; Lomunscio, Alessio

    2004-01-01

    We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.

  14. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    PubMed

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  15. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.

  16. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    DTIC Science & Technology

    2017-01-01

    unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy is a powerful technique for...FLEXIBLE SYMMETRIC TOP ROTOR MODEL 1. INTRODUCTION Nuclear magnetic resonance (NMR) spectroscopy is a tremendously powerful technique for...application of NMR spectroscopy concerns the property of molecular motion, which is related to many physical, and even biological, functions of molecules in

  17. Observability of Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei

    2017-04-01

    Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.

  18. Boolean network representation of contagion dynamics during a financial crisis

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  19. Reprogrammable logic in memristive crossbar for in-memory computing

    NASA Astrophysics Data System (ADS)

    Cheng, Long; Zhang, Mei-Yun; Li, Yi; Zhou, Ya-Xiong; Wang, Zhuo-Rui; Hu, Si-Yu; Long, Shi-Bing; Liu, Ming; Miao, Xiang-Shui

    2017-12-01

    Memristive stateful logic has emerged as a promising next-generation in-memory computing paradigm to address escalating computing-performance pressures in traditional von Neumann architecture. Here, we present a nonvolatile reprogrammable logic method that can process data between different rows and columns in a memristive crossbar array based on material implication (IMP) logic. Arbitrary Boolean logic can be executed with a reprogrammable cell containing four memristors in a crossbar array. In the fabricated Ti/HfO2/W memristive array, some fundamental functions, such as universal NAND logic and data transfer, were experimentally implemented. Moreover, using eight memristors in a 2  ×  4 array, a one-bit full adder was theoretically designed and verified by simulation to exhibit the feasibility of our method to accomplish complex computing tasks. In addition, some critical logic-related performances were further discussed, such as the flexibility of data processing, cascading problem and bit error rate. Such a method could be a step forward in developing IMP-based memristive nonvolatile logic for large-scale in-memory computing architecture.

  20. Discrete interference modeling via boolean algebra.

    PubMed

    Beckhoff, Gerhard

    2011-01-01

    Two types of boolean functions are considered, the locus function of n variables, and the interval function of ν = n - 1 variables. A 1-1 mapping is given that takes elements (cells) of the interval function to antidual pairs of elements in the locus function, and vice versa. A set of ν binary codewords representing the intervals are defined and used to generate the codewords of all genomic regions. Next a diallelic three-point system is reviewed in the light of boolean functions, which leads to redefining complete interference by a logic function. Together with the upper bound of noninterference already defined by a boolean function, it confines the region of interference. Extensions of these two functions to any finite number of ν are straightforward, but have been also made in terms of variables taken from the inclusion-exclusion principle (expressing "at least" and "exactly equal to" a decimal integer). Two coefficients of coincidence for systems with more than three loci are defined and discussed, one using the average of several individual coefficients and the other taking as coefficient a real number between zero and one. Finally, by way of a malfunction of the mod-2 addition, it is shown that a four-point system may produce two different functions, one of which exhibiting loss of a class of odd recombinants.

  1. Boolean decision problems with competing interactions on scale-free networks: Equilibrium and nonequilibrium behavior in an external bias

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.

    2014-02-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.

  2. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  3. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  4. Applications of multiple-constraint matrix updates to the optimal control of large structures

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Walcott, B. L.

    1992-01-01

    Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.

  5. New algorithms to compute the nearness symmetric solution of the matrix equation.

    PubMed

    Peng, Zhen-Yun; Fang, Yang-Zhi; Xiao, Xian-Wei; Du, Dan-Dan

    2016-01-01

    In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).

  6. Toward Question-Asking Machines: The Logic of Questions and the Inquiry Calculus

    NASA Technical Reports Server (NTRS)

    Knuth,Kevin H.

    2005-01-01

    For over a century, the study of logic has focused on the algebra of logical statements. This work, first performed by George Boole, has led to the development of modern computers, and was shown by Richard T. Cox to be the foundation of Bayesian inference. Meanwhile the logic of questions has been much neglected. For our computing machines to be truly intelligent, they need to be able to ask relevant questions. In this paper I will show how the Boolean lattice of logical statements gives rise to the free distributive lattice of questions thus defining their algebra. Furthermore, there exists a quantity analogous to probability, called relevance, which quantifies the degree to which one question answers another. I will show that relevance is not only a natural generalization of information theory, but also forms its foundation.

  7. Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity.

    PubMed

    Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.

  8. Exact Algorithms for Output Encoding, State Assignment and Four-Level Boolean Minimization

    DTIC Science & Technology

    1989-10-01

    APPROVED FOR PUBLIC DISTRIBUTION • DTIC MASSACHUSETTS INTITUTE OF TECHNOLOGY M VLSI PUBLICATIONSJAN 17 1990 VLSI Memo No. 89-569 JN. 9October 1989...nunijize large funclions exacly within reasonable amocunt. of CPt targeting twro-level logic imnplemientations involve finding ap- time. However, thle ,, m ...0(NV!) m ~iimizations . n5 10 The inptut encoding problemt can be exactly solved using mrultiple-valued Boolean nimuization. We present an exact (a) (b

  9. A single-layer platform for Boolean logic and arithmetic through DNA excision in mammalian cells

    PubMed Central

    Weinberg, Benjamin H.; Hang Pham, N. T.; Caraballo, Leidy D.; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W.

    2017-01-01

    Genetic circuits engineered for mammalian cells often require extensive fine-tuning to perform their intended functions. To overcome this problem, we present a generalizable biocomputing platform that can engineer genetic circuits which function in human cells with minimal optimization. We used our Boolean Logic and Arithmetic through DNA Excision (BLADE) platform to build more than 100 multi-input-multi-output circuits. We devised a quantitative metric to evaluate the performance of the circuits in human embryonic kidney and Jurkat T cells. Of 113 circuits analysed, 109 functioned (96.5%) with the correct specified behavior without any optimization. We used our platform to build a three-input, two-output Full Adder and six-input, one-output Boolean Logic Look Up Table. We also used BLADE to design circuits with temporal small molecule-mediated inducible control and circuits that incorporate CRISPR/Cas9 to regulate endogenous mammalian genes. PMID:28346402

  10. Surface-confined assemblies and polymers for molecular logic.

    PubMed

    de Ruiter, Graham; van der Boom, Milko E

    2011-08-16

    Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic. We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account. © 2011 American Chemical Society

  11. Two- and three-input TALE-based AND logic computation in embryonic stem cells.

    PubMed

    Lienert, Florian; Torella, Joseph P; Chen, Jan-Hung; Norsworthy, Michael; Richardson, Ryan R; Silver, Pamela A

    2013-11-01

    Biological computing circuits can enhance our ability to control cellular functions and have potential applications in tissue engineering and medical treatments. Transcriptional activator-like effectors (TALEs) represent attractive components of synthetic gene regulatory circuits, as they can be designed de novo to target a given DNA sequence. We here demonstrate that TALEs can perform Boolean logic computation in mammalian cells. Using a split-intein protein-splicing strategy, we show that a functional TALE can be reconstituted from two inactive parts, thus generating two-input AND logic computation. We further demonstrate three-piece intein splicing in mammalian cells and use it to perform three-input AND computation. Using methods for random as well as targeted insertion of these relatively large genetic circuits, we show that TALE-based logic circuits are functional when integrated into the genome of mouse embryonic stem cells. Comparing construct variants in the same genomic context, we modulated the strength of the TALE-responsive promoter to improve the output of these circuits. Our work establishes split TALEs as a tool for building logic computation with the potential of controlling expression of endogenous genes or transgenes in response to a combination of cellular signals.

  12. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    NASA Astrophysics Data System (ADS)

    Reis, Marcelo S.; Estrela, Gustavo; Ferreira, Carlos Eduardo; Barrera, Junior

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and cost functions for benchmarking experiments. We also provide illustrative examples, in which featsel outperforms the popular Weka workbench in feature selection procedures on data sets from the UCI Machine Learning Repository.

  13. Study on the tumor-induced angiogenesis using mathematical models.

    PubMed

    Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph

    2018-01-01

    We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  15. A Module Language for Typing by Contracts

    NASA Technical Reports Server (NTRS)

    Glouche, Yann; Talpin, Jean-Pierre; LeGuernic, Paul; Gautier, Thierry

    2009-01-01

    Assume-guarantee reasoning is a popular and expressive paradigm for modular and compositional specification of programs. It is becoming a fundamental concept in some computer-aided design tools for embedded system design. In this paper, we elaborate foundations for contract-based embedded system design by proposing a general-purpose module language based on a Boolean algebra allowing to define contracts. In this framework, contracts are used to negotiate the correctness of assumptions made on the definition of a component at the point where it is used and provides guarantees to its environment. We illustrate this presentation with the specification of a simplified 4-stroke engine model.

  16. DSGRN: Examining the Dynamics of Families of Logical Models.

    PubMed

    Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin

    2018-01-01

    We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.

  17. Emergence of diversity in homogeneous coupled Boolean networks

    NASA Astrophysics Data System (ADS)

    Kang, Chris; Aguilar, Boris; Shmulevich, Ilya

    2018-05-01

    The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems—coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.

  18. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  19. Using Common Table Expressions to Build a Scalable Boolean Query Generator for Clinical Data Warehouses

    PubMed Central

    Harris, Daniel R.; Henderson, Darren W.; Kavuluru, Ramakanth; Stromberg, Arnold J.; Johnson, Todd R.

    2015-01-01

    We present a custom, Boolean query generator utilizing common-table expressions (CTEs) that is capable of scaling with big datasets. The generator maps user-defined Boolean queries, such as those interactively created in clinical-research and general-purpose healthcare tools, into SQL. We demonstrate the effectiveness of this generator by integrating our work into the Informatics for Integrating Biology and the Bedside (i2b2) query tool and show that it is capable of scaling. Our custom generator replaces and outperforms the default query generator found within the Clinical Research Chart (CRC) cell of i2b2. In our experiments, sixteen different types of i2b2 queries were identified by varying four constraints: date, frequency, exclusion criteria, and whether selected concepts occurred in the same encounter. We generated non-trivial, random Boolean queries based on these 16 types; the corresponding SQL queries produced by both generators were compared by execution times. The CTE-based solution significantly outperformed the default query generator and provided a much more consistent response time across all query types (M=2.03, SD=6.64 vs. M=75.82, SD=238.88 seconds). Without costly hardware upgrades, we provide a scalable solution based on CTEs with very promising empirical results centered on performance gains. The evaluation methodology used for this provides a means of profiling clinical data warehouse performance. PMID:25192572

  20. Inferring Toxicological Responses of HepG2 Cells from ...

    EPA Pesticide Factsheets

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  1. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the 'loop unrolling' technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large-scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  2. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the loop unrolling technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  3. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  4. Social interaction as a heuristic for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2010-11-01

    We investigate the performance of a variant of Axelrod’s model for dissemination of culture—the Adaptive Culture Heuristic (ACH)—on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents’ strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N1/4 so that the number of agents must increase with the fourth power of the problem size, N∝F4 , to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F6 which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.

  5. American College of Rheumatology/European League Against Rheumatism remission criteria for rheumatoid arthritis maintain reliable performance when evaluated in 44 joints.

    PubMed

    Kaneko, Yuko; Kondo, Harumi; Takeuchi, Tsutomu

    2013-08-01

    To investigate the performance of the new remission criteria for rheumatoid arthritis (RA) in daily clinical practice and the effect of possible misclassification of remission when 44 joints are assessed. Disease activity and remission rate were calculated according to the Disease Activity Score (DAS28), Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), and a Boolean-based definition for 1402 patients with RA in Keio University Hospital. Characteristics of patients in remission were investigated, and the number of misclassified patients was determined--those classified as being in remission based on 28-joint count but as nonremission based on a 44-joint count for each definition criterion. Of all patients analyzed, 46.6%, 45.9%, 41.0%, and 31.5% were classified as in remission in the DAS28, SDAI, CDAI, and Boolean definitions, respectively. Patients classified into remission based only on the DAS28 showed relatively low erythrocyte sedimentation rates but greater swollen joint counts than those classified into remission based on the other definitions. In patients classified into remission based only on the Boolean criteria, the mean physician global assessment was greater than the mean patient global assessment. Although 119 patients had ≤ 1 involved joint in the 28-joint count but > 1 in the 44-joint count, only 34 of these 119 (2.4% of all subjects) were found to have been misclassified into remission. In practice, about half of patients with RA can achieve clinical remission within the DAS28, SDAI, and CDAI; and one-third according to the Boolean-based definition. Patients classified in remission based on a 28-joint count may have pain and swelling in the feet, but misclassification of remission was relatively rare and was seen in only 2.4% of patients under a Boolean definition. The 28-joint count can be sufficient for assessing clinical remission based on the new remission criteria.

  6. Performance limitations of translationally symmetric nonimaging devices

    NASA Astrophysics Data System (ADS)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  7. Random Boolean networks for autoassociative memory: Optimization and sequential learning

    NASA Astrophysics Data System (ADS)

    Sherrington, D.; Wong, K. Y. M.

    Conventional neural networks are based on synaptic storage of information, even when the neural states are discrete and bounded. In general, the set of potential local operations is much greater. Here we discuss some aspects of the properties of networks of binary neurons with more general Boolean functions controlling the local dynamics. Two specific aspects are emphasised; (i) optimization in the presence of noise and (ii) a simple model for short-term memory exhibiting primacy and recency in the recall of sequentially taught patterns.

  8. Security analysis of boolean algebra based on Zhang-Wang digital signature scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jinbin, E-mail: jbzheng518@163.com

    2014-10-06

    In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software.

  9. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  10. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  11. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE PAGES

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...

    2015-10-06

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  12. Parallelization of combinatorial search when solving knapsack optimization problem on computing systems based on multicore processors

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the model of the knapsack optimization problem and method of its solving based on directed combinatorial search in the boolean space. The offered by the author specialized mathematical model of decomposition of the search-zone to the separate search-spheres and the algorithm of distribution of the search-spheres to the different cores of the multi-core processor are also discussed. The paper also provides an example of decomposition of the search-zone to the several search-spheres and distribution of the search-spheres to the different cores of the quad-core processor. Finally, an offered by the author formula for estimation of the theoretical maximum of the computational acceleration, which can be achieved due to the parallelization of the search-zone to the search-spheres on the unlimited number of the processor cores, is also given.

  13. A different Deutsch-Jozsa

    NASA Astrophysics Data System (ADS)

    Bera, Debajyoti

    2015-06-01

    One of the early achievements of quantum computing was demonstrated by Deutsch and Jozsa (Proc R Soc Lond A Math Phys Sci 439(1907):553, 1992) regarding classification of a particular type of Boolean functions. Their solution demonstrated an exponential speedup compared to classical approaches to the same problem; however, their solution was the only known quantum algorithm for that specific problem so far. This paper demonstrates another quantum algorithm for the same problem, with the same exponential advantage compared to classical algorithms. The novelty of this algorithm is the use of quantum amplitude amplification, a technique that is the key component of another celebrated quantum algorithm developed by Grover (Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ACM Press, New York, 1996). A lower bound for randomized (classical) algorithms is also presented which establishes a sound gap between the effectiveness of our quantum algorithm and that of any randomized algorithm with similar efficiency.

  14. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

    NASA Astrophysics Data System (ADS)

    Welty, N.; Rudolph, M.; Schäfer, F.; Apeldoorn, J.; Janovsky, R.

    2013-07-01

    This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.

  15. The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.

    PubMed

    Jobe, Thomas H.; Helgason, Cathy M.

    1998-04-01

    Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.

  16. Markov chain algorithms: a template for building future robust low-power systems

    PubMed Central

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  17. DOC II 32-bit digital optical computer: optoelectronic hardware and software

    NASA Astrophysics Data System (ADS)

    Stone, Richard V.; Zeise, Frederick F.; Guilfoyle, Peter S.

    1991-12-01

    This paper describes current electronic hardware subsystems and software code which support OptiComp's 32-bit general purpose digital optical computer (DOC II). The reader is referred to earlier papers presented in this section for a thorough discussion of theory and application regarding DOC II. The primary optoelectronic subsystems include the drive electronics for the multichannel acousto-optic modulators, the avalanche photodiode amplifier, as well as threshold circuitry, and the memory subsystems. This device utilizes a single optical Boolean vector matrix multiplier and its VME based host controller interface in performing various higher level primitives. OptiComp Corporation wishes to acknowledge the financial support of the Office of Naval Research, the National Aeronautics and Space Administration, the Rome Air Development Center, and the Strategic Defense Initiative Office for the funding of this program under contracts N00014-87-C-0077, N00014-89-C-0266 and N00014-89-C- 0225.

  18. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  19. Symmetrization of conservation laws with entropy for high-temperature hypersonic computations

    NASA Technical Reports Server (NTRS)

    Chalot, F.; Hughes, T. J. R.; Shakib, F.

    1990-01-01

    Results of Hughes, France, and Mallet are generalized to conservation law systems taking into account high-temperature effects. Symmetric forms of different equation sets are derived in terms of entropy variables. First, the case of a general divariant gas is studied; it can be specialized to the usual Navier-Stokes equations, as well as to situations where the gas is vibrationally excited, and undergoes equilibrium chemical reactions. The case of gas in thermochemical nonequilibrium is considered next. Transport phenomena, and in particular mass diffusion, are examined in the framework of symmetric advective-diffusive systems.

  20. Progressive matrix cracking in off-axis plies of a general symmetric laminate

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1993-01-01

    A generalized shear-lag model is derived to determine the average through-the-thickness stress state present in a layer undergoing transverse matrix cracking, by extending the method of Lee and Daniels (1991) to a general symmetric multilayered system. The model is capable of considering cracking in layers of arbitrary orientation, states of general in-plane applied loading, and laminates with a general symmetric stacking sequence. The model is included in a computer program designed for probabilistic laminate analysis, and the results are compared to those determined with the ply drop-off technique.

  1. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  2. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  3. Origins of Chaos in Autonomous Boolean Networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Cavalcante, Hugo; Gauthier, Daniel; Zhang, Rui

    2010-03-01

    Networks with nodes consisting of ideal Boolean logic gates are known to display either steady states, periodic behavior, or an ultraviolet catastrophe where the number of logic-transition events circulating in the network per unit time grows as a power-law. In an experiment, non-ideal behavior of the logic gates prevents the ultraviolet catastrophe and may lead to deterministic chaos. We identify certain non-ideal features of real logic gates that enable chaos in experimental networks. We find that short-pulse rejection and the asymmetry between the logic states tends to engender periodic behavior. On the other hand, a memory effect termed ``degradation'' can generate chaos. Our results strongly suggest that deterministic chaos can be expected in a large class of experimental Boolean-like networks. Such devices may find application in a variety of technologies requiring fast complex waveforms or flat power spectra. The non-ideal effects identified here also have implications for the statistics of attractors in large complex networks.

  4. Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors.

    PubMed

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2018-02-01

    Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.

  5. Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic.

    PubMed

    D'Souza, Noel; Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2016-02-10

    Nanomagnetic implementations of Boolean logic have attracted attention because of their nonvolatility and the potential for unprecedented overall energy-efficiency. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque severely compromise the energy-efficiency. Recently, there have been experimental reports of utilizing the Spin Hall effect for switching magnets, and theoretical proposals for strain induced switching of single-domain magnetostrictive nanomagnets, that might reduce the dissipative losses significantly. Here, we experimentally demonstrate, for the first time that strain-induced switching of single-domain magnetostrictive nanomagnets of lateral dimensions ∼200 nm fabricated on a piezoelectric substrate can implement a nanomagnetic Boolean NOT gate and steer bit information unidirectionally in dipole-coupled nanomagnet chains. On the basis of the experimental results with bulk PMN-PT substrates, we estimate that the energy dissipation for logic operations in a reasonably scaled system using thin films will be a mere ∼1 aJ/bit.

  6. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  7. An O(N squared) method for computing the eigensystem of N by N symmetric tridiagonal matrices by the divide and conquer approach

    NASA Technical Reports Server (NTRS)

    Gill, Doron; Tadmor, Eitan

    1988-01-01

    An efficient method is proposed to solve the eigenproblem of N by N Symmetric Tridiagonal (ST) matrices. Unlike the standard eigensolvers which necessitate O(N cubed) operations to compute the eigenvectors of such ST matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N squared) operations. The method is based on serial implementation of the recently introduced Divide and Conquer (DC) algorithm. It exploits the fact that by O(N squared) of DC operations, one can compute the eigenvalues of N by N ST matrix and a finite number of pairs of successive rows of its eigenvector matrix. The rest of the eigenvectors--all of them or one at a time--are computed by linear three-term recurrence relations. Numerical examples are presented which demonstrate the superiority of the proposed method by saving an order of magnitude in execution time at the expense of sacrificing a few orders of accuracy.

  8. Performance and Accuracy of LAPACK's Symmetric TridiagonalEigensolvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, Jim W.; Marques, Osni A.; Parlett, Beresford N.

    2007-04-19

    We compare four algorithms from the latest LAPACK 3.1 release for computing eigenpairs of a symmetric tridiagonal matrix. These include QR iteration, bisection and inverse iteration (BI), the Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust Representations (MR). Our evaluation considers speed and accuracy when computing all eigenpairs, and additionally subset computations. Using a variety of carefully selected test problems, our study includes a variety of today's computer architectures. Our conclusions can be summarized as follows. (1) DC and MR are generally much faster than QR and BI on large matrices. (2) MR almost always does the fewestmore » floating point operations, but at a lower MFlop rate than all the other algorithms. (3) The exact performance of MR and DC strongly depends on the matrix at hand. (4) DC and QR are the most accurate algorithms with observed accuracy O({radical}ne). The accuracy of BI and MR is generally O(ne). (5) MR is preferable to BI for subset computations.« less

  9. Using scaling to compute moments of inertia of symmetric objects

    NASA Astrophysics Data System (ADS)

    Ricardo, Bernard

    2015-09-01

    Moment of inertia is a very important property in the study of rotational mechanics. The concept of moment of inertia is analogous to mass in the linear motion, and its calculation is routinely done through integration. This paper provides an alternative way to compute moments of inertia of rigid bodies of regular shape using their symmetrical property. This approach will be very useful and preferred for teaching rotational mechanics at the undergraduate level, as it does not require the knowledge or the application of calculus. The seven examples provided in this paper will help readers to understand clearly how to use the method.

  10. Recursive partitioned inversion of large (1500 x 1500) symmetric matrices

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Brownd, J. E.; Gomez, R. A.

    1976-01-01

    A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.

  11. Communication-avoiding symmetric-indefinite factorization

    DOE PAGES

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; ...

    2014-11-13

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less

  12. Communication-avoiding symmetric-indefinite factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less

  13. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    PubMed

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  14. Simulation with Python on transverse modes of the symmetric confocal resonator

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  15. Group analysis of dynamics equations of self-gravitating polytropic gas

    NASA Astrophysics Data System (ADS)

    Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.

    2018-06-01

    The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.

  16. The analytical transfer matrix method for PT-symmetric complex potential

    NASA Astrophysics Data System (ADS)

    Naceri, Leila; Hammou, Amine B.

    2017-07-01

    We have extended the analytical transfer matrix (ATM) method to solve quantum mechanical bound state problems with complex PT-symmetric potentials. Our work focuses on a class of models studied by Bender and Jones, we calculate the energy eigenvalues, discuss the critical values of g and compare the results with those obtained from other methods such as exact numerical computation and WKB approximation method.

  17. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.

    PubMed

    Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko

    2013-06-18

    Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less

  19. Ferroelectric symmetry-protected multibit memory cell

    NASA Astrophysics Data System (ADS)

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    2017-02-01

    The tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valued non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.

  20. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  1. Development Of A Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  2. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    PubMed

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  3. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams

    DTIC Science & Technology

    1992-07-01

    memories , where careful attention has been given to programming the memory management routines [Brace et al 19901. To extract maximum performance, it...OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as...indicated 3 X X2 X3 f 000 0 0 01 0X22 0 10 0 0 11 1 d 1 0 0 0 X3 X 3X 1 01 1 1 10 0 - i"o11 10o 1 1 Figure 1: Truth Table and Decison Tree Repremmtatios

  4. Generating probabilistic Boolean networks from a prescribed transition probability matrix.

    PubMed

    Ching, W-K; Chen, X; Tsing, N-K

    2009-11-01

    Probabilistic Boolean networks (PBNs) have received much attention in modeling genetic regulatory networks. A PBN can be regarded as a Markov chain process and is characterised by a transition probability matrix. In this study, the authors propose efficient algorithms for constructing a PBN when its transition probability matrix is given. The complexities of the algorithms are also analysed. This is an interesting inverse problem in network inference using steady-state data. The problem is important as most microarray data sets are assumed to be obtained from sampling the steady-state.

  5. Consistent Correlations for Parameterised Boolean Equation Systems with Applications in Correctness Proofs for Manipulations

    NASA Astrophysics Data System (ADS)

    Willemse, Tim A. C.

    We introduce the concept of consistent correlations for parameterised Boolean equation systems (PBESs), motivated largely by the laborious proofs of correctness required for most manipulations in this setting. Consistent correlations focus on relating the equations that occur in PBESs, rather than their solutions. For a fragment of PBESs, consistent correlations are shown to coincide with a recently introduced form of bisimulation. Finally, we show that bisimilarity on processes induces consistent correlations on PBESs encoding model checking problems. We apply our theory to two example manipulations from the literature.

  6. On Weak and Strong 2k- bent Boolean Functions

    DTIC Science & Technology

    2016-01-01

    U.S.A. Email: pstanica@nps.edu Abstract—In this paper we introduce a sequence of discrete Fourier transforms and define new versions of bent...denotes the complex conjugate of z. An important tool in our analysis is the discrete Fourier transform , known in Boolean functions literature, as Walsh...Hadamard, or Walsh–Hadamard transform , which is the func- tion Wf : Fn2 → C, defined by Wf (u) = 2− n 2 ∑ x∈Vn (−1)f(x)⊕u·x. Any f ∈ Bn can be

  7. Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2014-09-01

    Using density functional theory we design a molecular analog of the four-dimensional hypercube or tesseract which we called hypercubane. The title hydrocarbon (C40H24) is Oh-symmetric like cubane and is characterized by a double-shell architecture. The perfluorinated analog of hypercubane also is stable with a positive value of the electron affinity. Removal of the C8 core from hypercubane yields a hollowed Oh-symmetric hydrocarbon with enough room to host a single atom/ion guest. The resonances of the NMR-active 13C and 1H nuclei have been computed so as to assist the spectroscopic identification of the predicted molecules.

  8. A uniform object-oriented solution to the eigenvalue problem for real symmetric and Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Castro, María Eugenia; Díaz, Javier; Muñoz-Caro, Camelia; Niño, Alfonso

    2011-09-01

    We present a system of classes, SHMatrix, to deal in a unified way with the computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices. Thus, two descendant classes, one for the real symmetric and other for the Hermitian cases, override the abstract methods defined in a base class. The use of the inheritance relationship and polymorphism allows handling objects of any descendant class using a single reference of the base class. The system of classes is intended to be the core element of more sophisticated methods to deal with large eigenvalue problems, as those arising in the variational treatment of realistic quantum mechanical problems. The present system of classes allows computing a subset of all the possible eigenvalues and, optionally, the corresponding eigenvectors. Comparison with well established solutions for analogous eigenvalue problems, as those included in LAPACK, shows that the present solution is competitive against them. Program summaryProgram title: SHMatrix Catalogue identifier: AEHZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2616 No. of bytes in distributed program, including test data, etc.: 127 312 Distribution format: tar.gz Programming language: Standard ANSI C++. Computer: PCs and workstations. Operating system: Linux, Windows. Classification: 4.8. Nature of problem: The treatment of problems involving eigensystems is a central topic in the quantum mechanical field. Here, the use of the variational approach leads to the computation of eigenvalues and eigenvectors of real symmetric and Hermitian Hamiltonian matrices. Realistic models with several degrees of freedom leads to large (sometimes very large) matrices. Different techniques, such as divide and conquer, can be used to factorize the matrices in order to apply a parallel computing approach. However, it is still interesting to have a core procedure able to tackle the computation of eigenvalues and eigenvectors once the matrix has been factorized to pieces of enough small size. Several available software packages, such as LAPACK, tackled this problem under the traditional imperative programming paradigm. In order to ease the modelling of complex quantum mechanical models it could be interesting to apply an object-oriented approach to the treatment of the eigenproblem. This approach offers the advantage of a single, uniform treatment for the real symmetric and Hermitian cases. Solution method: To reach the above goals, we have developed a system of classes: SHMatrix. SHMatrix is composed by an abstract base class and two descendant classes, one for real symmetric matrices and the other for the Hermitian case. The object-oriented characteristics of inheritance and polymorphism allows handling both cases using a single reference of the base class. The basic computing strategy applied in SHMatrix allows computing subsets of eigenvalues and (optionally) eigenvectors. The tests performed show that SHMatrix is competitive, and more efficient for large matrices, than the equivalent routines of the LAPACK package. Running time: The examples included in the distribution take only a couple of seconds to run.

  9. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    DTIC Science & Technology

    2014-01-01

    normal and three different obstructed airway geometries, consisting of symmetric, asym- metric, and random obstructions. Fig. 2 shows the geometric ...normal and obstructed airways Airway resistance is a measure of the opposition to the airflow caused by geometric properties, such as airway obstruction...pressure drops. Resistance values were dependent on the degree and geometric distribution of the obstruction sites. In the symmetric obstruction model

  10. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  11. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Yang, Shengyuan A.; Zhang, C.; Ma, Zhongshui; Ang, L. K.

    2017-12-01

    Despite much anticipation of valleytronics as a candidate to replace the aging complementary metal-oxide-semiconductor (CMOS) based information processing, its progress is severely hindered by the lack of practical ways to manipulate valley polarization all electrically in an electrostatic setting. Here, we propose a class of all-electric-controlled valley filter, valve, and logic gate based on the valley-contrasting transport in a merging Dirac cones system. The central mechanism of these devices lies on the pseudospin-assisted quantum tunneling which effectively quenches the transport of one valley when its pseudospin configuration mismatches that of a gate-controlled scattering region. The valley polarization can be abruptly switched into different states and remains stable over semi-infinite gate-voltage windows. Colossal tunneling valley-pseudomagnetoresistance ratio of over 10 000 % can be achieved in a valley-valve setup. We further propose a valleytronic-based logic gate capable of covering all 16 types of two-input Boolean logics. Remarkably, the valley degree of freedom can be harnessed to resurrect logical reversibility in two-input universal Boolean gate. The (2 +1 ) polarization states (two distinct valleys plus a null polarization) reestablish one-to-one input-to-output mapping, a crucial requirement for logical reversibility, and significantly reduce the complexity of reversible circuits. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

  12. The value of prior knowledge in machine learning of complex network systems.

    PubMed

    Ferranti, Dana; Krane, David; Craft, David

    2017-11-15

    Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

    DOEpatents

    Prasad, Lakshman; Swaminarayan, Sriram

    2013-04-23

    A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

  14. Clinical and computed tomography features of secondary renal hyperparathyroidism

    PubMed Central

    Vanbrugghe, Benoît; Blond, Laurent; Carioto, Lisa; Carmel, Eric Norman; Nadeau, Marie-Eve

    2011-01-01

    An atypical case of secondary renal hyperparathyroidism was diagnosed in a 9-year-old miniature schnauzer after a skull computed tomography (CT) showed the presence of 2 bilateral and symmetrical soft tissue maxillary masses, and osteopenia of the skull. PMID:21532826

  15. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  16. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  17. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

    PubMed

    Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan

    2011-05-01

    Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

  18. Artificial neural networks using complex numbers and phase encoded weights.

    PubMed

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  19. Boolean dynamics of genetic regulatory networks inferred from microarray time series data

    DOE PAGES

    Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...

    2007-01-31

    Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less

  20. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    PubMed

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  1. Verification and Optimal Control of Context-Sensitive Probabilistic Boolean Networks Using Model Checking and Polynomial Optimization

    PubMed Central

    Hiraishi, Kunihiko

    2014-01-01

    One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766

  2. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks

    PubMed Central

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde

    2015-01-01

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380

  3. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  4. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    PubMed

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Vaporization of irradiated droplets

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.

    1986-11-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.

  6. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  7. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    PubMed

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  8. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    PubMed

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  9. Ad Hoc Information Extraction for Clinical Data Warehouses.

    PubMed

    Dietrich, Georg; Krebs, Jonathan; Fette, Georg; Ertl, Maximilian; Kaspar, Mathias; Störk, Stefan; Puppe, Frank

    2018-05-01

    Clinical Data Warehouses (CDW) reuse Electronic health records (EHR) to make their data retrievable for research purposes or patient recruitment for clinical trials. However, much information are hidden in unstructured data like discharge letters. They can be preprocessed and converted to structured data via information extraction (IE), which is unfortunately a laborious task and therefore usually not available for most of the text data in CDW. The goal of our work is to provide an ad hoc IE service that allows users to query text data ad hoc in a manner similar to querying structured data in a CDW. While search engines just return text snippets, our systems also returns frequencies (e.g. how many patients exist with "heart failure" including textual synonyms or how many patients have an LVEF < 45) based on the content of discharge letters or textual reports for special investigations like heart echo. Three subtasks are addressed: (1) To recognize and to exclude negations and their scopes, (2) to extract concepts, i.e. Boolean values and (3) to extract numerical values. We implemented an extended version of the NegEx-algorithm for German texts that detects negations and determines their scope. Furthermore, our document oriented CDW PaDaWaN was extended with query functions, e.g. context sensitive queries and regex queries, and an extraction mode for computing the frequencies for Boolean and numerical values. Evaluations in chest X-ray reports and in discharge letters showed high F1-scores for the three subtasks: Detection of negated concepts in chest X-ray reports with an F1-score of 0.99 and in discharge letters with 0.97; of Boolean values in chest X-ray reports about 0.99, and of numerical values in chest X-ray reports and discharge letters also around 0.99 with the exception of the concept age. The advantages of an ad hoc IE over a standard IE are the low development effort (just entering the concept with its variants), the promptness of the results and the adaptability by the user to his or her particular question. Disadvantage are usually lower accuracy and confidence.This ad hoc information extraction approach is novel and exceeds existing systems: Roogle [1] extracts predefined concepts from texts at preprocessing and makes them retrievable at runtime. Dr. Warehouse [2] applies negation detection and indexes the produced subtexts which include affirmed findings. Our approach combines negation detection and the extraction of concepts. But the extraction does not take place during preprocessing, but at runtime. That provides an ad hoc, dynamic, interactive and adjustable information extraction of random concepts and even their values on the fly at runtime. We developed an ad hoc information extraction query feature for Boolean and numerical values within a CDW with high recall and precision based on a pipeline that detects and removes negations and their scope in clinical texts. Schattauer GmbH.

  10. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  11. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  12. A real signal and its states

    NASA Astrophysics Data System (ADS)

    Basiladze, S. G.

    2017-05-01

    The paper describes the general physical theory of signals, carriers of information, which supplements Shannon's abstract classical theory and is applicable in much broader fields, including nuclear physics. It is shown that in the absence of classical noise its place should be taken by the physical threshold of signal perception for objects of both macrocosm and microcosm. The signal perception threshold allows the presence of subthreshold (virtual) signal states. For these states, Boolean algebra of logic ( A = 0/1) is transformed into the "algebraic logic" of probabilities (0 ≤ a ≤ 1). The similarity and difference of virtual states of macroand microsignals are elucidated. "Real" and "quantum" information for computers is considered briefly. The maximum information transmission rate is estimated based on physical constants.

  13. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  14. Separating OR, SUM, and XOR Circuits☆

    PubMed Central

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.

    2017-01-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n3/2/log2n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis. PMID:28529379

  15. Ferroelectric symmetry-protected multibit memory cell

    DOE PAGES

    Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.

    2017-02-08

    Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less

  16. Symmetric Objects Become Special in Perception Because of Generic Computations in Neurons

    PubMed Central

    Pramod, R. T.

    2017-01-01

    Symmetry is a salient visual property: It is easy to detect and influences perceptual phenomena from segmentation to recognition. Yet researchers know little about its neural basis. Using recordings from single neurons in monkey IT cortex, we asked whether symmetry—being an emergent property—induces nonlinear interactions between object parts. Remarkably, we found no such deviation: Whole-object responses were always the sum of responses to the object’s parts, regardless of symmetry. The only defining characteristic of symmetric objects was that they were more distinctive compared with asymmetric objects. This was a consequence of neurons preferring the same part across locations within an object. Just as mixing diverse paints produces a homogeneous overall color, adding heterogeneous parts within an asymmetric object renders it indistinct. In contrast, adding identical parts within a symmetric object renders it distinct. This distinctiveness systematically predicted human symmetry judgments, and it explains many previous observations about symmetry perception. Thus, symmetry becomes special in perception despite being driven by generic computations at the level of single neurons. PMID:29219748

  17. Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Venkatapathy, Ethiraj

    1995-01-01

    Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  18. Detection of symmetric homoclinic orbits to saddle-centres in reversible systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki; Wagenknecht, Thomas

    2006-02-01

    We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood. This technique also allows us to identify bifurcations of unperturbed or perturbed, symmetric homoclinic orbits. Our technique is of importance in applications such as nonlinear optics and water waves since homoclinic orbits to saddle-centre equilibria describe embedded solitons (ESs) in systems of partial differential equations representing physical models, and except for special cases their existence has been previously studied only numerically using shooting methods and continuation techniques. We apply the general theory to two examples, a four-dimensional system describing ESs in nonlinear optical media and a six-dimensional system which can possess a one-parameter family of symmetric homoclinic orbits in the unperturbed case. For these examples, the analysis is compared with numerical computations and an excellent agreement between both results is found.

  19. The modelling of the flow-induced vibrations of periodic flat and axial-symmetric structures with a wave-based method

    NASA Astrophysics Data System (ADS)

    Errico, F.; Ichchou, M.; De Rosa, S.; Bareille, O.; Franco, F.

    2018-06-01

    The stochastic response of periodic flat and axial-symmetric structures, subjected to random and spatially-correlated loads, is here analysed through an approach based on the combination of a wave finite element and a transfer matrix method. Although giving a lower computational cost, the present approach keeps the same accuracy of classic finite element methods. When dealing with homogeneous structures, the accuracy is also extended to higher frequencies, without increasing the time of calculation. Depending on the complexity of the structure and the frequency range, the computational cost can be reduced more than two orders of magnitude. The presented methodology is validated both for simple and complex structural shapes, under deterministic and random loads.

  20. Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects

    NASA Technical Reports Server (NTRS)

    Kettig, R. L.

    1975-01-01

    A method of classification of digitized multispectral images is developed and experimentally evaluated on actual earth resources data collected by aircraft and satellite. The method is designed to exploit the characteristic dependence between adjacent states of nature that is neglected by the more conventional simple-symmetric decision rule. Thus contextual information is incorporated into the classification scheme. The principle reason for doing this is to improve the accuracy of the classification. For general types of dependence this would generally require more computation per resolution element than the simple-symmetric classifier. But when the dependence occurs in the form of redundance, the elements can be classified collectively, in groups, therby reducing the number of classifications required.

  1. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  2. The family of planar periodic orbits generated by the equal-mass four-body Schubart interplay orbit

    NASA Astrophysics Data System (ADS)

    Chopovda, Valerie; Sweatman, Winston L.

    2018-05-01

    We locate members of a one-parameter family of equal-mass four-body periodic orbits in the plane. The family begins and ends with the rectilinear four-body equal-mass Schubart interplay orbit and passes through a double choreography orbit. The first-order stability of these orbits is computed. Some members of this symmetric family are stable to symmetric perturbations; however, they are unstable when all perturbations are allowed.

  3. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation.

    PubMed

    Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Freiwald, Winrich A; Poggio, Tomaso

    2017-01-09

    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of remission definition on healthcare cost savings estimates for patients with rheumatoid arthritis treated with biologic therapies.

    PubMed

    Barnabe, Cheryl; Thanh, Nguyen Xuan; Ohinmaa, Arto; Homik, Joanne; Barr, Susan G; Martin, Liam; Maksymowych, Walter P

    2014-08-01

    Sustained remission in rheumatoid arthritis (RA) results in healthcare utilization cost savings. We evaluated the variation in estimates of savings when different definitions of remission [2011 American College of Rheumatology/European League Against Rheumatism Boolean Definition, Simplified Disease Activity Index (SDAI) ≤ 3.3, Clinical Disease Activity Index (CDAI) ≤ 2.8, and Disease Activity Score-28 (DAS28) ≤ 2.6] are applied. The annual mean healthcare service utilization costs were estimated from provincial physician billing claims, outpatient visits, and hospitalizations, with linkage to clinical data from the Alberta Biologics Pharmacosurveillance Program (ABioPharm). Cost savings in patients who had a 1-year continuous period of remission were compared to those who did not, using 4 definitions of remission. In 1086 patients, sustained remission rates were 16.1% for DAS28, 8.8% for Boolean, 5.5% for CDAI, and 4.2% for SDAI. The estimated mean annual healthcare cost savings per patient achieving remission (relative to not) were SDAI $1928 (95% CI 592, 3264), DAS28 $1676 (95% CI 987, 2365), and Boolean $1259 (95% CI 417, 2100). The annual savings by CDAI remission per patient were not significant at $423 (95% CI -1757, 2602). For patients in DAS28, Boolean, and SDAI remission, savings were seen both in costs directly related to RA and its comorbidities, and in costs for non-RA-related conditions. The magnitude of the healthcare cost savings varies according to the remission definition used in classifying patient disease status. The highest point estimate for cost savings was observed in patients attaining SDAI remission and the least with the CDAI; confidence intervals for these estimates do overlap. Future pharmacoeconomic analyses should employ all response definitions in assessing the influence of treatment.

  5. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  6. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling

    PubMed Central

    Wittmann, Dominik M; Krumsiek, Jan; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Klamt, Steffen; Theis, Fabian J

    2009-01-01

    Background The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments. Results In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one. Conclusion The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems. PMID:19785753

  7. The DAS28-ESR cutoff value necessary to achieve remission under the new Boolean-based remission criteria in patients receiving tocilizumab.

    PubMed

    Hirabayashi, Yasuhiko; Ishii, Tomonori

    2013-01-01

    To seek the cutoff value of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) that is necessary to achieve remission under the new Boolean-based criteria, we analyzed the data for 285 patients with rheumatoid arthritis registered between May 2008 and November 2009 by the Michinoku Tocilizumab Study Group and observed for 1 year after receiving tocilizumab (TCZ) in real clinical practice. Remission rates under the DAS28-ESR criteria and the Boolean criteria were assessed every 6 months after the first TCZ dose. The DAS28-ESR cutoff value necessary to achieve remission under the new criteria was analyzed by receiver operating characteristic (ROC) analysis. Data were analyzed using last observation carried forward. After 12 months of TCZ use, remission was achieved in 164 patients (57.5 %) by DAS28-ESR and 71 patients (24.9 %) under the new criteria for clinical trials. CRP levels scarcely affected remission rates, and the difference between remission rates defined by DAS28-ESR and by the new criteria was mainly due to patient global assessment (PGA). Improvement of PGA was inversely related to disease duration. ROC analysis revealed that the DAS28-ESR cutoff value necessary to predict remission under the new criteria for clinical trials was 1.54, with a sensitivity of 88.7 %, specificity of 85.5 %, positive predictive value of 67.0 %, and negative predictive value of 95.8 %. A DAS28-ESR cutoff value of 1.54 may be reasonable to predict achievement of remission under the new Boolean-based criteria for clinical trials in patients receiving TCZ.

  8. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  9. Clean Quantum and Classical Communication Protocols.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen

    2016-12-02

    By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.

  10. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  11. Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in the process industry.

    PubMed

    Yazdi, Mohammad; Korhan, Orhan; Daneshvar, Sahand

    2018-05-09

    This study aimed at establishing fault tree analysis (FTA) using expert opinion to compute the probability of an event. To find the probability of the top event (TE), all probabilities of the basic events (BEs) should be available when the FTA is drawn. In this case, employing expert judgment can be used as an alternative to failure data in an awkward situation. The fuzzy analytical hierarchy process as a standard technique is used to give a specific weight to each expert, and fuzzy set theory is engaged for aggregating expert opinion. In this regard, the probability of BEs will be computed and, consequently, the probability of the TE obtained using Boolean algebra. Additionally, to reduce the probability of the TE in terms of three parameters (safety consequences, cost and benefit), the importance measurement technique and modified TOPSIS was employed. The effectiveness of the proposed approach is demonstrated with a real-life case study.

  12. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  13. Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation.

    PubMed

    Zhang, Fan; Liu, Runsheng; Zheng, Jie

    2016-12-23

    Linking computational models of signaling pathways to predicted cellular responses such as gene expression regulation is a major challenge in computational systems biology. In this work, we present Sig2GRN, a Cytoscape plugin that is able to simulate time-course gene expression data given the user-defined external stimuli to the signaling pathways. A generalized logical model is used in modeling the upstream signaling pathways. Then a Boolean model and a thermodynamics-based model are employed to predict the downstream changes in gene expression based on the simulated dynamics of transcription factors in signaling pathways. Our empirical case studies show that the simulation of Sig2GRN can predict changes in gene expression patterns induced by DNA damage signals and drug treatments. As a software tool for modeling cellular dynamics, Sig2GRN can facilitate studies in systems biology by hypotheses generation and wet-lab experimental design. http://histone.scse.ntu.edu.sg/Sig2GRN/.

  14. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  15. Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm

    NASA Technical Reports Server (NTRS)

    Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.

    2005-01-01

    A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less

  17. Concept locator: a client-server application for retrieval of UMLS metathesaurus concepts through complex boolean query.

    PubMed

    Nadkarni, P M

    1997-08-01

    Concept Locator (CL) is a client-server application that accesses a Sybase relational database server containing a subset of the UMLS Metathesaurus for the purpose of retrieval of concepts corresponding to one or more query expressions supplied to it. CL's query grammar permits complex Boolean expressions, wildcard patterns, and parenthesized (nested) subexpressions. CL translates the query expressions supplied to it into one or more SQL statements that actually perform the retrieval. The generated SQL is optimized by the client to take advantage of the strengths of the server's query optimizer, and sidesteps its weaknesses, so that execution is reasonably efficient.

  18. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  19. Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    NASA Astrophysics Data System (ADS)

    Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  20. Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks

    NASA Astrophysics Data System (ADS)

    Villegas, Pablo; Ruiz-Franco, José; Hidalgo, Jorge; Muñoz, Miguel A.

    2016-10-01

    Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.

  1. On the number of different dynamics in Boolean networks with deterministic update schedules.

    PubMed

    Aracena, J; Demongeot, J; Fanchon, E; Montalva, M

    2013-04-01

    Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Feedback topology and XOR-dynamics in Boolean networks with varying input structure.

    PubMed

    Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  3. Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow

    NASA Astrophysics Data System (ADS)

    Ramskill, Nicholas P.; Wang, Mi

    2011-10-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.

  4. Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Liang; Yu, Chengjie

    2017-10-01

    In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.

  5. Idiopathic remitting seronegative symmetrical synovitis with pitting edema syndrome associated with bilateral pleural and pericardial effusions: a case report.

    PubMed

    Yanamoto, Shozaburo; Fukae, Jiro; Fukiyama, Yurie; Fujioka, Shinsuke; Ouma, Shinji; Tsuboi, Yoshio

    2016-07-20

    Remitting seronegative symmetrical synovitis with pitting edema syndrome is characterized by symmetrical synovitis with pitting edema in the dorsum of the hands or feet. Most cases of remitting seronegative symmetrical synovitis with pitting edema syndrome are idiopathic, but some are secondary to malignancy, autoimmune disease, or neurodegenerative disorders. Pleural and pericardial effusions are unusual complications in idiopathic remitting seronegative symmetrical synovitis with pitting edema syndrome. A 74-year-old Japanese woman presented to our hospital with arthralgia and pitting edema in her feet. She had pain in multiple joints, peripheral edema, and a markedly elevated erythrocyte sedimentation rate. Enhanced computed tomography and laboratory data showed no evidence of malignancy. These findings suggested that she had idiopathic remitting seronegative symmetrical synovitis with pitting edema syndrome. She also developed respiratory distress because of bilateral pleural and pericardial effusions. Laboratory data showed that serum vascular endothelial growth factor and interleukin-6 were significantly elevated. After administration of steroids, her pleural and pericardial effusions decreased and finally disappeared. Furthermore, vascular endothelial growth factor and interleukin-6 decreased when the pleural and pericardial effusions disappeared. Here we report the case of a patient with idiopathic remitting seronegative symmetrical synovitis with pitting edema syndrome associated with life-threatening complications, including bilateral pleural and pericardial effusions during the course of the illness, which led to respiratory failure and atrial fibrillation. Elevated vascular endothelial growth factor and interleukin-6 may be associated with the cause of pleural and pericardial effusions in idiopathic remitting seronegative symmetrical synovitis with pitting edema syndrome.

  6. Evaluation of out-of-core computer programs for the solution of symmetric banded linear equations. [simultaneous equations

    NASA Technical Reports Server (NTRS)

    Dunham, R. S.

    1976-01-01

    FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.

  7. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  8. PT-symmetric eigenvalues for homogeneous potentials

    NASA Astrophysics Data System (ADS)

    Eremenko, Alexandre; Gabrielov, Andrei

    2018-05-01

    We consider one-dimensional Schrödinger equations with potential x2M(ix)ɛ, where M ≥ 1 is an integer and ɛ is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ɛ changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.

  9. Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures

    DOE PAGES

    Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...

    2015-07-14

    In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less

  10. RNA nanotechnology for computer design and in vivo computation

    PubMed Central

    Qiu, Meikang; Khisamutdinov, Emil; Zhao, Zhengyi; Pan, Cheryl; Choi, Jeong-Woo; Leontis, Neocles B.; Guo, Peixuan

    2013-01-01

    Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658–667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 490 nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer scientists are necessary to advance this nascent technology. PMID:24000362

  11. RNA nanotechnology for computer design and in vivo computation.

    PubMed

    Qiu, Meikang; Khisamutdinov, Emil; Zhao, Zhengyi; Pan, Cheryl; Choi, Jeong-Woo; Leontis, Neocles B; Guo, Peixuan

    2013-10-13

    Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658-667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 4⁹⁰ nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer scientists are necessary to advance this nascent technology.

  12. Computer Simulation of Compression and Energy Release upon Laser Irradiation of Cylindrically Symmetric Target

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2017-12-01

    The paper is devoted to the theoretical and computational study of compression and energy release for magneto-inertial plasma confinement. This approach makes it possible to create new high-density plasma sources, apply them in materials science experiments, and use them in promising areas of power engineering.

  13. Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas

    2014-08-01

    The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems andmore » then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.« less

  14. Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.

  15. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Neil P.; Sheffler, William; Sawaya, Michael R.

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less

  16. Mobile-Cloud Assisted Video Summarization Framework for Efficient Management of Remote Sensing Data Generated by Wireless Capsule Sensors

    PubMed Central

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-01-01

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874

  17. Mobile-cloud assisted video summarization framework for efficient management of remote sensing data generated by wireless capsule sensors.

    PubMed

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-09-15

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.

  18. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  19. Calibration of the head direction network: a role for symmetric angular head velocity cells.

    PubMed

    Stratton, Peter; Wyeth, Gordon; Wiles, Janet

    2010-06-01

    Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

  20. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  1. Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2016-08-01

    The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.

  2. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  3. The Computer-Aided Analytic Process Model. Operations Handbook for the APM (Analytic Process Model) Demonstration Package. Appendix

    DTIC Science & Technology

    1986-01-01

    CURSUBLINEREOLJNEANSER:STINGEBSO3 52 1 1:D 372 AWSMHo~iANS2,AMS:CHAR; 53 1 IM 375 DOKE,Owc9oVER,MEG: BOOLEAN; 54 1 1:0 379 NLENGTHLLENGTH~PPEI,NDATAIIII2...integer ogain’); 159 1 3:2 112 UNTIL LENGTN(ANSVER)0>O 160 1 3:2 120 IF (ANSMEREIJ-’H’) OR (ANSMERC13o’h) THEN I -161 1 3:3 135 BEGIN3 162 1 3:4 135...END; I 176 1 3:1 300 UNTIL TRUE; 179 1 3:1 303 I0:-llr;IIi 160 1 3:1 313 FOR I:-2 TO 4 DO 181 1 3:2 328 BEGIN 182 1 33 328 IF (IICIJ>=O) AND (IICIJ<=9

  4. Graph theory approach to the eigenvalue problem of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Bainum, P. M.

    1981-01-01

    Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.

  5. Discovery of Boolean metabolic networks: integer linear programming based approach.

    PubMed

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  6. Isolated effect of geometry on mitral valve function for in silico model development.

    PubMed

    Siefert, Andrew William; Rabbah, Jean-Pierre Michel; Saikrishnan, Neelakantan; Kunzelman, Karyn Susanne; Yoganathan, Ajit Prithivaraj

    2015-01-01

    Computational models for the heart's mitral valve (MV) exhibit several uncertainties that may be reduced by further developing these models using ground-truth data-sets. This study generated a ground-truth data-set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle (PM) displacement and asymmetric PM displacement on leaflet coaptation, mitral regurgitation (MR) and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile haemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction and anterior leaflet strain in the radial and circumferential directions were successfully quantified at increasing levels of geometric distortion. From these data, increase in the levels of isolated PM displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase) and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric PM displacement. Asymmetric PM displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data-set may be used to parametrically evaluate and develop modelling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools.

  7. HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry.

    PubMed

    Yan, Yumeng; Tao, Huanyu; Huang, Sheng-You

    2018-05-26

    A major subclass of protein-protein interactions is formed by homo-oligomers with certain symmetry. Therefore, computational modeling of the symmetric protein complexes is important for understanding the molecular mechanism of related biological processes. Although several symmetric docking algorithms have been developed for Cn symmetry, few docking servers have been proposed for Dn symmetry. Here, we present HSYMDOCK, a web server of our hierarchical symmetric docking algorithm that supports both Cn and Dn symmetry. The HSYMDOCK server was extensively evaluated on three benchmarks of symmetric protein complexes, including the 20 CASP11-CAPRI30 homo-oligomer targets, the symmetric docking benchmark of 213 Cn targets and 35 Dn targets, and a nonredundant test set of 55 transmembrane proteins. It was shown that HSYMDOCK obtained a significantly better performance than other similar docking algorithms. The server supports both sequence and structure inputs for the monomer/subunit. Users have an option to provide the symmetry type of the complex, or the server can predict the symmetry type automatically. The docking process is fast and on average consumes 10∼20 min for a docking job. The HSYMDOCK web server is available at http://huanglab.phys.hust.edu.cn/hsymdock/.

  8. Outputs of paired Gabor filters summed across the background frame of reference predict the direction of movement

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1989-01-01

    A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.

  9. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  10. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  11. Exploiting symmetries in the modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.

    1987-01-01

    A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.

  12. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  13. Multiple neural network approaches to clinical expert systems

    NASA Astrophysics Data System (ADS)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  14. Boolean function applied to Mimosa pudica movements.

    PubMed

    De Luccia, Thiago Paes de Barros; Friedman, Pedro

    2011-09-01

    Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis.

  15. Questions Revisited: A Close Examination of Calculus of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Koga, Dennis (Technical Monitor)

    2003-01-01

    In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.

  16. A sparse matrix algorithm on the Boolean vector machine

    NASA Technical Reports Server (NTRS)

    Wagner, Robert A.; Patrick, Merrell L.

    1988-01-01

    VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.

  17. Adaptation and survivors in a random Boolean network.

    PubMed

    Nakamura, Ikuo

    2002-04-01

    We introduce the competitive agent with imitation strategy in a random Boolean network, in which the agent plays a competitive game that rewards those in minority. After a long time interval, the worst performer changes its strategy to the one of the best and the process is repeated. The network, initially in a chaotic state, evolves to an intermittent state and finally reaches a frozen state. Time series of survived species (whose strategies are imitated by other agents) in the system depend on the connectivity of each agent. In a system with various connectivity groups, the low connectivity groups win the minority game over the high connectivity groups. We also compared the result with mutation strategy system.

  18. Heavy quark propagation in an AdS/CFT plasma

    DOE PAGES

    Casalderrey-Solana, J.

    2008-12-01

    We compute the momentum broadening of a heavy probe in N = 4 super-symmetric Yang-Mills in the large number of colors limit and strong coupling. The mean momentum transferred squared per unit length, k, is expressed in terms of derivatives of a Wilson line. This definition is used to compute κ via the AdS/CFT correspondence.

  19. Demixing in symmetric supersolid mixtures

    NASA Astrophysics Data System (ADS)

    Jain, Piyush; Moroni, Saverio; Boninsegni, Massimo; Pollet, Lode

    2013-09-01

    The droplet crystal phase of a symmetric binary mixture of soft-core bosons is studied by computer simulation. At high temperature each droplet comprises on average equal numbers of particles of either component, but the two components demix below the supersolid transition temperature, i.e., droplets mostly consist of particles of one component. Clustering of droplets of the same component is also observed. Demixing is driven by quantum tunneling of particles across droplets over the system and does not take place in an insulating crystal. This effect provides an unambiguous experimental signature of supersolidity.

  20. On the maximum off-axis gain of symmetrical pencil-beam antennas

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1977-01-01

    For a general class of symmetrical pencil-beam antennas, the gain at a given off-axis angle can be maximized by choosing the proper antenna size. The maximum gain at the given angle relative to the on-axis gain is independent of the given angle and dependent only on the main-beam pattern. It is computed here for four commonly used gain functions. Its value, in all cases, is close to 4 dB. This result is important in the definition of service areas for communication and broadcast satellites.

  1. Phase transition of Boolean networks with partially nested canalizing functions

    NASA Astrophysics Data System (ADS)

    Jansen, Kayse; Matache, Mihaela Teodora

    2013-07-01

    We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of the complementary function. In some of those studies conflicting results were found with regard to the presence of chaotic behavior. Moreover, those studies focus mostly on ergodic networks in which initial states are assumed equally likely. We relax that assumption and find the critical condition for the sensitivity of the network under a non-ergodic scenario. We use the proposed mathematical model to determine parameter values for which phase transitions from order to chaos occur. We generate Derrida plots to show that the mathematical model matches the actual network dynamics. The phase transition diagrams indicate that both order and chaos can occur, and that certain parameters induce a larger range of values leading to order versus chaos. The edge-of-chaos curves are identified analytically and numerically. It is shown that the depth of canalization does not cause major dynamical changes once certain thresholds are reached; these thresholds are fairly small in comparison to the connectivity of the nodes.

  2. Bounds on the number of hidden neurons in three-layer binary neural networks.

    PubMed

    Zhang, Zhaozhi; Ma, Xiaomin; Yang, Yixian

    2003-09-01

    This paper investigates an important problem concerning the complexity of three-layer binary neural networks (BNNs) with one hidden layer. The neuron in the studied BNNs employs a hard limiter activation function with only integer weights and an integer threshold. The studies are focused on implementations of arbitrary Boolean functions which map from [0, 1]n into [0, 1]. A deterministic algorithm called set covering algorithm (SCA) is proposed for the construction of a three-layer BNN to implement an arbitrary Boolean function. The SCA is based on a unit sphere covering (USC) of the Hamming space (HS) which is chosen in advance. It is proved that for the implementation of an arbitrary Boolean function of n-variables (n > or = 3) by using SCA, [3L/2] hidden neurons are necessary and sufficient, where L is the number of unit spheres contained in the chosen USC of the n-dimensional HS. It is shown that by using SCA, the number of hidden neurons required is much less than that by using a two-parallel hyperplane method. In order to indicate the potential ability of three-layer BNNs, a lower bound on the required number of hidden neurons which is derived by using the method of estimating the Vapnik-Chervonenkis (VC) dimension is also given.

  3. How to Make a Synthetic Multicellular Computer

    PubMed Central

    Macia, Javier; Sole, Ricard

    2014-01-01

    Biological systems perform computations at multiple scales and they do so in a robust way. Engineering metaphors have often been used in order to provide a rationale for modeling cellular and molecular computing networks and as the basis for their synthetic design. However, a major constraint in this mapping between electronic and wet computational circuits is the wiring problem. Although wires are identical within electronic devices, they must be different when using synthetic biology designs. Moreover, in most cases the designed molecular systems cannot be reused for other functions. A new approximation allows us to simplify the problem by using synthetic cellular consortia where the output of the computation is distributed over multiple engineered cells. By evolving circuits in silico, we can obtain the minimal sets of Boolean units required to solve the given problem at the lowest cost using cellular consortia. Our analysis reveals that the basic set of logic units is typically non-standard. Among the most common units, the so called inverted IMPLIES (N-Implies) appears to be one of the most important elements along with the NOT and AND functions. Although NOR and NAND gates are widely used in electronics, evolved circuits based on combinations of these gates are rare, thus suggesting that the strategy of combining the same basic logic gates might be inappropriate in order to easily implement synthetic computational constructs. The implications for future synthetic designs, the general view of synthetic biology as a standard engineering domain, as well as potencial drawbacks are outlined. PMID:24586222

  4. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  5. Computed tomography of deep fat masses in multiple symmetrical lipomatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enzi, G.; Biondetti, P.R.; Fiore, D.

    1982-07-01

    Deep fat masses were evaluated by computed tomography (CT) in 15 patients with multiple symmetrical lipomatosis. In 4 patients, peritracheal accumulations of fat were observed. In 3 of them, tracheal compression by lipomatous tissue was demonstrated: 2 were asymptomatic and the third severe respiratory insufficiency secondary to blockage of the air was by the vocal cords as the result of recurrent nerve palsy. In 6 patients, lipomatous tissue occupied the potential space between the spina scapulae and the trapezius, supraspinatus, and infraspinatus muscles. In 2, calcification of lipomatous masses was observed. There was no relationship between extension of subcutaneous fatmore » and accumulation at deep sites. CT facilitates early detection of peritracheal lipomatous tissue and is helpful in follow-up when deep fat accumulation is responsible for space-occupying lesions requiring surgery.« less

  6. A Parallel Vector Machine for the PM Programming Language

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2016-04-01

    PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.

  7. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  8. The value of less connected agents in Boolean networks

    NASA Astrophysics Data System (ADS)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality that help to see how agents are organized.

  9. Stabilization of perturbed Boolean network attractors through compensatory interactions

    PubMed Central

    2014-01-01

    Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will ultimately provide researchers with greater flexibility in influencing system behavior. PMID:24885780

  10. Disparity between ultrasound and clinical findings in psoriatic arthritis.

    PubMed

    Husic, Rusmir; Gretler, Judith; Felber, Anja; Graninger, Winfried B; Duftner, Christina; Hermann, Josef; Dejaco, Christian

    2014-08-01

    To investigate the association between psoriatic arthritis (PsA)-specific clinical composite scores and ultrasound-verified pathology as well as comparison of clinical and ultrasound definitions of remission. We performed a prospective study on 70 consecutive PsA patients. Clinical assessments included components of Disease Activity Index for Psoriatic Arthritis (DAPSA) and the Composite Psoriatic Disease Activity Index (CPDAI). Minimal disease activity (MDA) and the following remission criteria were applied: CPDAI joint, entheses and dactylitis domains (CPDAI-JED)=0, DAPSA≤3.3, Boolean's remission definition and physician-judged remission (rem-phys). B-mode and power Doppler (PD-) ultrasound findings were semiquantitatively scored at 68 joints (evaluating synovia, peritendinous tissue, tendons and bony changes) and 14 entheses. Ultrasound remission and minimal ultrasound disease activity (MUDA) were defined as PD-score=0 and PD-score ≤1, respectively, at joints, peritendinous tissue, tendons and entheses. DAPSA but not CPDAI correlated with B-mode and PD-synovitis. Ultrasound signs of enthesitis, dactylitis, tenosynovitis and perisynovitis were not linked with clinical composites. Clinical remission or MDA was observed in 15.7% to 47.1% of PsA patients. Ultrasound remission and MUDA were present in 4.3% and 20.0% of patients, respectively. Joint and tendon-related PD-scores were higher in patients with active versus inactive disease according to CPDAI-JED, DAPSA, Boolean's and rem-phys, whereas no difference was observed regarding enthesitis and perisynovitis. DAPSA≤3.3 (OR 3.9, p=0.049) and Boolean's definition (OR 4.6, p=0.03) were more useful to predict MUDA than other remission criteria. PsA-specific composite scores partially reflect ultrasound findings. DAPSA and Boolean's remission definitions better identify MUDA patients than other clinical criteria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Direct discontinuous Galerkin method and its variations for second order elliptic equations

    DOE PAGES

    Huang, Hongying; Chen, Zheng; Li, Jin; ...

    2016-08-23

    In this study, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under L 2 norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Mathmore » 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal (k+1)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal (k+1)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.« less

  12. Direct discontinuous Galerkin method and its variations for second order elliptic equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hongying; Chen, Zheng; Li, Jin

    In this study, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under L 2 norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Mathmore » 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal (k+1)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal (k+1)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.« less

  13. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  14. Symmetric log-domain diffeomorphic Registration: a demons-based approach.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2008-01-01

    Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient.

  15. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    PubMed

    Zenke, Friedemann; Ganguli, Surya

    2018-06-01

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  16. Spherical aberration correction with an in-lens N-fold symmetric line currents model.

    PubMed

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji

    2018-04-01

    In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Isolated Effect of Geometry on Mitral Valve Function for In-Silico Model Development

    PubMed Central

    Siefert, Andrew William; Rabbah, Jean-Pierre Michel; Saikrishnan, Neelakantan; Kunzelman, Karyn Susanne; Yoganathan, Ajit Prithivaraj

    2013-01-01

    Computational models for the heart’s mitral valve (MV) exhibit several uncertainties which may be reduced by further developing these models using ground-truth data sets. The present study generated a ground-truth data set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle displacement, and asymmetric papillary muscle displacement on leaflet coaptation, mitral regurgitation (MR), and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile hemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction, and anterior leaflet strain in the radial and circumferential directions were successfully quantified for increasing levels of geometric distortion. From these data, increasing levels of isolated papillary muscle displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase), and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric papillary muscle displacement. Asymmetric papillary muscle displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data may be used to parametrically evaluate and develop modeling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools. PMID:24059354

  18. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  19. Boolean function applied to Mimosa pudica movements

    PubMed Central

    Friedman, Pedro

    2011-01-01

    Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis. PMID:21847029

  20. Fisher information at the edge of chaos in random Boolean networks.

    PubMed

    Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail

    2011-01-01

    We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.

  1. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    PubMed

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  2. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  3. A procedure concept for local reflex control of grasping

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Chang, Jeffrey

    1989-01-01

    An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.

  4. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  5. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    NASA Astrophysics Data System (ADS)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch-Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein-Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less

  7. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple-input gates, and sequential and non-sequential Boolean expressions are presented and discussed. The operation of each design is simply understood by a bullet train traveling at the speed of light on a railroad system preconditioned by the crossover states predetermined by the control inputs. The presented designs allow for optical processing of the information eliminating the need to convert it, back and forth, to an electronic signal for processing purposes. All gates with a truth table, including for example Fredkin, Toffoli, testable reversible logic, and threshold logic gates, can be designed and implemented using the railroad architecture. That includes any future gates not known today. Those designs and the quantum gates are not discussed in this paper.

  8. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  9. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivasseau, Vincent, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property tomore » lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.« less

  11. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    PubMed Central

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  12. A combined finite element-boundary element formulation for solution of axially symmetric bodies

    NASA Technical Reports Server (NTRS)

    Collins, Jeffrey D.; Volakis, John L.

    1991-01-01

    A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.

  13. Improve the efficiency of the Cartesian tensor based fast multipole method for Coulomb interaction using the traces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, He; Luo, Li -Shi; Li, Rui

    To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less

  14. Improve the efficiency of the Cartesian tensor based fast multipole method for Coulomb interaction using the traces

    DOE PAGES

    Huang, He; Luo, Li -Shi; Li, Rui; ...

    2018-05-17

    To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less

  15. A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1993-01-01

    A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.

  16. Spontaneous symmetry breaking in coupled parametrically driven waveguides.

    PubMed

    Dror, Nir; Malomed, Boris A

    2009-01-01

    We introduce a system of linearly coupled parametrically driven damped nonlinear Schrödinger equations, which models a laser based on a nonlinear dual-core waveguide with parametric amplification symmetrically applied to both cores. The model may also be realized in terms of parallel ferromagnetic films, in which the parametric gain is provided by an external field. We analyze spontaneous symmetry breaking (SSB) of fundamental and multiple solitons in this system, which was not studied systematically before in linearly coupled dissipative systems with intrinsic nonlinearity. For fundamental solitons, the analysis reveals three distinct SSB scenarios. Unlike the standard dual-core-fiber model, the present system gives rise to a vast bistability region, which may be relevant to applications. Other noteworthy findings are restabilization of the symmetric soliton after it was destabilized by the SSB bifurcation, and the existence of a generic situation with all solitons unstable in the single-component (decoupled) model, while both symmetric and asymmetric solitons may be stable in the coupled system. The stability of the asymmetric solitons is identified via direct simulations, while for symmetric and antisymmetric ones the stability is verified too through the computation of stability eigenvalues, families of antisymmetric solitons being entirely unstable. In this way, full stability maps for the symmetric solitons are produced. We also investigate the SSB bifurcation of two-soliton bound states (it breaks the symmetry between the two components, while the two peaks in the shape of the soliton remain mutually symmetric). The family of the asymmetric double-peak states may decouple from its symmetric counterpart, being no longer connected to it by the bifurcation, with a large portion of the asymmetric family remaining stable.

  17. Hopf-Pitchfork Bifurcation in a Symmetrically Conservative Two-Mass System with Delay

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Zhang, Chunrui; Cai, Yuting

    2018-06-01

    A symmetrically conservative two-mass system with time delay is considered here. We analyse the influence of interaction coefficient and time delay on the Hopf-pitchfork bifurcation. The bifurcation diagrams and phase portraits are then obtained by computing the normal forms for the system in which, particularly, the unfolding form for case III is seldom given in delayed differential equations. Furthermore, we also find some interesting dynamical behaviours of the original system, such as the coexistence of two stable non-trivial equilibria and a pair of stable periodic orbits, which are verified both theoretically and numerically.

  18. Continuation of periodic orbits in symmetric Hamiltonian and conservative systems

    NASA Astrophysics Data System (ADS)

    Galan-Vioque, J.; Almaraz, F. J. M.; Macías, E. F.

    2014-12-01

    We present and review results on the continuation and bifurcation of periodic solutions in conservative, reversible and Hamiltonian systems in the presence of symmetries. In particular we show how two-point boundary value problem continuation software can be used to compute families of periodic solutions of symmetric Hamiltonian systems. The technique is introduced with a very simple model example (the mathematical pendulum), justified with a theoretical continuation result and then applied to two non trivial examples: the non integrable spring pendulum and the continuation of the figure eight solution of the three body problem.

  19. A Closely Coupled Experimental and Numerical Approach for Hypersonic and High Enthalpy Flow Investigations Utilising the HEG Shock Tunnel and the DLR TAU Code

    DTIC Science & Technology

    2010-04-01

    factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t

  20. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  1. Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system

    NASA Astrophysics Data System (ADS)

    Ershov, Egor; Karnaukhov, Victor; Mozerov, Mikhail

    2016-02-01

    Two consecutive frames of a lateral navigation camera video sequence can be considered as an appropriate approximation to epipolar stereo. To overcome edge-aware inaccuracy caused by occlusion, we propose a model that matches the current frame to the next and to the previous ones. The positive disparity of matching to the previous frame has its symmetric negative disparity to the next frame. The proposed algorithm performs probabilistic choice for each matched pixel between the positive disparity and its symmetric disparity cost. A disparity map obtained by optimization over the cost volume composed of the proposed probabilistic choice is more accurate than the traditional left-to-right and right-to-left disparity maps cross-check. Also, our algorithm needs two times less computational operations per pixel than the cross-check technique. The effectiveness of our approach is demonstrated on synthetic data and real video sequences, with ground-truth value.

  2. Manifold Preserving: An Intrinsic Approach for Semisupervised Distance Metric Learning.

    PubMed

    Ying, Shihui; Wen, Zhijie; Shi, Jun; Peng, Yaxin; Peng, Jigen; Qiao, Hong

    2017-05-18

    In this paper, we address the semisupervised distance metric learning problem and its applications in classification and image retrieval. First, we formulate a semisupervised distance metric learning model by considering the metric information of inner classes and interclasses. In this model, an adaptive parameter is designed to balance the inner metrics and intermetrics by using data structure. Second, we convert the model to a minimization problem whose variable is symmetric positive-definite matrix. Third, in implementation, we deduce an intrinsic steepest descent method, which assures that the metric matrix is strictly symmetric positive-definite at each iteration, with the manifold structure of the symmetric positive-definite matrix manifold. Finally, we test the proposed algorithm on conventional data sets, and compare it with other four representative methods. The numerical results validate that the proposed method significantly improves the classification with the same computational efficiency.

  3. Entanglement of polar symmetric top molecules as candidate qubits.

    PubMed

    Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2011-10-21

    Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics

  4. Modified reactive tabu search for the symmetric traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Hong, Pei-Yee; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Reactive tabu search (RTS) is an improved method of tabu search (TS) and it dynamically adjusts tabu list size based on how the search is performed. RTS can avoid disadvantage of TS which is in the parameter tuning in tabu list size. In this paper, we proposed a modified RTS approach for solving symmetric traveling salesman problems (TSP). The tabu list size of the proposed algorithm depends on the number of iterations when the solutions do not override the aspiration level to achieve a good balance between diversification and intensification. The proposed algorithm was tested on seven chosen benchmarked problems of symmetric TSP. The performance of the proposed algorithm is compared with that of the TS by using empirical testing, benchmark solution and simple probabilistic analysis in order to validate the quality of solution. The computational results and comparisons show that the proposed algorithm provides a better quality solution than that of the TS.

  5. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    PubMed

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Exploratory analysis regarding the domain definitions for computer based analytical models

    NASA Astrophysics Data System (ADS)

    Raicu, A.; Oanta, E.; Barhalescu, M.

    2017-08-01

    Our previous computer based studies dedicated to structural problems using analytical methods defined the composite cross section of a beam as a result of Boolean operations with so-called ‘simple’ shapes. Using generalisations, in the class of the ‘simple’ shapes were included areas bounded by curves approximated using spline functions and areas approximated as polygons. However, particular definitions lead to particular solutions. In order to ascend above the actual limitations, we conceived a general definition of the cross sections that are considered now calculus domains consisting of several subdomains. The according set of input data use complex parameterizations. This new vision allows us to naturally assign a general number of attributes to the subdomains. In this way there may be modelled new phenomena that use map-wise information, such as the metal alloys equilibrium diagrams. The hierarchy of the input data text files that use the comma-separated-value format and their structure are also presented and discussed in the paper. This new approach allows us to reuse the concepts and part of the data processing software instruments already developed. The according software to be subsequently developed will be modularised and generalised in order to be used in the upcoming projects that require rapid development of computer based models.

  7. Highlights from the previous volumes

    NASA Astrophysics Data System (ADS)

    Vergini Eduardo, G.; Pan, Y.; al., Vardi R. et; al., Akkermans Eric et; et al.

    2014-01-01

    Semiclassical propagation up to the Heisenberg time Superconductivity and magnetic order in the half-Heusler compound ErPdBi An experimental evidence-based computational paradigm for new logic-gates in neuronal activity Universality in the symmetric exclusion process and diffusive systems

  8. Energy efficient hybrid computing systems using spin devices

    NASA Astrophysics Data System (ADS)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  9. Modeling gene regulatory networks: A network simplification algorithm

    NASA Astrophysics Data System (ADS)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  10. Stability of Boolean multilevel networks.

    PubMed

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  11. The Computational Development of Reinforcement Learning during Adolescence

    PubMed Central

    Palminteri, Stefano; Coricelli, Giorgio; Blakemore, Sarah-Jayne

    2016-01-01

    Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment) and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed). Computational strategies changed during development: whereas adolescents’ behaviour was better explained by a basic reinforcement learning algorithm, adults’ behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback) and a value contextualisation module (enabling symmetrical reward and punishment learning). Unlike adults, adolescent performance did not benefit from counterfactual (complete) feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence. PMID:27322574

  12. Inverse-consistent rigid registration of CT and MR for MR-based planning and adaptive prostate radiation therapy

    NASA Astrophysics Data System (ADS)

    Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter; Dowling, Jason

    2014-03-01

    MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy are two promising techniques that could significantly increase the accuracy of the curative dose delivery processes while reducing the total radiation dose. State-of-the-art methods rely on the registration of a patient MRI with a MR-CT atlas for the estimation of pseudo-CT [5]. This atlas itself is generally created by registering many CT and MRI pairs. Most registration methods are not symmetric, but the order of the images influences the result [8]. The computed transformation is therefore biased, introducing unwanted variability. This work examines how much a symmetric algorithm improves the registration. Methods: A robust symmetric registration algorithm is proposed that simultaneously optimises a half space transform and its inverse. During the registration process, the two input volumetric images are transformed to a common position in space, therefore minimising any computational bias. An asymmetrical implementation of the same algorithm was used for comparison purposes. Results: Whole pelvis MRI and CT scans from 15 prostate patients were registered, as in the creation of MR-CT atlases. In each case, two registrations were performed, with different input image orders, and the transformation error quantified. Mean residuals of 0.63±0.26 mm (translation) and (8.7±7.3) × 10--3 rad (rotation) were found for the asymmetrical implementation with corresponding values of 0.038±0.039 mm and (1.6 ± 1.3) × 10--3 rad for the proposed symmetric algorithm, a substantial improvement. Conclusions: The increased registration precision will enhance the generation of pseudo-CT from MRI for atlas based MR planning methods.

  13. Canonic FFT flow graphs for real-valued even/odd symmetric inputs

    NASA Astrophysics Data System (ADS)

    Lao, Yingjie; Parhi, Keshab K.

    2017-12-01

    Canonic real-valued fast Fourier transform (RFFT) has been proposed to reduce the arithmetic complexity by eliminating redundancies. In a canonic N-point RFFT, the number of signal values at each stage is canonic with respect to the number of signal values, i.e., N. The major advantage of the canonic RFFTs is that these require the least number of butterfly operations and only real datapaths when mapped to architectures. In this paper, we consider the FFT computation whose inputs are not only real but also even/odd symmetric, which indeed lead to the well-known discrete cosine and sine transforms (DCTs and DSTs). Novel algorithms for generating the flow graphs of canonic RFFTs with even/odd symmetric inputs are proposed. It is shown that the proposed algorithms lead to canonic structures with N/2 +1 signal values at each stage for an N-point real even symmetric FFT (REFFT) or N/2 -1 signal values at each stage for an N-point RFFT real odd symmetric FFT (ROFFT). In order to remove butterfly operations, several twiddle factor transformations are proposed in this paper. We also discuss the design of canonic REFFT for any composite length. Performances of the canonic REFFT/ROFFT are also discussed. It is shown that the flow graph of canonic REFFT/ROFFT has less number of interconnections, less butterfly operations, and less twiddle factor operations, compared to prior works.

  14. Wilson loops and its correlators with chiral operators in N = 2, 4 SCFT at large N

    NASA Astrophysics Data System (ADS)

    Sysoeva, E.

    2018-03-01

    In this paper we compute the vacuum expectation value of the Wilson loop and its correlators with chiral primary operators in N = 2, 4 superconformal U( N ) gauge theories at large N . After localization these quantities can be computed in terms of a deformed U( N ) matrix model. The Wilson loops we deal with are in the fundamental and symmetric representations.

  15. Efficient, massively parallel eigenvalue computation

    NASA Technical Reports Server (NTRS)

    Huo, Yan; Schreiber, Robert

    1993-01-01

    In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.

  16. Efficient Computation Of Behavior Of Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.

    1989-01-01

    NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.

  17. Understanding genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2003-04-01

    Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more about the wiring diagram and constraints on rules controlling real genes, we can build refined ensembles reflecting these properties, study the generic properties of the refined ensembles, and hope to gain insight into the dynamics of real cells.

  18. Boolean and fuzzy logic implemented at the molecular level

    NASA Astrophysics Data System (ADS)

    Gentili, Pier Luigi

    2007-07-01

    In this work, it is shown how to implement both hard and soft computing by means of two structurally related heterocyclic compounds: flindersine (FL) and 6(5H)-phenanthridinone (PH). Since FL and PH have a carbonyl group in their molecular skeletons, they exhibit Proximity Effects in their photophysics. In other words, they have an emission power that can be modulated through external inputs such as temperature ( T) and hydrogen-bonding donation (HBD) ability of solvents. This phenomenology can be exploited to implement both crisp and fuzzy logic. Fuzzy Logic Systems (FLSs) wherein the antecedents of the rules are connected through the AND operator, are built by both the Mamdani's and Sugeno's models. Finally, they are adopted as approximators of the proximity effect phenomenon and tested for their prediction capabilities. Moreover, FL as photochromic compound is also a multiply configurable crisp logic molecular element.

  19. Dynamic protein assembly by programmable DNA strand displacement.

    PubMed

    Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-04-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  20. A novel approach in formulation of special transition elements: Mesh interface elements

    NASA Technical Reports Server (NTRS)

    Sarigul, Nesrin

    1991-01-01

    The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.

  1. A hybrid nanomemristor/transistor logic circuit capable of self-programming

    PubMed Central

    Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A. A.; Wu, Wei; Stewart, Duncan R.; Williams, R. Stanley

    2009-01-01

    Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing. PMID:19171903

  2. A hybrid nanomemristor/transistor logic circuit capable of self-programming.

    PubMed

    Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A A; Wu, Wei; Stewart, Duncan R; Williams, R Stanley

    2009-02-10

    Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing.

  3. Efficient Boundary Extraction of BSP Solids Based on Clipping Operations.

    PubMed

    Wang, Charlie C L; Manocha, Dinesh

    2013-01-01

    We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.

  4. Dynamic protein assembly by programmable DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  5. Exploring hurdles to transfer : student experiences of applying knowledge across disciplines

    NASA Astrophysics Data System (ADS)

    Lappalainen, Jouni; Rosqvist, Juho

    2015-04-01

    This paper explores the ways students perceive the transfer of learned knowledge to new situations - often a surprisingly difficult prospect. The novel aspect compared to the traditional transfer studies is that the learning phase is not a part of the experiment itself. The intention was only to activate acquired knowledge relevant to the transfer target using a short primer immediately prior to the situation where the knowledge was to be applied. Eight volunteer students from either mathematics or computer science curricula were given a task of designing an adder circuit using logic gates: a new context in which to apply knowledge of binary arithmetic and Boolean algebra. The results of a phenomenographic classification of the views presented by the students in their post-experiment interviews are reported. The degree to which the students were conscious of the acquired knowledge they employed and how they applied it in a new context emerged as the differentiating factors.

  6. Numerical experiments with a symmetric high-resolution shock-capturing scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    Characteristic-based explicit and implicit total variation diminishing (TVD) schemes for the two-dimensional compressible Euler equations have recently been developed. This is a generalization of recent work of Roe and Davis to a wider class of symmetric (non-upwind) TVD schemes other than Lax-Wendroff. The Roe and Davis schemes can be viewed as a subset of the class of explicit methods. The main properties of the present class of schemes are that they can be implicit, and, when steady-state calculations are sought, the numerical solution is independent of the time step. In a recent paper, a comparison of a linearized form of the present implicit symmetric TVD scheme with an implicit upwind TVD scheme originally developed by Harten and modified by Yee was given. Results favored the symmetric method. It was found that the latter is just as accurate as the upwind method while requiring less computational effort. Currently, more numerical experiments are being conducted on time-accurate calculations and on the effect of grid topology, numerical boundary condition procedures, and different flow conditions on the behavior of the method for steady-state applications. The purpose here is to report experiences with this type of scheme and give guidelines for its use.

  7. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study

    DOE PAGES

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; ...

    2015-07-29

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less

  8. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  9. The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Jammalamadaka, Sreenivasa Rao; Ning, Ning

    2018-02-01

    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2 q-state symmetric model, with two categories of q states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second-order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q ≥ 4.

  10. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  11. A language comparison for scientific computing on MIMD architectures

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.; Voigt, Robert G.

    1989-01-01

    Choleski's method for solving banded symmetric, positive definite systems is implemented on a multiprocessor computer using three FORTRAN based parallel programming languages, the Force, PISCES and Concurrent FORTRAN. The capabilities of the language for expressing parallelism and their user friendliness are discussed, including readability of the code, debugging assistance offered, and expressiveness of the languages. The performance of the different implementations is compared. It is argued that PISCES, using the Force for medium-grained parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor computer, Flex/32.

  12. Development of non-linear finite element computer code

    NASA Technical Reports Server (NTRS)

    Becker, E. B.; Miller, T.

    1985-01-01

    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.

  13. Topological Aspects of Information Retrieval.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  14. Combinatorial optimization in foundry practice

    NASA Astrophysics Data System (ADS)

    Antamoshkin, A. N.; Masich, I. S.

    2016-04-01

    The multicriteria mathematical model of foundry production capacity planning is suggested in the paper. The model is produced in terms of pseudo-Boolean optimization theory. Different search optimization methods were used to solve the obtained problem.

  15. Defining of the BDX930 Assembly Language

    NASA Technical Reports Server (NTRS)

    Boyer, R. S.; Moore, J. S.

    1983-01-01

    A definition of the BDX930 assembly language is presented. Various definition problems and suggested solutions are included. A class of defined recognizers based on boolean valued nowrecursive functions is employed in preprocessing.

  16. Generalization of Jacobi's Decomposition Theorem to the Rotation and Translation of a Solid in a Fluid.

    NASA Astrophysics Data System (ADS)

    Chiang, Rong-Chang

    Jacobi found that the rotation of a symmetrical heavy top about a fixed point is composed of the two torque -free rotations of two triaxial bodies about their centers of mass. His discovery rests on the fact that the orthogonal matrix which represents the rotation of a symmetrical heavy top is decomposed into a product of two orthogonal matrices, each of which represents the torque-free rotations of two triaxial bodies. This theorem is generalized to the Kirchhoff's case of the rotation and translation of a symmetrical solid in a fluid. This theorem requires the explicit computation, by means of theta functions, of the nine direction cosines between the rotating body axes and the fixed space axes. The addition theorem of theta functions makes it possible to decompose the rotational matrix into a product of similar matrices. This basic idea of utilizing the addition theorem is simple but the carry-through of the computation is quite involved and the full proof turns out to be a lengthy process of computing rather long and complex expressions. For the translational motion we give a new treatment. The position of the center of mass as a function of the time is found by a direct evaluation of the elliptic integral by means of a new theta interpretation of Legendre's reduction formula of the elliptic integral. For the complete solution of the problem we have added further the study of the physical aspects of the motion. Based on a complete examination of the all possible manifolds of the steady helical cases it is possible to obtain a full qualitative description of the motion. Many numerical examples and graphs are given to illustrate the rotation and translation of the solid in a fluid.

  17. Application of a Discrete Nonlinear Spectral Model to Ideal Cases of Wind Wave Generation.

    DTIC Science & Technology

    1982-04-01

    WRITE (6965)) bBD ODRM4T (IHII C SKI ’> 3 LINS i AND WRITE PLOT TITLE (IDOCHAR S PER LINE t 10 LINES AXI4CH-,(NClkR*9) /10 dRJTE (660) (TJL..EfI),I-I...A*CaGE.D.)JPP-J>P 𔃻 I F ( 8 D Do)) jpp-j P?+2 MiFPPeE)’i)&O TO 44 73 40JT-NPr(NIN,JPP) ;o TD (72, 14,7b,7BhNOUT 44 IF(A*3)q46q4b47 46 JPP-2 ;0 TO 73...EXTEZNAL FJNrI3N LAND IJS 13 THE BOOLEAN I.EoLDGICAL$ AND 01’ Td C FULLWORD INTEGCRS. C EXTEtNAL FJN:TION LOR, I,JS 1)7 THE BOOLEAN OR OF TWO FULLWORD

  18. Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.

    PubMed

    Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik

    2018-05-02

    Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).

  19. Remission of rheumatoid arthritis and potential determinants: a national multi-center cross-sectional survey.

    PubMed

    Wang, Guan-Ying; Zhang, Sa-Li; Wang, Xiu-Ru; Feng, Min; Li, Chun; An, Yuan; Li, Xiao-Feng; Wang, Li-Zhi; Wang, Cai-Hong; Wang, Yong-Fu; Yang, Rong; Yan, Hui-Ming; Wang, Guo-Chun; Lu, Xin; Liu, Xia; Zhu, Ping; Chen, Li-Na; Jin, Hong-Tao; Liu, Jin-Ting; Guo, Hui-Fang; Chen, Hai-Ying; Xie, Jian-Li; Wei, Ping; Wang, Jun-Xiang; Liu, Xiang-Yuan; Sun, Lin; Cui, Liu-Fu; Shu, Rong; Liu, Bai-Lu; Yu, Ping; Zhang, Zhuo-Li; Li, Guang-Tao; Li, Zhen-Bin; Yang, Jing; Li, Jun-Fang; Jia, Bin; Zhang, Feng-Xiao; Tao, Jie-Mei; Lin, Jin-Ying; Wei, Mei-Qiu; Liu, Xiao-Min; Ke, Dan; Hu, Shao-Xian; Ye, Cong; Han, Shu-Ling; Yang, Xiu-Yan; Li, Hao; Huang, Ci-Bo; Gao, Ming; Lai, Bei; Cheng, Yong-Jing; Li, Xing-Fu; Song, Li-Jun; Yu, Xiao-Xia; Wang, Ai-Xue; Wu, Li-Jun; Wang, Yan-Hua; He, Lan; Sun, Wen-Wen; Gong, Lu; Wang, Xiao-Yuan; Wang, Yi; Zhao, Yi; Li, Xiao-Xia; Wang, Yan; Zhang, Yan; Su, Yin; Zhang, Chun-Fang; Mu, Rong; Li, Zhan-Guo

    2015-02-01

    The aim of this study is to investigate the remission rate of rheumatoid arthritis (RA) in China and identify its potential determinants. A multi-center cross-sectional study was conducted from July 2009 to January 2012. Data were collected by face-to-face interviews of the rheumatology outpatients in 28 tertiary hospitals in China. The remission rates were calculated in 486 RA patients according to different definitions of remission: the Disease Activity Score in 28 joints (DAS28), the Simplified Disease Activity Index (SDAI), the Clinical Disease Activity Index (CDAI), and the American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) Boolean definition. Potential determinants of RA remission were assessed by univariate and multivariate analyses. The remission rates of RA from this multi-center cohort were 8.6% (DAS28), 8.4% (SDAI), 8.2% (CDAI), and 6.8% (Boolean), respectively. Favorable factors associated with remission were: low Health Assessment Questionnaire (HAQ) score, absence of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP), and treatment of methotrexate (MTX) and hydroxychloroquine (HCQ). Younger age was also predictive for the DAS28 and the Boolean remission. Multivariate analyses revealed a low HAQ score, the absence of anti-CCP, and the treatment with HCQ as independent determinants of remission. The clinical remission rate of RA patients was low in China. A low HAQ score, the absence of anti-CCP, and HCQ were significant independent determinants for RA remission.

  20. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.

Top