Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations
Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra
2014-01-01
An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052
Man, V; Polzer, S; Gasser, T C; Novotny, T; Bursa, J
2018-03-01
Biomechanics-based assessment of Abdominal Aortic Aneurysm (AAA) rupture risk has gained considerable scientific and clinical momentum. However, computation of peak wall stress (PWS) using state-of-the-art finite element models is time demanding. This study investigates which features of the constitutive description of AAA wall are decisive for achieving acceptable stress predictions in it. Influence of five different isotropic constitutive descriptions of AAA wall is tested; models reflect realistic non-linear, artificially stiff non-linear, or artificially stiff pseudo-linear constitutive descriptions of AAA wall. Influence of the AAA wall model is tested on idealized (n=4) and patient-specific (n=16) AAA geometries. Wall stress computations consider a (hypothetical) load-free configuration and include residual stresses homogenizing the stresses across the wall. Wall stress differences amongst the different descriptions were statistically analyzed. When the qualitatively similar non-linear response of the AAA wall with low initial stiffness and subsequent strain stiffening was taken into consideration, wall stress (and PWS) predictions did not change significantly. Keeping this non-linear feature when using an artificially stiff wall can save up to 30% of the computational time, without significant change in PWS. In contrast, a stiff pseudo-linear elastic model may underestimate the PWS and is not reliable for AAA wall stress computations. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation turbulence model is an effective approach for turbulence modeling in the near solid wall surface region of flow over a concave wall.
Joldes, Grand Roman; Miller, Karol; Wittek, Adam; Doyle, Barry
2016-05-01
Abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that if left untreated can expand to the point of rupture. Mechanically-speaking, rupture of an artery occurs when the local wall stress exceeds the local wall strength. It is therefore desirable to be able to non-invasively estimate the AAA wall stress for a given patient, quickly and reliably. In this paper we present an entirely new approach to computing the wall tension (i.e. the stress resultant equal to the integral of the stresses tangent to the wall over the wall thickness) within an AAA that relies on trivial linear elastic finite element computations, which can be performed instantaneously in the clinical environment on the simplest computing hardware. As an input to our calculations we only use information readily available in the clinic: the shape of the aneurysm in-vivo, as seen on a computed tomography (CT) scan, and blood pressure. We demonstrate that tension fields computed with the proposed approach agree well with those obtained using very sophisticated, state-of-the-art non-linear inverse procedures. Using magnetic resonance (MR) images of the same patient, we can approximately measure the local wall thickness and calculate the local wall stress. What is truly exciting about this simple approach is that one does not need any information on material parameters; this supports the development and use of patient-specific modelling (PSM), where uncertainty in material data is recognised as a key limitation. The methods demonstrated in this paper are applicable to other areas of biomechanics where the loads and loaded geometry of the system are known. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch
He, Fan; Hua, Lu; Gao, Li-jian
2015-01-01
Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors. PMID:27019580
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M
2013-09-10
Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.
Stresses In And Near A Bend In A Thin-Walled Duct
NASA Technical Reports Server (NTRS)
Min, J. B.; Aggarwal, P. K.
1995-01-01
Report describes computational study of distributions of stresses in and near 90 degrees bend in thin-walled duct subject to various applied loads. Purpose of study to help satisfy need for more accurate knowledge of local concentrations of stresses caused by loads: such knowledge makes possible to design light-weight ducts to survive reasonably foreseeable operating conditions with some degree of reliability. Also guides selection of locations for mounting strain gauges to measure local stresses for comparison with computed values, contributing to refinement of theoretical concepts and computational techniques.
Nestola, M G C; Faggiano, E; Vergara, C; Lancellotti, R M; Ippolito, S; Antona, C; Filippi, S; Quarteroni, A; Scrofani, R
2017-02-01
We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.
Effect of exercise on hemodynamic conditions in the abdominal aorta.
Taylor, C A; Hughes, T J; Zarins, C K
1999-06-01
The beneficial effect of exercise in the retardation of the progression of cardiovascular disease is hypothesized to be caused, at least in part, by the elimination of adverse hemodynamic conditions, including flow recirculation and low wall shear stress. In vitro and in vivo investigations have provided qualitative and limited quantitative information on flow patterns in the abdominal aorta and on the effect of exercise on the elimination of adverse hemodynamic conditions. We used computational fluid mechanics methods to examine the effects of simulated exercise on hemodynamic conditions in an idealized model of the human abdominal aorta. A three-dimensional computer model of a healthy human abdominal aorta was created to simulate pulsatile aortic blood flow under conditions of rest and graded exercise. Flow velocity patterns and wall shear stress were computed in the lesion-prone infrarenal aorta, and the effects of exercise were determined. A recirculation zone was observed to form along the posterior wall of the aorta immediately distal to the renal vessels under resting conditions. Low time-averaged wall shear stress was present in this location, along the posterior wall opposite the superior mesenteric artery and along the anterior wall between the superior and inferior mesenteric arteries. Shear stress temporal oscillations, as measured with an oscillatory shear index, were elevated in these regions. Under simulated light exercise conditions, a region of low wall shear stress and high oscillatory shear index remained along the posterior wall immediately distal to the renal arteries. Under simulated moderate exercise conditions, all the regions of low wall shear stress and high oscillatory shear index were eliminated. This numeric investigation provided detailed quantitative data on the effect of exercise on hemodynamic conditions in the abdominal aorta. Our results indicated that moderate levels of lower limb exercise are necessary to eliminate the flow reversal and regions of low wall shear stress in the abdominal aorta that exist under resting conditions. The lack of flow reversal and increased wall shear stress during exercise suggest a mechanism by which exercise may promote arterial health, namely with the elimination of adverse hemodynamic conditions.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
Alimohammadi, Mona; Sherwood, Joseph M; Karimpour, Morad; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa
2015-04-15
The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.
Wall shear stress in intracranial aneurysms and adjacent arteries☆
Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Wu, Chen; Zhang, Xiaojun
2013-01-01
Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries. PMID:25206394
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
NASA Astrophysics Data System (ADS)
Khalid, Asma; Khan, Ilyas; Khan, Arshad; Shafie, Sharidan
2018-06-01
The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD) flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement.
Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L
2015-02-01
Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.
Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2001-01-01
The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
Xiang, J; Tutino, V M; Snyder, K V; Meng, H
2014-10-01
Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.
Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil
2014-08-01
Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
Computational Study of Separating Flow in a Planar Subsonic Diffuser
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.
2005-01-01
A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.
Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device
Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.
2012-01-01
In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546
Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P
2016-03-01
We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.
An abbreviated Reynolds stress turbulence model for airfoil flows
NASA Technical Reports Server (NTRS)
Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.
1990-01-01
An abbreviated Reynolds stress turbulence model is presented for solving turbulent flow over airfoils. The model consists of two partial differential equations, one for the Reynolds shear stress and the other for the turbulent kinetic energy. The normal stresses and the dissipation rate of turbulent kinetic energy are computed from algebraic relationships having the correct asymptotic near wall behavior. This allows the model to be integrated all the way to the wall without the use of wall functions. Results for a flat plate at zero angle of attack, a NACA 0012 airfoil and a RAE 2822 airfoil are presented.
Intraoperative CT in the assessment of posterior wall acetabular fracture stability.
Cunningham, Brian; Jackson, Kelly; Ortega, Gil
2014-04-01
Posterior wall acetabular fractures that involve 10% to 40% of the posterior wall may or may not require an open reduction and internal fixation. Dynamic stress examination of the acetabular fracture under fluoroscopy has been used as an intraoperative method to assess joint stability. The aim of this study was to demonstrate the value of intraoperative ISO computed tomography (CT) examination using the Siemens ISO-C imaging system (Siemens Corp, Malvern, Pennsylvania) in the assessment of posterior wall acetabular fracture stability during stress examination under anesthesia. In 5 posterior wall acetabular fractures, standard fluoroscopic images (including anteroposterior pelvis and Judet radiographs) with dynamic stress examinations were compared with the ISO-C CT imaging system to assess posterior wall fracture stability during stress examination. After review of standard intraoperative fluoroscopic images under dynamic stress examination, all 5 cases appeared to demonstrate posterior wall stability; however, when the intraoperative images from the ISO-C CT imaging system demonstrated that 1 case showed fracture instability of the posterior wall segment during stress examination, open reduction and internal fixation was performed. The use of intraoperative ISO CT imaging has shown an initial improvement in the surgeon's ability to assess the intraoperative stability of posterior wall acetabular fractures during stress examination when compared with standard fluoroscopic images. Copyright 2014, SLACK Incorporated.
Biehler, J; Wall, W A
2018-02-01
If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.
Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
Lu, Yiling; Lu, Xiyun; Zhuang, Lixian; Wang, Wen
2002-01-01
Non-planarity in blood vessels is known to influence arterial flows and wall shear stress. To gain insight, computational fluid dynamics (CFD) has been used to investigate effects of curvature and out-of-plane geometry on the distribution of fluid flows and wall shear stresses in a hypothetical non-planar bifurcation. Three-dimensional Navier-Stokes equations for a steady state Newtonian fluid were solved numerically using a finite element method. Non-planarity in one of the two daughter vessels is found to deflect flow from the inner wall of the vessel to the outer wall and to cause changes in the distribution of wall shear stresses. Results from this study agree to experimental observations and CFD simulations in the literature, and support the view that non-planarity in blood vessels is a factor with important haemodynamic significance and may play a key role in vascular biology and pathophysiology.
Lee, Lik Chuan; Wall, Samuel T.; Klepach, Doron; Ge, Liang; Zhang, Zhihong; Lee, Randall J.; Hinson, Andy; Gorman, Joseph H.; Gorman, Robert C.; Guccione, Julius M.
2013-01-01
Background Left ventricular (LV) wall stress reduction is a cornerstone in treating heart failure. Large animal models and computer simulations indicate that adding non-contractile material to the damaged LV wall can potentially reduce myofiber stress. We sought to quantify the effects of a novel implantable hydrogel (Algisyl-LVR™) treatment in combination with coronary artery bypass grafting (i.e. Algisyl-LVR™+CABG) on both LV function and wall stress in heart failure patients. Methods and results Magnetic resonance images obtained before treatment (n=3), and at 3 months (n=3) and 6 months (n=2) afterwards were used to reconstruct the LV geometry. Cardiac function was quantified using end-diastolic volume (EDV), end-systolic volume (ESV), regional wall thickness, sphericity index and regional myofiber stress computed using validated mathematical modeling. The LV became more ellipsoidal after treatment, and both EDV and ESV decreased substantially 3 months after treatment in all patients; EDV decreased from 264±91 ml to 146±86 ml and ESV decreased from 184±85 ml to 86±76 ml. Ejection fraction increased from 32±8% to 47±18% during that period. Volumetric-averaged wall thickness increased in all patients, from 1.06±0.21 cm (baseline) to 1.3±0.26 cm (3 months). These changes were accompanied by about a 35% decrease in myofiber stress at end-of-diastole and at end-of-systole. Post-treatment myofiber stress became more uniform in the LV. Conclusions These results support the novel concept that Algisyl-LVR™+CABG treatment leads to decreased myofiber stress, restored LV geometry and improved function. PMID:23394895
NASA Technical Reports Server (NTRS)
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Numerical Studies into Flow Profiles in Confined Lubricant
NASA Astrophysics Data System (ADS)
di Mare, Luca; Ponjavic, Aleks; Wong, Janet
2013-03-01
This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.
Park, Jinoh; Kim, Hyun-Sook; Hwang, Hye Jeon; Yang, Dong Hyun; Koo, Hyun Jung; Kang, Joon-Won; Kim, Young-Hak
2017-09-01
To evaluate the geographic and demographic variabilities of the quantitative parameters of computed tomography perfusion (CTP) of the left ventricular (LV) myocardium in patients with normal coronary artery on computed tomography angiography (CTA). From a multicenter CTP registry of stress and static computed tomography, we retrospectively recruited 113 patients (mean age, 60 years; 57 men) without perfusion defect on visual assessment and minimal (< 20% of diameter stenosis) or no coronary artery disease on CTA. Using semiautomatic analysis software, quantitative parameters of the LV myocardium, including the myocardial attenuation in stress and rest phases, transmural perfusion ratio (TPR), and myocardial perfusion reserve index (MPRI), were evaluated in 16 myocardial segments. In the lateral wall of the LV myocardium, all quantitative parameters except for MPRI were significantly higher compared with those in the other walls. The MPRI showed consistent values in all myocardial walls (anterior to lateral wall: range, 25% to 27%; p = 0.401). At the basal level of the myocardium, all quantitative parameters were significantly lower than those at the mid- and apical levels. Compared with men, women had significantly higher values of myocardial attenuation and TPR. Age, body mass index, and Framingham risk score were significantly associated with the difference in myocardial attenuation. Geographic and demographic variabilities of quantitative parameters in stress myocardial CTP exist in healthy subjects without significant coronary artery disease. This information may be helpful when assessing myocardial perfusion defects in CTP.
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Henshaw, W D; Wang, S L
To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flowmore » in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.« less
On a turbulent wall model to predict hemolysis numerically in medical devices
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung
2017-11-01
Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.
Large-eddy simulations with wall models
NASA Technical Reports Server (NTRS)
Cabot, W.
1995-01-01
The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.
Kok, Annette M; Nguyen, V Lai; Speelman, Lambert; Brands, Peter J; Schurink, Geert-Willem H; van de Vosse, Frans N; Lopata, Richard G P
2015-05-01
Abdominal aortic aneurysms (AAAs) are local dilations that can lead to a fatal hemorrhage when ruptured. Wall stress analysis of AAAs is a novel tool that has proven high potential to improve risk stratification. Currently, wall stress analysis of AAAs is based on computed tomography (CT) and magnetic resonance imaging; however, three-dimensional (3D) ultrasound (US) has great advantages over CT and magnetic resonance imaging in terms of costs, speed, and lack of radiation. In this study, the feasibility of 3D US as input for wall stress analysis is investigated. Second, 3D US-based wall stress analysis was compared with CT-based results. The 3D US and CT data were acquired in 12 patients (diameter, 35-90 mm). US data were segmented manually and compared with automatically acquired CT geometries by calculating the similarity index and Hausdorff distance. Wall stresses were simulated at P = 140 mm Hg and compared between both modalities. The similarity index of US vs CT was 0.75 to 0.91 (n = 12), with a median Hausdorff distance ranging from 4.8 to 13.9 mm, with the higher values found at the proximal and distal sides of the AAA. Wall stresses were in accordance with literature, and a good agreement was found between US- and CT-based median stresses and interquartile stresses, which was confirmed by Bland-Altman and regression analysis (n = 8). Wall stresses based on US were typically higher (+23%), caused by geometric irregularities due to the registration of several 3D volumes and manual segmentation. In future work, an automated US registration and segmentation approach is the essential point of improvement before pursuing large-scale patient studies. This study is a first step toward US-based wall stress analysis, which would be the modality of choice to monitor wall stress development over time because no ionizing radiation and contrast material are involved. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
NASA Astrophysics Data System (ADS)
Liu, J.; Wu, S. P.
2017-04-01
Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.
Computer design synthesis of a below knee-Syme prosthesis
NASA Technical Reports Server (NTRS)
Elangovan, P. T.; Ghista, D. N.; Alwar, R. S.
1979-01-01
A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purposes, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealized as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimize the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally stressed lightweight socket shell, the panels in the neighborhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analyzed in order to recommend optimum variables in orientations and densities of reinforcing fibers.
Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages
NASA Astrophysics Data System (ADS)
Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark
2014-05-01
The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.
Structure of high and low shear-stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
Pressure and wall shear stress in blood hammer - Analytical theory.
Mei, Chiang C; Jing, Haixiao
2016-10-01
We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.
Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.
2013-01-01
Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140
Liu, Aiping; Yin, Xin; Shi, Liang; Li, Peng; Thornburg, Kent L.; Wang, Ruikang; Rugonyi, Sandra
2012-01-01
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development. PMID:22844414
Aoki, Tomohiro; Yamamoto, Kimiko; Fukuda, Miyuki; Shimogonya, Yuji; Fukuda, Shunichi; Narumiya, Shuh
2016-05-09
Enlargement of a pre-existing intracranial aneurysm is a well-established risk factor of rupture. Excessive low wall shear stress concomitant with turbulent flow in the dome of an aneurysm may contribute to progression and rupture. However, how stress conditions regulate enlargement of a pre-existing aneurysm remains to be elucidated. Wall shear stress was calculated with 3D-computational fluid dynamics simulation using three cases of unruptured intracranial aneurysm. The resulting value, 0.017 Pa at the dome, was much lower than that in the parent artery. We loaded wall shear stress corresponding to the value and also turbulent flow to the primary culture of endothelial cells. We then obtained gene expression profiles by RNA sequence analysis. RNA sequence analysis detected hundreds of differentially expressed genes among groups. Gene ontology and pathway analysis identified signaling related with cell division/proliferation as overrepresented in the low wall shear stress-loaded group, which was further augmented by the addition of turbulent flow. Moreover, expression of some chemoattractants for inflammatory cells, including MCP-1, was upregulated under low wall shear stress with concomitant turbulent flow. We further examined the temporal sequence of expressions of factors identified in an in vitro study using a rat model. No proliferative cells were detected, but MCP-1 expression was induced and sustained in the endothelial cell layer. Low wall shear stress concomitant with turbulent flow contributes to sustained expression of MCP-1 in endothelial cells and presumably plays a role in facilitating macrophage infiltration and exacerbating inflammation, which leads to enlargement or rupture.
Cheng, Christopher P; Parker, David; Taylor, Charles A
2002-09-01
Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.
Riveros, Fabián; Chandra, Santanu; Finol, Ender A; Gasser, T Christian; Rodriguez, Jose F
2013-04-01
Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.
Assmann, Alexander; Gül, Fethi; Benim, Ali Cemal; Joos, Franz; Akhyari, Payam; Lichtenberg, Artur
2015-03-01
Neurologic complications during on-pump cardiovascular surgery are often induced by mobilization of atherosclerotic plaques, which is directly related to enhanced wall shear stress. In the present study, we numerically evaluated the impact of dispersive aortic cannulas on aortic blood flow characteristics, with special regard to the resulting wall shear stress profiles. An idealized numerical model of the human aorta and its branches was created and used to model straight as well as bent dispersive aortic cannulas with meshlike tips inserted in the distal ascending aorta. Standard cannulas with straight beveled or bent tips served as controls. Using a recently optimized computing method, simulations of pulsatile and nonpulsatile extracorporeal circulation were performed. Dispersive aortic cannulas reduced the maximum and average aortic wall shear stress values to approximately 50% of those with control cannulas, while the difference in local values was even larger. Moreover, under pulsatile circulation, dispersive cannulas shortened the time period during which wall shear stress values were increased. The turbulent kinetic energy was also diminished by utilizing dispersive cannulas, reducing the risk of hemolysis. In summary, dispersive aortic cannulas decrease aortic wall shear stress and turbulence during extracorporeal circulation and may therefore reduce the risk of endothelial and blood cell damage as well as that of neurologic complications caused by atherosclerotic plaque mobilization. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut
2006-01-01
Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.
Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louge, M.Y.
This paper employs computer simulations to test the theory of Jenkins [J. Applied Mech. [bold 59], 120 (1992)] for the interaction between a rapid granular flow of spheres and a flat, frictional wall. This paper examines the boundary conditions that relate the shear stress and energy flux at the wall to the normal stress, slip velocity, and fluctuation energy, and to the parameters that characterize a collision. It is found that while the theory captures the trends of the boundary conditions at low friction, it does not anticipate their behavior at large friction. A critical evaluation of Jenkins' assumptions suggestsmore » where his theory may be improved.« less
NASA Astrophysics Data System (ADS)
Naillon, A.; Joseph, P.; Prat, M.
2018-01-01
The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical computations of crystal growth. The study indicates that the stress buildup on the pore walls is a highly transient process taking place over a very short period of time (in less than 1 s in our experiments). The analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when the latter is about to be confined between the pore walls. The stress generation is summarized in a simple stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up the route for a better understanding of the damage of porous materials induced by salt crystallization, an important issue in Earth sciences, reservoir engineering, and civil engineering.
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-01-01
Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA's were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall.
Wall shear stress fixed points in blood flow
NASA Astrophysics Data System (ADS)
Arzani, Amirhossein; Shadden, Shawn
2017-11-01
Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.
Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun
2012-10-01
To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.
Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine.
Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik
2015-09-01
Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA-spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA-spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients.
Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine
Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik
2015-01-01
Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA–spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA–spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients. PMID:26158885
NASA Astrophysics Data System (ADS)
Czechowicz, K.; Badur, J.; Narkiewicz, K.
2014-08-01
Flow parameters can induce pathological changes in the arteries. We propose a method to asses those parameters using a 3D computer model of the flow in the Common Carotid Artery. Input data was acquired using an automatic 2D ultrasound wall tracking system. This data has been used to generate a 3D geometry of the artery. The diameter and wall thickness have been assessed individually for every patient, but the artery has been taken as a 75mm straight tube. The Young's modulus for the arterial walls was calculated using the pulse pressure, diastolic (minimal) diameter and wall thickness (IMT). Blood flow was derived from the pressure waveform using a 2-parameter Windkessel model. The blood is assumed to be non-Newtonian. The computational models were generated and calculated using commercial code. The coupling method required the use of Arbitrary Lagrangian-Euler formulation to solve Navier-Stokes and Navier-Lame equations in a moving domain. The calculations showed that the distention of the walls in the model is not significantly different from the measurements. Results from the model have been used to locate additional risk factors, such as wall shear stress or circumferential stress, that may predict adverse hypertension complications.
Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, J; Hartman, J; Rodriguez, J
2008-01-16
Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilarmore » aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.« less
Computational modeling of venous sinus stenosis in idiopathic intracranial hypertension
Levitt, Michael R; McGah, Patrick M; Moon, Karam; Albuquerque, Felipe C; McDougall, Cameron G; Kalani, M Yashar S; Kim, Louis J; Aliseda, Alberto
2016-01-01
Background and Purpose Idiopathic intracranial hypertension has been associated with dural venous sinus stenosis in some patients, but the hemodynamic environment of the dural venous sinuses has not been quantitatively described. Here, we present the first such computational fluid dynamics model using patient-specific blood pressure measurements. Materials and Methods Six patients with idiopathic intracranial hypertension and at least one stenosis or atresia at the transverse-sigmoid sinus junction underwent MRV followed by cerebral venography and manometry throughout the dural venous sinuses. Patient-specific computational fluid dynamics models were created using MRV anatomy, with venous pressure measurements as boundary conditions. Blood flow and wall shear stress were calculated for each patient. Results Computational models of dural venous sinuses were successfully reconstructed in all six patients with patient-specific boundary conditions. Three patients demonstrated a pathologic pressure gradient (≥ 8 mm Hg) across four dural venous sinus stenoses. Small sample size precludes statistical comparisons, but average overall flow throughout the dural venous sinuses of patients with pathologic pressure gradients was higher than in those without (1041.00 ± 506.52 vs. 358.00 ± 190.95 mL/min). Wall shear stress was also higher across stenoses in patients with pathologic pressure gradients (37.66 ± 48.39 vs 7.02 ± 13.60 Pa). Conclusion The hemodynamic environment of the dural venous sinuses can be computationally modeled using patient-specific anatomy and physiological measurements in patients with idiopathic intracranial hypertension. There was substantially higher blood flow and wall shear stress in patients with pathological pressure gradients. PMID:27197986
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Impact of composite plates: Analysis of stresses and forces
NASA Technical Reports Server (NTRS)
Moon, F. C.; Kim, B. S.; Fang-Landau, S. R.
1976-01-01
The foreign object damage resistance of composite fan blades was studied. Edge impact stresses in an anisotropic plate were first calculated incorporating a constrained layer damping model. It is shown that a very thin damping layer can dramatically decrease the maximum normal impact stresses. A multilayer model of a composite plate is then presented which allows computation of the interlaminar normal and shear stresses. Results are presented for the stresses due to a line impact load normal to the plane of a composite plate. It is shown that significant interlaminar tensile stresses can develop during impact. A computer code was developed for this problem using the fast Fourier transform. A marker and cell computer code were also used to investigate the hydrodynamic impact of a fluid slug against a wall or turbine blade. Application of fluid modeling of bird impact is reviewed.
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-01-01
Abstract. Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA’s were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall. PMID:28301637
Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields
NASA Technical Reports Server (NTRS)
Chen, C. P.; Shang, H. M.; Huang, J.
1993-01-01
Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.
Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility
NASA Astrophysics Data System (ADS)
McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto
2012-11-01
Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.
Peirlinck, Mathias; De Beule, Matthieu; Segers, Patrick; Rebelo, Nuno
2018-05-28
Patient-specific biomechanical modeling of the cardiovascular system is complicated by the presence of a physiological pressure load given that the imaged tissue is in a pre-stressed and -strained state. Neglect of this prestressed state into solid tissue mechanics models leads to erroneous metrics (e.g. wall deformation, peak stress, wall shear stress) which in their turn are used for device design choices, risk assessment (e.g. procedure, rupture) and surgery planning. It is thus of utmost importance to incorporate this deformed and loaded tissue state into the computational models, which implies solving an inverse problem (calculating an undeformed geometry given the load and the deformed geometry). Methodologies to solve this inverse problem can be categorized into iterative and direct methodologies, both having their inherent advantages and disadvantages. Direct methodologies are typically based on the inverse elastostatics (IE) approach and offer a computationally efficient single shot methodology to compute the in vivo stress state. However, cumbersome and problem-specific derivations of the formulations and non-trivial access to the finite element analysis (FEA) code, especially for commercial products, refrain a broad implementation of these methodologies. For that reason, we developed a novel, modular IE approach and implemented this methodology in a commercial FEA solver with minor user subroutine interventions. The accuracy of this methodology was demonstrated in an arterial tube and porcine biventricular myocardium model. The computational power and efficiency of the methodology was shown by computing the in vivo stress and strain state, and the corresponding unloaded geometry, for two models containing multiple interacting incompressible, anisotropic (fiber-embedded) and hyperelastic material behaviors: a patient-specific abdominal aortic aneurysm and a full 4-chamber heart model. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arslan, Nurullah; Turmuş, Hakan
2014-08-01
Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.
Computational fluid dynamics evaluation of incomplete stent apposition in a tapered artery
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Ooi, Andrew; Hayat, Umair; Barlis, Peter; Moore, Stephen
2015-11-01
Coronary stents are deployed to prop open blocked arteries and restore normal blood flow, however in-stent restenosis (ISR) and stent thrombosis (ST) remain possibly catastrophic complications. Computational fluid dynamics (CFD) analyses can elucidate the pathological impact of alterations in coronary hemodynamics and correlate wall shear stress (WSS) with atherosclerotic processes. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA) where stent struts are not in contact with the vessel wall. By employing state-of-the-art computer-aided design (CAD) software, generic open-cell and closed-cell coronary stent designs were virtually deployed in an idealised tapered coronary artery. Pulsatile blood flow (80 mL/min at 75 beats/min) was carried out numerically on these CAD models using a finite volume solver. CFD results reveal significant fluctuations in proximal WSS and large recirculation regions in the setting of proximal ISA, resulting in regions of high wall shear stress gradient (WSSG) that have been previously linked to poor endothelial cell coverage and vascular injury. The clinical significance of these proximal high WSSG regions will be correlated with findings from high-resolution in-vivo imaging. Supported by the Australian Research Council (LP120100233) and Victorian Life Sciences Computation Initiative (VR0210).
Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N
2014-10-01
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
Applications of a new wall function to turbulent flow computations
NASA Astrophysics Data System (ADS)
Chen, Y. S.
1986-01-01
A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.
A novel VLES model accounting for near-wall turbulence: physical rationale and applications
NASA Astrophysics Data System (ADS)
Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron
2014-11-01
A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.
Advancements in engineering turbulence modeling
NASA Technical Reports Server (NTRS)
Shih, T.-H.
1991-01-01
Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.
Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress
Chen, Henry Y.; Koo, Bon-Kwon; Bhatt, Deepak L.
2013-01-01
Stent deployments with geographical miss (GM) are associated with increased risk of target-vessel revascularization and periprocedural myocardial infarction. The aim of the current study was to investigate the underlying biomechanical mechanisms for adverse events with GM. The hypothesis is that stent deployment with GM [longitudinal GM, or LGM (i.e., stent not centered on the lesion); or radial GM, RGM (i.e., stent oversizing)] results in unfavorable fluid wall shear stress (WSS), WSS gradient (WSSG), oscillatory shear index (OSI), and intramural circumferential wall stress (CWS). Three-dimensional computational models of stents and plaque were created using a computer-assisted design package. The models were then solved with validated finite element and computational fluid dynamic packages. The dynamic process of large deformation stent deployment was modeled to expand the stent to the desired vessel size. Stent deployed with GM resulted in a 45% increase in vessel CWS compared with stents that were centered and fully covered the lesion. A 20% oversized stent resulted in 72% higher CWS than a correct sized stent. The linkages between the struts had much higher stress than the main struts (i.e., 180 MPa vs. 80 MPa). Additionally, LGM and RGM reduced endothelial WSS and increased WSSG and OSI. The simulations suggest that both LGM and RGM adversely reduce WSS but increase WSSG, OSI, and CWS. These findings highlight the potential mechanical mechanism of the higher adverse events and underscore the importance of stent positioning and sizing for improved clinical outcome. PMID:23722708
Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet
2014-09-01
Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally. Published by Elsevier Ltd.
Analysis of flow patterns in a patient-specific aortic dissection model.
Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y
2010-05-01
Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.
Mousavi, S Jamaleddin; Avril, Stéphane
2017-10-01
It is now a rather common approach to perform patient-specific stress analyses of arterial walls using finite-element models reconstructed from gated medical images. However, this requires to compute for every Gauss point the deformation gradient between the current configuration and a stress-free reference configuration. It is technically difficult to define such a reference configuration, and there is actually no guarantee that a stress-free configuration is physically attainable due to the presence of internal stresses in unloaded soft tissues. An alternative framework was proposed by Bellini et al. (Ann Biomed Eng 42(3):488-502, 2014). It consists of computing the deformation gradients between the current configuration and a prestressed reference configuration. We present here the first finite-element results based on this concept using the Abaqus software. The reference configuration is set arbitrarily to the in vivo average geometry of the artery, which is obtained from gated medical images and is assumed to be mechanobiologically homeostatic. For every Gauss point, the stress is split additively into the contributions of each individual load-bearing constituent of the tissue, namely elastin, collagen, smooth muscle cells. Each constituent is assigned an independent prestretch in the reference configuration, named the deposition stretch. The outstanding advantage of the present approach is that it simultaneously computes the in situ stresses existing in the reference configuration and predicts the residual stresses that occur after removing the different loadings applied onto the artery (pressure and axial load). As a proof of concept, we applied it on an ideal thick-wall cylinder and showed that the obtained results were consistent with corresponding experimental and analytical results of the well-known literature. In addition, we developed a patient-specific model of a human ascending thoracic aneurysmal aorta and demonstrated the utility in predicting the wall stress distribution in vivo under the effects of physiological pressure. Finally, we simulated the whole process preceding traditional in vitro uniaxial tensile testing of arteries, including excision from the body, radial cutting, flattening and subsequent tensile loading, showing how this process may impact the final mechanical properties derived from these in vitro tests.
Impact of hydrodynamic stresses on bacterial flagella
NASA Astrophysics Data System (ADS)
Das, Debasish; Riley, Emily; Lauga, Eric
2017-11-01
The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.
De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick
2016-07-26
The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur
2012-01-03
Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S
2011-01-01
This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.
Continuum mathematical modelling of pathological growth of blood vessels
NASA Astrophysics Data System (ADS)
Stadnik, N. E.; Dats, E. P.
2018-04-01
The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.
Wall Modeled Large Eddy Simulation of Airfoil Trailing Edge Noise
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Lele, Sanjiva
2014-11-01
Large eddy simulation (LES) of airfoil trailing edge noise has largely been restricted to low Reynolds numbers due to prohibitive computational cost. Wall modeled LES (WMLES) is a computationally cheaper alternative that makes full-scale Reynolds numbers relevant to large wind turbines accessible. A systematic investigation of trailing edge noise prediction using WMLES is conducted. Detailed comparisons are made with experimental data. The stress boundary condition from a wall model does not constrain the fluctuating velocity to vanish at the wall. This limitation has profound implications for trailing edge noise prediction. The simulation over-predicts the intensity of fluctuating wall pressure and far-field noise. An improved wall model formulation that minimizes the over-prediction of fluctuating wall pressure is proposed and carefully validated. The flow configurations chosen for the study are from the workshop on benchmark problems for airframe noise computations. The large eddy simulation database is used to examine the adequacy of scaling laws that quantify the dependence of trailing edge noise on Mach number, Reynolds number and angle of attack. Simplifying assumptions invoked in engineering approaches towards predicting trailing edge noise are critically evaluated. We gratefully acknowledge financial support from GE Global Research and thank Cascade Technologies Inc. for providing access to their massively-parallel large eddy simulation framework.
NASA Astrophysics Data System (ADS)
Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua
2017-04-01
Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.
NASA Astrophysics Data System (ADS)
Chen, Zeng-Sheng; Fan, Zhan-Ming; Zhang, Xi-Wen
2013-06-01
Stent-graft implantation is an important means of clinical treatment for aortic dissecting aneurysm (ADA). However, researches on fluid dynamics effects of stent were rare. Computer simulation was used to investigate the interactions between bloodstream and vascular structure in a stented ADA, which endures the periodic pulse velocity and pressure. We obtained and analyzed the flow velocity distribution, the wall displacement and wall stress in the ADA. By comparing the different results between a non-stented and a stented ADA, we found that the insertion of a vascular graft can make the location of maximum stress and displacement move from the aneurysm lumen wall to the artery wall, accompanied with a greatly decrease in value. These results imply that the placement of a stent-graft of any kind to occlude ADA will result in a decreased chance of rupture.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih
2016-02-01
Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1987-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.
Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892
Residual Stress Assessment in Thin Angle Ply Tubes
NASA Astrophysics Data System (ADS)
Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.
2003-05-01
This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.
Computational Analysis of Human Blood Flow
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, L.; Skala, K.
1996-06-01
In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded themore » design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.« less
Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis
NASA Astrophysics Data System (ADS)
Doriot, Pierre-André
2003-01-01
Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis.
Wall-layer model for LES with massive separation
NASA Astrophysics Data System (ADS)
Fakhari, Ahmad; Armenio, Vincenzo; Roman, Federico
2016-11-01
Currently, Wall Functions (WF) work well under specific conditions, mostly exhibit drawbacks specially in flows with separation beyond curvatures. In this work, we propose a more general WF which works well in attached and detached flows, in presence and absence of Immersed Boundaries (IB). First we modified an equilibrium stress WF for boundary-fitted geometry making dynamic the computation of the k (von Karman constant) of the log-law; the model was first applied to a periodic open channel flow, and then to the flow over a 2D single hill using uniform coarse grids; the model captured separation with reasonable accuracy. Thereafter IB Method by Roman et al. was improved to avoid momentum loss at the interface between the fluid-solid regions. This required calibration of interfacial eddy viscosity; also a random stochastic forcing was used in wall-normal direction to increase Reynolds stresses and improve mean velocity profile. Finally, to reproduce flow separation, a simplified boundary layer equation was applied to construct velocity at near wall computational nodes. The new scheme was tested on the 2D single hill and periodic hills applying Cartesian and curvilinear grids; good agreement with references was obtained with reduction in cost and complexity. Financial support from project COSMO "CFD open source per opera morta" PAR FSC 2007-2013, Friuli Venezia Giulia.
NASA Astrophysics Data System (ADS)
Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael
2015-11-01
The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.
NASA Technical Reports Server (NTRS)
Ha Minh, H.; Viegas, J. R.; Rubesin, M. W.; Spalart, P.; Vandromme, D. D.
1989-01-01
The turbulent boundary layer under a freestream whose velocity varies sinusoidally in time around a zero mean is computed using two second order turbulence closure models. The time or phase dependent behavior of the Reynolds stresses are analyzed and results are compared to those of a previous SPALART-BALDWIN direct simulation. Comparisons show that the second order modeling is quite satisfactory for almost all phase angles, except in the relaminarization period where the computations lead to a relatively high wall shear stress.
Application of NASTRAN for stress analysis of left ventricle of the heart
NASA Technical Reports Server (NTRS)
Pao, Y. C.; Ritman, E. L.; Wang, H. C.
1975-01-01
Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance.
Endovascular Treatment of Thoracic Aortic Dissection: Hemodynamic Shear Stress Study
NASA Astrophysics Data System (ADS)
Tang, Yik Sau; Lai, Siu Kai; Cheng, Stephen Wing Keung; Chow, Kwok Wing
2012-11-01
Thoracic Aortic Dissection (TAD), a life threatening cardiovascular disease, occurs when blood intrudes into the layers of the aortic wall, creating a new artificial channel (the false lumen) beside the original true lumen. The weakened false lumen wall may expand, enhancing the risk of rupture and resulting in high mortality. Endovascular treatment involves the deployment of a stent graft into the aorta, thus blocking blood from entering the false lumen. Due to the irregular geometry of the aorta, the stent graft, however, may fail to conform to the vessel curvature, and would create a ``bird-beak'' configuration, a wedge-shaped domain between the graft and the vessel wall. Computational fluid dynamics analysis is employed to study the hemodynamics of this pathological condition. With the `beaking' configuration, the local hemodynamic shear stress will drop below the threshold of safety reported earlier in the literature. The oscillating behavior of the shear stress might lead to local inflammation, atherosclerosis and other undesirable consequences. Supported by the Innovation and Technology Fund of the Hong Kong Government.
A reduced-dimensional model for near-wall transport in cardiovascular flows
Hansen, Kirk B.
2015-01-01
Near-wall mass transport plays an important role in many cardiovascular processes, including the initiation of atherosclerosis, endothelial cell vasoregulation, and thrombogenesis. These problems are characterized by large Péclet and Schmidt numbers as well as a wide range of spatial and temporal scales, all of which impose computational difficulties. In this work, we develop an analytical relationship between the flow field and near-wall mass transport for high-Schmidt-number flows. This allows for the development of a wall-shear-stress-driven transport equation that lies on a codimension-one vessel-wall surface, significantly reducing computational cost in solving the transport problem. Separate versions of this equation are developed for the reaction-rate-limited and transport-limited cases, and numerical results in an idealized abdominal aortic aneurysm are compared to those obtained by solving the full transport equations over the entire domain. The reaction-rate-limited model matches the expected results well. The transport-limited model is accurate in the developed flow regions, but overpredicts wall flux at entry regions and reattachment points in the flow. PMID:26298313
Modeling Flow Past a Tilted Vena Cava Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Wang, S L
Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside amore » model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.« less
Wu, Chen; Xu, Bai-Nan; Sun, Zheng-Hui; Wang, Fu-Yu; Liu, Lei; Zhang, Xiao-Jun; Zhou, Ding-Biao
2012-01-01
Unclippable fusiform basilar trunk aneurysm is a formidable condition for surgical treatment. The aim of this study was to establish a computational model and to investigate the hemodynamic characteristics in a fusiform basilar trunk aneurysm. The three-dimensional digital model of a fusiform basilar trunk aneurysm was constructed using MIMICS, ANSYS and CFX software. Different hemodynamic modalities and border conditions were assigned to the model. Thirty points were selected randomly on the wall and within the aneurysm. Wall total pressure (WTP), wall shear stress (WSS), and blood flow velocity of each point were calculated and hemodynamic status was compared between different modalities. The quantitative average values of the 30 points on the wall and within the aneurysm were obtained by computational calculation point by point. The velocity and WSS in modalities A and B were different from those of the remaining 5 modalities; and the WTP in modalities A, E and F were higher than those of the remaining 4 modalities. The digital model of a fusiform basilar artery aneurysm is feasible and reliable. This model could provide some important information to clinical treatment options.
Turbulence Model Predictions of Strongly Curved Flow in a U-Duct
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.
2000-01-01
The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
Xuan, Yue; Wang, Zhongjie; Liu, Raymond; Haraldsson, Henrik; Hope, Michael D; Saloner, David A; Guccione, Julius M; Ge, Liang; Tseng, Elaine
2018-03-08
Guidelines for repair of bicuspid aortic valve-associated ascending thoracic aortic aneurysms have been changing, most recently to the same criteria as tricuspid aortic valve-ascending thoracic aortic aneurysms. Rupture/dissection occurs when wall stress exceeds wall strength. Recent studies suggest similar strength of bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms; thus, comparative wall stress may better predict dissection in bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms. Our aim was to determine whether bicuspid aortic valve-ascending thoracic aortic aneurysms had higher wall stresses than their tricuspid aortic valve counterparts. Patients with bicuspid aortic valve- and tricuspid aortic valve-ascending thoracic aortic aneurysms (bicuspid aortic valve = 17, tricuspid aortic valve = 19) greater than 4.5 cm underwent electrocardiogram-gated computed tomography angiography. Patient-specific 3-dimensional geometry was reconstructed and loaded to systemic pressure after accounting for prestress geometry. Finite element analyses were performed using the LS-DYNA solver (LSTC Inc, Livermore, Calif) with user-defined fiber-embedded material model to determine ascending thoracic aortic aneurysm wall stress. Bicuspid aortic valve-ascending thoracic aortic aneurysms 99th-percentile longitudinal stresses were 280 kPa versus 242 kPa (P = .028) for tricuspid aortic valve-ascending thoracic aortic aneurysms in systole. These stresses did not correlate to diameter for bicuspid aortic valve-ascending thoracic aortic aneurysms (r = -0.004) but had better correlation to tricuspid aortic valve-ascending thoracic aortic aneurysms diameter (r = 0.677). Longitudinal stresses on sinotubular junction were significantly higher in bicuspid aortic valve-ascending thoracic aortic aneurysms than in tricuspid aortic valve-ascending thoracic aortic aneurysms (405 vs 329 kPa, P = .023). Bicuspid aortic valve-ascending thoracic aortic aneurysm 99th-percentile circumferential stresses were 548 kPa versus 462 kPa (P = .033) for tricuspid aortic valve-ascending thoracic aortic aneurysms, which also did not correlate to bicuspid aortic valve-ascending thoracic aortic aneurysm diameter (r = 0.007). Circumferential and longitudinal stresses were greater in bicuspid aortic valve- than tricuspid aortic valve-ascending thoracic aortic aneurysms and were more pronounced in the sinotubular junction. Peak wall stress did not correlate with bicuspid aortic valve-ascending thoracic aortic aneurysm diameter, suggesting diameter alone in this population may be a poor predictor of dissection risk. Our results highlight the need for patient-specific aneurysm wall stress analysis for accurate dissection risk prediction. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Turbulence modelling of flow fields in thrust chambers
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
Janiga, G; Berg, P; Sugiyama, S; Kono, K; Steinman, D A
2015-03-01
Rupture risk assessment for intracranial aneurysms remains challenging, and risk factors, including wall shear stress, are discussed controversially. The primary purpose of the presented challenge was to determine how consistently aneurysm rupture status and rupture site could be identified on the basis of computational fluid dynamics. Two geometrically similar MCA aneurysms were selected, 1 ruptured, 1 unruptured. Participating computational fluid dynamics groups were blinded as to which case was ruptured. Participants were provided with digitally segmented lumen geometries and, for this phase of the challenge, were free to choose their own flow rates, blood rheologies, and so forth. Participants were asked to report which case had ruptured and the likely site of rupture. In parallel, lumen geometries were provided to a group of neurosurgeons for their predictions of rupture status and site. Of 26 participating computational fluid dynamics groups, 21 (81%) correctly identified the ruptured case. Although the known rupture site was associated with low and oscillatory wall shear stress, most groups identified other sites, some of which also experienced low and oscillatory shear. Of the 43 participating neurosurgeons, 39 (91%) identified the ruptured case. None correctly identified the rupture site. Geometric or hemodynamic considerations favor identification of rupture status; however, retrospective identification of the rupture site remains a challenge for both engineers and clinicians. A more precise understanding of the hemodynamic factors involved in aneurysm wall pathology is likely required for computational fluid dynamics to add value to current clinical decision-making regarding rupture risk. © 2015 by American Journal of Neuroradiology.
A computational approach for inferring the cell wall properties that govern guard cell dynamics.
Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J
2017-10-01
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.
Numerical investigation of an internal layer in turbulent flow over a curved hill
NASA Technical Reports Server (NTRS)
Kim, S-W.
1989-01-01
The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.
Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane Bundles
Zhang, Jiafeng; Chen, Xiaobing; Ding, Jun; Fraser, Katharine H.; Ertan Taskin, M.; Griffith, Bartley P.; Wu, Zhongjun J.
2013-01-01
The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy′s law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction. PMID:24141394
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E
2018-01-23
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zero-stress states of human pulmonary arteries and veins.
Huang, W; Yen, R T
1998-09-01
The zero-stress states of the pulmonary arteries and veins from order 3 to order 9 were determined in six normal human lungs within 15 h postmortem. The zero-stress state of each vessel was obtained by cutting the vessel transversely into a series of short rings, then cutting each ring radially, which caused the ring to spring open into a sector. Each sector was characterized by its opening angle. The mean opening angle varied between 92 and 163 degrees in the arterial tree and between 89 and 128 degrees in the venous tree. There was a tendency for opening angles to increase as the sizes of the arteries and veins increased. We computed the residual strains based on the experimental measurements and estimated the residual stresses according to Hooke's law. We found that the inner wall of a vessel at the state in which the internal pressure, external pressure, and longitudinal stress are all zero was under compression and the outer wall was in tension, and that the magnitude of compressive stress was greater than the magnitude of tensile stress.
Impact of turbulence anisotropy near walls in room airflow.
Schälin, A; Nielsen, P V
2004-06-01
The influence of different turbulence models used in computational fluid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number kappa-epsilon model and the high Re-number Reynolds stress model (RSM). The three-dimensional wall jet is selected for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface in a three-dimensional wall jet by the kappa-epsilon turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reflection terms. The flow in a deep room can be strongly influenced by details as the growth rate of a three-dimensional wall jet. Predictions by a kappa-epsilon model and RSM show large deviations in the occupied zone. Measurements and observations of streamline patterns in model experiments indicate that a reasonable solution is obtained by the RSM compared with the solution obtained by the kappa-epsilon model. Computational fluid dynamics (CFD) is often used for the prediction of air distribution in rooms and for the evaluation of thermal comfort and indoor air quality. The most used turbulence model in CFD is the kappa-epsilon model. This model often produces good results; however, some cases require more sophisticated models. The prediction of a three-dimensional wall jet is improved if it is made by a Reynolds stress model (RSM). This model improves the prediction of the velocity level in the jet and in some special cases it may influence the entire flow in the occupied zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brochard, J.; Charras, T.; Ghoudi, M.
Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.
A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades
NASA Technical Reports Server (NTRS)
McCarthy, Thomas Robert
1996-01-01
A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.
NASA Astrophysics Data System (ADS)
Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis
2018-04-01
In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
Mining data from hemodynamic simulations for generating prediction and explanation models.
Bosnić, Zoran; Vračar, Petar; Radović, Milos D; Devedžić, Goran; Filipović, Nenad D; Kononenko, Igor
2012-03-01
One of the most common causes of human death is stroke, which can be caused by carotid bifurcation stenosis. In our work, we aim at proposing a prototype of a medical expert system that could significantly aid medical experts to detect hemodynamic abnormalities (increased artery wall shear stress). Based on the acquired simulated data, we apply several methodologies for1) predicting magnitudes and locations of maximum wall shear stress in the artery, 2) estimating reliability of computed predictions, and 3) providing user-friendly explanation of the model's decision. The obtained results indicate that the evaluated methodologies can provide a useful tool for the given problem domain. © 2012 IEEE
A Near-Wall Reynolds-Stress Closure Without Wall Normals
NASA Technical Reports Server (NTRS)
Yuan, S. P.; So, R. M. C.
1997-01-01
Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall-independent near-wall corrections. Moreover, only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls.
Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.
2007-01-01
A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.
Fluid-structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures
NASA Astrophysics Data System (ADS)
Torii, Ryo; Oshima, Marie; Kobayashi, Toshio; Takagi, Kiyoshi; Tezduyar, Tayfun E.
2006-09-01
Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid-structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.
NASA Astrophysics Data System (ADS)
Kraynik, Andrew M.; Romero, Louis; Torczynski, John R.; Brooks, Carlton F.; O'Hern, Timothy J.; Jepson, Richard A.; Benavides, Gilbert L.
2009-11-01
The stability of an interface in a container partially filled with silicone oil and subjected to gravity and vertical oscillations has been examined theoretically and computationally. An exact theory for the onset of a parametric instability producing Faraday-like waves was developed for arbitrary liquid viscosity, stress-free walls, and deep two-dimensional or axisymmetric containers. Finite-element simulations for stress-free walls are in excellent agreement with the theory, which predicts instability in discrete frequency bands. These simpler calculations are a departure point for examining the more realistic problem, which involves no-slip at the walls and dynamic wetting modeled with a Blake condition. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tse, Kwong Ming; Chiu, Peixuan; Lee, Heow Pueh; Ho, Pei
2011-03-15
Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design Optimization of Vena Cava Filters: An application to dual filtration devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Wang, S L; Diachin, D P
Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped modelmore » thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.« less
Transport of passive scalars in a turbulent channel flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1987-01-01
A direct numerical simulation of a turbulent channel flow with three passive scalars at different molecular Prandtl numbers is performed. Computed statistics including the turbulent Prandtl numbers are compared with existing experimental data. The computed fields are also examined to investigate the spatial structure of the scalar fields. The scalar fields are highly correlated with the streamwise velocity; the correlation coefficient between the temperature and the streamwise velocity is as high as 0.95 in the wall region. The joint probability distributions between the temperature and velocity fluctuations are also examined; they suggest that it might be possible to model the scalar fluxes in the wall region in a manner similar to the Reynolds stresses.
NASA Astrophysics Data System (ADS)
Li, Ming-Lung; Wang, Yi-Chou; Liou, Tong-Miin; Lin, Chao-An
2014-10-01
Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography, which is to our knowledge for the first time, were successfully identified among 101 patients. These, together with numerical simulations based on the reconstructed aneurysmal models, were used to analyze hemodynamic parameters of aneurysms under different cardiac cyclic flow rates. For side wall type aneurysms, different inlet flow rates have mild influences on the shear stresses distributions. On the other hand, for branch type aneurysms, the predicted wall shear stress (WSS) correlates strongly with the increase of inlet vessel velocity. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. Also, the levels of the oscillatory shear index (OSI) are higher than the reported threshold value, supporting the assertion that high OSI correlates with rupture of the aneurysm. However, the present results also indicate that OSI level at the rupture region is relatively lower.
Use and Misuse of Laplace's Law in Ophthalmology.
Chung, Cheuk Wang; Girard, Michaël J A; Jan, Ning-Jiun; Sigal, Ian A
2016-01-01
Laplace's Law, with its compactness and simplicity, has long been employed in ophthalmology for describing the mechanics of the corneoscleral shell. We questioned the appropriateness of Laplace's Law for computing wall stress in the eye considering the advances in knowledge of ocular biomechanics. In this manuscript we recapitulate the formulation of Laplace's Law, as well as common interpretations and uses in ophthalmology. Using numerical modeling, we study how Laplace's Law cannot account for important characteristics of the eye, such as variations in globe shape and size or tissue thickness, anisotropy, viscoelasticity, or that the eye is a living, dynamic organ. We show that accounting for various geometrical and material factors, excluded from Laplace's Law, can alter estimates of corneoscleral wall stress as much as 456% and, therefore, that Laplace's Law is unreliable. We conclude by illustrating how computational techniques, such as finite element modeling, can account for the factors mentioned above, and are thus more suitable tools to provide quantitative characterization of corneoscleral biomechanics.
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent
2016-04-01
Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.
Effects of Renal Denervation on Renal Artery Function in Humans: Preliminary Study
Doltra, Adelina; Hartmann, Arthur; Stawowy, Philipp; Goubergrits, Leonid; Kuehne, Titus; Wellnhofer, Ernst; Gebker, Rolf; Schneeweis, Christopher; Schnackenburg, Bernhard; Esler, Murray; Fleck, Eckart; Kelle, Sebastian
2016-01-01
Aim To study the effects of RD on renal artery wall function non-invasively using magnetic resonance. Methods and Results 32 patients undergoing RD were included. A 3.0 Tesla magnetic resonance of the renal arteries was performed before RD and after 6-month. We quantified the vessel sharpness of both renal arteries using a quantitative analysis tool (Soap-Bubble®). In 17 patients we assessed the maximal and minimal cross-sectional area of both arteries, peak velocity, mean flow, and renal artery distensibility. In a subset of patients wall shear stress was assessed with computational flow dynamics. Neither renal artery sharpness nor renal artery distensibility differed significantly. A significant increase in minimal and maximal areas (by 25.3%, p = 0.008, and 24.6%, p = 0.007, respectively), peak velocity (by 16.9%, p = 0.021), and mean flow (by 22.4%, p = 0.007) was observed after RD. Wall shear stress significantly decreased (by 25%, p = 0.029). These effects were observed in blood pressure responders and non-responders. Conclusions RD is not associated with adverse effects at renal artery level, and leads to an increase in cross-sectional areas, velocity and flow and a decrease in wall shear stress. PMID:27003912
Experimental and numerical investigation of low-drag intervals in turbulent boundary layer
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Ryu, Sangjin; Lee, Jin
2017-11-01
It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.
Code of Federal Regulations, 2011 CFR
2011-10-01
... elastic expansion was determined at the time of the last test or retest by the water jacket method. (3) Either the average wall stress or the maximum wall stress does not exceed the wall stress limitation shown in the following table: Type of steel Average wall stress limitation Maximum wall stress...
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
Biomechanical remodeling of obstructed guinea pig jejunum
Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans
2010-01-01
Data on morphological and biomechanical remodeling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days respectively. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cmH20. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner. PMID:20189575
Simulation of blood flow using extended Boltzmann kinetic approach
NASA Astrophysics Data System (ADS)
Chen, Caixia; Chen, Hudong; Freed, David; Shock, Richard; Staroselsky, Ilya; Zhang, Raoyang; Ümit Coşkun, A.; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Lattice Boltzmann (LB) simulations are conducted to obtain the detailed hydrodynamics in a variety of blood vessel setups, including a prototype stented channel and four human coronary artery geometries based on the images obtained from real patients. For a model of stented flow involving an S-shape stent, a pulsatile flow rate is applied as the inlet boundary condition, and the time- and space-dependent flow field is computed. The LB simulation is found to reproduce the analytical solutions for the velocity profiles and wall shear stress distributions for the pulsatile channel flow. For the coronary arteries, the distributions of wall shear stress, which is important for clinical diagnostic purposes, are in good agreement with the conventional CFD predictions.
Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.
Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie
2017-11-06
The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-02-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.
Zhang, Ying; Jing, Linkai; Liu, Jian; Li, Chuanhui; Fan, Jixing; Wang, Shengzhang; Li, Haiyun; Yang, Xinjian
2016-08-01
To identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status. 173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis. Two clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038). We combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm
Doyle, Barry J.; Corbett, Timothy J.; Callanan, Anthony; Walsh, Michael T.; Vorp, David A.; McGloughlin, Timothy M.
2009-01-01
Purpose: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. Methods: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. Results: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. Conclusion: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study. PMID:19642790
Wang, Weixiong; Graziano, Francesca; Russo, Vittorio; Ulm, Arthur J; De Kee, Daniel; Khismatullin, Damir B
2013-01-01
The endovascular treatment of intracranial aneurysms remains a challenge, especially when the aneurysm is large in size and has irregular, non-spherical geometry. In this paper, we use computational fluid dynamics to simulate blood flow in a vertebro-basilar junction giant aneurysm for the following three cases: (1) an empty aneurysm, (2) an aneurysm filled with platinum coils, and (3) an aneurysm filled with a yield stress fluid material. In the computational model, blood and the coil-filled region are treated as a non-Newtonian fluid and an isotropic porous medium, respectively. The results show that yield stress fluids can be used for aneurysm embolization provided the yield stress value is 20 Pa or higher. Specifically, flow recirculation in the aneurysm and the size of the inflow jet impingement zone on the aneurysm wall are substantially reduced by yield stress fluid treatment. Overall, this study opens up the possibility of using yield stress fluids for effective embolization of large-volume intracranial aneurysms.
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
NASA Astrophysics Data System (ADS)
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Chin, Cheng; Scheerlinck, Cedric; Zahtila, Tony; Mamon, Chris; Nguyen, Wilson; Ooi, Andrew; Barlis, Peter
2016-11-01
Blood flow dynamics directly influence biology of the arterial wall, and are closely linked with the development of coronary artery disease. Computational fluid dynamics (CFD) solvers may be employed to analyze the hemodynamic environment in patient-specific reconstructions of coronary arteries. Although coronary X-ray angiography (CA) is the most common medical imaging modality for 3D arterial reconstruction, models reconstructed from CA assume a circular or elliptical cross-sectional area. This limitation can be overcome with a reconstruction technique fusing CA with intravascular optical coherence tomography (OCT). OCT scans the interior of an artery using near-infrared light, achieving a 10-micron resolution and providing unprecedented detail of vessel geometry. We compared 3D coronary artery bifurcation models generated using CA alone versus OCT-angiography fusion. The model reconstructed from CA alone is unable to identify the detailed geometrical variations of diseased arteries, and also under-estimates the cross-sectional vessel area compared to OCT-angiography fusion. CFD was performed in both models under pulsatile flow in order to identify and compare regions of low wall shear stress, a hemodynamic parameter directly linked with progression of atherosclerosis. Supported by ARC LP150100233 and VLSCI VR0210.
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
Stochastic modelling of wall stresses in abdominal aortic aneurysms treated by a gene therapy.
Mohand-Kaci, Faïza; Ouni, Anissa Eddhahak; Dai, Jianping; Allaire, Eric; Zidi, Mustapha
2012-01-01
A stochastic mechanical model using the membrane theory was used to simulate the in vivo mechanical behaviour of abdominal aortic aneurysms (AAAs) in order to compute the wall stresses after stabilisation by gene therapy. For that, both length and diameter of AAAs rats were measured during their expansion. Four groups of animals, control and treated by an endovascular gene therapy during 3 or 28 days were included. The mechanical problem was solved analytically using the geometric parameters and assuming the shape of aneurysms by a 'parabolic-exponential curve'. When compared to controls, stress variations in the wall of AAAs for treated arteries during 28 days decreased, while they were nearly constant at day 3. The measured geometric parameters of AAAs were then investigated using probability density functions (pdf) attributed to every random variable. Different trials were useful to define a reliable confidence region in which the probability to have a realisation is equal to 99%. The results demonstrated that the error in the estimation of the stresses can be greater than 28% when parameters uncertainties are not considered in the modelling. The relevance of the proposed approach for the study of AAA growth may be studied further and extended to other treatments aimed at stabilisation AAAs, using biotherapies and pharmacological approaches.
NASA Astrophysics Data System (ADS)
Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu
2017-12-01
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
Patient-specific computational modeling of blood flow in the pulmonary arterial circulation.
Kheyfets, Vitaly O; Rios, Lourdes; Smith, Triston; Schroeder, Theodore; Mueller, Jeffrey; Murali, Srinivas; Lasorda, David; Zikos, Anthony; Spotti, Jennifer; Reilly, John J; Finol, Ender A
2015-07-01
Computational fluid dynamics (CFD) modeling of the pulmonary vasculature has the potential to reveal continuum metrics associated with the hemodynamic stress acting on the vascular endothelium. It is widely accepted that the endothelium responds to flow-induced stress by releasing vasoactive substances that can dilate and constrict blood vessels locally. The objectives of this study are to examine the extent of patient specificity required to obtain a significant association of CFD output metrics and clinical measures in models of the pulmonary arterial circulation, and to evaluate the potential correlation of wall shear stress (WSS) with established metrics indicative of right ventricular (RV) afterload in pulmonary hypertension (PH). Right Heart Catheterization (RHC) hemodynamic data and contrast-enhanced computed tomography (CT) imaging were retrospectively acquired for 10 PH patients and processed to simulate blood flow in the pulmonary arteries. While conducting CFD modeling of the reconstructed patient-specific vasculatures, we experimented with three different outflow boundary conditions to investigate the potential for using computationally derived spatially averaged wall shear stress (SAWSS) as a metric of RV afterload. SAWSS was correlated with both pulmonary vascular resistance (PVR) (R(2)=0.77, P<0.05) and arterial compliance (C) (R(2)=0.63, P<0.05), but the extent of the correlation was affected by the degree of patient specificity incorporated in the fluid flow boundary conditions. We found that decreasing the distal PVR alters the flow distribution and changes the local velocity profile in the distal vessels, thereby increasing the local WSS. Nevertheless, implementing generic outflow boundary conditions still resulted in statistically significant SAWSS correlations with respect to both metrics of RV afterload, suggesting that the CFD model could be executed without the need for complex outflow boundary conditions that require invasively obtained patient-specific data. A preliminary study investigating the relationship between outlet diameter and flow distribution in the pulmonary tree offers a potential computationally inexpensive alternative to pressure based outflow boundary conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Zhihua; Ai, Chi; Feng, Fuping
2017-01-01
When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.
NASA Technical Reports Server (NTRS)
Bushnell, D.
1974-01-01
Code is easy to use yet is general with respect to: (a) type of analysis to be performed; (b) geometry of shell meridian; (c) type of wall construction; (d) type of boundary conditions, ring supports, and branching configuration; and (e) type of loading.
Analysis of film cooling in rocket nozzles
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1992-01-01
Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.
Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.
López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc; Garcia-Bennett, Josep
2017-05-01
Deep venous thrombosis (DVT) is a common disease. Large thrombi in venous vessels cause bad blood circulation and pain; and when a blood clot detaches from a vein wall, it causes an embolism whose consequences range from mild to fatal. Walking is recommended to DVT patients as a therapeutical complement. In this study the mechanical effects of walking on a specific patient of DVT were simulated by means of an unprecedented integration of 3 elements: a real geometry, a biomechanical model of body tissues, and a computational fluid dynamics study. A set of computed tomography images of a patient's leg with a thrombus in the popliteal vein was employed to reconstruct a geometry model. Then a biomechanical model was used to compute the new deformed geometry of the vein as a function of the fiber stretch level of the semimembranosus muscle. Finally, a computational fluid dynamics study was performed to compute the blood flow and the wall shear stress (WSS) at the vein and thrombus walls. Calculations showed that either a lengthening or shortening of the semimembranosus muscle led to a decrease of WSS levels up to 10%. Notwithstanding, changes in blood viscosity properties or blood flow rate may easily have a greater impact in WSS. Copyright © 2016 John Wiley & Sons, Ltd.
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2011 CFR
2011-10-01
... thickness; wall stress. The wall thickness/wall stress of the cylinder must conform to the following: (1) The calculated wall stress at 750 psi may not exceed 35,000 psi, or one-half of the minimum ultimate... stress must be made by the formula: S = [P(1.3D2 + 0.4d2)] / (D2 − d2) Where: S = wall stress in pounds...
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)
2002-01-01
The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.
Soudah, Eduardo; Ng, E Y K; Loong, T H; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram
2013-01-01
The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m(3) and a kinematic viscosity of 4 × 10(-3) Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index ( β ), saccular index ( γ ), deformation diameter ratio ( χ ), and tortuosity index ( ε )) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.
Computational fluid dynamics tools can be used to predict the progression of coronary artery disease
NASA Astrophysics Data System (ADS)
Coşkun, A. Ümit; Chen, Caixia; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Atherosclerosis is focal and individual plaques evolve in an independent manner. The endothelium regulates arterial behavior by responding to its local shear stress. In vitro studies indicate that low endothelial shear stress (ESS) upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic ESS is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High ESS promotes platelet aggregation. ESS and vascular wall morphology along the course of human coronary arteries can now be characterized in vivo, and may predict the focal areas in which atherosclerosis progression occurs. Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic factors likely responsible for progression of coronary disease in man. These new diagnostic modalities allow for identification of plaque progression. Accurate identification of arterial segments at high-risk for progression may permit pre-emptive intervention strategies to avoid adverse coronary events.
Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong
2016-12-28
In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.
Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus
2018-05-01
This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structural analysis of two different stent configurations.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M
2017-06-01
Two different stent configurations (i.e. the well known Palmaz-Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.
Lee, Lik Chuan; Zhihong, Zhang; Hinson, Andrew; Guccione, Julius M.
2013-01-01
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship. PMID:23608998
NASA Astrophysics Data System (ADS)
Trujillo, Steven Mathew
Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a more uniform flow in the near-wall region resulting from wall oscillation. Quantitative analyses of the visualizations supported the velocity-based Reynolds-stress reductions; the same data also revealed that the quasi-streamwise vortical structures above the wall did not appear to be altered significantly by the wall motion.
NASA Technical Reports Server (NTRS)
Foster, Lancert; Engblom, William A.
2003-01-01
Computational results are presented for the performance and flow behavior of various injector geometries employed in transverse injection into a non-reacting Mach 1.2 flow. 3-D Reynolds-Averaged Navier Stokes (RANS) results are obtained for the various injector geometries using the Wind code with the Mentor s Shear Stress Transport turbulence model in both single and multi-species modes. Computed results for the injector mixing, penetration, and induced wall forces are presented. In the case of rectangular injectors, those longer in the direction of the freestream flow are predicted to generate the most mixing and penetration of the injector flow into the primary stream. These injectors are also predicted to provide the largest discharge coefficients and induced wall forces. Minor performance differences are indicated among diamond, circle, and square orifices. Grid sensitivity study results are presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid fineness.
Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai
2016-12-01
There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts. Copyright © 2016 the American Physiological Society.
Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.
Frisk, Michael; Ruud, Marianne; Espe, Emil K S; Aronsen, Jan Magnus; Røe, Åsmund T; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M; Christensen, Geir A; Sjaastad, Ivar; Louch, William E
2016-10-01
Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Direct and Large Eddy Simulation of non-equilibrium wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Park, Hee-Jun
2005-11-01
The performance of several existing SGS models in non-equilibrium wall-bounded turbulent flows is investigated through comparisons of LES and DNS. The test problem is a shear-driven three-dimensional turbulent channel flow at base Reτ˜210 established by impulsive motion of one of the channel walls in the spanwise direction with a spanwise velocity equal to 3/4 of the bulk mean velocity in the channel. The DNS and LES are performed using pseudo-spectral methods with resolutions of 128x128x129 and 32x64x65, respectively. The SGS models tested include the nonlinear Interactions Approximation model (NIA) [Haliloglu and Akhavan (2004)], the Dynamic Smagorinsky model (DSM) [Germano et al. (1991)], and the Dynamic Mixed Model (DMM) [Zang et al. (1993)]. The results show that NIA gives the best overall agreement with DNS. Both DMM and DSM over-predict the decay of the mean streamwise wall shear stress on the moving wall, while NIA gives results in close agreements with DNS. Similarly, NIA gives the best agreement with DNS in the prediction of the mean velocity, the higher-order turbulence statistics, and the lag angle between the mean shear and the turbulent shear stress. These results suggest that non-equilibrium wall-bounded turbulent flows can be accurately computed by LES with NIA as the SGS model.
NASA Technical Reports Server (NTRS)
Wahls, Richard A.
1990-01-01
The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.
Compliance of the abdominal wall during laparoscopic insufflation.
Becker, Chuck; Plymale, Margaret A; Wennergren, John; Totten, Crystal; Stigall, Kyle; Roth, J Scott
2017-04-01
To provide adequate workspace between the viscera and abdominal wall, insufflation with carbon dioxide is a common practice in laparoscopic surgeries. An insufflation pressure of 15 mmHg is considered to be safe in patients, but all insufflation pressures create perioperative and postoperative physiologic effects. As a composition of viscoelastic materials, the abdominal wall should distend in a predictable manner given the pressure of the pneumoperitoneum. The purpose of this study was to elucidate the relationship between degree of abdominal distention and the insufflation pressure, with the goal of determining factors which impact the compliance of the abdominal wall. A prospective, IRB-approved study was conducted to video record the abdomens of patients undergoing insufflation prior to a laparoscopic surgery. Photo samples were taken every 5 s, and the strain of the patient's abdomen in the sagittal plane was determined, as well as the insufflator pressure (stress) at bedside. Patients were insufflated to 15 mmHg. The relationship between the stress and strain was determined in each sample, and compliance of the patient's abdominal wall was calculated. Subcutaneous fat thickness and rectus abdominus muscle thickness were obtained from computed tomography scans. Correlations between abdominal wall compliances and subcutaneous fat and muscle content were determined. Twenty-five patients were evaluated. An increased fat thickness in the abdominal wall had a direct exponential relationship with abdominal wall compliance (R 2 = 0.59, p < 0.05). There was no correlation between muscle and fat thickness. All insufflation pressures create perioperative and postoperative complications. The compliance of patients' abdominal body walls differs, and subcutaneous fat thickness has a direct exponential relationship with abdominal wall compliance. Thus, insufflation pressures can be better tailored per the patient. Future studies are needed to demonstrate the clinical impact of varying insufflation pressures.
Computational Analysis on Stent Geometries in Carotid Artery: A Review
NASA Astrophysics Data System (ADS)
Paisal, Muhammad Sufyan Amir; Taib, Ishkrizat; Ismail, Al Emran
2017-01-01
This paper reviews the work done by previous researchers in order to gather the information for the current study which about the computational analysis on stent geometry in carotid artery. The implantation of stent in carotid artery has become popular treatment for arterial diseases of hypertension such as stenosis, thrombosis, atherosclerosis and embolization, in reducing the rate of mortality and morbidity. For the stenting of an artery, the previous researchers did many type of mathematical models in which, the physiological variables of artery is analogized to electrical variables. Thus, the computational fluid dynamics (CFD) of artery could be done, which this method is also did by previous researchers. It lead to the current study in finding the hemodynamic characteristics due to artery stenting such as wall shear stress (WSS) and wall shear stress gradient (WSSG). Another objective of this study is to evaluate the nowadays stent configuration for full optimization in reducing the arterial side effect such as restenosis rate after a few weeks of stenting. The evaluation of stent is based on the decrease of strut-strut intersection, decrease of strut width and increase of the strut-strut spacing. The existing configuration of stents are actually good enough in widening the narrowed arterial wall but the disease such as thrombosis still occurs in early and late stage after the stent implantation. Thus, the outcome of this study is the prediction for the reduction of restenosis rate and the WSS distribution is predicted to be able in classifying which stent configuration is the best.
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III
1996-01-01
The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
Turbulent Flow past High Temperature Surfaces
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces
Bachmann, Björn J.; Bernardi, Laura; Loosli, Christian; Marschewski, Julian; Perrini, Michela; Ehrbar, Martin; Ermanni, Paolo; Poulikakos, Dimos; Ferrari, Aldo; Mazza, Edoardo
2016-01-01
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates. PMID:27941901
The minimal flow unit in near-wall turbulence
NASA Technical Reports Server (NTRS)
Jimeez, Javier; Moin, Parviz
1991-01-01
Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.
Di, Meng-Yang; Jiang, Zhe; Gao, Zhi-Qiang; Li, Zhi; An, Yi-Ran; Lv, Wei
2013-01-01
Background The pathogenesis of empty nose syndrome (ENS) has not been elucidated so far. Though postulated, there remains a lack of experimental evidence about the roles of nasal aerodynamics on the development of ENS. Objective To investigate the nasal aerodynamic features of ENS andto explore the role of aerodynamic changes on the pathogenesis of ENS. Methods Seven sinonasal models were numerically constructed, based on the high resolution computed tomography images of seven healthy male adults. Bilateral radical inferior/middle turbinectomy were numerically performed to mimic the typical nasal structures of ENS-inferior turbinate (ENS-IT) and ENS-middle turbinate (ENS-MT). A steady laminar model was applied in calculation. Velocity, pressure, streamlines, air flux and wall shear stress were numerically investigated. Each parameter of normal structures was compared with those of the corresponding pathological models of ENS-IT and ENS-MT, respectively. Results ENS-MT: Streamlines, air flux distribution, and wall shear stress distribution were generally similar to those of the normal structures; nasal resistances decreased. Velocities decreased locally, while increased around the sphenopalatine ganglion by 0.20±0.17m/s and 0.22±0.10m/s during inspiration and expiration, respectively. ENS-IT: Streamlines were less organized with new vortexes shown near the bottom wall. The airflow rates passing through the nasal olfactory area decreased by 26.27%±8.68% and 13.18%±7.59% during inspiration and expiration, respectively. Wall shear stresses, nasal resistances and local velocities all decreased. Conclusion Our CFD simulation study suggests that the changes in nasal aerodynamics may play an essential role in the pathogenesis of ENS. An increased velocity around the sphenopalatine ganglion in the ENS-MT models could be responsible for headache in patients with ENS-MT. However, these results need to be validated in further studies with a larger sample size and more complicated calculating models. PMID:24367645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.
2007-09-15
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustratemore » our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls.« less
Placement of trans-sternal wires according to an ellipsoid pressure vessel model of sternal forces.
Casha, Aaron R; Manché, Alex; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Schembri-Wismayer, Pierre; Sant, Zdenka; Gatt, Ruben; Grima, Joseph N
2012-03-01
Dehiscence of median sternotomy wounds remains a clinical problem. Wall forces in thin-walled pressure vessels can be calculated by membrane stress theory. An ellipsoid pressure vessel model of sternal forces is presented together with its application for optimal wire placement in the sternum. Sternal forces were calculated by computational simulation using an ellipsoid chest wall model. Sternal forces were correlated with different sternal thicknesses and radio-density as measured by computerized tomography (CT) scans of the sternum. A comparison of alternative placement of trans-sternal wires located either at the levels of the costal cartilages or the intercostal spaces was made. The ellipsoid pressure vessel model shows that higher levels of stress are operative at increasing chest diameter (P < 0.001). CT scans show that the thickness of the sternal body is on average 3 mm and 30% thicker (P < 0.001) and 53% more radio-dense (P < 0.001) at the costal cartilage levels when compared with adjacent intercostal spaces. This results in a decrease of average sternal stress from 438 kPa at the intercostal space level to 338 kPa at the costal cartilage level (P = 0.003). Biomechanical modelling suggests that placement of trans-sternal wires at the thicker bone and more radio-dense level of the costal cartilages will result in reduced stress.
Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun
2016-10-01
The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Cell Wall Metabolism in Response to Abiotic Stress
Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine
2015-01-01
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320
NASA Astrophysics Data System (ADS)
Poon, Eric; Ooi, Andrew; Barlis, Peter; Hayat, Umair; Moore, Stephen
2014-11-01
Percutaneous coronary intervention (PCI) is the modern gold standard for treatment of coronary artery disease. Stenting (a common PCI procedure) of simple lesion inside a relatively straight segment of coronary artery has proven to be highly successful. However, incomplete stent apposition (ISA) where there is a lack of contact between the stent struts and lumen wall is not uncommon in curved and calcified coronary arteries. Computational fluid dynamics simulations are carried out to study the changes in hemodynamics as a result of ISA inside a curved and calcified coronary artery. For a 3 mm coronary artery, we simulate a resting condition at 80 mL/min and a range of hyperemic conditions with coronary flow reserve in between 1 and 2. The heartbeat is fixed at 75 BPM. Five different curvatures of the coronary artery are considered. Negative effects on hemodynamic variables, such as low wall shear stress (<0.5 Pa); high wall shear stress gradient (>5,000 Pa/m) and oscillation shear index (0 <= OSI <= 0.5), are employed to identify locations with high possibilities of adverse clinical events. This study will lead to better understandings of ISA in curved and calcified coronary arteries and help improve future coronary stent deployment. Supported by the Australian Research Council (LP120100233) and Victorian Life Sciences Computation Initiative (VR0210).
Wall shear stress measurement in blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, R.; Raj, R.; Boldman, D. R.
1987-01-01
The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.
Transient motion of mucus plugs in respiratory airways
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.
2011-11-01
Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.
Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall
NASA Astrophysics Data System (ADS)
Jabbar, Hussam; Naguib, Ahmed
2017-11-01
Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).
NASA Astrophysics Data System (ADS)
Zheng, Donghong; Che, Defu
2007-08-01
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Rumsey Christopher
2013-01-01
Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.
Goertz, David E.; Hynynen, Kullervo
2015-01-01
Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853
3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications
Shahmirzadi, Danial; Li, Ronny X.; Doyle, Barry J.; Konofagou, Elisa E.; McGloughlin, Tim M.
2014-01-01
Abstract Abdominal aortic aneurysm (AAA) is a permanent, irreversible dilation of the distal region of the aorta. Recent efforts have focused on improved AAA screening and biomechanics-based failure prediction. Idealized and patient-specific AAA phantoms are often employed to validate numerical models and imaging modalities. To produce such phantoms, the investment casting process is frequently used, reconstructing the 3D vessel geometry from computed tomography patient scans. In this study the alternative use of 3D printing to produce phantoms is investigated. The mechanical properties of flexible 3D-printed materials are benchmarked against proven elastomers. We demonstrate the utility of this process with particular application to the emerging imaging modality of ultrasound-based pulse wave imaging, a noninvasive diagnostic methodology being developed to obtain regional vascular wall stiffness properties, differentiating normal and pathologic tissue in vivo. Phantom wall displacements under pulsatile loading conditions were observed, showing good correlation to fluid–structure interaction simulations and regions of peak wall stress predicted by finite element analysis. 3D-printed phantoms show a strong potential to improve medical imaging and computational analysis, potentially helping bridge the gap between experimental and clinical diagnostic tools. PMID:28804733
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
On investigating wall shear stress in two-dimensional plane turbulent wall jets
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan
2012-11-01
Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.
NASA Technical Reports Server (NTRS)
Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)
2001-01-01
The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.
Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim
2003-01-01
A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain circulation under auto-regulation.
Wall relaxation and the driving forces for cell expansive growth
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1987-01-01
When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.
NASA Astrophysics Data System (ADS)
Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.
2003-05-01
A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.
Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation.
Kurşun, Burak; Uğur, Levent; Keskin, Gökhan
2018-05-01
Hemodynamic analyzes are used in the clinical investigation and treatment of cardiovascular diseases. In the present study, the effect of bypass geometry on intracranial aneurysm hemodynamics was investigated numerically. Pressure, wall shear stress (WSS) and velocity distribution causing the aneurysm to grow and rupture were investigated and the best conditions were tried to be determined in case of bypassing between basilar (BA) and left/right posterior arteries (LPCA/RPCA) for different values of parameters. The finite volume method was used for numerical solutions and calculations were performed with the ANSYS-Fluent software. The SIMPLE algorithm was used to solve the discretized conservation equations. Second Order Upwind method was preferred for finding intermediate point values in the computational domain. As the blood flow velocity changes with time, the blood viscosity value also changes. For this reason, the Carreu model was used in determining the viscosity depending on the velocity. Numerical study results showed that when bypassed, pressure and wall shear stresses reduced in the range of 40-70% in the aneurysm. Numerical results obtained are presented in graphs including the variation of pressure, wall shear stress and velocity streamlines in the aneurysm. Considering the numerical results for all parameter values, it is seen that the most important factors affecting the pressure and WSS values in bypassing are the bypass position on the basilar artery (L b ) and the diameter of the bypass vessel (d). Pressure and wall shear stress reduced in the range of 40-70% in the aneurysm in the case of bypass for all parameters. This demonstrates that pressure and WSS values can be greatly reduced in aneurysm treatment by bypassing in cases where clipping or coil embolization methods can not be applied. Copyright © 2018 Elsevier B.V. All rights reserved.
Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.
2015-01-01
Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588
Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki
2016-01-01
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283
Dynamics of the blood flow in the curved artery with the rolling massage
NASA Astrophysics Data System (ADS)
Yi, H. H.; Wu, X. H.; Yao, Y. L.
2011-10-01
Arterial wall shear stress and flow velocity are important factors in the development of some arterial diseases. Here, we aim to investigate the dynamic effect of the rolling massage on the property of the blood flow in the curved artery. The distributions of flow velocity and shear stress for the blood flow are computed by the lattice Boltzmann method, and the dynamic factors under different rolling techniques are studied numerically. The study is helpful to understand the mechanism of the massage and develop the massage techniques.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2016-01-01
Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538
Park, Seungman
2017-09-01
Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). The present computational models will provide new tools for predicting accurate functional properties and designing fibrous porous materials, thereby significantly advancing tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.
1994-01-01
Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.
Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion
Campbell, Ian C.; Timmins, Lucas H.; Giddens, Don P.; Virmani, Renu; Veneziani, Alessandro; Rab, S. Tanveer; Samady, Habib; McDaniel, Michael C.; Finn, Aloke V.; Taylor, W. Robert; Oshinski, John N.
2013-01-01
Purpose We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. Methods We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. Results Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. Conclusions This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur. PMID:24223678
Fluid-structure interaction in abdominal aortic aneurysms: Structural and geometrical considerations
NASA Astrophysics Data System (ADS)
Mesri, Yaser; Niazmand, Hamid; Deyranlou, Amin; Sadeghi, Mahmood Reza
2015-08-01
Rupture of the abdominal aortic aneurysm (AAA) is the result of the relatively complex interaction of blood hemodynamics and material behavior of arterial walls. In the present study, the cumulative effects of physiological parameters such as the directional growth, arterial wall properties (isotropy and anisotropy), iliac bifurcation and arterial wall thickness on prediction of wall stress in fully coupled fluid-structure interaction (FSI) analysis of five idealized AAA models have been investigated. In particular, the numerical model considers the heterogeneity of arterial wall and the iliac bifurcation, which allows the study of the geometric asymmetry due to the growth of the aneurysm into different directions. Results demonstrate that the blood pulsatile nature is responsible for emerging a time-dependent recirculation zone inside the aneurysm, which directly affects the stress distribution in aneurismal wall. Therefore, aneurysm deviation from the arterial axis, especially, in the lateral direction increases the wall stress in a relatively nonlinear fashion. Among the models analyzed in this investigation, the anisotropic material model that considers the wall thickness variations, greatly affects the wall stress values, while the stress distributions are less affected as compared to the uniform wall thickness models. In this regard, it is confirmed that wall stress predictions are more influenced by the appropriate structural model than the geometrical considerations such as the level of asymmetry and its curvature, growth direction and its extent.
Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1988-01-01
The budgets for the Reynolds stresses and for the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow. The budget data reveal that all the terms in the budget become important close to the wall. For inhomogeneous pressure boundary conditions, the pressure-strain term is split into a return term, a rapid term, and a Stokes term. The Stokes term is important close to the wall. The rapid and return terms play different roles depending on the component of the term. A split of the velocity pressure-gradient term into a redistributive term and a diffusion term is proposed, which should be simpler to model. The budget data is used to test existing closure models for the pressure-strain term, the dissipation rate, and the transport rate. In general, further work is needed to improve the models.
Reynolds-stress and dissipation rate budgets in a turbulent channel flow
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1987-01-01
The budgets for the Reynolds stresses and for the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow. The budget data reveal that all the terms in the budget become important close to the wall. For inhomogeneous pressure boundary conditions, the pressure-strain term is split into a return term, a rapid term, and a Stokes term. The Stokes term is important close to the wall. The rapid and return terms play different roles depending on the component of the term. A split of the velocity pressure-gradient term into a redistributive term and a diffusion term is proposed, which should be simpler to model. The budget data is used to test existing closure models for the pressure-strain term, the dissipation rate, and the transport rate. In general, further work is needed to improve the models.
Arokiaraj, M C; De Beule, M; De Santis, G
2017-02-01
A novel stent method to simplify treatment of proximal ascending aorta and aortic arch aneurysms was developed and investigated by finite element analysis. Therapy of ascending aortic and aortic arch aneurysms is difficult and challenging and is associated with various complications. A 55mm wide×120mm long stent was designed without the stent graft and the stent was deployed by an endovascular method in a virtual patient-specific aneurysm model. The stress-strain analysis and deployment characteristics were performed in a finite element analysis using the Abaqus software. The stent, when embedded in the aortic wall, significantly reduced aortic wall stresses, while preserving the side coronary ostia and side branches in the aortic arch. When tissue growth was modeled computationally over the stent struts the wall stresses in aorta was reduced. This effect became more pronounced when increasing the thickness of the tissue growth. There were no abnormal stresses in the aorta, coronary ostium and at the origin of aortic branches. The stent reduced aneurysm expansion cause by hypertensive condition from 2mm without stenting to 1.3mm after stenting and embedding. In summary, we uncovered a simple treatment method using a bare nitinol stent without stent graft in the treatment of the proximal aorta and aortic arch aneurysms, which could eventually replace the complex treatment methods for this disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A Near-Wall Reynolds-Stress Closure without Wall Normals
NASA Technical Reports Server (NTRS)
Yuan, S. P.; So, R. M. C.
1997-01-01
With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.
Cheheltani, Rabee; Pichamuthu, Joseph E; Rao, Jayashree; Weinbaum, Justin S; Kiani, Mohammad F; Vorp, David A; Pleshko, Nancy
2017-03-01
Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.
Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows
NASA Astrophysics Data System (ADS)
Yang, Xiang; Urzay, Javier; Moin, Parviz
2017-11-01
Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.
Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Pierce, F. J.; Mcallister, J. E.
1980-01-01
Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.
Acevedo-Bolton, Gabriel; Jou, Liang-Der; Dispensa, Bradley P; Lawton, Michael T; Higashida, Randall T; Martin, Alastair J; Young, William L; Saloner, David
2006-08-01
The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.
Wall shear stress in portal vein of cirrhotic patients with portal hypertension.
Wei, Wei; Pu, Yan-Song; Wang, Xin-Kai; Jiang, An; Zhou, Rui; Li, Yu; Zhang, Qiu-Juan; Wei, Ya-Juan; Chen, Bin; Li, Zong-Fang
2017-05-14
To investigate wall shear stress (WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. Idealized portal vein (PV) system models were reconstructed with different angles of the PV-splenic vein (SV) and superior mesenteric vein (SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSS in the portal hypertension group with that in healthy controls. For the idealized models, WSS in the portal hypertension group (0-10 dyn/cm 2 ) was significantly lower than that in the healthy controls (10-20 dyn/cm 2 ), and low WSS area (0-1 dyn/cm 2 ) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension (10.13 ± 1.34 dyn/cm 2 ) was also significantly lower than that in the healthy controls ( P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence. Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis.
Wall shear stress in portal vein of cirrhotic patients with portal hypertension
Wei, Wei; Pu, Yan-Song; Wang, Xin-Kai; Jiang, An; Zhou, Rui; Li, Yu; Zhang, Qiu-Juan; Wei, Ya-Juan; Chen, Bin; Li, Zong-Fang
2017-01-01
AIM To investigate wall shear stress (WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. METHODS Idealized portal vein (PV) system models were reconstructed with different angles of the PV-splenic vein (SV) and superior mesenteric vein (SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSS in the portal hypertension group with that in healthy controls. RESULTS For the idealized models, WSS in the portal hypertension group (0-10 dyn/cm2) was significantly lower than that in the healthy controls (10-20 dyn/cm2), and low WSS area (0-1 dyn/cm2) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension (10.13 ± 1.34 dyn/cm2) was also significantly lower than that in the healthy controls (P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence. CONCLUSION Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis. PMID:28566887
Ando, Akira; Nakamura, Toshihide; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun
2007-03-01
Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly.
Numerical simulation of the stress distribution in a coal mine caused by a normal fault
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Wu, Jiwen; Zhai, Xiaorong
2017-06-01
Luling coal mine was used for research using FLAC3D software to analyze the stress distribution characteristics of the two sides of a normal fault zone with two different working face models. The working faces were, respectively, on the hanging wall and the foot wall; the two directions of mining were directed to the fault. The stress distributions were different across the fault. The stress was concentrated and the influenced range of stress was gradually larger while the working face was located on the hanging wall. The fault zone played a negative effect to the stress transmission. Obviously, the fault prevented stress transmission, the stress concentrated on the fault zone and the hanging wall. In the second model, the stress on the two sides decreased at first, but then increased continuing to transmit to the hanging wall. The concentrated stress in the fault zone decreased and the stress transmission was obvious. Because of this, the result could be used to minimize roadway damage and lengthen the time available for coal mining by careful design of the roadway and working face.
Acoustics of laminar boundary layers breakdown
NASA Technical Reports Server (NTRS)
Wang, Meng
1994-01-01
Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
Determination of wall shear stress from mean velocity and Reynolds shear stress profiles
NASA Astrophysics Data System (ADS)
Volino, Ralph J.; Schultz, Michael P.
2018-03-01
An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.
Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions
NASA Technical Reports Server (NTRS)
Lewis, J. P.; Pletcher, R. H.
1986-01-01
Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.
NASA Astrophysics Data System (ADS)
Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William
2018-02-01
The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.
Lesman, Ayelet; Blinder, Yaron; Levenberg, Shulamit
2010-02-15
Novel tissue-culture bioreactors employ flow-induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three-dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear-stress values within the physiological range of those naturally sensed by vascular cells (1-10 dyne/cm(2)), and will thereby provide suitable conditions for vascular tissue-engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell-layer thicknesses of 0, 50, 75, 100, and 125 microm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear-stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell-layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in-depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. 2009 Wiley Periodicals, Inc.
Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya
2017-11-01
Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.
Progress Towards an LES Wall Model Including Unresolved Roughness
NASA Astrophysics Data System (ADS)
Craft, Kyle; Redman, Andrew; Aikens, Kurt
2015-11-01
Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.
Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie
2014-03-03
The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.
Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.
2016-01-01
Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986
van der Horst, Arjen; van den Broek, Chantal N; van de Vosse, Frans N; Rutten, Marcel C M
2012-03-01
A patient-specific mechanical description of the coronary arterial wall is indispensable for individualized diagnosis and treatment of coronary artery disease. A way to determine the artery's mechanical properties is to fit the parameters of a constitutive model to patient-specific experimental data. Clinical data, however, essentially lack information about the stress-free geometry of an artery, which is necessary for constitutive modeling. In previous research, it has been shown that a way to circumvent this problem is to impose extra modeling constraints on the parameter estimation procedure. In this study, we propose a new modeling constraint concerning the in-situ fiber orientation (β (phys)). β (phys), which is a major contributor to the arterial stress-strain behavior, was determined for porcine and human coronary arteries using a mixed numerical-experimental method. The in-situ situation was mimicked using in-vitro experiments at a physiological axial pre-stretch, in which pressure-radius and pressure-axial force were measured. A single-layered, hyperelastic, thick-walled, two-fiber material model was accurately fitted to the experimental data, enabling the computation of stress, strain, and fiber orientation. β (phys) was found to be almost equal for all vessels measured (36.4 ± 0.3)°, which theoretically can be explained using netting analysis. In further research, this finding can be used as an extra modeling constraint in parameter estimation from clinical data.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz
2017-10-01
Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.
Chalon, A; Favre, J; Piotrowski, B; Landmann, V; Grandmougin, D; Maureira, J-P; Laheurte, P; Tran, N
2018-06-01
Implantation of a Left Ventricular Assist Device (LVAD) may produce both excessive local tissue stress and resulting strain-induced tissue rupture that are potential iatrogenic factors influencing the success of the surgical attachment of the LVAD into the myocardium. By using a computational simulation compared to mechanical tests, we sought to investigate the characteristics of stress-induced suture material on porcine myocardium. Tensile strength experiments (n = 8) were performed on bulk left myocardium to establish a hyperelastic reduced polynomial constitutive law. Simultaneously, suture strength tests on left myocardium (n = 6) were performed with a standard tensile test setup. Experiments were made on bulk ventricular wall with a single U-suture (polypropylene 3-0) and a PTFE pledget. Then, a Finite Element simulation of a LVAD suture case was performed. Strength versus displacement behavior was compared between mechanical and numerical experiments. Local stress fields in the model were thus analyzed. A strong correlation between the experimental and the numerical responses was observed, validating the relevance of the numerical model. A secure damage limit of 100 kPa on heart tissue was defined from mechanical suture testing and used to describe numerical results. The impact of suture on heart tissue could be accurately determined through new parameters of numerical data (stress diffusion, triaxiality stress). Finally, an ideal spacing between sutures of 2 mm was proposed. Our computational model showed a reliable ability to provide and predict various local tissue stresses created by suture penetration into the myocardium. In addition, this model contributed to providing valuable information useful to design less traumatic sutures for LVAD implantation. Therefore, our computational model is a promising tool to predict and optimize LVAD myocardial suture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Barker, J. Mark; Field, Robert E. (Technical Monitor)
2003-01-01
The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).
Time-varying wall stress: an index of ventricular vascular coupling.
Dell'Italia, L J; Blackwell, G G; Thorn, B T; Pearce, D J; Bishop, S P; Pohost, G M
1992-08-01
Previous work in the isolated heart and intact circulation has suggested that the relationship between wall stress and time during left ventricular (LV) ejection is linear and that the slope, which will be referred to as time-varying wall stress, increases in response to augmentation in afterload. However, the etiology of the increase in slope has not been determined in an intact animal. Magnetic resonance imaging coupled with high-fidelity LV pressure measurement using a nonferrous catheter-tip manometer generates a detailed assessment of wall stress in an animal model where the thorax and pericardium have never been disturbed. Accordingly, six anesthetized dogs were studied during autonomic blockade with atropine and propranolol during angiotensin infusion, producing three widely disparate left ventricular systolic pressures (87 +/- 7 vs. 124 +/- 13 vs. 152 +/- 10 mmHg, P less than 0.001). Time-varying wall stress did not change from low to medium load (-42.4 +/- 9.5 to -27.3 +/- 22.3 g.cm-2.ms-1) but increased significantly at high load (-21.7 +/- 14.9 g.cm-2.ms-1, P less than 0.05). Analysis of the relative contribution of pressure, chamber radius, wall thickness, and long-axis dimension to the changes in time-varying wall stress demonstrated only the pressure component to change its relative contribution at medium (P less than 0.001) and high load (P less than 0.001). Therefore, we conclude that the increase in time-varying wall stress results from augmentation of pressure in the latter one-half of systole that is incompletely offset by shortening and wall thickening.(ABSTRACT TRUNCATED AT 250 WORDS)
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Alméras, Tancrède; Gril, Joseph
2007-11-01
Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.
Diagnostic Techniques to Elucidate the Aerodynamic Performance of Acoustic Liners
NASA Technical Reports Server (NTRS)
June, Jason; Bertolucci, Brandon; Ukeiley, Lawrence; Cattafesta, Louis N., III; Sheplak, Mark
2017-01-01
In support of Topic A.2.8 of NASA NRA NNH10ZEA001N, the University of Florida (UF) has investigated the use of flow field optical diagnostic and micromachined sensor-based techniques for assessing the wall shear stress on an acoustic liner. Stereoscopic particle image velocimetry (sPIV) was used to study the velocity field over a liner in the Grazing Flow Impedance Duct (GFID). The results indicate that the use of a control volume based method to determine the wall shear stress is prone to significant error. The skin friction over the liner as measured using velocity curve fitting techniques was shown to be locally reduced behind an orifice, relative to the hard wall case in a streamwise plane centered on the orifice. The capacitive wall shear stress sensor exhibited a linear response for a range of shear stresses over a hard wall. PIV over the liner is consistent with lifting of the near wall turbulent structure as it passes over an orifice, followed by a region of low wall shear stress.
Triglyceride glucose index and common carotid wall shear stress.
Tripolino, Cesare; Irace, Concetta; Scavelli, Faustina B; de Franceschi, Maria S; Esposito, Teresa; Carallo, Claudio; Gnasso, Agostino
2014-02-01
Alterations in wall shear stress contribute to both clinical and subclinical atherosclerosis. Several conditions such as hypertension, diabetes, and obesity can impair shear stress, but the role of insulin resistance has never been investigated. The present study was designed to investigate whether insulin resistance assessed by TyG Index associates with wall shear stress in the common carotid artery. One hundred six individuals were enrolled. Blood pressure, lipids, glucose, and cigarette smoking were evaluated. TyG Index was calculated as log[fasting triglycerides × fasting glucose / 2]. Subjects underwent blood viscosity measurement and echo-Doppler evaluation of carotid arteries to calculate wall shear stress. The association between TyG Index and carotid wall shear stress was assessed by simple and multiple regression analyses. TyG Index was significantly and inversely associated with carotid wall shear stress both in simple (r = -0.44, P < 0.001) and multiple regression analyses accounting for age, sex, and major cardiovascular risk factors. The association was further confirmed after exclusion of subjects with diabetes, dyslipidemia, fasting blood glucose greater than 100 mg/dL, and triglycerides greater than 150 mg/dL. The present findings suggest that increasing insulin resistance, as assessed by TyG Index, associates with atherosclerosis-prone shear stress reduction in the common carotid artery.
NASA Astrophysics Data System (ADS)
Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md
2017-09-01
Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.
Zhang, Qi; Gao, Bin; Chang, Yu
2017-02-27
BACKGROUND Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. MATERIAL AND METHODS In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions - "heart failure", "partial support", and "full support" - were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. RESULTS The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. CONCLUSIONS In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.
Jodko, Daniel; Obidowski, Damian; Reorowicz, Piotr; Jóźwik, Krzysztof
2016-01-01
The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis - the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.
Flow behaviour in normal and Meniere’s disease of endolymphatic fluid inside the inner ear
NASA Astrophysics Data System (ADS)
Paisal, Muhammad Sufyan Amir; Azmi Wahab, Muhamad; Taib, Ishkrizat; Mat Isa, Norasikin; Ramli, Yahaya; Seri, Suzairin Md; Darlis, Nofrizalidris; Osman, Kahar; Khudzari, Ahmad Zahran Md; Nordin, Normayati
2017-09-01
Meniere’s disease is a rare disorder that affects the inner ear which might be more severe if not treated. This is due to fluctuating pressure of the fluid in the endolymphatic sac and dysfunction of cochlea which causing the stretching of vestibular membrane. However, the pattern of the flow recirculation in endolymphatic region is still not fully understood. Thus, this study aims to investigate the correlation between the increasing volume of endolymphatic fluid and flow characteristics such as velocity, pressure and wall shear stress. Three dimensional model of simplified endolymphatic region is modeled using computer aided design (CAD) software and simulated using computational fluid dynamic (CFD) software. There are three different models are investigated; normal (N) model, Meniere’s disease model with less severity (M1) and Meniere’s disease model with high severity (M2). From the observed, the pressure drop between inlet and outlet of inner ear becomes decreases as the outlet pressure along with endolymphatic volume increases. However, constant flow rate imposed at the inlet of endolymphatic showing the lowest velocity. Flow recirculation near to endolymphatic region is occurred as the volume in endolympathic increases. Overall, high velocity is monitored near to cochlear duct, ductus reuniens and endolymphatic duct. Hence, these areas show high distributions of wall shear stress (WSS) that indicating a high probability of endolymphatic wall membrane dilation. Thus, more severe conditions of Meniere’s disease, more complex of flow characteristic is occurred. This phenomenon presenting high probability of rupture is predicted at the certain area in the anatomy of vestibular system.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar
2017-07-01
This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.
Jetting of a ultrasound contrast microbubble near a rigid wall
NASA Astrophysics Data System (ADS)
Sarkar, Kausik; Mobadersany, Nima
2017-11-01
Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.
Multiscale modeling and simulation of blood flow in coronary artery bypass graft surgeries
NASA Astrophysics Data System (ADS)
Sankaran, Sethuraman; Esmaily Moghadam, Mahdi; Kahn, Andy; Marsden, Alison
2011-11-01
We present a computational framework for modeling and simulation of blood flow in patients who undergo coronary artery bypass graft (CABG) surgeries. We evaluate the influence of shape on the homeostatic state, cardiac output, and other quantities of interest. We present a case study on a patient with multiple CABG. We build a patient-specific model of the blood vessels comprised of the aorta, vessels branching from the top of the aorta (brachiocephalic artery and carotids) and the coronary arteries, in addition to bypass grafts. The rest of the circulatory system is modeled using lumped parameter 0D models comprised of resistances, compliances, inertances and elastance. An algorithm is presented that computes these parameters automatically given constraints on the flow. A Finite element framework is used to compute blood flow and pressure in the 3D model to which the 0D code is coupled at the model inlets and outlets. An adaptive closed loop BC is used to capture the coupling of the various outlets of the model with inlets, and is compared with a model with fixed inlet BC. We compare and contrast the pressure, flowrate, coronary perfusion, and PV curves obtained in the different cases. Further, we compare and contrast quantities of interest such as wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries and discuss implications of patient-specific optimization. I would like to acknowlege AHA for funding this work.
Sarrami-Foroushani, Ali; Lassila, Toni; Gooya, Ali; Geers, Arjan J; Frangi, Alejandro F
2016-12-08
Adverse wall shear stress (WSS) patterns are known to play a key role in the localisation, formation, and progression of intracranial aneurysms (IAs). Complex region-specific and time-varying aneurysmal WSS patterns depend both on vascular morphology as well as on variable systemic flow conditions. Computational fluid dynamics (CFD) has been proposed for characterising WSS patterns in IAs; however, CFD simulations often rely on deterministic boundary conditions that are not representative of the actual variations in blood flow. We develop a data-driven statistical model of internal carotid artery (ICA) flow, which is used to generate a virtual population of waveforms used as inlet boundary conditions in CFD simulations. This allows the statistics of the resulting aneurysmal WSS distributions to be computed. It is observed that ICA waveform variations have limited influence on the time-averaged WSS (TAWSS) on the IA surface. In contrast, in regions where the flow is locally highly multidirectional, WSS directionality and harmonic content are strongly affected by the ICA flow waveform. As a consequence, we argue that the effect of blood flow variability should be explicitly considered in CFD-based IA rupture assessment to prevent confounding the conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lindquist Liljeqvist, Moritz; Hultgren, Rebecka; Siika, Antti; Gasser, T Christian; Roy, Joy
2017-04-01
Finite element analysis (FEA) has been suggested to be superior to maximal diameter measurements in predicting rupture of abdominal aortic aneurysms (AAAs). Our objective was to investigate to what extent previously described rupture risk factors were associated with FEA-estimated rupture risk. One hundred forty-six patients with an asymptomatic AAA of a 40- to 60-mm diameter were retrospectively identified and consecutively included. The patients' computed tomography angiograms were analyzed by FEA without (neutral) and with (specific) input of patient-specific mean arterial pressure (MAP), gender, family history, and age. The maximal wall stress/wall strength ratio was described as a rupture risk equivalent diameter (RRED), which translated this ratio into an average aneurysm diameter of corresponding rupture risk. In multivariate linear regression, RRED neutral increased with female gender (3.7 mm; 95% confidence interval [CI], 0.13-7.3) and correlated with patient height (0.27 mm/cm; 95% CI, 0.11-0.43) and body surface area (BSA, 16 mm/m 2 ; 95% CI, 8.3-24) and inversely with body mass index (BMI, -0.40 mm/kg m -2 ; 95% CI, -0.75 to -0.054) in a wall stress-dependent manner. Wall stress-adjusted RRED neutral was raised if the patient was currently smoking (1.1 mm; 95% CI, 0.21-1.9). Age, MAP, family history, and patient weight were unrelated to RRED neutral . In specific FEA, RRED specific increased with female gender, MAP, family history positive for AAA, height, and BSA, whereas it was inversely related to BMI. All results were independent of aneurysm diameter. Peak wall stress and RRED correlated with aneurysm diameter and lumen volume. Female gender, current smoking, increased patient height and BSA, and low BMI were found to increase the mechanical rupture risk of AAAs. Previously described rupture risk factors may in part be explained by patient characteristic-dependent variations in aneurysm biomechanics. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Stress failure of pulmonary capillaries: role in lung and heart disease
NASA Technical Reports Server (NTRS)
West, J. B.; Mathieu-Costello, O.
1992-01-01
Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.
A method for calculating aerodynamic heating on sounding rocket tangent ogive noses.
NASA Technical Reports Server (NTRS)
Wing, L. D.
1973-01-01
A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN IV for an IBM 360/91 computer.
A method for calculating aerodynamic heating on sounding rocket tangent ogive noses
NASA Technical Reports Server (NTRS)
Wing, L. D.
1972-01-01
A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN 4 for an IBM 360/91 computer.
NASA Astrophysics Data System (ADS)
Kala, Zdeněk; Kala, Jiří
2011-09-01
The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Hamid, M. S.
1977-01-01
The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.
NASA Technical Reports Server (NTRS)
Celic, Alan; Zilliac, Gregory G.
1998-01-01
The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.
NASA Technical Reports Server (NTRS)
Liou, M. S.; Adamson, T. C., Jr.
1979-01-01
An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.
Computational Fluid Dynamic simulations of pipe elbow flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and meshmore » were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation; secondary maxima in both quantities still occur near the elbow entrance on the inner radius. Which set of results better reflects reality must await experimental corroboration. Additional calculations demonstrate that whether or not FLUENT's radial equilibrium pressure distribution option is used in the PRESSURE OUTLET boundary condition has no significant impact on the flowfield near the elbow. Simulations performed with and without the chemical sensor and associated support bracket that were present in the experiments demonstrate that the latter have a negligible influence on the flow in the vicinity of the elbow. The fact that the maxima in wall shear stress and turbulent kinetic energy occur on the inner radius is therefore not an artifact of having introduced the sensor into the flow.« less
Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter
2017-06-01
To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2 = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2 = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
Beaumont, F; Taiar, R; Polidori, G; Trenchard, H; Grappe, F
2018-01-23
The aerodynamic drag of three different time-trial cycling helmets was analyzed numerically for two different cyclist head positions. Computational Fluid Dynamics (CFD) methods were used to investigate the detailed airflow patterns around the cyclist for a constant velocity of 15 m/s without wind. The CFD simulations have focused on the aerodynamic drag effects in terms of wall shear stress maps and pressure coefficient distributions on the cyclist/helmet system. For a given head position, the helmet shape, by itself, obtained a weak effect on a cyclist's aerodynamic performance (<1.5%). However, by varying head position, a cyclist significantly influences aerodynamic performance; the maximum difference between both positions being about 6.4%. CFD results have also shown that both helmet shape and head position significantly influence drag forces, pressure and wall shear stress distributions on the whole cyclist's body due to the change in the near-wake behavior and in location of corresponding separation and attachment areas around the cyclist. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Jisong
2018-05-17
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.
Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating
Zhao, Jisong
2018-01-01
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2016-11-01
Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Wall shear stress estimates in coronary artery constrictions
NASA Technical Reports Server (NTRS)
Back, L. H.; Crawford, D. W.
1992-01-01
Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.
NASA Astrophysics Data System (ADS)
van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry
2018-02-01
In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692
Hemodynamic analysis and treatment of an enlarging extrahepatic portal aneurysm: report of a case.
Iimuro, Yuji; Suzumura, Kazuhiro; Ohashi, Koichiro; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei; Hao, Hiroyuki; Fujimoto, Jiro
2015-03-01
Aneurysms in the portal venous system are relatively rare. We report the case of an extrahepatic portal venous aneurysm, detected incidentally by ultrasonography. The patient, a 75-year-old woman, was initially observed over 18 months, during which time, the aneurysm grew from 36 mm × 32 mm to 51 mm × 37 mm in size, without symptoms. Hemodynamic analysis employing computational flow dynamics technique showed obvious turbulence in the aneurysm, and the wall shear stress (WSS) against that part of the aneurysmal wall was greater than in other sites. To prevent complications such as spontaneous rupture and portal vein thrombosis, the aneurysm was resected, with reconstruction of the portal trunk. While careful follow-up is sufficient for most portal venous aneurysms, its enlargement could indicate possible spontaneous rupture. The increased WSS against part of the aneurysmal wall most likely accounts for the aneurysm enlargement in this case.
Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N
2015-11-01
The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.
Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P
2015-07-28
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.
Extremely high wall-shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Lee, Jungil; Choi, Haecheon
2012-11-01
The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.
Oscillatory slip flow past a spherical inclusion embedded in a Brinkman medium
NASA Astrophysics Data System (ADS)
Palaniappan, D.
2016-11-01
Non-steady flow past an impermeable sphere embedded in a porous medium is investigated based on Brinkman model with Navier slip conditions. Exact analytic solution for the stream-function - involving modified Bessel function of the second kind - describing the slow oscillatory flow around a rigid spherical inclusion is obtained in the limit of low-Reynolds-number. The key parameters such as the frequency of oscillation λ, the permeability constant δ, and the slip coefficient ξ control the flow fields and physical quantities in the entire flow domain. Local streamlines for fixed times demonstrate the variations in flow patterns. Closed form expressions for the tangential velocity profile, wall shear stress, and the force acting on the sphere are computed and compared with the existing results. It is noted that the slip parameter in the range 0 <= ξ <= 0 . 5 has a significant effect in reducing the stress and force. The steady-state velocity overshoot behavior in the vicinity of the sphere is re-iterated. In the limit of large permeability, Darcy (potential) flow is recovered outside a boundary layer. The results are of some interest in predicting maximum wall stress and pressure drop associated with biological models in fibrous media.
Oscillatory flow past a slip cylindrical inclusion embedded in a Brinkman medium
NASA Astrophysics Data System (ADS)
Palaniappan, D.
2015-11-01
Transient flow past a circular cylinder embedded in a porous medium is studied based on Brinkman model with Navier slip conditions. Closed form analytic solution for the stream-function describing slow oscillatory flow around a solid cylindrical inclusion is obtained in the limit of low-Reynolds-number. The key parameters such as the frequency of oscillation λ, the permeability constant δ, and the slip coefficient ξ dictate the flow fields and physical quantities in the entire flow domain. Asymptotic steady-state analysis when δ --> 0 reveals the paradoxical behavior detected by Stokes. Local streamlines for small times demonstrate interesting flow patterns. Rapid transitions including flow separations and eddies are observed far away from the solid inclusion. Analytic expressions for the wall shear stress and the force acting on the cylinder are computed and compared with existing results. It is noted that the slip parameter in the range 0 <= ξ <= 0 . 5 has a significant effect in reducing the stress and force. In the limit of large permeability, Darcy (potential) flow is recovered outside a boundary layer. The results are of some interest in predicting maximum wall stress and pressure drop associated with biological models in fibrous media.
A 2D nonlinear multiring model for blood flow in large elastic arteries
NASA Astrophysics Data System (ADS)
Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2017-12-01
In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.
A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method
NASA Astrophysics Data System (ADS)
Aboelkassem, Yasser; Virag, Zdravko
2016-11-01
For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.
Chandra, Santanu; Gnanaruban, Vimalatharmaiyah; Riveros, Fabian; Rodriguez, Jose F.; Finol, Ender A.
2016-01-01
In this work, we present a novel method for the derivation of the unloaded geometry of an abdominal aortic aneurysm (AAA) from a pressurized geometry in turn obtained by 3D reconstruction of computed tomography (CT) images. The approach was experimentally validated with an aneurysm phantom loaded with gauge pressures of 80, 120, and 140 mm Hg. The unloaded phantom geometries estimated from these pressurized states were compared to the actual unloaded phantom geometry, resulting in mean nodal surface distances of up to 3.9% of the maximum aneurysm diameter. An in-silico verification was also performed using a patient-specific AAA mesh, resulting in maximum nodal surface distances of 8 μm after running the algorithm for eight iterations. The methodology was then applied to 12 patient-specific AAA for which their corresponding unloaded geometries were generated in 5–8 iterations. The wall mechanics resulting from finite element analysis of the pressurized (CT image-based) and unloaded geometries were compared to quantify the relative importance of using an unloaded geometry for AAA biomechanics. The pressurized AAA models underestimate peak wall stress (quantified by the first principal stress component) on average by 15% compared to the unloaded AAA models. The validation and application of the method, readily compatible with any finite element solver, underscores the importance of generating the unloaded AAA volume mesh prior to using wall stress as a biomechanical marker for rupture risk assessment. PMID:27538124
Ariff, Ben; Stanton, Alice; Barratt, Dean; Augst, Alex; Glor, Fadi; Poulter, Neil; Sever, Peter; Xu, Yun; Hughes, Alun; Thom, Simon A Mc G
2002-06-01
Several systemic factors have been shown to contribute to the acceleration of large vessel atheroma. Correction of these factors leads to a reduction in the progression of plaque formation and associated arterial wall thickness. Atheroma remains, however, a focal disease, developing at characteristic sites within the arterial tree. These sites are typically at areas of vessel branching or marked curvature, and correspond to regions of high tensile stress and low sheer stress, leading to the hypothesis that local haemodynamic factors and vessel wall mechanics potentiate the focal development of atheroma. Current assessment of vascular haemodynamics suffers from an inability to handle complex flow, and does not allow accurate determination of locally varying flow, and shear stress patterns. The application of computational fluid dynamic (CFD) flow simulation techniques to ultrasound and local pressure data, however, allows a comprehensive, non-invasive appraisal of haemodynamic flow parameters to be performed. The Candesartan cilexetil and Atenolol Carotid Haemodynamic Endpoint Trial (CACHET) study compares the effects of two antihypertensive regimens, one b-blocker-based, the other angiotensin receptor blocker based, on carotid intima-media thickness. The collection of ultrasound and pressure data on each subject provides a unique opportunity to apply these data to the CFD model to study the effects of these antihypertensive regimens on local fluid dynamics. This will lead to a greater understanding of the relationship of these factors to atheroma formation and regression.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-01-01
The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665
Second-order near-wall turbulence closures - A review
NASA Technical Reports Server (NTRS)
So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.
1991-01-01
Advances in second-order near-wall turbulence closures are summarized. All closures under consideration are based on high-Reynolds-number models. Most near-wall closures proposed to date attempt to modify the high-Reynolds-number models for the dissipation function and the pressure redistribution term so that the resultant models are applicable all the way to the wall. The asymptotic behavior of the near-wall closures is examined and compared with the proper near-wall behavior of the exact Reynolds-stress equations. It is found that three second-order near-wall closures give the best correlations with simulated turbulence statistics. However, their predictions of near-wall Reynolds-stress budgets are considered to be incorrect. A proposed modification to the dissipitation-rate equation remedies part of those predictions. It is concluded that further improvements are required if a complete replication of all the turbulence properties and Reynolds-stress budgets by a statistical model of turbulence is desirable.
NASA Astrophysics Data System (ADS)
Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi
2009-04-01
For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...
On the role of stress anisotropy in the growth of stems.
Baskin, Tobias I; Jensen, Oliver E
2013-11-01
We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.
Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti
2014-08-01
The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant accumulation of anthocyanin and flavonoids may be an indicator of stress adaptation of senescing leaves. In addition, stress induced enhancement of nonphotochemical quenching (NPQ), a stress protection provision in green plants, also suggests the potential of the leaves to develop adaptational mechanism to counter the dehydration stress. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cox, Christopher; Plesniak, Michael W.
2017-11-01
One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.
Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude
2018-01-01
Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression by CTA, in parallel with lumen morphology. It is anticipated that analysis of the main AAA stagnation zones by patient-specific CFD on a yearly basis could help to predict AAA growth and rupture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Runge-Kutta method for wall shear stress of blood flow in stenosed artery
NASA Astrophysics Data System (ADS)
Awaludin, Izyan Syazana; Ahmad, Rokiah@Rozita
2014-06-01
A mathematical model of blood flow through stenotic artery is considered. A stenosis is defined as the partial occlusion of the blood vessels due to the accumulation of cholesterols, fats and the abnormal growth of tissue on the artery walls. The development of stenosis in the artery is one of the factors that cause problem in blood circulation system. This study was conducted to determine the wall shear stress of blood flow in stenosed artery. Modified mathematical model is used to analyze the relationship of the wall shear stress versus the length and height of stenosis. The existing models that have been created by previous researchers are solved using fourth order Runge-Kutta method. Numerical results show that the wall shear stress is proportionate to the length and height of stenosis.
Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul
2013-08-01
Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.
Debonding Stress Concentrations in a Pressurized Lobed Sandwich-Walled Generic Cryogenic Tank
NASA Technical Reports Server (NTRS)
Ko, William L.
2004-01-01
A finite-element stress analysis has been conducted on a lobed composite sandwich tank subjected to internal pressure and cryogenic cooling. The lobed geometry consists of two obtuse circular walls joined together with a common flat wall. Under internal pressure and cryogenic cooling, this type of lobed tank wall will experience open-mode (a process in which the honeycomb is stretched in the depth direction) and shear stress concentrations at the junctures where curved wall changes into flat wall (known as a curve-flat juncture). Open-mode and shear stress concentrations occur in the honeycomb core at the curve-flat junctures and could cause debonding failure. The levels of contributions from internal pressure and temperature loading to the open-mode and shear debonding failure are compared. The lobed fuel tank with honeycomb sandwich walls has been found to be a structurally unsound geometry because of very low debonding failure strengths. The debonding failure problem could be eliminated if the honeycomb core at the curve-flat juncture is replaced with a solid core.
Dimensionless number is central to stress relaxation and expansive growth of the cell wall.
Ortega, Joseph K E
2017-06-07
Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.
Ong, Kevin L; Rundell, Steve; Liepins, Imants; Laurent, Ryan; Markel, David; Kurtz, Steven M
2009-11-01
Press-fit implantation may result in acetabular component deformation between the ischial-ilial columns ("pinching"). The biomechanical and clinical consequences of liner pinching due to press-fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line-to-line ("no pinch") reaming and 2 mm underreaming press fit ("pinch") conditions were examined for Trident cups with X3 polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press-fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress-strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm-thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
LaDisa, John F.; Dholakia, Ronak J.; Figueroa, C. Alberto; Vignon-Clementel, Irene E.; Chan, Frandics P.; Samyn, Margaret M.; Cava, Joseph R.; Taylor, Charles A.; Feinstein, Jeffrey A.
2011-01-01
Background Atherosclerotic plaque in the descending thoracic aorta (dAo) is related to altered wall shear stress (WSS) for normal patients. Resection with end-to-end anastomosis (RWEA) is the gold standard for coarctation of the aorta (CoA) repair, but may lead to altered WSS indices that contribute to morbidity. Methods Computational fluid dynamics (CFD) models were created from imaging and blood pressure data for control subjects and age- and gender-matched CoA patients treated by RWEA (4 male, 2 female, 15±8 years). CFD analysis incorporated downstream vascular resistance and compliance to generate blood flow velocity, time-averaged WSS (TAWSS) and oscillatory shear index (OSI) results. These indices were quantified longitudinally and circumferentially in the dAo, and several visualization methods were used to highlight regions of potential hemodynamic susceptibility. Results The total dAo area exposed to subnormal TAWSS and OSI was similar between groups, but several statistically significant local differences were revealed. Control subjects experienced left-handed rotating patterns of TAWSS and OSI down the dAo. TAWSS was elevated in CoA patients near the site of residual narrowings and OSI was elevated distally, particularly along the left dAo wall. Differences in WSS indices between groups were negligible more than 5 dAo diameters distal to the aortic arch. Conclusions Localized differences in WSS indices within the dAo of CoA patients treated by RWEA suggest that plaque may form in unique locations influenced by the surgical repair. These regions can be visualized in familiar and intuitive ways allowing clinicians to track their contribution to morbidity in longitudinal studies. PMID:21801315
Palit, Arnab; Bhudia, Sunil K; Arvanitis, Theodoros N; Turley, Glen A; Williams, Mark A
2015-02-26
Majority of heart failure patients who suffer from diastolic dysfunction retain normal systolic pump action. The dysfunction remodels the myocardial fibre structure of left-ventricle (LV), changing its regular diastolic behaviour. Existing LV diastolic models ignored the effects of right-ventricular (RV) deformation, resulting in inaccurate strain analysis of LV wall during diastole. This paper, for the first time, proposes a numerical approach to investigate the effect of fibre-angle distribution and RV deformation on LV diastolic mechanics. A finite element modelling of LV passive inflation was carried out, using structure-based orthotropic constitutive law. Rule-based fibre architecture was assigned on a bi-ventricular (BV) geometry constructed from non-invasive imaging of human heart. The effect of RV deformation on LV diastolic mechanics was investigated by comparing the results predicted by BV and single LV model constructed from the same image data. Results indicated an important influence of RV deformation which led to additional LV passive inflation and increase of average fibre and sheet stress-strain in LV wall during diastole. Sensitivity of LV passive mechanics to the changes in the fibre distribution was also examined. The study revealed that LV diastolic volume increased when fibres were aligned more towards LV longitudinal axis. Changes in fibre angle distribution significantly altered fibre stress-strain distribution of LV wall. The simulation results strongly suggest that patient-specific fibre structure and RV deformation play very important roles in LV diastolic mechanics and should be accounted for in computational modelling for improved understanding of the LV mechanics under normal and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wall shear stress distributions on stented patent ductus arteriosus
NASA Astrophysics Data System (ADS)
Kori, Mohamad Ikhwan; Jamalruhanordin, Fara Lyana; Taib, Ishkrizat; Mohammed, Akmal Nizam; Abdullah, Mohammad Kamil; Ariffin, Ahmad Mubarak Tajul; Osman, Kahar
2017-04-01
A formation of thrombosis due to hemodynamic conditions after the implantation of stent in patent ductus arteriosus (PDA) will derived the development of re-stenosis. The phenomenon of thrombosis formation is significantly related to the distribution of wall shear stress (WSS) on the arterial wall. Thus, the aims of this study is to investigate the distribution of WSS on the arterial wall after the insertion of stent. Three dimensional model of patent ductus arteriosus inserted with different types of commercial stent are modelled. Computational modelling is used to calculate the distributions of WSS on the arterial stented PDA. The hemodynamic parameters such as high WSS and WSSlow are considered in this study. The result shows that the stented PDA with Type III stent has better hemodynamic performance as compared to others stent. This model has the lowest distributions of WSSlow and also the WSS value more than 20 dyne/cm2. From the observed, the stented PDA with stent Type II showed the highest distributions area of WSS more than 20 dyne/cm2. This situation revealed that the high possibility of atherosclerosis to be developed. However, the highest distribution of WSSlow for stented PDA with stent Type II indicated that high possibility of thrombosis to be formed. In conclusion, the stented PDA model calculated with the lowest distributions of WSSlow and WSS value more than 20dyne/cm2 are considered to be performed well in stent hemodynamic performance as compared to other stents.
CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.
Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey
2017-01-01
The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.
Hoffmann, Xenia-Katharina; Beck, Christoph F.
2005-01-01
The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845
Effect of food intake on left ventricular wall stress.
Gårdinger, Ylva; Hlebowicz, Joanna; Björgell, Ola; Dencker, Magnus
2014-01-28
Left ventricular wall stress has been investigated in a variety of populations, but the effect of food intake has not been evaluated. We assessed whether left ventricular wall stress is affected by food intake in healthy subjects. Twenty-three healthy subjects aged 25.6 ± 4.5 years were investigated. Meridional end-systolic wall stress (ESS) and circumferential end-systolic wall stress (cESS) were measured before, 30 minutes after, and 110 minutes after a standardised meal. Both ESS and cESS decreased significantly (P < 0.001) from fasting values 30 minutes after the meal, and had not returned to baseline after 110 minutes. ESS decreased from 65 ± 16 kdynes/cm2 (fasting) to 44 ± 12 kdynes/cm2 30 minutes after, and to 58 ± 13 kdynes/cm2 110 minutes after eating. cESS decreased from 98 ± 24 kdynes/cm2 to 67 ± 18 kdynes/cm2 30 minutes after, and to 87 ± 19 kdynes/cm2 110 minutes after the meal. This study shows that left ventricular wall stress is affected by food intake in healthy subjects.
Wall stress reduction in abdominal aortic aneurysms as a result of polymeric endoaortic paving.
Ashton, John H; Ayyalasomayajula, Avinash; Simon, Bruce R; Vande Geest, Jonathan P
2011-06-01
Polymeric endoaortic paving (PEAP) may improve endovascular repair of abdominal aortic aneurysms (AAA) since it has the potential to treat patients with complex AAA geometries while reducing the incidence of migration and endoleak. Polycaprolactone (PCL)/polyurethane (PU) blends are proposed as PEAP materials due to their range of mechanical properties, thermoformability, and resistance to biodegradation. In this study, the reduction in AAA wall stress that can be achieved using PEAP was estimated and compared to that resulting from stent-grafts. This was accomplished by mechanically modeling the anisotropic response of PCL/PU blends and implementing these results into finite element model (FEM) simulations. We found that at the maximum diameter of the AAA, the 50/50 and 10/90 PCL/PU blends reduced wall stress by 99 and 98%, respectively, while a stent-graft reduced wall stress by 99%. Our results also show that wall stress reduction increases with increasing PEAP thickness and PCL content in the blend ratio. These results indicate that PEAP can reduce AAA wall stress as effectively as a stent-graft. As such, we propose that PEAP may provide an improved treatment alternative for AAA, since many of the limitations of stent-grafts have the potential to be solved using this approach.
A film-based wall shear stress sensor for wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Amili, Omid; Soria, Julio
2011-07-01
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.
Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois
2014-01-01
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115
Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid
2015-11-07
Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the microfluidic network under investigation. The results obtained in this work are consistent with previously reported data and suitable for a wide range of lab-on-chip applications.
Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé
2012-10-01
In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.
Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2018-06-01
Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.
Augment clinical measurement using a constraint-based esophageal model
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Acharya, Shashank; Kahrilas, Peter; Patankar, Neelesh; Pandolfino, John
2017-11-01
Quantifying the mechanical properties of the esophageal wall is crucial to understanding impairments of trans-esophageal flow characteristic of several esophageal diseases. However, these data are unavailable owing to technological limitations of current clinical diagnostic instruments that instead display esophageal luminal cross sectional area based on intraluminal impedance change. In this work, we developed an esophageal model to predict bolus flow and the wall property based on clinical measurements. The model used the constraint-based immersed-boundary method developed previously by our group. Specifically, we first approximate the time-dependent wall geometry based on impedance planimetry data on luminal cross sectional area. We then fed these along with pressure data into the model and computed wall tension based on simulated pressure and flow fields, and the material property based on the strain-stress relationship. As examples, we applied this model to augment FLIP (Functional Luminal Imaging Probe) measurements in three clinical cases: a normal subject, achalasia, and eosinophilic esophagitis (EoE). Our findings suggest that the wall stiffness was greatest in the EoE case, followed by the achalasia case, and then the normal. This is supported by NIH Grant R01 DK56033 and R01 DK079902.
Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian
2018-01-08
As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.
Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.
Huo, Yunlong; Choy, Jenny Susana; Svendsen, Mark; Sinha, Anjan Kumar; Kassab, Ghassan S
2009-03-26
The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier-Stokes and Continuity equations, where the convective term in the Navier-Stokes equation was changed in the arbitrary Lagrangian-Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress-WSS, WSS spatial gradient-WSSG, oscillatory shear index-OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.
Hajati, Omid; Zarrabi, Khalil; Karimi, Reza; Hajati, Azadeh
2012-01-01
There is still controversy over the differences in the patency rates of the sequential and individual coronary artery bypass grafting (CABG) techniques. The purpose of this paper was to non-invasively evaluate hemodynamic parameters using complete 3D computational fluid dynamics (CFD) simulations of the sequential and the individual methods based on the patient-specific data extracted from computed tomography (CT) angiography. For CFD analysis, the geometric model of coronary arteries was reconstructed using an ECG-gated 64-detector row CT. Modeling the sequential and individual bypass grafting, this study simulates the flow from the aorta to the occluded posterior descending artery (PDA) and the posterior left ventricle (PLV) vessel with six coronary branches based on the physiologically measured inlet flow as the boundary condition. The maximum calculated wall shear stress (WSS) in the sequential and the individual models were estimated to be 35.1 N/m(2) and 36.5 N/m(2), respectively. Compared to the individual bypass method, the sequential graft has shown a higher velocity at the proximal segment and lower spatial wall shear stress gradient (SWSSG) due to the flow splitting caused by the side-to-side anastomosis. Simulated results combined with its surgical benefits including the requirement of shorter vein length and fewer anastomoses advocate the sequential method as a more favorable CABG method.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... both with a water capacity of not over 100 pounds and a service pressure of at least 500 but not over... (b) of this section. (f) Wall thickness. The minimum wall thickness must be such that the wall stress...) Calculation for sphere must be made by the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test...
Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.
Zhang, Yichao; Dai, Shaobin; Weng, Wanlin; Huang, Jun; Su, Ying; Cai, Yue
2017-06-16
Phosphogypsum is a waste by-product during the production of phosphoric acid. It not only occupies landfill, but also pollutes the environment, which becomes an important factor restricting the sustainable development of the phosphate fertilizer industry. Research into cast-in-situ phosphogypsum will greatly promote the comprehensive utilization of stored phosphogypsum. The aim of this study was to clarify the mechanical properties of phosphogypsum. Stress-strain relationships of cast-in-situ phosphogypsum were investigated through axial compressive experiments, and seismic performance of cast-in-situ phosphogypsum walls and aerated-concrete masonry walls were simulated based on the experimental results and using finite element analysis. The results showed that the stress-strain relationship fitted into a polynomial equation. Moreover, the displacement ductility index and the energy dissipation index of cast-in-situ phosphogypsum wall were 6.587 and 3.425, respectively. The stress-strain relationship for earthquake-resistant performance of cast-in-situ phosphogypsum walls is better than that of aerated-concrete masonry walls. The curve of stress-strain relationship and the evaluation of earthquake-resistant performance provide theoretical support for the application of cast-in-situ phosphogypsum in building walls.
Wall shear measurement in sand-water mixture flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yucel, O.; Grad, W.H.
1975-07-01
The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less
Response of hot element flush wall gauges in oscillating laminar flow
NASA Technical Reports Server (NTRS)
Giddings, T. A.; Cook, W. J.
1986-01-01
The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.
Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
Neofytou, Panagiotis; Tsangaris, Sokrates; Kyriakidis, Michalis
2008-12-01
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.
Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores
NASA Astrophysics Data System (ADS)
Karakoç, Alp
2018-01-01
The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.
Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants
Loix, Christophe; Huybrechts, Michiel; Vangronsveld, Jaco; Gielen, Marijke; Keunen, Els; Cuypers, Ann
2017-01-01
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule. PMID:29163592
Patient-Specific, Multi-Scale Modeling of Neointimal Hyperplasia in Vein Grafts
Donadoni, Francesca; Pichardo-Almarza, Cesar; Bartlett, Matthew; Dardik, Alan; Homer-Vanniasinkam, Shervanthi; Díaz-Zuccarini, Vanessa
2017-01-01
Neointimal hyperplasia is amongst the major causes of failure of bypass grafts. The disease progression varies from patient to patient due to a range of different factors. In this paper, a mathematical model will be used to understand neointimal hyperplasia in individual patients, combining information from biological experiments and patient-specific data to analyze some aspects of the disease, particularly with regard to mechanical stimuli due to shear stresses on the vessel wall. By combining a biochemical model of cell growth and a patient-specific computational fluid dynamics analysis of blood flow in the lumen, remodeling of the blood vessel is studied by means of a novel computational framework. The framework was used to analyze two vein graft bypasses from one patient: a femoro-popliteal and a femoro-distal bypass. The remodeling of the vessel wall and analysis of the flow for each case was then compared to clinical data and discussed as a potential tool for a better understanding of the disease. Simulation results from this first computational approach showed an overall agreement on the locations of hyperplasia in these patients and demonstrated the potential of using new integrative modeling tools to understand disease progression. PMID:28458640
Turbulent Boundary Layer on a Cylinder in Axial Flow
1988-09-29
finding the wall shea stress. Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient of the mornsntum...somewhat butter collapse than inner scaling, suggesting that the outer flow affects events at the wall. By comparison, the burst frequency in a planar
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-08-26
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.
Picture Wall (Glass Structures)
NASA Technical Reports Server (NTRS)
1978-01-01
Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.
Nottebrock, Bernardo; Grosse, Sebastian; Schröder, Wolfgang
2011-05-11
The drag reducing effect of polymers in a channel flow is well known and it is assumed that the polymer filaments interfere with the turbulent structures in the very near-wall flow. To analyse their precise effect, a micro-pillar shear stress sensor (MPS³) measurement system is developed which allows the detection of wall shear stress at high spatial and temporal resolutions. Different manufacturing techniques for the required micro-pillars are discussed and their influence on the flow is investigated evidencing the non-intrusive character of the pillars. Subsequently, a complete calibration is presented to relate the recorded deflection to wall shear stress values and to assure the correct detection over the whole expected frequency spectrum. A feasibility study about the ability to visualize the two-dimensional wall shear stress distribution completes the discussion about the validity of MPS³. In the last step, the drag reduction of a polymer filament grafted on a micro-pillar compared to a plain pillar and the application of MPS³ in an ocean-type polymer solution are investigated. The results confirm the expected behaviour found in the literature.
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
NASA Astrophysics Data System (ADS)
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.
Sawada, Hisashi; Hao, Hiroyuki; Naito, Yoshiro; Oboshi, Makiko; Hirotani, Shinichi; Mitsuno, Masataka; Miyamoto, Yuji; Hirota, Seiichi; Masuyama, Tohru
2015-06-01
Although iron is an essential element for maintaining physiological function, excess iron leads to tissue damage caused by oxidative stress and inflammation. Oxidative stress and inflammation play critical roles for the development of abdominal aortic aneurysm (AAA). However, it has not been investigated whether iron plays a role in AAA formation through oxidative stress and inflammation. We, therefore, examined whether iron is involved in the pathophysiology of AAA formation using human AAA walls and murine AAA models. Human aortic walls were collected from 53 patients who underwent cardiovascular surgery (non-AAA=34; AAA=19). Murine AAA was induced by infusion of angiotensin II to apolipoprotein E knockout mice. Iron was accumulated in human and murine AAA walls compared with non-AAA walls. Immunohistochemistry showed that both 8-hydroxy-2'-deoxyguanosine and CD68-positive areas were increased in AAA walls compared with non-AAA walls. The extent of iron accumulated area positively correlated with that of 8-hydroxy-2'-deoxyguanosine expression area and macrophage infiltration area in human and murine AAA walls. We next investigated the effects of dietary iron restriction on AAA formation in mice. Iron restriction reduced the incidence of AAA formation with attenuation of oxidative stress and inflammation. Aortic expression of transferrin receptor 1, intracellular iron transport protein, was increased in human and murine AAA walls, and transferrin receptor 1-positive area was similar to areas where iron accumulated and F4/80 were positive. Iron is involved in the pathophysiology of AAA formation with oxidative stress and inflammation. Dietary iron restriction could be a new therapeutic strategy for AAA progression. © 2015 American Heart Association, Inc.
Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
Benard, Nicolas; Perrault, Robert; Coisne, Damien
2006-08-01
In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.
Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei
2018-01-01
Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Khan, Sami Ullah; Shehzad, Sabir Ali; Rauf, Amar; Ali, Nasir
2018-03-01
The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate.
Pasta, Salvatore; Rinaudo, Antonino; Luca, Angelo; Pilato, Michele; Scardulla, Cesare; Gleason, Thomas G.; Vorp, David A.
2014-01-01
The aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) initiates when the hemodynamic loads exerted on the aneurysmal wall overcome the adhesive forces holding the elastic layers together. Parallel coupled, two-way fluid–structure interaction (FSI) analyses were performed on patient-specific ATAAs obtained from patients with either bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) to evaluate hemodynamic predictors and wall stresses imparting aneurysm enlargement and AoD. Results showed a left-handed circumferential flow with slower-moving helical pattern in the aneurysm's center for BAV ATAAs whereas a slight deviation of the blood flow toward the anterolateral region of the ascending aorta was observed for TAV ATAAs. Blood pressure and wall shear stress were found key hemodynamic predictors of aneurysm dilatation, and their dissimilarities are likely associated to the morphological anatomy of the aortic valve. We also observed discontinues, wall stresses on aneurysmal aorta, which was modeled as a composite with two elastic layers (i.e., inhomogeneity of vessel structural organization). This stress distribution was caused by differences on elastic material properties of aortic layers. Wall stress distribution suggests AoD just above sinotubular junction. Moreover, abnormal flow and lower elastic material properties that are likely intrinsic in BAV individuals render the aneurysm susceptible to the initiation of AoD. PMID:23664314
NASA Astrophysics Data System (ADS)
Yan, Zhenrong; Si, Jun
2017-09-01
The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.
An assessment and application of turbulence models for hypersonic flows
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Viegas, J. R.; Huang, P. G.; Rubesin, M. W.
1990-01-01
The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models.
Computation of flows in a turn-around duct and a turbine cascade using advanced turbulence models
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Luo, J.
1993-01-01
Numerical investigation has been carried out to evaluate the capability of the Algebraic Reynolds Stress Model (ARSM) and the Nonlinear Stress Model (NLSM) to predict strongly curved turbulent flow in a turn-around duct (TAD). The ARSM includes the near-wall damping term of pressure-strain correlation phi(sub ij,w), which enables accurate prediction of individual Reynolds stress components in wall flows. The TAD mean flow quantities are reasonably well predicted by various turbulence models. The ARSM yields better predictions for both the mean flow and the turbulence quantities than the NLSM and the k-epsilon (k = turbulent kinetic energy, epsilon = dissipation rate of k) model. The NLSM also shows slight improvement over the k-epsilon model. However, all the models fail to capture the recovery of the flow from strong curvature effects. The formulation for phi(sub ij,w) appears to be incorrect near the concave surface. The hybrid k-epsilon/ARSM, Chien's k-epsilon model, and Coakley's q-omega (q = the square root of k, omega = epsilon/k) model have also been employed to compute the aerodynamics and heat transfer of a transonic turbine cascade. The surface pressure distributions and the wake profiles are predicted well by all the models. The k-epsilon model and the k-epsilon/ARSM model provide better predictions of heat transfer than the q-omega model. The k-epsilon/ARSM solutions show significant differences in the predicted skin friction coefficients, heat transfer rates and the cascade performance parameters, as compared to the k-epsilon model. The k-epsilon/ARSM model appears to capture, qualitatively, the anisotropy associated with by-pass transition.
Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells
NASA Astrophysics Data System (ADS)
Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi
2016-06-01
During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.
Casimir stress in materials: Hard divergency at soft walls
NASA Astrophysics Data System (ADS)
Griniasty, Itay; Leonhardt, Ulf
2017-11-01
The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.
Convection of wall shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark
2017-11-01
The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches
NASA Astrophysics Data System (ADS)
Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.
2010-03-01
Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.
The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?
NASA Astrophysics Data System (ADS)
Truffer, M.
2017-12-01
The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.
Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Singer, Bart A.
1996-01-01
Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.
The role of heat shock proteins in protection and pathophysiology of the arterial wall.
Xu, Q; Wick, G
1996-09-01
The arterial wall is an integrated functional component of the circulatory system that is continually remodelling in response to various stressors, including localized injury, toxins, smoking and hypercholesterolaemia. These stimuli directly or indirectly cause changes in blood pressure and damage to the vessel wall, and eventually induce arterial stiffness and obstruction. To maintain the homeostasis of the vessel wall, the vascular cells produce a high level of stress proteins, also known as heat shock proteins, which protect against damage during haemodynamic stress. However, an immune reaction to heat shock proteins might contribute to the development of atherosclerosis. We hypothesize that the induction of heat shock proteins is beneficial in the arterial wall's response to stress but is harmful in certain other circumstances.
3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope
NASA Astrophysics Data System (ADS)
Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping
2018-05-01
There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.
A high-frequency lung injury mechanism in blunt thoracic impact.
Grimal, Quentin; Naïli, Salah; Watzky, Alexandre
2005-06-01
When a mechanical load is applied very rapidly to the thoracic wall, part of the internal damage is suspected to be due to a "high-frequency" injury mechanism, that is, a phenomenon in which waves are involved. This paper addresses a specific high-frequency mechanism for lung injury in which a stress wave is generated through rapid acceleration of the body wall. Displacement-related injuries, which are rather "low-frequency" phenomena, are not considered. The present work was done in the context of assessing behind armor blunt trauma (injury to thoracic organs occurring when a bullet is stopped by a body armor) through mathematical modeling. One aspect of the thorax response to high-speed blunt impact and an associated injury mechanism are investigated based on an idealized model of thorax and a set of computations presented in previous papers. The injury mechanism considered elucidates a possible mathematical relationship between the acceleration at the surface of the thoracic wall and the occurrence of lung injury.
Effect of shape and size of lung and chest wall on stresses in the lung
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Matthews, F. L.; West, J. B.
1975-01-01
To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test pressure prescribed for water jacket... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... thickness. The minimum wall thickness must be such that the wall stress at the minimum specified test...
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
NASA Astrophysics Data System (ADS)
Derbentsev, I.; Karyakin, A. A.; Volodin, A.
2017-11-01
The article deals with the behaviour of a contact-monolithic joint of large-panel buildings under compression. It gives a detailed analysis and the descriptions of the stages of such joints failure based on the results of the tests and computational modelling. The article is of interest to specialists who deal with computational modelling or the research of large-panel multi-storey buildings. The text gives a valuable information on the values of their bearing capacity and flexibility, the eccentricity of load transfer from upper panel to lower, the value of thrust passed to a ceiling panel. Recommendations are given to estimate all the above-listed parameters.
Takamizawa, Keiichi; Nakayama, Yasuhide
2013-11-01
It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.
Computational Flow Modeling of Human Upper Airway Breathing
NASA Astrophysics Data System (ADS)
Mylavarapu, Goutham
Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.
Code of Federal Regulations, 2012 CFR
2012-10-01
... section shall have walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stresses which would exist under the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... section shall have walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stresses which would exist under the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... cross section shall have walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stresses which would exist...
NASA Technical Reports Server (NTRS)
Kline, S. J. (Editor); Cantwell, B. J. (Editor); Lilley, G. M.
1982-01-01
Computational techniques for simulating turbulent flows were explored, together with the results of experimental investigations. Particular attention was devoted to the possibility of defining a universal closure model, applicable for all turbulence situations; however, conclusions were drawn that zonal models, describing localized structures, were the most promising techniques to date. The taxonomy of turbulent flows was summarized, as were algebraic, differential, integral, and partial differential methods for numerical depiction of turbulent flows. Numerous comparisons of theoretically predicted and experimentally obtained data for wall pressure distributions, velocity profiles, turbulent kinetic energy profiles, Reynolds shear stress profiles, and flows around transonic airfoils were presented. Simplifying techniques for reducing the necessary computational time for modeling complex flowfields were surveyed, together with the industrial requirements and applications of computational fluid dynamics techniques.
Aorta modeling with the element-based zero-stress state and isogeometric discretization
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi
2017-02-01
Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.
Near-wall modelling of compressible turbulent flows
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1990-01-01
Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.
Hardman, David; Doyle, Barry J; Semple, Scott I K; Richards, Jennifer M J; Newby, David E; Easson, William J; Hoskins, Peter R
2013-10-01
In abdominal aortic aneurysm disease, the aortic wall is exposed to intense biological activity involving inflammation and matrix metalloproteinase-mediated degradation of the extracellular matrix. These processes are orchestrated by monocytes and rather than affecting the aorta uniformly, damage and weaken focal areas of the wall leaving it vulnerable to rupture. This study attempts to model numerically the deposition of monocytes using large eddy simulation, discrete phase modelling and near-wall particle residence time. The model was first applied to idealised aneurysms and then to three patient-specific lumen geometries using three-component inlet velocities derived from phase-contrast magnetic resonance imaging. The use of a novel, variable wall shear stress-limiter based on previous experimental data significantly improved the results. Simulations identified a critical diameter (1.8 times the inlet diameter) beyond which significant monocyte deposition is expected to occur. Monocyte adhesion occurred proximally in smaller abdominal aortic aneurysms and distally as the sac expands. The near-wall particle residence time observed in each of the patient-specific models was markedly different. Discrete hotspots of monocyte residence time were detected, suggesting that the monocyte infiltration responsible for the breakdown of the abdominal aortic aneurysm wall occurs heterogeneously. Peak monocyte residence time was found to increase with aneurysm sac size. Further work addressing certain limitations is needed in a larger cohort to determine clinical significance.
Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea
2015-07-16
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses
Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea
2015-01-01
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop. PMID:26193255
Development of a MEMS dual-axis differential capacitance floating element shear stress sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, Casey; Griffin, Benjamin
A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds rangingmore » up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.« less
Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method
NASA Astrophysics Data System (ADS)
Kulak, S. M.; Novikov, V. F.; Baranov, A. V.
2016-10-01
Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.
NASA Astrophysics Data System (ADS)
Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui
2015-11-01
Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).
NASA Astrophysics Data System (ADS)
Coghlan, Leslie; Singleton, H. R.; Dell'Italia, L. J.; Linderholm, C. E.; Pohost, G. M.
1995-05-01
We have developed a method for measuring the detailed in vivo three dimensional geometry of the left and right ventricles using cine-magnetic resonance imaging. From data in the form of digitized short axis outlines, the normal vectors, principal curvatures and directions, and wall thickness were computed. The method was evaluated on simulated ellipsoids and on human MRI data. Measurements of normal vectors and of wall thickness were very accurate in simulated data and appeared appropriate in patient data. On simulated data, measurements of the principal curvature k1 (corresponding approximately to the short axis direction of the left ventricle) and of principal directions were quite accurate, but measurements of the other principal curvature (k2) were less accurate. The reasons behind this are considered. We expect improvements in the accuracy with thinner slices and improved representation of the surface data. Gradient echo images were acquired from 8 dogs with a 1.5T system (Philips Gyroscan) at baseline and four months after closed chest experimentally produced mitral regurgitation (MR). The product (k1 + k2) X wall thickness averaged over all slices at end-diastole was significantly lower after surgery (n equals 8, p < 0.005). These geometry changes were consistent with the expected increase in wall stress after MR.
Optical clearing of vaginal tissues
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-02-01
Near-IR laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, undesirable thermal insult to vaginal wall was predicted. This study explores whether an optical clearing agent (OCA) can improve optical penetration depth and completely preserve vaginal wall during subsurface treatment of endopelvic fascia. Several OCA mixtures were tested, and 100% glycerol was found to be optimal. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations of thermal damage to tissue using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37 °C after 30 min. Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral thermal damage simulations were performed. MC model showed improved energy deposition in endopelvic fascia using OCA. Without OCA, 62, 37, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, compared with 50, 49, and 1% with OCA. Use of OCA also yielded 0.5 mm increase in treatment depth, allowing potential thermal tissue remodeling at 3 mm depth.
Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.
2013-01-01
This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.
Active behavior of abdominal wall muscles: Experimental results and numerical model formulation.
Grasa, J; Sierra, M; Lauzeral, N; Muñoz, M J; Miana-Mena, F J; Calvo, B
2016-08-01
In the present study a computational finite element technique is proposed to simulate the mechanical response of muscles in the abdominal wall. This technique considers the active behavior of the tissue taking into account both collagen and muscle fiber directions. In an attempt to obtain the computational response as close as possible to real muscles, the parameters needed to adjust the mathematical formulation were determined from in vitro experimental tests. Experiments were conducted on male New Zealand White rabbits (2047±34g) and the active properties of three different muscles: Rectus Abdominis, External Oblique and multi-layered samples formed by three muscles (External Oblique, Internal Oblique, and Transversus Abdominis) were characterized. The parameters obtained for each muscle were incorporated into a finite strain formulation to simulate active behavior of muscles incorporating the anisotropy of the tissue. The results show the potential of the model to predict the anisotropic behavior of the tissue associated to fibers and how this influences on the strain, stress and generated force during an isometric contraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhuo, Congshan; Zhong, Chengwen
2016-11-01
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.
The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics
NASA Astrophysics Data System (ADS)
Tree, Mike; Fagan, Kiley; Yoganathan, Ajit
2014-11-01
The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.
Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P
2012-01-01
The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014
Stress distribution in two-dimensional silos
NASA Astrophysics Data System (ADS)
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.
Nollert, M U; Diamond, S L; McIntire, L V
1991-09-01
Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.
Shvedova, A. A.; Kisin, E.; Murray, A. R.; Johnson, V. J.; Gorelik, O.; Arepalli, S.; Hubbs, A. F.; Mercer, R. R.; Keohavong, P.; Sussman, N.; Jin, J.; Yin, J.; Stone, S.; Chen, B. T.; Deye, G.; Maynard, A.; Castranova, V.; Baron, P. A.; Kagan, V. E.
2008-01-01
Nanomaterials are frontier technological products used in different manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNT) are finding numerous applications in electronics, aerospace devices, computers, and chemical, polymer, and pharmaceutical industries. SWCNT are relatively recently discovered members of the carbon allotropes that are similar in structure to fullerenes and graphite. Previously, we (47) have reported that pharyngeal aspiration of purified SWCNT by C57BL/6 mice caused dose-dependent granulomatous pneumonia, oxidative stress, acute inflammatory/cytokine responses, fibrosis, and decrease in pulmonary function. To avoid potential artifactual effects due to instillation/agglomeration associated with SWCNT, we conducted inhalation exposures using stable and uniform SWCNT dispersions obtained by a newly developed aerosolization technique (2). The inhalation of nonpurified SWCNT (iron content of 17.7% by weight) at 5 mg/m3, 5 h/day for 4 days was compared with pharyngeal aspiration of varying doses (5–20 μg per mouse) of the same SWCNT. The chain of pathological events in both exposure routes was realized through synergized interactions of early inflammatory response and oxidative stress culminating in the development of multifocal granulomatous pneumonia and interstitial fibrosis. SWCNT inhalation was more effective than aspiration in causing inflammatory response, oxidative stress, collagen deposition, and fibrosis as well as mutations of K-ras gene locus in the lung of C57BL/6 mice. PMID:18658273
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cylindrical in shape, with a water capacity of 1,000 pounds or less and a service pressure of at least 225 and... inch. In any case the minimum wall thickness must be such that the calculated wall stress at the...; (iii) 35,000 psi; or (iv) Further provided that wall stress for cylinders having copper brazed...
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cylindrical in shape, with a water capacity of 1,000 pounds or less and a service pressure of at least 225 and... inch. In any case the minimum wall thickness must be such that the calculated wall stress at the...; (iii) 35,000 psi; or (iv) Further provided that wall stress for cylinders having copper brazed...
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast
Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier
2017-01-01
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494
An experimental study of near wall flow parameters in the blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, Rakesh K.; Raj, Rishi S.
1989-01-01
The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly in the close vicinity of the corner line. The maximum value of the wall shear stress and its location from the corner line, on both the surfaces forming the corner region, were observed to change along the corner. These observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the stretching and attenuation of the horseshoe vortex. The wall shear stress vectors in the blade end-wall corner region were observed to be more skewed on the end-wall surface as compared to that on the blade surface. The differences in the wall shear stress directions obtained with the Preston tube and flow visualization method were within the range in which the Preston tube was found to be insensitive to the yaw angle.
Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape
NASA Technical Reports Server (NTRS)
Lutz, Otto
1950-01-01
A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.
NASA Technical Reports Server (NTRS)
Carlson, J. R.; Gatski, T. B.
2002-01-01
A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Peloc, Nora L.; Chien, Aichi; Goldberg, Ezequiel; Putman, Christopher M.; Cebral, Juan R.
2015-03-01
Cerebral aneurysms may rarely coexist with a proximal artery stenosis. In that small percent of patients, such coexistence poses a challenge for interventional neuroradiologists and neurosurgeons to make the best treatment decision. According to previous studies, the incidence of cerebral aneurysms in patients with internal carotid artery stenosis is no greater than five percent, where the aneurysm is usually incidentally detected, being about two percent for aneurysms and stenoses in the same cerebral circulation. Those cases pose a difficult management decision for the physician. Case reports showed patients who died due to aneurysm rupture months after endarterectomy but before aneurysm clipping, while others did not show any change in the aneurysm after plaque removal, having optimum outcome after aneurysm coiling. The aim of this study is to investigate the intra-aneurysmal hemodynamic changes before and after treatment of stenotic plaque. Virtually created moderate stenoses in vascular models of internal carotid artery aneurysm patients were considered in a number of cases reconstructed from three dimensional rotational angiography images. The strategy to create those plaques was based on parameters analyzed in a previous work where idealized models were considered, including relative distance and stenosis grade. Ipsilateral and contralateral plaques were modeled. Wall shear stress and velocity pattern were computed from finite element pulsatile blood flow simulations. The results may suggest that wall shear stress changes depend on relative angular position between the aneurysm and the plaque.
Sujkowska-Rybkowska, Marzena; Borucki, Wojciech
2014-12-01
Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor
Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas
2017-01-01
The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869
Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
NASA Astrophysics Data System (ADS)
Baidya, R.; Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I.
2017-02-01
An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal velocity, in addition to the streamwise velocity component. The novelty of the current work lies in the inclusion of the second velocity component, made possible by carefully conducted subminiature ×-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise normal stress. These trends are explained by the contributions from attached eddies. Furthermore, the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results are found to be consistent with the recent prediction from the work of Wei et al. ["Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows," J. Fluid Mech. 522, 303-327 (2005)], Klewicki ["Reynolds number dependence, scaling, and dynamics of turbulent boundary layers," J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts and ends at z+˜O (√{δ+}) and O (δ+) , respectively. Below the self-similar region, empirical evidence suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling at a fixed z+ location; however, they are distorted by viscous forces, which remain a leading order contribution in the mean momentum balance in the region z+≲O (√{δ+}) , and thus result in a departure from self-similarity.
Investigation of pulsatile flowfield in healthy thoracic aorta models.
Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen
2010-02-01
Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the anterior wall of the brachiocephalic artery, similar implication reported in a number of previous studies.
The Fluid Mechanics of a Wavy-Wall Bioreactor
NASA Astrophysics Data System (ADS)
Sucosky, Philippe; Bilgen, Bahar; Aleem, Alexander; Neitzel, Paul; Barabino, Gilda
2004-11-01
Bioreactors are devices used for the production of mammalian tissue in vitro. Although mixing has been shown to stimulate the growth of cartilage constructs, high shear-stress levels can damage the cells. In order to enhance mixing while minimizing shear, a wavy-wall bioreactor (WWB) featuring a sinusoidal internal profile has been designed. The turbulent hydrodynamic environment produced in this device is investigated experimentally using particle-image velocimetry. A model bioreactor made of acrylic and filled with an index-matching solution of zinc iodide is used to compensate for the refraction of light at the walls. The flow observed in different planes is shown to be periodic, spatially dependent, and dominated by mean-shear rather than Reynolds stresses in the vicinity of constructs. Finally, a comparison between the mean-shear stresses obtained in the WWB and in a standard spinner flask reveals similar stress levels near the construct walls.
NASA Technical Reports Server (NTRS)
Gao, Q.; Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.
2001-01-01
Stress, including that caused by ethanol, has been shown to induce or promote secondary metabolism in a number of microbial systems. Rotating-wall bioreactors provide a low stress and simulated microgravity environment which, however, supports only poor production of microcin B17 by Escherichia coli ZK650, as compared to production in agitated flasks. We wondered whether the poor production is due to the low level of stress and whether increasing stress in the bioreactors would raise the amount of microcin B17 formed. We found that applying shear stress by addition of a single Teflon bead to a rotating wall bioreactor improved microcin B17 production. By contrast, addition of various concentrations of ethanol to such bioreactors (or to shaken flasks) failed to increase microcin B17 production. Ethanol stress merely decreased production and, at higher concentrations, inhibited growth. Interestingly, cells growing in the bioreactor were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks.
Fiedler, Markus Rm; Lorenz, Annett; Nitsche, Benjamin M; van den Hondel, Cees Amjj; Ram, Arthur Fj; Meyer, Vera
2014-01-01
Cell wall integrity, vesicle transport and protein secretion are key factors contributing to the vitality and productivity of filamentous fungal cell factories such as Aspergillus niger . In order to pioneer rational strain improvement programs, fundamental knowledge on the genetic basis of these processes is required. The aim of the present study was thus to unravel survival strategies of A. niger when challenged with compounds interfering directly or indirectly with its cell wall integrity: calcofluor white, caspofungin, aureobasidin A, FK506 and fenpropimorph. Transcriptomics signatures of A. niger and phenotypic analyses of selected null mutant strains were used to predict regulator proteins mediating the survival responses against these stressors. This integrated approach allowed us to reconstruct a model for the cell wall salvage gene network of A. niger that ensures survival of the fungus upon cell surface stress. The model predicts that (i) caspofungin and aureobasidin A induce the cell wall integrity pathway as a main compensatory response via induction of RhoB and RhoD, respectively, eventually activating the mitogen-activated protein kinase kinase MkkA and the transcription factor RlmA. (ii) RlmA is the main transcription factor required for the protection against calcofluor white but it cooperates with MsnA and CrzA to ensure survival of A. niger when challenged with caspofungin and aureobasidin A. (iii) Membrane stress provoked by aureobasidin A via disturbance of sphingolipid synthesis induces cell wall stress, whereas fenpropimorph-induced disturbance of ergosterol synthesis does not. The present work uncovered a sophisticated defence system of A. niger which employs at least three transcription factors - RlmA, MsnA and CrzA - to protect itself against cell wall stress. The transcriptomic data furthermore predicts a fourth transfactor, SrbA, which seems to be specifically important to survive fenpropimorph-induced cell membrane stress. Future studies will disclose how these regulators are interlocked in different signaling pathways to secure survival of A. niger under different cell wall stress conditions.
Analysis of cold worked holes for structural life extension
NASA Technical Reports Server (NTRS)
Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.
1994-01-01
Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.
Computation of turbulent rotating channel flow with an algebraic Reynolds stress model
NASA Technical Reports Server (NTRS)
Warfield, M. J.; Lakshminarayana, B.
1986-01-01
An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.
NASA Technical Reports Server (NTRS)
Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.
2004-01-01
Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1986-01-01
A numerical study of computations in backward-facing steps with flow separation and reattachment, using the Reynolds stress closure is presented. The highlight of this study is the improvement of the Reynold-stress model (RSM) by modifying the diffusive transport of the Reynolds stresses through the formulation, solution and subsequent incorporation of the transport equations of the third moments, bar-u(i)u(j)u(k), into the turbulence model. The diffusive transport of the Reynolds stresses, represented by the gradients of the third moments, attains greater significance in recirculating flows. The third moments evaluated by the development and solution of the complete transport equations are superior to those obtained by existing algebraic correlations. A low-Reynolds number model for the transport equations of the third moments is developed and considerable improvement in the near-wall profiles of the third moments is observed. The values of the empirical constants utilized in the development of the model are recommended. The Reynolds-stress closure is consolidated by incorporating the equations of k and e, containing the modified diffusion coefficients, and the transport equations of the third moments into the Reynolds stress equations. Computational results obtained by the original k-e model, the original RSM and the consolidated and modified RSM are compared with experimental data. Overall improvement in the predictions is seen by consolidation of the RMS and a marked improvement in the profiles of bar-u(i)u(j)u(k) is obtained around the reattachment region.
The growing outer epidermal wall: design and physiological role of a composite structure.
Kutschera, U
2008-04-01
The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a 'tensile skin'. The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These 'plywood laminates' contain crystalline 'cables' orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic 'OEW-like' herringbone patterns. Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design 'without an intelligent designer' evolved independently in the protective 'skin' of plants, animals and many other organisms.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
A Reynolds stress model for near-wall turbulence
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1993-01-01
The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.
Chen, Shuqi; Springer, Timothy A.
1999-01-01
Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin–ligand tether bonds exponentially (1, 4) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (14). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one. PMID:9885254
Chen, S; Springer, T A
1999-01-11
Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin-ligand tether bonds exponentially (, ) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.
Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers
NASA Astrophysics Data System (ADS)
Morrill-Winter, C.; Squire, D. T.; Klewicki, J. C.; Hutchins, N.; Schultz, M. P.; Marusic, I.
2017-05-01
Multicomponent turbulence measurements in rough-wall boundary layers are presented and compared to smooth-wall data over a large friction Reynolds number range (δ+). The rough-wall experiments used the same continuous sandpaper sheet as in the study of Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196]. To the authors' knowledge, the present measurements are unique in that they cover nearly an order of magnitude in Reynolds number (δ+≃2800 -17 400 ), while spanning the transitionally to fully rough regimes (equivalent sand-grain-roughness range, ks+≃37 -98 ), and in doing so also maintain very good spatial resolution. Distinct from previous studies, the inner-normalized wall-normal velocity variances, w2¯, exhibit clear dependencies on both ks+ and δ+ well into the wake region of the boundary layer, and only for fully rough flows does the outer portion of the profile agree with that in a comparable δ+ smooth-wall flow. Consistent with the mean dynamical constraints, the inner-normalized Reynolds shear stress profiles in the rough-wall flows are qualitatively similar to their smooth-wall counterparts. Quantitatively, however, at matched Reynolds numbers the peaks in the rough-wall Reynolds shear stress profiles are uniformly located at greater inner-normalized wall-normal positions. The Reynolds stress correlation coefficient, Ru w, is also greater in rough-wall flows at a matched Reynolds number. As in smooth-wall flows, Ru w decreases with Reynolds number, but at different rates depending on the roughness condition. Despite the clear variations in the Ru w profiles with roughness, inertial layer u , w cospectra evidence invariance with ks+ when normalized with the distance from the wall. Comparison of the normalized contributions to the Reynolds stress from the second quadrant (Q2) and fourth quadrant (Q4) exhibit noticeable differences between the smooth- and rough-wall flows. The overall time fraction spent in each quadrant is, however, shown to be nearly fixed for all of the flow conditions investigated. The data indicate that at fixed δ+ both Q2 and Q4 events exhibit a sensitivity to ks+. The present results are discussed relative to the combined influences of roughness and Reynolds number on the scaling behaviors of boundary layers.
Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen
2015-10-21
Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Nonlinear Reynolds stress model for turbulent shear flows
NASA Technical Reports Server (NTRS)
Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.
1991-01-01
A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.
Optical clearing of vaginal tissues in cadavers
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Hardy, Luke A.; Peters, Michael G.; Bastawros, Dina A.; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2018-02-01
A nonsurgical laser procedure is being developed for treatment of female stress urinary incontinence (SUI). Previous studies in porcine vaginal tissues, ex vivo, as well as computer simulations, showed the feasibility of using near-infrared laser energy delivered through a transvaginal contact cooling probe to thermally remodel endopelvic fascia, while preserving the vaginal wall from thermal damage. This study explores optical properties of vaginal tissue in cadavers as an intermediate step towards future pre-clinical and clinical studies. Optical clearing of tissue using glycerol resulted in a 15-17% increase in optical transmission after 11 min at room temperature (and a calculated 32.5% increase at body temperature). Subsurface thermal lesions were created using power of 4.6 - 6.4 W, 5.2-mm spot, and 30 s irradiation time, resulting in partial preservation of vaginal wall to 0.8 - 1.1 mm depth.
Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles
2016-12-01
Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Residual Stresses in SAVY 4000 and Hagan Container Bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroud, Mary Ann; Hill, Mary Ann; Tokash, Justin Charles
Chloride-induced stress corrosion cracking (SCC) has been investigated as a potential failure mechanism for the SAVY 4000 and the Hagan containers used to store plutonium-bearing materials at Los Alamos National Laboratory. This report discusses the regions of the container bodies most susceptible to SCC and the magnitude of the residual stresses in those regions. Boiling MgCl2 testing indicated that for both containers the region near the top weld was most susceptible to SCC. The Hagan showed through wall cracking after 22-24 hours of exposure both parallel (axial stresses) and perpendicular (hoop stresses) to the weld. The SAVY 4000 container showedmore » significant cracking above and below the weld after 47 hours of exposure but there was no visual evidence of a through wall crack and the cracks did not leak water. Two through wall holes formed in the bottom of the SAVY 4000 container after 44-46 hours of exposure. For both containers, average “through wall” residual stresses were determined from hole drilling data 4 mm below the weld. In the Hagan body, average tensile hoop stresses were 194 MPa and average compressive axial stresses were -120 MPa. In the SAVY 4000 body, average compressive hoop stresses were 11 MPa and average tensile axial stresses were 25 MPa. Results suggest that because the Hagan container exhibited through wall cracking in a shorter time in boiling MgCl2 and had the higher average tensile stress, 194 MPa hoop stress, it is more susceptible to SCC than the SAVY 4000 container.« less
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance
Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.
2015-01-01
ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968
NASA Astrophysics Data System (ADS)
Abu Rowin, W.; Hou, J.; Ghaemi, S.
2017-09-01
The inner and outer layers of a turbulent channel flow over a superhydrophobic surface (SHS) are characterized using simultaneous long-range microscopic particle tracking velocimetry (micro-PTV) and particle image velocimetry, respectively. The channel flow is operated at a low Reynolds number of ReH = 4400 (based on full channel height and 0.174 m/s bulk velocity), equivalent to Reτ = 140 (based on half channel height and friction velocity). The SHS is produced by spray coating, and the root-mean-square of wall roughness normalized by wall-unit is k+rms = 0.11. The micro-PTV shows 0.023 m/s slip velocity over the SHS (about 13% of the bulk velocity), which corresponds to a slip-length of ˜200 μm. A drag reduction of ˜19% based on the slope of the linear viscous sublayer and 22% based on an analytical expression of Rastegari and Akhavan [J. Fluid Mech. 773, R4 (2015)] realized. The reduced Reτ over the SHS based on the corresponding friction velocity is ˜125, which is in the lower limit of a turbulence regime. The results show the increase of streamwise Reynolds stresses
Modulus reconstruction from prostate ultrasound images using finite element modeling
NASA Astrophysics Data System (ADS)
Yan, Zhennan; Zhang, Shaoting; Alam, S. Kaisar; Metaxas, Dimitris N.; Garra, Brian S.; Feleppa, Ernest J.
2012-03-01
In medical diagnosis, use of elastography is becoming increasingly more useful. However, treatments usually assume a planar compression applied to tissue surfaces and measure the deformation. The stress distribution is relatively uniform close to the surface when using a large, flat compressor but it diverges gradually along tissue depth. Generally in prostate elastography, the transrectal probes used for scanning and compression are cylindrical side-fire or rounded end-fire probes, and the force is applied through the rectal wall. These make it very difficult to detect cancer in prostate, since the rounded contact surfaces exaggerate the non-uniformity of the applied stress, especially for the distal, anterior prostate. We have developed a preliminary 2D Finite Element Model (FEM) to simulate prostate deformation in elastography. The model includes a homogeneous prostate with a stiffer tumor in the proximal, posterior region of the gland. A force is applied to the rectal wall to deform the prostate, strain and stress distributions can be computed from the resultant displacements. Then, we assume the displacements as boundary condition and reconstruct the modulus distribution (inverse problem) using linear perturbation method. FEM simulation shows that strain and strain contrast (of the lesion) decrease very rapidly with increasing depth and lateral distance. Therefore, lesions would not be clearly visible if located far away from the probe. However, the reconstructed modulus image can better depict relatively stiff lesion wherever the lesion is located.
Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall
Hiorns, J. E.
2016-01-01
Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally. PMID:27197860
The self streamlining wind tunnel. [wind tunnel walls
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1975-01-01
A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.
Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira
2013-03-01
Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Erdol, R.; Erdogan, F.
1976-01-01
The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.
Levin, David E.
2011-01-01
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182
2014-01-01
Background The intracranial aneurysm (IA) size has been proved to have impacts on the hemodynamics and can be applied for the prediction of IA rupture risk. Although the relationship between aspect ratio and hemodynamic parameters was investigated using real patients and virtual models, few studies focused on longitudinal experiments of IAs based on patient-specific aneurysm models. We attempted to do longitudinal simulation experiments of IAs by developing a series of scaled models. Methods In this work, a novel scaling approach was proposed to create IA models with different aneurysm size ratios (ASRs) defined as IA height divided by average neck diameter from a patient-specific aneurysm model and the relationship between the ASR and hemodynamics was explored based on a simulated longitudinal experiment. Wall shear stress, flow patterns and vessel wall displacement were computed from these models. Pearson correlation analysis was performed to elucidate the relationship between the ASR and wall shear stress. The correlation of the ASR and flow velocity was also computed and analyzed. Results The experiment results showed that there was a significant increase in IA area exposed to low WSS once the ASR > 0.7, and the flow became slower and the blood was more difficult to flow into the aneurysm as the ASR increased. Meanwhile, the results also indicated that average blood flow velocity and WSS had strongly negative correlations with the ASR (r = −0.938 and −0.925, respectively). A narrower impingement region and a more concentrated inflow jet appeared as the ASR increased, and the large local deformation at aneurysm apex could be found as the ASR >1.7 or 0.7 < the ASR <1.0. Conclusion Hemodynamic characteristics varied with the ASR. Besides, it is helpful to further explore the relationship between morphologies and hemodynamics based on a longitudinal simulation by building a series of patient-specific aneurysm scaled models applying our proposed IA scaling algorithm. PMID:24528952
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal) of... permitted in paragraph (d) of this section. (f) Wall thickness. The wall stress may not exceed 24,000 psi.... Calculation must be made by the following formula: S = [P(1.3D2+0.4d2)]/(D2−d2) Where: S = wall stress in psi...
2016-08-23
Different percentages of clay (10 to 30%) and sand (35 to 55%) have been used to represent various flow concentrations (Table 1). Dynamic viscosity of the... viscosity , was adopted as the wall boundary treatment method. 2.2 Physical Domain The domain consists of a 7.0m long flume, which has an inclination of...the shear stress, μapp is the apparent viscosity , K is the flow consistency index, n is the flow behavior index, and γ is the shear rate, which is
Calculation of load distribution in stiffened cylindrical shells
NASA Technical Reports Server (NTRS)
Ebner, H; Koller, H
1938-01-01
Thin-walled shells with strong longitudinal and transverse stiffening (for example, stressed-skin fuselages and wings) may, under certain simplifying assumptions, be treated as static systems with finite redundancies. In this report the underlying basis for this method of treatment of the problem is presented and a computation procedure for stiffened cylindrical shells with curved sheet panels indicated. A detailed discussion of the force distribution due to applied concentrated forces is given, and the discussion illustrated by numerical examples which refer to an experimentally determined circular cylindrical shell.
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Dubrovskaya, A. S.; Dongauser, K. A.; Trufanov, N. A.
2015-06-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation.
Turbulent shear stresses in compressible boundary layers
NASA Technical Reports Server (NTRS)
Laderman, A. J.; Demetriades, A.
1979-01-01
Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2016-02-01
Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.
Assembly and enlargement of the primary cell wall in plants
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1997-01-01
Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.
Assembly and enlargement of the primary cell wall in plants.
Cosgrove, D J
1997-01-01
Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.
Parametric Study of Wall Shear Stress in Idealized Avian Airways
NASA Astrophysics Data System (ADS)
Farnsworth, Michael S.; Riede, Tobias; Thomson, Scott L.
2017-11-01
Because wall shear stress (WSS) affects cell response, WSS patterns in avian respiratory airways may be related to the origin of the syrinx and corresponding voice-producing tissue structures (e.g., membranes or vocal folds) in birds. To explore possible linkages between WSS patterns and the locations of avian voice-producing structures, a computational model of flow through an idealized portion of the avian respiratory airway, including trachea and primary bronchi sections, has been developed. The flow is governed by the Navier-Stokes equations, with velocity boundary conditions derived from pressure-flow data in an adult zebra finch during quiet respiration. Geometric parameters such as tracheal/bronchial diameter and length, as well as bronchial branching angle, are parametrically varied based on data for different avian species. Simulation results predict elevated WSS in the vicinity of the tracheobronchial juncture, the location at which voice-producing tissues are found in avian species. In this presentation, the model will be described and spatial distributions of WSS during inspiration and expiration will be presented and compared for different geometric configurations and respiration rates and waveforms. Funding for this project from the Gordon and Betty Moore Foundation (Grant 4498) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.
2015-11-01
A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
Characterization of mechano-sensitive nano-containers for targeted vasodilation
NASA Astrophysics Data System (ADS)
Buscema, Marzia; Deyhle, Hans; Pfohl, Thomas; Hieber, Simone E.; Zumbuehl, Andreas; Müller, Bert
2016-04-01
Cardiovascular diseases are the worldwide number one cause of mortality. The blood flow in diseased human coronary arteries differs from the blood flow in the healthy vessels. This fact should be used for designing targeted localized delivery of vasodilators with a purely physical drug release trigger. Thus, we have proposed mechano-sensitive liposomes as mechano-sensitive containers. One has to tailor the liposome's properties, so that containers are stable under physiological conditions in health, but release their cargo near the constricted vessels at body temperature. In order to determine the shear stress threshold for release, both the morphology of the healthy and diseased human arteries and the mechanical property of the liposomes have to be known. We have shown that micro computed tomography (μCT) techniques allow visualizing the lumen of human coronary arteries and provide the basis for flow simulations to extract the wall shear stress of healthy and stenosed regions in human coronary arteries. The behavior of the mechano-sensitive liposomes is currently investigated by means of microfluidics and spatially resolved small-angle X-ray scattering. The liposomes are injected into micro-channels mimicking in vivo situation. The scattering signal from the liposomes reveals information about their size, shape, and wall thickness.
Some New Problems on Shells and Thin Structures
NASA Technical Reports Server (NTRS)
Vlasov, V. S.
1949-01-01
Cylindrical shells of arbitrary section, reinforced by longitudinal and transverse members (stringers and ribs) are considered by us, for a sufficiently close spacing of the ribs, as in our previously published papers (references 1 end 2), as thin-walled orthotropic spatial systems at the cross-sections of which only axial (normal and shearing) forces can arise. The longitudinal bending and twisting moments, due to their weak effect on the stress state of the shell, are taken equal to zero. Along the longitudinal sections of the shell there may arise transverse forces in addition to the normal d shearing forces. Under the so-called static assumptions there is taken for the computation model of the shell a thin-walled spatial system consisting along its length (along a generator) of an infinite number of elementary strips capable of bending. Each of these strips is likened to a curved rod operating in each of its sections not only in tension (compression)but also in transverse bending and shear. The interaction between two adjoining transverse strips in the shell expresses itself in the transmission from one strip to the other of only the normal and shearing stresses. The static structure of the computation model here described is shown in figure 1, where the connections through which the normal and shearing stresses transmitted from one transverse strip to smother are indicated schematically by the rods located in the middle surface of the shell. In addition to the static hypothesis we introduce also geometric hypotheses. According to the latter the elongational deformations of the shell along lines parallel to the generator of its middle surface and the shear deformations in the middle surface, as ma+gitudes having . little effect on the state of the fundamental internal forces of the shell, are taken equal to zero. The deformations of the shell in our computational model are such that in the first place the lines of this surface perpendicular to the generator are inextensible at each point end in the second place the angles between the lines of principal curvature (the coordinate lines) which are straight before the deformation remain straight after the deformation.
Gebker, Rolf; Mirelis, Jesus G; Jahnke, Cosima; Hucko, Thomas; Manka, Robert; Hamdan, Ashraf; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo
2010-09-01
The purpose of this study was to determine the influence of left ventricular (LV) hypertrophy and geometry on the diagnostic accuracy of wall motion and additional perfusion imaging during high-dose dobutamine/atropine stress magnetic resonance for the detection of coronary artery disease. Combined dobutamine stress magnetic resonance (DSMR)-wall motion and DSMR-perfusion imaging was performed in a single session in 187 patients scheduled for invasive coronary angiography. Patients were classified into 4 categories on the basis of LV mass (normal, ≤ 81 g/m(2) in men and ≤ 62 g/m(2) in women) and relative wall thickness (RWT) (normal, <0.45) as follows: normal geometry (normal mass, normal RWT), concentric remodeling (normal mass, increased RWT), concentric hypertrophy (increased mass, increased RWT), and eccentric hypertrophy (increased mass, normal RWT). Wall motion and perfusion images were interpreted sequentially, with observers blinded to other data. Significant coronary artery disease was defined as ≥ 70% stenosis. In patients with increased LV concentricity (defined by an RWT ≥ 0.45), sensitivity and accuracy of DSMR-wall motion were significantly reduced (63% and 73%, respectively; P<0.05) compared with patients without increased LV concentricity (90% and 88%, respectively; P<0.05). Although accuracy of DSMR-perfusion was higher than that of DSMR-wall motion in patients with concentric hypertrophy (82% versus 71%; P < 0.05), accuracy of DSMR-wall motion was superior to DSMR-perfusion (90% versus 85%; P < 0.05) in patients with eccentric hypertrophy. The accuracy of DSMR-wall motion is influenced by LV geometry. In patients with concentric remodeling and concentric hypertrophy, additional first-pass perfusion imaging during high-dose dobutamine stress improves the diagnostic accuracy for the detection of coronary artery disease.
The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling.
Feng, Wei; Kita, Daniel; Peaucelle, Alexis; Cartwright, Heather N; Doan, Vinh; Duan, Qiaohong; Liu, Ming-Che; Maman, Jacob; Steinhorst, Leonie; Schmitz-Thom, Ina; Yvon, Robert; Kudla, Jörg; Wu, Hen-Ming; Cheung, Alice Y; Dinneny, José R
2018-03-05
Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis
NASA Astrophysics Data System (ADS)
Abolfazli, Ehsan; Fatouraee, Nasser; Vahidi, Bahman
2014-10-01
Although arterial embolism is important as a major cause of brain infarction, little information is available about the hemodynamic factors which govern the path emboli tend to follow. A method which predicts the trajectory of emboli in carotid arteries would be of a great value in understanding ischemic attack mechanisms and eventually devising hemodynamically optimal techniques for prevention of strokes. In this paper, computational models are presented to investigate the motion of a blood clot in a human carotid artery bifurcation. The governing equations for blood flow are the Navier-Stokes formulations. To achieve large structural movements, the arbitrary Lagrangian-Eulerian formulation (ALE) with an adaptive mesh method was employed for the fluid domain. The problem was solved by simultaneous solution of the fluid and the structure equations. In this paper, the phenomenon was simulated under laminar and Newtonian flow conditions. The measured stress-strain curve obtained from ultrasound elasticity imaging of the thrombus was set to a Sussman-Bathe material model representing embolus material properties. Shear stress magnitudes in the inner wall of the internal carotid artery (ICA) were measured. High magnitudes of wall shear stress (WSS) occurred in the areas in which the embolus and arterial are in contact with each other. Stress distribution in the embolus was also calculated and areas prone to rapture were identified. Effects of embolus size and embolus density on its motion velocity were investigated and it was observed that an increase in either embolus size or density led to a reduction in movement velocity of the embolus. Embolus trajectory and shear stress from a simulation of embolus movement in a three-dimensional model with patient-specific carotid artery bifurcation geometry are also presented.
Wang, Shengli; Shi, Liang; Hu, Yanru; Liu, Rui; Ren, Ang; Zhu, Jing; Zhao, Mingwen
2018-05-01
The transcription factor Skn7 is a highly conserved fungal protein that participates in a variety of processes, including oxidative stress adaptation, fungicide sensitivity, cell wall biosynthesis, cell cycle, and sporulation. In this study, a homologous gene of Saccharomyces cerevisiae Skn7 was cloned from Ganoderma lucidum. RNA interference (RNAi) was used to study the functions of Skn7, and the two knockdown strains Skn7i-5 and Skn7i-7 were obtained in G. lucidum. The knockdown of GlSkn7 resulted in hypersensitivity to oxidative and cell wall stresses. The concentrations of chitin and β-1,3-glucan distinctly decreased in the GlSkn7 knockdown strains compared with those of the wild type (WT). In addition, the expression of cell wall biosynthesis related genes was also significantly down-regulated and the thickness of the cell wall also significantly reduced in the GlSkn7 knockdown strains. The intracellular reactive oxygen species (ROS) content and ganoderic acids biosynthesis increased significantly in the GlSkn7 knockdown strains. Interestingly, the level of intracellular ROS and the content of ganoderic acids decreased after N-acetyl-L-cysteine (NAC), an ROS scavenger, was added, indicating that GlSkn7 might regulate ganoderic acids biosynthesis via the intracellular ROS level. The transcript level of GlSkn7 were up-regulated in osmotic stress, heat stress and fungicide condition. At the same time, the content of ganoderic acids in the GlSkn7 knockdown strains also changed distinctly in these conditions. Overall, GlSkn7 is involved in stress resistance, cell wall integrity and ganoderic acid biosynthesis in G. lucidum. Copyright © 2018 Elsevier Inc. All rights reserved.
Why do we live for much less than 100 years? A fluid mechanics view and approach
NASA Astrophysics Data System (ADS)
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2017-08-01
Blood flow in arteries induces shear stresses on the arterial walls. The present work is motivated by the implications of low shear stress on the human arterial system and its effect on the duration of the life of a subject. The low and/or bidirectional wall shear stress stiffens the arterial wall and in synergy with the fluctuating tissue stress due to the fluctuating blood pressure activates the mechanism of aging. If the shear stress were not low and/or bidirectional and if it did not contribute to local endothelium dysfunctions, the tissue stress alone would take more than 100 yr to cause a failure on the human arterial system. Applying the s-n diagram (tissue stress against the number of cycles to failure) to determine the fatigue life of the aorta, for example, we find that in the absence of other pathogenic factors, for a tissue stress 1.2 times bigger than the tissue stress of a non-stiff aorta, the potential 100 yr of life are reduced to nearly 80 yr. Calculation of the rate of variation of the tissue stress of a subject with time may lead to a possible prognosis about the evolution of wall stiffness and its impact on the arterial aging of this subject. Further patient-specific in vivo mechanistic studies complemented by molecular imaging are needed to contribute to the formation of a data base, from which improved models describing the evolution of the arterial stiffness can be developed. Accordingly, the degree of stiffness of the aorta compared with existing data from a corresponding data base may provide with information about the degree of the fatigue of the aortic wall and its possible future behavior and lead to a patient-adapted medical treatment as a means of a would-be preventive medication.
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-03-01
Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. The aim of this study was to describe blood flow patterns in the ascending aorta of patients with AS and determine their association with remodeling. Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age, 63±13 years) and 37 healthy controls (age, 60±10 years) underwent 4-dimensional-flow magnetic resonance imaging. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index and the ratio of LV mass:end-diastolic volume (relative wall mass). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and patients with AS exhibited an asymmetrical and elevated distribution of peak systolic wall shear stress. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (P=0.0274), eccentricity (P=0.0070), and flow displacement (P=0.0021). Bicuspid aortic valve was associated with more intense helical (P=0.0098) and vortical flow formation (P=0.0536), higher flow displacement (P=0.11), and higher peak systolic wall shear stress (P=0.0926). LV mass index and relative wall mass were significantly associated with aortic orifice area (P=0.0611, P=0.0058) and flow displacement (P=0.0058, P=0.0283). In this pilot study, AS leads to abnormal blood flow pattern and peak systolic wall shear stress in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. © 2016 American Heart Association, Inc.
Size effects on plasticity and fatigue microstructure evolution in FCC single crystals
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar Abbas
In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.
Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-03-01
The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I.
2017-01-01
The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates (β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery (p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice. PMID:28900625
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
A mathematical model of intestinal oedema formation.
Young, Jennifer; Rivière, Béatrice; Cox, Charles S; Uray, Karen
2014-03-01
Intestinal oedema is a medical condition referring to the build-up of excess fluid in the interstitial spaces of the intestinal wall tissue. Intestinal oedema is known to produce a decrease in intestinal transit caused by a decrease in smooth muscle contractility, which can lead to numerous medical problems for the patient. Interstitial volume regulation has thus far been modelled with ordinary differential equations, or with a partial differential equation system where volume changes depend only on the current pressure and not on updated tissue stress. In this work, we present a computational, partial differential equation model of intestinal oedema formation that overcomes the limitations of past work to present a comprehensive model of the phenomenon. This model includes mass and momentum balance equations which give a time evolution of the interstitial pressure, intestinal volume changes and stress. The model also accounts for the spatially varying mechanical properties of the intestinal tissue and the inhomogeneous distribution of fluid-leaking capillaries that create oedema. The intestinal wall is modelled as a multi-layered, deforming, poroelastic medium, and the system of equations is solved using a discontinuous Galerkin method. To validate the model, simulation results are compared with results from four experimental scenarios. A sensitivity analysis is also provided. The model is able to capture the final submucosal interstitial pressure and total fluid volume change for all four experimental cases, and provide further insight into the distribution of these quantities across the intestinal wall.
Han, Kap-Soo; Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I; Jeong, Seul-Ki
2017-01-01
The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels ( p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates ( β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery ( p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice.
The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.
Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye
2017-11-09
Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.
The Cell Wall Integrity Signaling Pathway and Its Involvement in Secondary Metabolite Production.
Valiante, Vito
2017-12-06
The fungal cell wall is the external and first layer that fungi use to interact with the environment. Every stress signal, before being translated into an appropriate stress response, needs to overtake this layer. Many signaling pathways are involved in translating stress signals, but the cell wall integrity (CWI) signaling pathway is the one responsible for the maintenance and biosynthesis of the fungal cell wall. In fungi, the CWI signal is composed of a mitogen-activated protein kinase (MAPK) module. After the start of the phosphorylation cascade, the CWI signal induces the expression of cell-wall-related genes. However, the function of the CWI signal is not merely the activation of cell wall biosynthesis, but also the regulation of expression and production of specific molecules that are used by fungi to better compete in the environment. These molecules are normally defined as secondary metabolites or natural products. This review is focused on secondary metabolites affected by the CWI signal pathway with a special focus on relevant natural products such as melanins, mycotoxins, and antibacterial compounds.
Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Lim, Teik C.
2010-08-01
A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.
NASA Technical Reports Server (NTRS)
Reynolds, R.; White, C.
1986-01-01
A computer model capable of analyzing the flow field in the transition liner of small gas turbine engines is developed. A FORTRAN code has been assembled from existing codes and physical submodels and used to predict the flow in several test geometries which contain characteristics similar to transition liners, and for which experimental data was available. Comparisons between the predictions and measurements indicate that the code produces qualitative results but that the turbulence models, both K-E and algebraic Reynolds Stress, underestimate the cross-stream diffusion. The code has also been used to perform a numerical experiment to examine the effect of a variety of parameters on the mixing process in transition liners. Comparisons illustrate that geometries with significant curvature show a drift of the jet trajectory toward the convex wall and weaker wake region vortices and decreased penetration for jets located on the convex wall of the liner, when compared to jets located on concave walls. Also shown were the approximate equivalency of angled slots and round holes and a technique by which jet mixing correlations developed for rectangular channels can be used for can geometries.
Velocity and pressure fields associated with near-wall turbulence structures
NASA Technical Reports Server (NTRS)
Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John
1990-01-01
Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.
Van der Does, Dieuwertje; Boutrot, Freddy; Vernhettes, Samantha; Tintor, Nico; Veerabagu, Manikandan; Miedes, Eva; Segonzac, Cécile; Hardtke, Christian S.; Molina, Antonio; Höfte, Herman; Hamann, Thorsten
2017-01-01
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues. PMID:28604776
Microstructure based hygromechanical modelling of deformation of fruit tissue
NASA Astrophysics Data System (ADS)
Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.
2017-10-01
Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.
NASA Astrophysics Data System (ADS)
Chepur, Petr; Tarasenko, Alexander; Gruchenkova, Alesya
2017-10-01
The paper has its focus on the problem of estimating the stress-strain state of the vertical steel tanks with the inadmissible geometric imperfections in the wall shape. In the paper, the authors refer to an actual tank to demonstrate that the use of certain design schemes can lead to the raw errors and, accordingly, to the unreliable results. Obviously, these design schemes cannot be based on when choosing the real repair technologies. For that reason, authors performed the calculations of the tank removed out of service for the repair, basing on the developed finite-element model of the VST-5000 tank with a conical roof. The proposed approach was developed for the analysis of the SSS (stress-strain state) of a tank having geometric imperfections of the wall shape. Based on the work results, the following was proposed: to amend the Annex A methodology “Method for calculating the stress-strain state of the tank wall during repair by lifting the tank and replacing the wall metal structures” by inserting the requirement to compulsory consider the actual stiffness of the VST entire structure and its roof when calculating the structure stress-strain state.
Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A.; Mühling, Karl Hermann; Zörb, Christian
2015-01-01
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. PMID:25750129
SGS Closure Methodology for Surface-layer Rough-wall Turbulence.
NASA Astrophysics Data System (ADS)
Brasseur, James G.; Juneja, Anurag
1998-11-01
As reported in another abstract, necessary under-resolution and anisotropy of integral scales near the surface in LES of rough-wall boundary layers cause errors in the statistical structure of the modeled subgrid-scale (SGS) acceleration using eddy viscosity and similarity closures. The essential difficulty is an overly strong coupling between the modeled SGS stress tensor and predicted resolved velocity u^r. Specific to this problem, we propose a class of SGS closures in which subgrid scale velocities u^s1 between an explicit filter scale Δ and the grid scale δ are estimated from the solution to a separate prognostic equation, and the SGS stress tensor is formed using u^s1 as a surrogate for subgrid velocity u^s. The method is currently under development for pseudo-spectral LES where a filter at scales δ < Δ is explicit. The exact evolution equation for u^s1 contains dynamical interactions between u^r and u^s1 which can be calculated directly, and a term which is modeled to capture energy flux from the s1 scales without altering u^s1 structure. Three levels of closure for SGS stress are possible at different levels of accuracy and computational expense. The cheapest model has been tested with DNS and LES of anisotropic buoyancy-driven turbulence. Preliminary results show major improvement in the structure of the predicted SGS acceleration with much of the spurious coupling between u^r and SGS stress removed. Performance, predictions and cost of the three levels of closure are under analysis.
Design Optimization of Hybrid FRP/RC Bridge
NASA Astrophysics Data System (ADS)
Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon
2018-04-01
The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.
Einstein, Daniel R.; Del Pin, Facundo; Jiao, Xiangmin; Kuprat, Andrew P.; Carson, James P.; Kunzelman, Karyn S.; Cochran, Richard P.; Guccione, Julius M.; Ratcliffe, Mark B.
2009-01-01
SUMMARY The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, mitral regurgitation can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid-flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid-structure interaction model of the left heart is not trivial; it requires a careful characterization of the in-vivo cardiac geometry, tissue parameterization though inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, automatic grid-generation algorithms that are capable of accurately discretizing the cardiac geometry, innovations in image analysis, competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this manuscript, we profile our work toward a comprehensive fluid-structure interaction model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, fluid-structure interaction and validation. PMID:20454531
Study of Unsteady Flows with Concave Wall Effect
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2003-01-01
This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.
NASA Astrophysics Data System (ADS)
Marinoni, L. B.
2003-04-01
The Monte Somma-Vesuvius is a famous active stratovolcano located on the Bay of Naples (Italy). Unexpectedly, the intrusive complex of this volcano is poorly known. This work focuses on the moderate-intensity dyke swarm that crops out along the caldera wall cut in the Monte Somma (MS) and its host rock. A detailed field survey of 101 individual intrusions consisted of the recording of about 20 parameters for each intrusion according to a standardised method. The intrusions were located in the framework of a new geological map drawn for the caldera wall at a scale 1:2000. The MS intrusions that crop out from 780 to 1055 m a.s.l., are mostly monogenetic steeply-dipping segmented dykes; inclined sheets are also present, generally dipping towards the outer periphery of the volcano. Apparent crosscut due to dyke segmentation is common; true intersections show ambiguous alternation of dyke strikes. Indicators of initial intrusive flow (opening stage of the dyke-hosting fracture) often differ in direction and sense from late-stage indicators. Frequently, dykes intruded sub-horizontally in an early stage and later sub-vertically. The peak extension for MS, computed according to a standardised method, is 81.7 m in the direction N90°, based on 96 exposed sheets. Very likely, most of MS sheets intruded within ~12 ka, giving a time-averaged minimum extension rate of ~7 mm a-1. On MS, the azimuth pattern and the azimuth of peak extension are different in the two portions in which the caldera wall can be divided, east and west of Canale dell'Arena. This difference may indicate that two fault systems affecting the basement underneath the volcano exert their influence on the feeding system. On the other hand, three main dyke sets (among which the set trending NE-SW is prevalent) exist on MS, and inclined sheets form a significant portion of the intrusions. In addition, the peak extension and the percentage extension are comparable quantitatively in the two different sections of the caldera. Moreover, the cumulative minimum extension (in direction N25°) corresponds to 75% of the maximum extension (in direction N90°). This value is similar to that computed for Etna (78%), where the influence of self-induced stresses on dyke emplacement is well-assessed. This may suggest that self-induced stresses constrained the emplacement of the MS sheet swarm. Therefore, interplay of the regional stress field from the basement, with the self-induced radial stress field may be envisaged for MS. The stratigraphic study along the caldera wall of MS, shows a long history of edifice instability that, together with structural data and with the apparent asymmetry of the volcano, provides clues to the possibility of past flank failures directed towards W-SW.
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
Isotropic thin-walled pressure vessel experiment
NASA Technical Reports Server (NTRS)
Denton, Nancy L.; Hillsman, Vernon S.
1992-01-01
The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
Klyueva, L A
2017-01-01
To reveal regularities of changes in cellular composition of lymphoid nodules in the tracheal wall in male Wistar rats resistant and not resistant to emotional stress in a model of hemorrhagic stroke. Lymphoid formations of the tracheal wall (an area near the bifurcation of the organ) were investigated in 98 male Wistar rats using histological methods. Significant changes in the cellular composition of lymphoid nodules were found. The pattern of changes depends on the stress resistance of rats and the period of the experiment. The active cell destruction in lymphoid nodules was noted both in stress resistant and stress susceptible animals. The changes in the structure of lymphoid nodules found in the experimental hemorrhagic stroke suggest a decrease in the local immune resistance, which is most pronounced in rats not resistant to stress, that may contribute to the development of severe inflammatory complications of stroke such as pneumonia.
Anisotropic swim stress in active matter with nematic order
NASA Astrophysics Data System (ADS)
Yan, Wen; Brady, John F.
2018-05-01
Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.
Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.
Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying
2018-02-05
The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.
Flow effects of blood constitutive equations in 3D models of vascular anomalies
NASA Astrophysics Data System (ADS)
Neofytou, Panagiotis; Tsangaris, Sokrates
2006-06-01
The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.
Martin, David M; Murphy, Eoin A; Boyle, Fergal J
2014-08-01
In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model
NASA Astrophysics Data System (ADS)
Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian
2012-11-01
The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae
2016-11-01
Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.
NASA Astrophysics Data System (ADS)
Khan, Junaid Ahmad; Mustafa, M.
2018-03-01
Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.
Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Touber, Emile; Sandham, Neil D.
2009-12-01
Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Krause, E.
Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036
NASA Technical Reports Server (NTRS)
Blackwell, B. F.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.
Mechanics of airway and alveolar collapse in human breath-hold diving.
Fitz-Clarke, John R
2007-11-15
A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.
New technologies of mining stratal minerals and their computation
NASA Astrophysics Data System (ADS)
Beysembayev, K. M.; Reshetnikova, O. S.; Nokina, Z. N.; Teliman, I. V.; Asmagambet, D. K.
2018-03-01
The paper considers the systems of flat and volumetric modeling of controlling long-wall faces for schemes with rock collapse of the immediate and main roof and smooth lowering of the remaining layers, as well as in forming a vault over the face. Stress distributions are obtained for the reference pressure zone. They are needed for recognizing the active state of the long-wall face in the feedback mode. The project of the system “support - lateral rocks” is represented by a multidimensional network base. Its connections reflect the elements of the system or rocks, workings, supports with nodes and parts. The connections reflect the logic of the operation of machines, assemblies and parts, and the types of their mechanical connections. At the nodes of the base, there are built-in systems of object-oriented programming languages. This allows combining spatial elements of the system into a simple neural network.
In-vivo characterization of 2D residence time maps in the left ventricle
NASA Astrophysics Data System (ADS)
Rossini, Lorenzo; Martinez-Legazpi, Pablo; Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Shadden, Shawn; Del Alamo, Juan Carlos
2014-11-01
Thrombus formation is a multifactorial process involving biology and hemodynamics. Blood stagnation and wall shear stress are linked to thrombus formation. The quantification of residence time of blood in the left ventricle (LV) is relevant for patients affected by ventricular contractility dysfunction. We use a continuum formulation to compute 2D blood residence time (TR) maps in the LV using in-vivo 2D velocity fields in the apical long axis plane obtained from Doppler-echocardiography images of healthy and dilated hearts. The TR maps are generated integrating in time an advection-diffusion equation of a passive scalar with a time-source term. This equation represents the Eulerian translation of DTR / D t = 1 and is solved numerically with a finite volume method on a Cartesian grid using an immersed boundary for the LV wall. Changing the source term and the boundary conditions allows us to track blood transport (direct and retained flow) in the LV and the topology of early (E) and atrial (A) filling waves. This method has been validated against a Lagrangian Coherent Structures analysis, is computationally inexpensive and observer independent, making it a potential diagnostic tool in clinical settings.
Systems analysis of thrombus formation
Diamond, Scott L.
2016-01-01
The systems analysis of thrombosis seeks to quantitatively predict blood function in a given vascular wall and hemodynamic context. Relevant to both venous and arterial thrombosis, a Blood Systems Biology approach should provide metrics for rate and molecular mechanisms of clot growth, thrombotic risk, pharmacological response, and utility of new therapeutic targets. As a rapidly created multicellular aggregate with a polymerized fibrin matrix, blood clots result from hundreds of unique reactions within and around platelets propagating in space and time under hemodynamic conditions. Coronary artery thrombosis is dominated by atherosclerotic plaque rupture, complex pulsatile flows through stenotic regions producing high wall shear stresses, and plaque-derived tissue factor driving thrombin production. In contrast, venous thrombosis is dominated by stasis or depressed flows, endothelial inflammation, white blood cell-derived tissue factor, and ample red blood cell incorporation. By imaging vessels, patient-specific assessment using computational fluid dynamics provides an estimate of local hemodynamics and fractional flow reserve. High dimensional ex vivo phenotyping of platelet and coagulation can now power multiscale computer simulations at the subcellular to cellular to whole vessel scale of heart attacks or strokes. Additionally, an integrated systems biology approach can rank safety and efficacy metrics of various pharmacological interventions or clinical trial designs. PMID:27126646
USDA-ARS?s Scientific Manuscript database
This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...
Heat-stressed structural components in combustion-engine design
NASA Technical Reports Server (NTRS)
Kraemer, Otto
1938-01-01
Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.
The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.
Li, Zhi-Yong; Taviani, Valentina; Gillard, Jonathan H
2008-01-01
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
NASA Astrophysics Data System (ADS)
Shu, Di; Guo, Lei; Yin, Liang; Chen, Zhaoyang; Chen, Juan; Qi, Xin
2015-11-01
The average volume of magnetic Barkhausen jump (AVMBJ) v bar generated by magnetic domain wall irreversible displacement under the effect of the incentive magnetic field H for ferromagnetic materials and the relationship between irreversible magnetic susceptibility χirr and stress σ are adopted in this paper to study the theoretical relationship among AVMBJ v bar(magneto-elasticity noise) and the incentive magnetic field H. Then the numerical relationship among AVMBJ v bar, stress σ and the incentive magnetic field H is deduced. Utilizing this numerical relationship, the displacement process of magnetic domain wall for single crystal is analyzed and the effect of the incentive magnetic field H and the stress σ on the AVMBJ v bar (magneto-elasticity noise) is explained from experimental and theoretical perspectives. The saturation velocity of Barkhausen jump characteristic value curve is different when tensile or compressive stress is applied on ferromagnetic materials, because the resistance of magnetic domain wall displacement is different. The idea of critical magnetic field in the process of magnetic domain wall displacement is introduced in this paper, which solves the supersaturated calibration problem of AVMBJ - σ calibration curve.
Near-wall k-epsilon turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1987-01-01
The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.
Pavlovic, Smiljana; Sobic-Saranovic, Dragana; Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Artiko, Vera; Giga, Vojislav; Petrasinovic, Zorica; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Obradovic, Vladimir
2010-04-01
To compare the diagnostic utility of gated single-photon emission computed tomography (SPECT) methoxy isobutyl isonitrile (MIBI) myocardial perfusion imaging and transthoracic Doppler echocardiography (TTDE) coronary flow reserve (CFR) to coronary angiography for detecting coronary artery disease (CAD) in patients with left bundle branch block (LBBB). Forty-three patients with complete LBBB and an intermediate pretest probability for CAD underwent dipyridamole stress TTDE and gated SPECT MIBI during the same session and coronary angiography within a month. The parameters of myocardial perfusion (summed stress score, summed difference scores) regional wall function (wall motion score, wall thickening score) and ejection fraction were derived using the 17-segment model and 4D-MSPECT software. TTDE variables included peak flow velocity at rest and during hyperemia in left anterior descending artery (LAD), based on which CFR was calculated (normal>2). Perfusion ischemic scores were significantly higher in group 1 with angiographic evidence of greater than 50% LAD stenosis compared with group 2 with less than 50% LAD stenosis (summed stress score 12.4+/-5.5 vs. 8.3+/-3.5, P<0.05, summed difference score 3.7+/-1.2 vs. 1.1+/-0.3, P<0.01, respectively). Left ventricular regional wall function and ejection fraction were not different between the two groups. CFR was significantly lower in group 1 than in group 2 (1.65+/-0.21 vs. 2.31+/-0.28, P<0.001). Gated SPECT MIBI and CFR had similar sensitivity (88 vs. 88%), specificity (80 vs. 84%), and accuracy (84 vs. 86%) for detecting CAD in patients with LBBB. The agreement between the two methods was 85%. Our results show comparable diagnostic utility and high agreement between gated SPECT MIBI perfusion imaging and TTDE CFR assessment for detecting CAD in patients with LBBB. The advantage of gated SPECT MIBI over TTDE CFR measurements is the ability to assess the perfusion abnormalities in multiple vascular territories during the same procedure, which is convenient for detecting multi-vessel disease in patients with LBBB.
Comparative cephalopod shell strength and the role of septum morphology on stress distribution
Zachow, Stefan; Hoffmann, René
2016-01-01
The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio used to characterize septal morphology in the septal strength index and in calculations of tensile strength of nacre are likely insufficient. A better understanding of the material properties of cephalopod nacre may allow the estimation of maximum depth limits of shelled cephalopods through finite element analysis. PMID:27672501
Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M
2018-02-01
In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia disease was examined by the 21-fold increase in the yield stress of the blood fluid. Furthermore, the comparison of results between the elastic and viscoelastic arterial walls shows that the wall radial displacement for viscoelastic artery is lower than that for the elastic artery as much as 21.7% for the severe stenosis of 75%. Copyright © 2017 Elsevier B.V. All rights reserved.
DEM study of granular flow around blocks attached to inclined walls
NASA Astrophysics Data System (ADS)
Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng
2017-06-01
Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.
Chaichana, Thanapong
2017-01-01
Background To investigate the correlation between left coronary bifurcation angle and coronary stenosis as assessed by coronary computed tomography angiography (CCTA)-generated computational fluid dynamics (CFD) analysis when compared to the CCTA analysis of coronary lumen stenosis and plaque lesion length with invasive coronary angiography (ICA) as the reference method. Methods Thirty patients (22 males, mean age: 59±6.9 years) with calcified plaques at the left coronary artery were included in the study with all patients undergoing CCTA and ICA examinations. CFD simulation was performed to analyze hemodynamic changes to the left coronary artery models in terms of wall shear stress, wall pressure and flow velocity, with findings correlated to the coronary stenosis and degree of bifurcation angle. Calcified plaque length was measured in the left coronary artery with diagnostic value compared to that from coronary lumen and bifurcation angle assessments. Results Of 26 significant stenosis at left anterior descending (LAD) and 13 at left circumflex (LCx) on CCTA, only 14 and 5 of them were confirmed to be >50% stenosis at LAD and LCx respectively on ICA, resulting in sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 100%, 52%, 49% and 100%. The mean plaque length was measured 5.3±3.6 and 4.4±1.9 mm at LAD and LCx, respectively, with diagnostic sensitivity, specificity, PPV and NPV being 92.8%, 46.7%, 61.9% and 87.5% for extensively calcified plaques. The mean bifurcation angle was measured 83.9±13.6º and 83.8±13.3º on CCTA and ICA, respectively, with no significant difference (P=0.98). The corresponding sensitivity, specificity, PPV and NPV were 100%, 78.6%, 84.2% and 100% based on bifurcation angle measurement on CCTA, 100%, 73.3%, 78.9% and 100% based on bifurcation angle measurements on ICA, respectively. Wall shear stress was noted to increase in the LAD and LCx models with significant stenosis and wider angulation (>80º), but demonstrated little or no change in most of the coronary models with no significant stenosis and narrower angulation (<80º). Conclusions This study further clarifies the relationship between left coronary bifurcation angle and significant stenosis, with angulation measurement serving as a more accurate approach than coronary lumen assessment or plaque lesion length for determining significant coronary stenosis. Left coronary bifurcation angle is suggested to be incorporated into coronary artery disease (CAD) assessment when diagnosing significant CAD. PMID:29184766
NASA Astrophysics Data System (ADS)
Chitra, M.; Karthikeyan, D.
2018-04-01
A mathematical model of non-Newtonian blood flow through a stenosed artery is considered. The steadynon-Newtonian model is chosen characterized by the generalized power-law model and Herschel-Bulkley model incorporating the effect of slip velocity due to steanosed artery with permeable wall. The effects of slip velocity for non-Newtonian nature of blood on velocity, flow rate and wall shear stress of the stenosed artery with permeable wall are solved analytically. The effects of various parameters such as slip parameter (λ), power index (m) and different thickness of the stenosis (δ) on velocity, volumetric flow rate and wall shear stress are discussed through graphs.
Biasetti, Jacopo; Hussain, Fazle; Gasser, T Christian
2011-10-07
Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear-stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs) in the flow affect platelet dynamics, which motivated the present study of a possible correlation between VS and ILT formation in AAAs. VSs educed by the λ(2)-method using computational fluid dynamics simulations of the backward-facing step problem, normal aorta, fusiform AAA and saccular AAA were investigated. Patient-specific luminal geometries were reconstructed from computed tomography scans, and Newtonian and Carreau-Yasuda models were used to capture salient rheological features of blood flow. Particularly in complex flow domains, results depended on the constitutive model. VSs developed all along the normal aorta, showing that a clear correlation between VSs and high wall shear stress (WSS) existed, and that VSs started to break up during late systole. In contrast, in the fusiform AAA, large VSs developed at sites of tortuous geometry and high WSS, occupying the entire lumen, and lasting over the entire cardiac cycle. Downward motion of VSs in the AAA was in the range of a few centimetres per cardiac cycle, and with a VS burst at that location, the release (from VSs) of shear-stress-activated platelets and their deposition to the wall was within the lower part of the diseased artery, i.e. where the thickest ILT layer is typically observed. In the saccular AAA, only one VS was found near the healthy portion of the aorta, while in the aneurysmatic bulge, no VSs occurred. We present a fluid-dynamics-motivated mechanism for platelet activation, convection and deposition in AAAs that has the potential of improving our current understanding of the pathophysiology of fluid-driven ILT growth.
A review of near-wall Reynolds-stress
NASA Technical Reports Server (NTRS)
So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.
1991-01-01
The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
Analysis of a High-Lift Multi-Element Airfoil using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Whitlock, Mark E.
1995-01-01
A thin-layer Navier-Stokes code, CFL3D, was utilized to compute the flow over a high-lift multi-element airfoil. This study was conducted to improve the prediction of high-lift flowfields using various turbulence models and improved glidding techniques. An overset Chimera grid system is used to model the three element airfoil geometry. The effects of wind tunnel wall modeling, changes to the grid density and distribution, and embedded grids are discussed. Computed pressure and lift coefficients using Spalart-Allmaras, Baldwin-Barth, and Menter's kappa-omega - Shear Stress Transport (SST) turbulence models are compared with experimental data. The ability of CFL3D to predict the effects on lift coefficient due to changes in Reynolds number changes is also discussed.
Social stress in mice induces voiding dysfunction and bladder wall remodeling
Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas
2009-01-01
Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139
How thermal stress alters the confinement of polymers vitrificated in nanopores
NASA Astrophysics Data System (ADS)
Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi
2017-05-01
Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.
Micromechanical model of lung parenchyma hyperelasticity
NASA Astrophysics Data System (ADS)
Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.
2018-03-01
Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic volumetric expansion, but also for three other anisotropic loading conditions for different levels of tissue porosity, while displaying superior computational efficiency and stability in estimating coarse-scale response when compared to direct numerical simulations of RVEs. Further, we find that the most influential microstructural parameters on the response of the micromechanical model are the reference porosity and the alveolar wall elasticity. We also show that the model can reproduce uniaxial experimental tests on lung tissue samples, and estimate the Poisson ratio to be 0.22. We envision that our model will enable predictive and efficient whole-organ simulations useful to study the normal and diseased lung.
Mechanical properties of additively manufactured octagonal honeycombs.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-12-01
Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. Copyright © 2016 Elsevier B.V. All rights reserved.
Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Baker, J. Mark
2003-01-01
The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.
Screening effects in flow through rough channels.
Andrade, J S; Araújo, A D; Filoche, M; Sapoval, B
2007-05-11
A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect ratio are also investigated.
Experimenatal analysis of the effect of cartilaginous rings on human tracheobronchial flow
NASA Astrophysics Data System (ADS)
Montoya Segnini, Jose; Bocanegra Evans, Humberto; Castillo, Luciano
2016-11-01
We present a set of high-resolution PIV experiments carried out in a refractive index-matched model of a trachea with cartilage rings at Re 2800. Results show a higher vorticity along the walls of the trachea in the model with cartilaginous rings as well as small recirculation areas on the upstream side of the wall cavities created by the rings. Furthermore, the ringed model experiences higher shear stress in the trachea due to the sudden change in the wall position created by the rings. Additionally, small recirculation areas are identified in the cavities between rings. For the smooth model, a stronger separation bubble is observed at the bronchi entrance, generating a stronger shear layer and increasing the wall shear stress on the bottom bronchi wall. The differences observed go against the notion that the main airway, i.e. trachea and main bronchi, may be modeled as smooth. Our results suggest that cartilage rings will have an impact on the wall shear stress and may affect particle deposition, which is of importance in inhaled drug delivery and pollutant deposition in the airway. Additionally, the effects introduced by the rings may change the flow characteristics in further generations.
NASA Astrophysics Data System (ADS)
Piechna, A.; Cieślicki, K.; Lombarski, L.; Ciszek, B.
2015-02-01
Arterial walls are a multilayer structures with nonlinear material characteristics. Furthermore, residual stresses exist in unloaded state (zero-pressure condition) and they affect arterial behavior. To investigate these phenomena a number of theoretical and numerical studies were performed, however no experimental validation was proposed and realized yet. We cannot get rid of residual stresses without damaging the arterial segment. In this paper we propose a novel experiment to validate a numerical model of artery with residual stresses. The inspiration for our study originates from experiments made by Dobrin on dogs' arteries (1999). We applied the idea of turning the artery inside out. After such an operation the sequence of layer is reversed and the residual stresses are re-ordered. We performed several pressure-inflation tests on human Common Carotid Arteries (CCA) in normal and inverted configurations. The nonlinear responses of arterial behavior were obtained and compared to the numerical model. Computer simulations were carried out using the commercial software which applied the finite element method (FEM). Then, these results were discussed.
The optimal density of cellular solids in axial tension.
Mihai, L Angela; Alayyash, Khulud; Wyatt, Hayley
2017-05-01
For cellular bodies with uniform cell size, wall thickness, and shape, an important question is whether the same volume of material has the same effect when arranged as many small cells or as fewer large cells. To answer this question, for finite element models of periodic structures of Mooney-type material with different structural geometry and subject to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases when the thickness of the walls increases, as well as when the number of cells increases while the volume of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also as the corresponding mean stress increases, either the mean modulus or the mean stress can be employed as indicator when the optimum wall thickness or number of cells is sought.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
Polar nature of stress-induced twin walls in ferroelastic CaTiO3
NASA Astrophysics Data System (ADS)
Yokota, H.; Niki, S.; Haumont, R.; Hicher, P.; Uesu, Y.
2017-08-01
A compressive uniaxial mechanical stress is applied on ferroelastic CaTiO3 (CTO), and a change in the domain structure is observed under a polarization microscope and a second harmonic generation (SHG) microscope. New twin walls (TWs) appear perpendicular to the original TWs under stress. The SHG microscope observations and analyses confirm that this type of stress-induced TWs is polar, similar to the original TWs, and is crystallographically prominent with monoclinic symmetry m. A quantitative estimation of this stress-induced effect reveals that CTO is hard ferroelastic in the sense that the TW movement requires a large stress. A possible application of this phenomenon is discussed.
Spaceflight Affects Postnatal Development of the Aortic Wall in Rats
Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi
2014-01-01
We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A; Mühling, Karl Hermann; Zörb, Christian
2015-05-01
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
An LBM based model for initial stenosis development in the carotid artery
NASA Astrophysics Data System (ADS)
Stamou, A. C.; Buick, J. M.
2016-05-01
A numerical scheme is proposed to simulate the early stages of stenosis development based on the properties of blood flow in the carotid artery, computed using the lattice Boltzmann method. The model is developed on the premise, supported by evidence from the literature, that the stenosis develops in regions of low velocity and low wall shear stress. The model is based on two spatial parameters which relate to the extent to which the stenosis can grow in each development phase. Simulations of stenosis development are presented for a range of the spacial parameters to determine suitable ranges for their application. Flow fields are also presented which indicate that the stenosis is developing in a realistic manner, providing evidence that stenosis development is indeed influenced by the low shear stress, rather than occurring in such areas coincidentally.
Recent Turbulence Model Advances Applied to Multielement Airfoil Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2000-01-01
A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.
Murai, Daisuke; Yamada, Satoshi; Hayashi, Taichi; Okada, Kazunori; Nishino, Hisao; Nakabachi, Masahiro; Yokoyama, Shinobu; Abe, Ayumu; Ichikawa, Ayako; Ono, Kota; Kaga, Sanae; Iwano, Hiroyuki; Mikami, Taisei; Tsutsui, Hiroyuki
2017-05-01
Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = -0.53, p < 0.01, LSR: r = -0.28, p < 0.05, CS in the inner layer: r = -0.72, p < 0.01, CSR in the inner layer: r = -0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = -0.53 for LS vs. r = -0.28 for LSR, p < 0.05; r = -0.72 for CS vs. r = -0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.
Tan, F P P; Soloperto, G; Bashford, S; Wood, N B; Thom, S; Hughes, A; Xu, X Y
2008-12-01
In this study, newly developed two-equation turbulence models and transitional variants are employed for the prediction of blood flow patterns in a diseased carotid artery where the growth, progression, and structure of the plaque at rupture are closely linked to low and oscillating wall shear stresses. Moreover, the laminar-turbulent transition in the poststenotic zone can alter the separation zone length, wall shear stress, and pressure distribution over the plaque, with potential implications for stresses within the plaque. Following the validation with well established experimental measurements and numerical studies, a magnetic-resonance (MR) image-based model of the carotid bifurcation with 70% stenosis was reconstructed and simulated using realistic patient-specific conditions. Laminar flow, a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport (SST) model and its "scale adaptive simulation" (SAS) variant were implemented in pulsatile simulations from which analyses of velocity profiles, wall shear stress, and turbulence intensity were conducted. In general, the transitional version of SST and its SAS variant are shown to give a better overall agreement than their standard counterparts with experimental data for pulsatile flow in an axisymmetric stenosed tube. For the patient-specific case reported, the wall shear stress analysis showed discernable differences between the laminar flow and SST transitional models but virtually no difference between the SST transitional model and its SAS variant.
Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
NASA Astrophysics Data System (ADS)
Sekine, Hideki; Yoshida, Kimiaki
This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.
D'Ancona, Giuseppe; Amaducci, Andrea; Rinaudo, Antonino; Pasta, Salvatore; Follis, Fabrizio; Pilato, Michele; Baglini, Roberto
2013-01-01
We present preliminary data on the flow-induced haemodynamic and structural loads exerted on a penetrating atherosclerotic aortic ulcer (PAU). Specifically, one-way fluid–structure interaction analysis was performed on the aortic model reconstructed from a 66-year-old male patient with a PAU that evolved into an intramural haematoma and rupture of the thoracic aorta. The results show that elevated blood pressure (117 mmHg) and low flow velocity at the aortic wall (0.15 m/s2) occurred in the region of the PAU. We also found a low value of time-averaged wall shear stress (1.24 N/m2) and a high value of the temporal oscillation in the wall shear stress (oscillatory shear index = 0.13) in the region of the PAU. After endovascular treatment, these haemodynamic parameters were distributed uniformly on the luminal surface of the stent graft. These findings suggest that wall shear stress could be considered one of the major haemodynamic factors indicating the structural fragility of the PAU wall, which ultimately lead to PAU growth and rupture. PMID:23736658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P
2016-01-01
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; ...
2016-06-24
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Zhou, Yipin; Cabrales, Pedro; Palmer, Andre F
2012-03-01
A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine. Copyright © 2011 Elsevier B.V. All rights reserved.