The Air Force concentrating photovoltaic array program
NASA Technical Reports Server (NTRS)
Geis, Jack W.
1987-01-01
A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.
Concentrating Solar Power Program Review 2013 (Book) (Revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-06-01
This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.
Technology development program for an advanced microsheet glass concentrator
NASA Technical Reports Server (NTRS)
Richter, Scott W.; Lacy, Dovie E.
1990-01-01
Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.
Energy 101: Concentrating Solar Power
None
2018-02-07
From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.
Numerical Optimization Using Desktop Computers
1980-09-11
concentrating compound parabolic trough solar collector . Thermophysical, geophysical, optical and economic analyses were used to compute a life-cycle...third computer program, NISCO, was developed to model a nonimaging concentrating compound parabolic trough solar collector using thermophysical...concentrating compound parabolic trough Solar Collector . C. OBJECTIVE The objective of this thesis was to develop a system of interactive programs for the Hewlett
Solar Concentrator Advanced Development Program, Task 1
NASA Technical Reports Server (NTRS)
1986-01-01
Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.
SIMPLIFIED CALCULATION OF SOLAR FLUX ON THE SIDE WALL OF CYLINDRICAL CAVITY SOLAR RECEIVERS
NASA Technical Reports Server (NTRS)
Bhandari, P.
1994-01-01
The Simplified Calculation of Solar Flux Distribution on the Side Wall of Cylindrical Cavity Solar Receivers program employs a simple solar flux calculation algorithm for a cylindrical cavity type solar receiver. Applications of this program include the study of solar energy, heat transfer, and space power-solar dynamics engineering. The aperture plate of the receiver is assumed to be located in the focal plane of a paraboloidal concentrator, and the geometry is assumed to be axisymmetric. The concentrator slope error is assumed to be the only surface error; it is assumed that there are no pointing or misalignment errors. Using cone optics, the contour error method is utilized to handle the slope error of the concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be easily extended to other axi-symmetric receiver geometries. The program was written in Fortran 77, compiled using a Ryan McFarland compiler, and run on an IBM PC-AT with a math coprocessor. It requires 60K of memory and has been implemented under MS-DOS 3.2.1. The program was developed in 1988.
Solar energy concentrator system for crystal growth and zone refining in space
NASA Technical Reports Server (NTRS)
Mcdermit, J. H.
1975-01-01
The technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies of space-deployed solar concentrators were reviewed for their applicability to materials processing and a new state-of-the-art concentrator-receiver radiation analysis was developed. The radiation analysis is in the form of a general purpose computer program. It was concluded from this effort that the technology for fabricating, orbiting and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conductive to the processes of interest. The analysis indicate that solar concentrators can satisfactorily provide both of these factors.
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
A program for advancing the technology of space concentrators
NASA Technical Reports Server (NTRS)
Naujokas, Gerald J.; Savino, Joseph M.
1989-01-01
In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.
Lightweight solar concentrator structures, phase 2
NASA Technical Reports Server (NTRS)
Williams, Brian E.; Kaplan, Richard B.
1993-01-01
This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.
Solar thermal power storage applications lead laboratory overview
NASA Technical Reports Server (NTRS)
Radosevich, L. G.
1980-01-01
The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.
Concentrating solar collector subsystem: Preliminary design package
NASA Technical Reports Server (NTRS)
1977-01-01
Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.
Alternate space station freedom configuration considerations to accommodate solar dynamic power
NASA Technical Reports Server (NTRS)
Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.
1989-01-01
The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.
Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.
1997-01-01
A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.
Integrated Solar Upper Stage Technical Support
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
NASA Lewis Research Center is participating in the Integrated Solar Upper Stage (ISUS) program. This program is a ground-based demonstration of an upper stage concept that will be used to generate both solar propulsion and solar power. Solar energy collected by a primary concentrator is directed into the aperture of a secondary concentrator and further concentrated into the aperture of a heat receiver. The energy stored in the receiver-absorber-converter is used to heat hydrogen gas to provide propulsion during the orbital transfer portion of the mission. During the balance of the mission, electric power is generated by thermionic diodes. Several materials issues were addressed as part of the technical support portion of the ISUS program, including: 1) Evaluation of primary concentrator coupons; 2) Evaluation of secondary concentrator coupons; 3) Evaluation of receiver-absorber-converter coupons; 4) Evaluation of in-test witness coupons. Two different types of primary concentrator coupons were evaluated from two different contractors-replicated coupons made from graphite-epoxy composite and coupons made from microsheet glass. Specular reflectivity measurements identified the replicated graphite-epoxy composite coupons as the primary concentrator material of choice. Several different secondary concentrator materials were evaluated, including a variety of silver and rhodium reflectors. The specular reflectivity of these materials was evaluated under vacuum at temperatures up to 800 C. The optical properties of several coupons of rhenium on graphite were evaluated to predict the thermal performance of the receiver-absorber-converter. Finally, during the ground test demonstration, witness coupons placed in strategic locations throughout the thermal vacuum facility were evaluated for contaminants. All testing for the ISUS program was completed successfully in 1997. Investigations related to materials issues have proven helpful in understanding the operation of the test article, leading to a potential ISUS flight test in 2002.
Data and Tools | Concentrating Solar Power | NREL
download. Solar Power tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) The SolarPILOT is code rapid layout and optimization capability of the analytical DELSOL3 program with the accuracy and
Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program
NASA Technical Reports Server (NTRS)
Lucas, J. W. (Editor)
1984-01-01
The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.
2017-12-04
34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Solar thermal program summary. Volume 1: Overview, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.
Design of Light Trapping Solar Cell System by Using Zemax Program
NASA Astrophysics Data System (ADS)
Hasan, A. B.; Husain, S. A.
2018-05-01
Square micro lenses array have been designed (by using Zemax optical design program) to concentrate solar radiation into variable slits that reaching light to solar cell. This technique to increase the efficiency of solar system by trapping light due to internal reflection of light by mirrors that placed between upper and lower side of solar cell, therefore increasing optical path through the solar cell, and then increasing chance of photon absorption. The results show priority of solar system that have slit of (0.2 mm), and acceptance angle of (20°) that give acceptable efficiency of solar system.
Solar thermal technology report, FY 1981. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.
High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.
1997-01-01
As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.
Step tracking program for concentrator solar collectors
NASA Astrophysics Data System (ADS)
Ciobanu, D.; Jaliu, C.
2016-08-01
The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
Solar Pumped Lasers and Their Applications
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1991-01-01
Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.
A theoretical study of heterojunction and graded band gap type solar cells
NASA Technical Reports Server (NTRS)
Chiang, J. P. C.; Hauser, J. R.
1979-01-01
The work performed concentrated on including multisun effects, high temperature effects, and electron irradiation effects into the computer analysis program for heterojunction and graded bandgap solar cells. These objectives were accomplished and the program is now available for such calculations.
Solar Energy Information and Education Project. Final Report.
ERIC Educational Resources Information Center
Hensley, Michael
The New Mexico Solar Energy Institute (NMSEI) conducted a concentrated information and education program during 1985. This report summarizes NMSEI's Information and Education project activities. It provides detailed descriptions of project costs and concise recommendations for similar programs. Individual sections contain explanations of the scope…
Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li
2011-06-01
Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.
Low-cost point-focus solar concentrator, phase 1
NASA Technical Reports Server (NTRS)
Nelson, E. V.; Derbidge, T. C.; Erskine, D.; Maraschin, R. A.; Niemeyer, W. A.; Matsushita, M. J.; Overly, P. T.
1979-01-01
The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way.
NASA Astrophysics Data System (ADS)
Haney, Michael W.
2015-12-01
The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.
ERIC Educational Resources Information Center
Pollack, George; Pollack, Mary
1982-01-01
Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…
Refractive Secondary Concentrators for Solar Thermal Applications
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Macosko, Robert P.
1999-01-01
The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; Macosko, Robert P.
2000-01-01
A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, P F
1979-03-30
This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.
Progress in passive solar energy systems. Volume 8. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, J.; Andrejko, D.A.
1983-01-01
This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaicmore » system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.« less
Mehos Photo of Mark Mehos Mark Mehos Group Manager, Thermal Systems R&D Mark.Mehos@nrel.gov Thermal Systems R&D group at NREL, which includes the Concentrating Solar Power (CSP) Program. Since SolarPACES "Solar Thermal Electric Power Systems" task, which focuses on the development of
NASA Technical Reports Server (NTRS)
1979-01-01
The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
28 percent efficient GaAs concentrator solar cells
NASA Technical Reports Server (NTRS)
Macmillan, H. F.; Hamaker, H. C.; Kaminar, N. R.; Kuryla, M. S.; Ladle Ristow, M.
1988-01-01
AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27 percent at high solar concentrations (over 400 suns, AM1.5D, 100 mW/sq cm) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1 percent around 400 suns, and the best p/n cell achieved an efficiency of 27.5 percent around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
FOCUSing on Innovative Solar Technologies
Rohlfing, Eric; Holman, Zak, Angel, Roger
2018-06-22
Many of ARPA-Eâs technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-Eâs Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.
Concentrated solar power in the built environment
NASA Astrophysics Data System (ADS)
Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.
2017-06-01
Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.
Photovoltaic applications of Compound Parabolic Concentrator (CPC)
NASA Technical Reports Server (NTRS)
Winston, R.
1975-01-01
The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.
Solar dynamic power system development for Space Station Freedom
NASA Technical Reports Server (NTRS)
1993-01-01
The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1982-01-01
The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.
NASA Programs in Space Photovoltaics
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1992-01-01
Highlighted here are some of the current programs in advanced space solar cell and array development conducted by NASA in support of its future mission requirements. Recent developments are presented for a variety of solar cell types, including both single crystal and thin film cells. A brief description of an advanced concentrator array capable of AM0 efficiencies approaching 25 percent is also provided.
Satellite Power Study (SPS) concept definition study (Exhibit D). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Efforts concentrated on updating of the Rockwell reference concept, definition of new system options, studies of special emphasis topics, further definition of the transportation system, and further program definition. The Rockwell reference satellite concept has a gallium arsenide (GaAs) solar cell array having flat concentrators with an effective concentration ratio of 1.83at end of life. Alternatives to this concept includes solid state power amplifiers or magnetrons for dc/RF conversion and multibandgap solar cells for solar to dc energy conversion. Two solid state concepts were studied. It was determined that the magnetron approach was the lowest mass and cost system.
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1980-01-01
As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.
Analysis of the effects of impurities in silicon
NASA Technical Reports Server (NTRS)
Wohlgemuth, J.; Giuliano, M. N.
1980-01-01
A solar cell fabrication and analysis program was conducted to determine the effects on the resultant solar cell efficiency of impurities intentionally incorporated into silicon. It was found that certain impurities such as titanium, tantalum, and vanadium were bad, even in very small concentrations. Cell performance appeared relatively tolerable to impurities such as copper, carbon, calcium, chromium, iron and nickel (in the concentration levels which were considered).
Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review
NASA Technical Reports Server (NTRS)
1983-01-01
The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.
A theoretical study of heterojunction and graded band gap type solar cells
NASA Technical Reports Server (NTRS)
Sutherland, J. E.; Hauser, J. R.
1977-01-01
A computer program was designed for the analysis of variable composition solar cells and applied to several proposed solar cell structures using appropriate semiconductor materials. The program simulates solar cells made of a ternary alloy of two binary semiconductors with an arbitrary composition profile, and an abrupt or Gaussian doping profile of polarity n-on-p or p-on-n with arbitrary doping levels. Once the device structure is specified, the program numerically solves a complete set of differential equations and calculates electrostatic potential, quasi-Fermi levels, carrier concentrations and current densities, total current density and efficiency as functions of terminal voltage and position within the cell. These results are then recorded by computer in tabulated or plotted form for interpretation by the user.
Solar synthesis of advanced materials: A solar industrial program initiative
NASA Astrophysics Data System (ADS)
Lewandowski, A.
1992-06-01
This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
Potential high efficiency solar cells: Applications from space photovoltaic research
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.
Solar tests of aperture plate materials for solar thermal dish collectors
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1983-01-01
In parabolic dish solar collectors, walk-off of the spot of concentrated sunlight is a hazard if a malfunction causes the concentrator to stop following the Sun. Therefore, a test program was carried out to evaluate the behavior of various ceramics, metals, and polymers under solar irradiation of about 7000 kW/sq m. (peak) for 15 minutes. The only materials that did not slump or shatter were two grades of medium-grain extruded graphite. High purity, slip-cast silica might be satisfactory at somewhat lower flux. Oxidation of the graphite appeared acceptable during tests simulating walk-off, acquisition (2000 cycles on/off Sun), and spillage (continuous on-Sun operation).
NASA Technical Reports Server (NTRS)
Bhandari, P.; Wu, Y. C.; Roschke, E. J.
1989-01-01
A simple solar flux calculation algorithm for a cylindrical cavity type solar receiver has been developed and implemented on an IBM PC-AT. Using cone optics, the contour error method is utilized to handle the slope error of a paraboloidal concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be esily extended to other axisymmetric receiver geometries.
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1978-01-01
A variety of techniques may be used for photovoltaic energy systems. Concentrated or not concentrated sunlight may be employed, and a number of materials can be used, including silicon, gallium arsenide, cadmium sulfide, and cadmium telluride. Most of the experience, however, has been obtained with silicon cells employed without sunlight concentration. An industrial base exists at present for producing solar cells at a price in the range from $15 to $30 per peak watt. A major federal program has the objective to reduce the price of power provided by silicon solar systems to approximately $1 per peak watt in the early 1980's and $0.50 per watt by 1986. The approaches considered for achieving this objective are discussed.
Technology development of fabrication techniques for advanced solar dynamic concentrators
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1991-01-01
The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.
NASA Astrophysics Data System (ADS)
Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.
2013-09-01
Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.
Parabolic dish test site: History and operating experience
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Compiler)
1985-01-01
The parabolic dish test site (PDTS) was established for testing point-focusing solar concentrator systems operating at temperatures approaching 1650 C. Among tests run were evaluation and performance characterization of parabolic dish concentrators, receivers, power conversion units, and solar/fossil-fuel hybrid systems. The PDTS was fully operational until its closure in June, 1984. The evolution of the test program, a chronological listing of the experiments run, and data summaries for most of the tests conducted are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurup, Parthiv; Turchi, Craig
2015-11-01
After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies ofmore » interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.« less
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
Federal solar policies yield neither heat nor light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, M.
1978-02-06
Thirty years of Federal energy policies and bureaucracy are criticized for their limited success in promoting nuclear energy and their present involvement in solar technology. Mr. Silverstein feels that poor judgment was shown in pursuit of large-scale solar demonstrations between 1973 and 1976 when Federal agencies ignored existing solar companies and awarded contracts to the large corporations. A fetish for crash research programs, he also feels, led to the creation of the Solar Energy Research Institute (SERI), which concentrates on wasteful high-technology projects rather than building on what has already been developed in the field. He cites ''even more destructive''more » policies adopted by the Housing and Urban Development Agency (HUD), which attacked many solar suppliers without sufficient evidence and then developed a solar-water-heater grant program that effectively distorted the market. The author feels that the solar technology market is sufficiently viable and that government participation is more appropriate in the form of tax credits and guaranteed loans.« less
Space Qualification Test of a-Silicon Solar Cell Modules
NASA Technical Reports Server (NTRS)
Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.
1997-01-01
The basic requirement of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore this qualification test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Rhodes, Marvin D.
1994-01-01
Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
Garrett solar Brayton engine/generator status
NASA Astrophysics Data System (ADS)
Anson, B.
1982-07-01
The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.
for the Concentrating Solar Power Program's Market Transformation activities, which includes , and grid integration and transmission. Education Ph.D. Chemical Engineering, North Carolina State
Proceedings of the annual solar thermal technology research and development conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, W.A.
1989-02-01
The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, Marh 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Researchmore » and Development and Applications, and Concentrators.« less
Solar Thermal Concept Evaluation
NASA Technical Reports Server (NTRS)
Hawk, Clark W.; Bonometti, Joseph A.
1995-01-01
Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations, recommendations and pit falls regarding the structure, materials and facility design are presented.
Recent progress in terrestrial photovoltaic collector technology
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1982-01-01
The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.
METCOR4: A program to simulate METSAT data
NASA Technical Reports Server (NTRS)
Johnson, W. R.
1983-01-01
The METCOR4 program extracts radiation data from computer tapes and computes radiance as would be recorded by the NOAA6 and NOAA7 meteorological satellites (METSAT). Three different atmospheres, each with different aerosol concentration, are considered with the viewing geometry of the satellites and the expected solar geomtry. The FORTRAN program is provided.
Solar Thermal Power Systems parabolic dish project
NASA Technical Reports Server (NTRS)
Truscello, V. C.
1981-01-01
The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.
Parabolic Dish Concentrator (PDC-1)
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Argoud, M. J.
1984-01-01
The design, construction, and installation of the Parabolic Dish Concentrator, Type 1 (PDC-1) has been one of the most significant JPL concentrator projects because of the knowledge gained about this type of concentrator and the development of design, testing, and analysis procedures which are applicable to all solar concentrator projects. The need for these procedures was more clearly understood during the testing period which started with the prototype panel evaluation and ended with the performance characterization of the completed concentrator. For each phase of the test program, practical test procedures were required and these procedures defined the mathematical analysis which was essential for successful concentrator development. The concentrator performance appears to be limited only by the distortions resulting from thermal gradients through the reflecting panels. Simple optical testing can be extremely effective, but comprehensive mechanical and optical analysis is essential for cost effective solar concentrator development.
Solar Concentrator Advanced Development Program
NASA Technical Reports Server (NTRS)
Knasel, Don; Ehresman, Derik
1989-01-01
The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.
NASA Technical Reports Server (NTRS)
Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.
1996-01-01
This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.
Direct normal irradiance related definitions and applications: The circumsolar issue
Blanc, P.; Espinar, B.; Geuder, N.; ...
2014-10-21
The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “ Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. Thus, thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5° half-angle of today’s pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR).« less
Recent results from advanced research on space solar cells at NASA
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Multijunction cells for concentrators: Technology prospects
NASA Technical Reports Server (NTRS)
Ferber, R. R. (Compiler); Costogue, E. N. (Compiler); Shimada, K. (Compiler)
1984-01-01
Development of high-efficiency multijunction solar cells for concentrator applications is a key step in achieving the goals of the U.S. Department of Energy National Photovoltaics Program. This report summarizes findings of an issue study conducted by the Jet Propulsion Laboratory Photovoltaic Analysis and Integration Center, with the assistance of the Solar Energy Research Institute and Sandia National laboratoies, which surveyed multijunction cell research for concentrators undertaken by federal agencies and by private industry. The team evaluated the potentials of research activities sponsored by DOE and by corporate funding to achieve projected high-efficiency goals and developed summary statements regarding industry expectations. Recommendations are made for the direction of future work to address specific unresolved aspects of multijunction cell technology.
Optimized dispatch in a first-principles concentrating solar power production model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less
Molten nitrate salt technology development
NASA Astrophysics Data System (ADS)
Carling, R. W.
1981-04-01
This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.
Electron and proton damage on InGaAs solar cells having an InP window layer
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.
1995-01-01
As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
A test bed for experimental evaluation of a fixed solar collector which combines an evacuated glass tube solar receiver with a flat plate/black chrome plated copper absorber and an asymmetric vee-trough concentrator was designed and constructed. Earlier predictions of thermal performance were compared with test data acquired for a bare vacuum tube receiver; and receiver tubes with Alzak aluminum, aluminized FEP Teflon film laminated sheet metal and second surface ordinary mirror reflectors. Test results and system economics as well as objectives of an ongoing program to obtain long-term performance data are discussed.
A simulation exercise of a cavity-type solar receiver using the HEAP program
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program has been developed at JPL to support the advanced studies of solar receivers in high concentration solar-thermal-electric power plants. This work presents briefly the program methodology, input data required, expected output results, capabilities and limitations. The program was used to simulate an existing 5 kwt experimental receiver of a cavity type. The receiver is located at the focus of a paraboloid dish and is connected to a Stirling engine. Both steady state and transient performance simulation were given. Details about the receiver modeling were also presented to illustrate the procedure followed. Simulated temperature patterns were found in good agreement with test data obtained by high temperature thermocouples. The simulated receiver performance was extrapolated to various operating conditions not attained experimentally. The results of the parameterization study were fitted to a general performance expression to determine the receiver characteristic constraints. The latter were used to optimize the receiver operating conditions to obtain the highest overall conversion efficiency.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackmon, James B
2008-03-31
This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work wasmore » halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct marketing research, identify opportunities for use of this technology, and to the extent possible, secure an agreement leading to a pre-commercialization demonstration or prototype plant. This was accomplished with the agreement to conduct the Noor al Salaam program as a tri-lateral project between Egypt, Israel, and the U.S. The tri-lateral project was led by the University of Alabama in Huntsville (UAH); this included the Egyptian New and Renewable Energy Authority and the Israeli USISTC participants. This project, known was Noor al Salaam, was funded by the U.S. Agency for International Development (USAID) through the Department of Energy (DOE). The Egyptian activity was under the auspices of the Egyptian Ministry of Energy and Electricity, New and Renewable Energy Authority (NREA) as part of Egypt's plans for renewable energy development. The objective of the Noor al Salaam project was to develop the conditions necessary to obtain funding and construct and operate an approximately 10 to 20 Megawatt hybrid solar/natural gas demonstration power plant in Zaafarana, Egypt that could serve both as a test bed for advanced solar technology evaluations, and as a forerunner to commercial plant designs. This plant, termed Noor Al Salaam, or “Light of Peace”, reached the initial phase of system definition before being curtailed, in part by changes in USAID objectives, coupled with various delays that were beyond the scope of the program to resolve. The background of the USISTF technology development and pre-commercialization effort is provided in this report, together with documentation of the technology developments conducted under the Noor al Salaam program. It should be noted that only a relatively small part of the Noor al Salaam funding was expended over the approximately five years for which UAH was prime contractor before the program was ordered closed (Reference 1) so that the remaining funds could be returned to USAID.« less
Line-focus concentrating collector program
NASA Technical Reports Server (NTRS)
Dugan, V. L.
1980-01-01
The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.
Photovoltaics and solar thermal conversion to electricity - Status and prospects
NASA Technical Reports Server (NTRS)
Alper, M. E.
1979-01-01
Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.
NASA Technical Reports Server (NTRS)
Minnucci, J. A.; Matthei, K. W.
1980-01-01
The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.
NASA Technical Reports Server (NTRS)
Wachholz, James J.; Murphy, David M.
1996-01-01
The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachholz, J.J.; Murphy, D.M.
1996-05-01
The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less
Experimenting with concentrated sunlight using the DLR solar furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumann, A.; Groer, U.
1996-10-01
The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the opticalmore » axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.« less
RHETT and SCARLET: Synergistic power and propulsion technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Curran, F.M.; Sankovic, J.
1995-12-31
The Ballistic Missile Defense Organization (BMDO) sponsors an aggressive program to qualify high performance space power and electric propulsion technologies for space flight. Specifically, the BMDO space propulsion program is now integrating an advanced Hall thruster system including all components necessary for use in an operational spacecraft. This Russian Hall Effect Thruster Technology (RHETT) integrated pallet will be qualified for space flight later this year. This will be followed by a space flight demonstration and verification in 1996. The BMDO power program includes a parallel program to qualify and space flight demonstrate the Solar Concentrator Arrays with Refractive Linear Elementmore » Technology (SCARLET). The first flight SCARLET system is being fabricated for Use on the EER/CTA Comet spacecraft in late July. The space flight demonstration is the first full size, deployed concentrator solar array. The propulsion work is conducted by an industry team led by Space Power, Inc. and Olin Aerospace with their partners in Russia, NIITP and TsNIIMash. The power program is conducted by an industry team led by AEC-Able. This paper is to familiarize the space power community with the synergies between spacecraft power and electric propulsion.« less
Algorithm applying a modified BRDF function in Λ-ridge concentrator of solar radiation
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2015-05-01
This paper presents an algorithm that uses the modified BRDF function. It allows the calculation of the parameters of Λ-ridge concentrator system. The concentrator directs reflected solar radiation on photovoltaic surface, increasing its efficiency. The efficiency of the concentrator depends on the surface characteristics of the material which it is made of, the angle of the photovoltaic panel and the resolution of the tracking system. It shows a method of modeling the surface by using the BRDF function and describes its basic parameters, e.g. roughness and the components of the reflected stream. A cost calculation of chosen models with presented in this article BRDF function modification has been made. The author's own simulation program allows to choose the appropriate material for construction of a Λ-ridge concentrator, generate micro surface of the material, and simulate the shape and components of the reflected stream.
An overview of current activities at the National Solar Thermal Test Facility
NASA Astrophysics Data System (ADS)
Cameron, C. P.; Klimas, P. C.
This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and testing of volumetric and PV central receiver concepts.
Indium phosphide solar cell research in the US: Comparison with nonphotovoltaic sources
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.
1989-01-01
Highlights of the InP solar cell research program are presented. Homojunction cells with AMO efficiences approaching 19 percent were demonstrated while 17 percent was achieved for indium tin oxide (ITO)/InP cells. The superior radiation resistance of these latter two cell configurations over both Si and GaAs were demonstrated. InP cells on board the LIPS III satellite show no degradation after more than a year in orbit. Computer modeling calculations were directed toward radiation damage predictions and the specification of concentrator cell parameters. Computed array specific powers, for a specific orbit, are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.
Products available from NREL`s Renewable Resource Data Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, T.Q.; Rymes, M.
1995-10-01
The Renewable Resource Data Center (RReDC) has been developed at the National Renewable Energy Laboratory (NREL) under the Resource Assessment Program. Initial offerings are broadband solar irradiance data bases such as the Daily Statistics Files and Typical Meteorological Years from the 1961--1990 National Solar Radiation Data Base, the West Associates data gathered in the Southwest US from 1976 through 1980, the New NOAA Network that replaced SOLMET from 1977 through 1980, and the one-minute data from four universities under the SEMRTS program. Unique data sets are the thousands of measured solar spectra and measurements of the solar intensity in themore » circumsolar region. All these data are provided with their accompanying documentation and online help. Other products such as Shining On and Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors are available in their entirety, as well as glossaries, bibliographies, maps, and other user helps. The Uniform Resource Locator (URL) address of the RReDC is ``http://rredc.nrel.gov.`` Users should have World Wide Web (WWW) browsing software (such as Mosaic), which supports Forms and the necessary browsing viewers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
NASA Astrophysics Data System (ADS)
Dehne, Hans J.
1991-05-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
NASA Technical Reports Server (NTRS)
Dehne, Hans J.
1991-01-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
NASA Technical Reports Server (NTRS)
Crabtree, W. L.
1980-01-01
A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.
Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination
NASA Technical Reports Server (NTRS)
Gray, J. L.; Schwartz, R. J.
1984-01-01
A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.
Space power technology 21: Photovoltaics
NASA Astrophysics Data System (ADS)
Wise, Joseph
1989-04-01
The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.
The 1974 NASA-ASEE summer faculty fellowship aeronautics and space research program
NASA Technical Reports Server (NTRS)
Obrien, J. F., Jr.; Jones, C. O.; Barfield, B. F.
1974-01-01
Research activities by participants in the fellowship program are documented, and include such topics as: (1) multispectral imagery for detecting southern pine beetle infestations; (2) trajectory optimization techniques for low thrust vehicles; (3) concentration characteristics of a fresnel solar strip reflection concentrator; (4) calaboration and reduction of video camera data; (5) fracture mechanics of Cer-Vit glass-ceramic; (6) space shuttle external propellant tank prelaunch heat transfer; (7) holographic interferometric fringes; and (8) atmospheric wind and stress profiles in a two-dimensional internal boundary layer.
Design of the Heat Receiver for the U.S./Russia Solar Dynamic Power Joint Flight Demonstration
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Krystkowiak, Christopher; Klucher, Beth A.
1996-01-01
A joint U.S./Russia program is being conducted to develop, fabricate, launch, and operate a solar dynamic demonstration system on Space Station Mir. The goal of the program is to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station Alpha The major components of the system include a heat receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a concentrator, a radiator, a thermal control system, and a Space Shuttle Carrier. This paper discusses the design of the heat receiver component. The receiver comprises a cylindrical cavity, the walls of which are lined with a series of tubes running the length of the cavity. The engine working fluid, a mixture of xenon and helium, is heated by the concentrated sunlight incident on these tubes. The receiver incorporates integral thermal storage, using a eutectic mixture of lithium fluoride and calcium difluoride as the thermal storage solid-to-liquid phase change materiaL This thermal storage is required to enable power production during eclipse. The phase change material is contained in a series of individual containment canisters.
Solar thermal storage applications program
NASA Astrophysics Data System (ADS)
Peila, W. C.
1982-12-01
The efforts of the Storage Applications Program are reviewed. The program concentrated on the investigation of storage media and evaluation of storage methods. Extensive effort was given to experimental and analytical investigations of nitrate salts. Two tasks are the preliminary design of a 1200 MW/sub th/ system and the design, construction, operation, and evaluation of a subsystem research experiment, which utilized the same design. Some preliminary conclusions drawn from the subsystem research experiment are given.
Space Qualification Test of a-Silicon Solar Cell Modules
NASA Technical Reports Server (NTRS)
Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.
2004-01-01
The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.
GaAs and 3-5 compound solar cells status and prospects for use in space
NASA Technical Reports Server (NTRS)
Flood, D. J.; Brinker, D. J.
1984-01-01
Gallium arsenide solar cells equal or supass the best silicon solar cells in efficiency, radiation resistance, annealability, and in the capability to produce usable power output at elevated temperatures. NASA has been involved in a long range research and development program to capitalize on these manifold advantages, and to explore alternative III-V compounds for additional potential improvements. The current status and future prospects for research and development in this area are reviewed and the progress being made toward development of GaAs cells suitable for variety of space missions is discussed. Cell types under various stages of development include n(+)/p shallow homojunction thin film GaAs cells, x100 concentration ratio p/n and n/p GaAs small area concentrator cells, mechanically-stacked, two-junction tandem cells, and three-junction monolithic cascade cells, among various other cell types.
Solar dynamic power module design
NASA Technical Reports Server (NTRS)
Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.
1989-01-01
Studies have shown that use of solar dynamic (SD) power for the growth eras of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A power conversion unit (PCU) based on the closed Brayton thermodynamic cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on orbit.
NASA Technical Reports Server (NTRS)
Kiceniuk, T.
1985-01-01
An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.
Assembly and testing of a 1.8 by 3.7 meter Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Robertson, J. E.
1977-01-01
A project was initiated to establish a technical data base on line focusing acrylic Fresnel lenses for use in a solar collector system that could generate temperatures in the range of 200 C to 370 C. The effort was originally directed toward electric power generation in the 100 to 10,000 kWe range using a distributed collector approach. However, as the program progressed, it centered on the development of a concentrator/collector subsystem concept that could meet the general requirement of thermal delivery within the 200 C to 370 C range. The expanded list of possible applications includes commercial heating/cooling and industrial process heat as well as electric power generation.
Solar energy development and application in Japan - An outsiders assessment
NASA Astrophysics Data System (ADS)
Knopp, E.
1982-04-01
The Sunshine Project was initiated in Japan in 1974 in order to develop energy resources to meet future needs. The solar program consists of three categories; solar home construction, the construction and operation of a 1000 kWe capacity solar thermal power generation plant, and the development of a photovoltaic system with a cost per watt reduced to 1/100 of the present cost. Low interest loans to promote the use of solar systems have resulted in the installation of one million solar collectors. Solar water heaters produced have a 2 sq m collection area and a 200 liters water storage capacity, and an evacuated tube collector with an efficiency of 64% has been developed. Work is being devoted to the production of a 50 times concentrating tracking circular Fresnel-type photovoltaic device, and a solar driven cooling system with a 5.35 kW capacity, which operates with a highly efficient freon vapor expander, has been developed. The problem of collected heat storage is being tested and assessed.
Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith
NASA Astrophysics Data System (ADS)
Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.
2009-03-01
A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.
III-V-N materials for super high-efficiency multijunction solar cells
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio
2012-10-01
We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.
The SCARLET development program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1995-12-31
The paper describes the SCARLET program that has developed an exciting new type of spacecraft solar array. The program includes design, fabrication, testing, and integration to the Comet satellite and has been accomplished in a half year time period. Background of the program, an overview of satellite integration benefits and concerns for concentrator arrays, and a summary of the program development process and rationale arc included. The history making first SCARLET array will be flown on the Comet spacecraft which will be launched on a Conestoga launch vehicle from Wallops Island in July 1995.
Summaries of FY 1994 geosciences research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Holbeck, H. J.
1981-01-01
The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.
Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar
Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location
NASA Technical Reports Server (NTRS)
Prospero, J. M.; Savoie, D.; Snowdon, T.; Ewbank, P.
1983-01-01
A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water.
Concentrating Solar Power Projects - Jemalong Solar Thermal Station |
Concentrating Solar Power | NREL Jemalong Solar Thermal Station This page provides information on Jemalong Solar Thermal Station, a concentrating solar power (CSP) project, with data organized by Project Name: Jemalong Solar Thermal Station Country: Australia Location: Jemalong (New South Wales) Owner
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar
Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location
Concentrating Solar Power Projects - Godawari Solar Project | Concentrating
Solar Power | NREL Godawari Solar Project This page provides information on Godawari Solar Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: February 13, 2014 Project Overview Project Name: Godawari Solar
Concentrating Solar Power Projects - eCare Solar Thermal Project |
Concentrating Solar Power | NREL eCare Solar Thermal Project This page provides information on eCare Solar Thermal Project, a concentrating solar power (CSP) project, with data organized by Project Name: eCare Solar Thermal Project Country: Morocco Location: Undefined Owner(s): CNIM (100
Simulation of a high-efficiency silicon-based heterojunction solar cell
NASA Astrophysics Data System (ADS)
Jian, Liu; Shihua, Huang; Lü, He
2015-04-01
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
NASA Astrophysics Data System (ADS)
Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.
2013-06-01
Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.
Thermophotovoltaic space power system, phase 3
NASA Technical Reports Server (NTRS)
Horne, W. E.; Lancaster, C.
1987-01-01
Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.
Summary assessment of solar thermal parabolic dish technology for electrical power generation
NASA Technical Reports Server (NTRS)
Penda, P. L.; Fujita, T.; Lucas, J. W.
1985-01-01
An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.
The USDOE Reflux Receiver Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimas, P.C.; Andraka, C.E.; Moreno, J.B.
1992-11-01
The US DOE`s Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW{sub t} have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW{sub t} throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW{sub t} sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program`s laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW{sub t} pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less
Concentrating Solar Power Projects - eLLO Solar Thermal Project |
Concentrating Solar Power | NREL eLLO Solar Thermal Project This page provides information on Llo Solar Thermal Project, a concentrating solar power (CSP) project, with data organized by Name: eLLO Solar Thermal Project (Llo) Country: France Location: Llo (Pyrénées Orientales) Owner(s
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Concentrating Solar Power Projects - Genesis Solar Energy Project |
Concentrating Solar Power | NREL Genesis Solar Energy Project This page provides information on the Genesis Solar Energy Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. The Project includes two 125-MW units incorporating
NASA Technical Reports Server (NTRS)
Kolyer, J. M.
1978-01-01
An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.
Thin-film reliability and engineering overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Thin-film reliability and engineering overview
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1984-10-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Dish Stirling solar receiver program
NASA Technical Reports Server (NTRS)
Haglund, R. A.
1980-01-01
A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.
Solar Stirling power generation - Systems analysis and preliminary tests
NASA Technical Reports Server (NTRS)
Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III
1977-01-01
The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.
Clear water radiances for atmospheric correction of coastal zone color scanner imagery
NASA Technical Reports Server (NTRS)
Gordon, H. R.; Clark, D. K.
1981-01-01
The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
Modelling of polymer photodegradation for solar cell modules
NASA Technical Reports Server (NTRS)
Guillet, J. E.
1982-01-01
A computer program which simulates the complex processes of photooxidation which take place in a polymer upon prolonged exposure outdoors causing it to fail in photovoltaic and other applications. The method calculates from an input data set of elementary reactions and rates the concentration profiles of all species over time.
Proceedings of the First Semiannual Distributed Receiver Program Review
NASA Technical Reports Server (NTRS)
1980-01-01
Point focus and line focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. Concentrator, receiver, and power conversion development are covered along with hardware tests and evaluation. Mass production costing, parabolic dish applications, and trough and bowl systems are included.
Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.
Shen, S C; Chang, S J; Yeh, C Y; Teng, P C
2013-11-04
In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.
Electrical research on solar cells and photovoltaic materials
NASA Technical Reports Server (NTRS)
Orehotsky, J.
1984-01-01
The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
2006-03-01
high numerical aperture fibre optics. Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar...Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar heat exchanger as well as granting...concentration is achieved via an optical concentrating system, such as a series of lenses or mirrors . This concentrated sunlight impinges on a blackbody
The USDOE Reflux Receiver Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimas, P.C.; Andraka, C.E.; Moreno, J.B.
1992-01-01
The US DOE's Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW[sub t] have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW[sub t] throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW[sub t] sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program's laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW[sub t] pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less
Transparent Solar Concentrator for Flat Panel Display
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung
2012-06-01
A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.
Hybrid Perovskites: Prospects for Concentrator Solar Cells.
Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M
2018-04-01
Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.
Hybrid Perovskites: Prospects for Concentrator Solar Cells
Lin, Qianqian; Wang, Zhiping; Snaith, Henry J.; Johnston, Michael B.
2018-01-01
Abstract Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley–Queisser limit stipulated for a single‐junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge‐carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy‐conversion efficiencies under solar concentration, where they are able to exceed the Shockley–Queisser limit and exhibit strongly elevated open‐circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications. PMID:29721426
Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays.
Semichaevsky, Andrey V; Johnson, Harley T; Yoon, Jongseung; Nuzzo, Ralph G; Li, Lanfang; Rogers, John
2011-06-10
Efficiency of ultrathin flexible solar photovoltaic silicon microcell arrays can be significantly improved using nonimaging solar concentrators. A fluorophore is introduced to match the solar spectrum and the low-reflectivity wavelength range of Si, reduce the escape losses, and allow the nontracking operation. In this paper we optimize our solar concentrators using a luminescent/nonluminescent photon transport model. Key modeling results are compared quantitatively to experiments and are in good agreement with the latter. Our solar concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators with the same projected area.
SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1
NASA Astrophysics Data System (ADS)
1992-03-01
This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2016-04-01
The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.
Measurement and Characterization of Concentrator Solar Cells II
NASA Technical Reports Server (NTRS)
Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave
2005-01-01
Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].
Concentrating Solar Power Projects by Project Name | Concentrating Solar
Tower Plant Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Hami 50 MW CSP ¼lich Solar Tower Kathu Solar Park KaXu Solar One Khi Solar One Kimberlina Solar Thermal Power Plant Solar Plant MINOS Mojave Solar Project Morón National Solar Thermal Power Facility Nevada Solar One
Concentrating Solar Power Projects - Gujarat Solar One | Concentrating
Solar Power | NREL Gujarat Solar One This page provides information on Gujarat Solar One, a configuration. Status Date: February 12, 2014 Project Overview Project Name: Gujarat Solar One Country: India
Photovoltaic solar concentrator
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2016-03-15
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Photovoltaic solar concentrator
Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis
2012-12-11
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Concentrating Solar Power Projects in India | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Abhijeet Solar Project ACME Solar Tower Dadri ISCC Plant Dhursar Diwakar Godawari Solar Project Gujarat Solar One KVK Energy Solar Project Megha Solar Plant National Solar Thermal Power Facility
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Deep Space 1: Testing New Technologies for Future Small Bodies Missions
NASA Technical Reports Server (NTRS)
Rayman, Marc D.
2001-01-01
Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.
Steam engine research for solar parabolic dish
NASA Technical Reports Server (NTRS)
Demler, R. L.
1981-01-01
The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.
Solar Training Network and Solar Ready Vets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalstrom, Tenley Ann
2016-09-14
In 2016, the White House announced the Solar Ready Vets program, funded under DOE's SunShot initiative would be administered by The Solar Foundation to connect transitioning military personnel to solar training and employment as they separate from service. This presentation is geared to informing and recruiting employer partners for the Solar Ready Vets program, and the Solar Training Network. It describes the programs, and the benefits to employers that choose to connect to the programs.
A linear refractive photovoltaic concentrator solar array flight experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.A.; Murphy, D.M.; Piszczor, M.F.
1995-12-31
Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less
NASA Astrophysics Data System (ADS)
Pap, Judit; Fröhlich, Claus
The purpose of this report is to describe the research activities and plans of Working Group 1: "Solar Energy Flux Study: From the Interior to the Outer Layer" of the International Solar Cycle Study (ISCS), which is an international research organization operating under the auspices of the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP). As part of the report, we also summarize the status of the measurements and results on the solar energy flux variations. The main objective of ISCS's Working Group 1 is to coordinate and support comprehensive international research of the variations in the solar energy flux during the rising portion and maximum of solar cycle 23. The research activities of ISCS's Working Group 1 will concentrate on the following tasks: (1) to measure and study the variations in the solar radiative and mass output and solar activity indices during the solar activity cycle, (2) to understand why the solar radiative and mass output and the solar activity indices vary during the solar cycle, and (3) to study the role of solar variability in solar-terrestrial changes and its contribution to global change. ISCS WG1 "Solar Energy Flux Study: From the Interior to the Outer Layer" has been divided into three panels: •| Panel 1: Variations in Total and Spectral Irradiance from Infrared to Far UV. Panel leaders: Martin Anklin of the Physikalisch-Meteorologishes Observatorium Davos, Switzerland (total irradiance), Gerard Thuillier of the Service d'Aeronomie-CNRS, Verrieres, France (visible and infrared), and Linton Floyd of the Naval Research Laboratory, Washington, DC, USA (ultraviolet). •| Panel 2: Variations in EUV, X-ray and Particle Fluxes. Panel leaders: Gerhard Schmidtke of Fraunhofer IPM, Freiburg, Germany and W. Kent Tobiska of FDC/Jet Propulsion Laboratory, Pasadena, CA, USA (EUV/XUV), and David Winningham of the Southwest Research Institute, San Antonio, TX, USA (particles). •| Panel 3: Solar Indices, Cosmogenic Isotopes, Solar-Stellar Relations. Panel leaders: Gary Chapman of the San Fernando Observatory, CSUN, Northridge, CA, USA (solar indices), Juerg Beer of Institute for Environmental Science and Technology, Dübendorf, Switzerland (cosmogenic isotopes), and Sallie Baliunas of the Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA (solar-stellar relations). The first two panels concentrate on solar energy flux measurements, whereas the third panel concentrates on solar indices and alternative ways to model and predict irradiance variations at various wavelengths and their terrestrial/climate effects. Working Group 1 of ISCS has supported and adopted the "Thermospheric-Ionospheric Geospheric Research (TIGER)" program as part of ISCS/WG1/Panel 2. The main objectives of TIGER are to measure, model, and interpret solar EUV/UV and particle fluxes and to study and model their effect on the Earth's thermosphere and ionosphere (see details by Schmidtke et al., 2001, this volume). This approach links ISCS/WG1 activities directly with studies of our space environment.
Concentrating Solar Power Projects in Thailand | Concentrating Solar Power
;alphabetical by project name. You can browse a project profile by clicking on the project name. Thai Solar | NREL Thailand Concentrating solar power (CSP) projects in Thailand are listed belowââ¬"
Concentrating Solar Power Projects in France | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. eLLO Solar NREL France Concentrating solar power (CSP) projects in France are listed belowââ¬"
Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto
2015-06-01
Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.
Solar collector-skylight assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dame, R.E.
1984-10-09
A solar collector-skylight assembly having movable parabolic concentrators wherein, in one position the parabolic concentrators direct solar energy to a collector to heat fluid circulating therethrough to thereby provide a solar heater; and when the concentrators are moved to another position, the assembly functions as a skylight wherein the solar energy is allowed to pass through the collector, to thereby illuminate the interior of a building upon which the solar collector-skylight assembly is mounted.
Concentrating Solar Power Projects - Gemasolar Thermosolar Plant |
Concentrating Solar Power | NREL Gemasolar Thermosolar Plant This page provides information on Gemasolar Thermosolar Plant, a concentrating solar power (CSP) project, with data organized by background , participants, and power plant configuration. Gemasolar is the first high-temperature solar receiver with molten
Concentrating Solar Power Projects in Germany | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Jülich Solar NREL Germany Concentrating solar power (CSP) projects in Germany are listed belowââ¬"
Wyoming | Solar Research | NREL
There are currently no statewide community solar policies or programs in Wyoming. State Incentive Programs There are currently no statewide solar financial incentive programs in Wyoming. Utility Incentive Programs Please check with your distribution utility for utility incentive programs for midmarket solar
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
NASA Astrophysics Data System (ADS)
Leibacher, J. W.; Braun, D.; González Hernández, I.; Goodrich, J.; Kholikov, S.; Lindsey, C.; Malanushenko, A.; Scherrer, P.
2005-05-01
The GONG program is currently providing near-real-time helioseismic images of the farside of the Sun. The continuous stream of low resolution images, obtained from the 6 earth based GONG stations, are merged into a single data series that are the input to the farside pipeline. In order to validate the farside images, it is crucial to compare the results obtained from different instruments. We show comparisons between the farside images provided by the MDI instrument and the GONG ones. New aditions to the pipeline will allow us to create full-hemisphere farside images, examples of the latest are shown in this poster. Our efforts are now concentrated in calibrating the farside signal so it became a reliable solar activity forecasting tool. We are also testing single-skip acoustic power holography at 5-7 mHz as a prospective means of reinforcing the signatures of active regions crossing the the east and west limb and monitoring acoustic emission in the neighborhoods of Sun's the poles. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisico de Canarias, and Cerro Tololo Interamerican Observatory, as well as the Michaelson Doppler Imager on SoHO, a mission of international cooperation between ESA and NASA. This work has been supported by the NASA Living with a Star - Targeted Research and Technology program.
JSUS solar thermal thruster and its integration with thermionic power converter
NASA Astrophysics Data System (ADS)
Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi
1998-01-01
This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.
Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael
2002-01-01
A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.
NASA Technical Reports Server (NTRS)
West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen
2011-01-01
This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.
Concentrating Solar Power Projects - La Florida | Concentrating Solar Power
| NREL Florida This page provides information on La Florida, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Florida Country: Spain Location: Badajoz (Badajoz Solar Resource: La Florida Weather Station Electricity Generation: 175,000 MWh/yr (Estimated) Contact(s
Alaska | Midmarket Solar Policies in the United States | Solar Research |
developers may offer community solar programs. State Incentive Programs Program Administrator Incentive decisions. Utility Incentive Programs Check with local utilities for midscale solar incentives. Resources and utility policies and incentive programs. Net Metering and Interconnection Regulatory Commission of
United States Department of Energy solar receiver technology development
NASA Astrophysics Data System (ADS)
Klimas, P. C.; Diver, R. B.; Chavez, J. M.
The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.
Community Solar Program Final Report for Austin Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Austin Energy seeks to expand its portfolio of renewable programs with an innovative community solar program. The program provides an opportunity for Austin Energy's customers, who are unable or uninterested in installing solar on their own premises, to purchase solar power.
Testing of dual-junction SCARLET modules and cells plus lessons learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskenazi, M.I.; Murphy, D.M.; Ralph, E.L.
1997-12-31
Key simulator test methods and results for Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) cells, modules, and module strings are presented from the NASA/JPL New Millennium DS1 program. Important observations and lessons learned are discussed. These findings include: (1) a significant efficiency increase for shunted low performing 1 sun cells at SCARLET`s {approximately}7 sun concentration, (2) a decrease in temperature coefficient under SCARLET concentration, and (3) the importance of active germanium (third junction) screening during GaInP{sub 2}/GaAs/Ge cell production especially when red reflecting covers are used.
Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar
Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant roads. Project Overview Project Name: Nevada Solar One (NSO) Country: United States Location: Boulder
JEDI Concentrating Solar Power Model | Jobs and Economic Development Impact
Economic Development Impacts (JEDI) Concentrating Solar Power Model allows users to estimate economic development impacts from concentrating solar power projects and includes default information that can be
Concentrating Solar Power Projects - ACME Solar Tower | Concentrating Solar
: 2.5 MW Gross: 2.5 MW Status: Operational Start Year: 2011 Do you have more information, corrections Contact(s): SolarPACES Start Production: April 2011 Participants Developer(s): ACME Group ; eSolar Owner(s
Alabama | Midmarket Solar Policies in the United States | Solar Research |
statewide community solar policies or programs. State Incentive Programs Program Administrator Incentive solar systems. Eligible public entities may borrow up to $350,000 per project. Utility Incentive incentives. Program Incentive Limitations TVA: Green Power Providers program First 10 years: 0.02/kWh above
Concentration of sunlight to solar-surface levels using non-imaging optics
NASA Astrophysics Data System (ADS)
Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland
1989-05-01
An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Climate and atmospheric modeling studies
NASA Technical Reports Server (NTRS)
1992-01-01
The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.
Transient Thermal Analysis of a Refractive Secondary Solar Concentrator
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Macosko, Robert P.
1999-01-01
A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
Solar buildings program contract summary, calendar year 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-06-07
The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less
Concentrating Solar Power Projects - Xina Solar One | Concentrating Solar
Power | NREL Xina Solar One Abengoa has been selected by the Department of Energy (DOE) of South Africa to develop Xina Solar One, a 100 MW parabolic trough plant with a five-hour thermal energy with Abengoa's plant KaXu Solar One that is currently under construction in the country. Xina Solar One
Massachusetts | Midmarket Solar Policies in the United States | Solar
Research | NREL Massachusetts Massachusetts An arrow graphic shows that Massachusetts's retail rate. State Incentive Programs Program Administrator Incentive Leading By Example Solar PV Canopy Environmental Affairs: Leading by Example Program Other MassSolar: Solar Policies and Resources Massachusetts
Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.
Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A
2018-05-14
Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.
Advanced photovoltaic concentrator system low-cost prototype module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminar, N.R.; McEntee, J.; Curchod, D.
1991-09-01
This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted inmore » a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.« less
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
Conservation and solar energy program: congressional budget request, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-01-01
Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Informationmore » and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)« less
Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference
NASA Technical Reports Server (NTRS)
1975-01-01
Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.
Research on polycrystalline thin film submodules based on CuInSe sub 2 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, A.; Arya, R.; Carr, L.
1992-05-01
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe{sub 2} (CIS) submodules with area greater than 900 cm{sup 2}. To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell. 7 refs.
Pujol Nadal, Ramon; Martínez Moll, Víctor
2013-10-20
Fixed-mirror solar concentrators (FMSCs) use a static reflector and a moving receiver. They are easily installable on building roofs. However, for high-concentration factors, several flat mirrors would be needed. If curved mirrors are used instead, high-concentration levels can be achieved, and such a solar concentrator is called a curved-slats fixed-mirror solar concentrator (CSFMSC), on which little information is available. Herein, a methodology is proposed to characterize the CSFMSC using 3D ray-tracing tools. The CSFMSC shows better optical characteristics than the FMSC, as it needs fewer reflector segments for achieving the same concentration and optical efficiency.
Concentrating Solar Power Projects by Country | Concentrating Solar Power |
NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar
NASA Technical Reports Server (NTRS)
1979-01-01
Concentrator concepts which utilize Kapton mirror material were evaluated and selected for solar array use due to their zero mass. All concepts considered employed thin silicon solar cells. Design requirements for the concentrator were: the cell temperature was not to exceed 150 C; the concentrators were to produce illumination of the array within 15% of being perfectly uniform; the concentrators were to operate while misaligned as much as 5 degrees with the solar axis. Concentrator designs along with mirror structure and configurations are discussed and comparisons are made for optimal space applications.
Pushing concentration of stationary solar concentrators to the limit.
Winston, Roland; Zhang, Weiya
2010-04-26
We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.
Pushing concentration of stationary solar concentrators to the limit.
Winston, Roland; Zhang, Weiya
2010-04-26
We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun-earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
Concentrating Solar Power Projects - ISCC Hassi R'mel | Concentrating Solar
solar power (CSP) project, with data organized by background, participants, and power plant consists of a 150 MWe hybrid power plant composed of a combined cycle and a 20 MWe solar thermal plant : Abener Operator(s): Abener Generation Offtaker(s): Sonatrach Plant Configuration Solar Field Solar-Field
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
High flux solar energy transformation
Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2015-09-08
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Concentrating Solar Power Projects - Copiapó | Concentrating Solar Power |
MW Status: Under development Start Year: 2019 Do you have more information, corrections, or comments Generation: 1,800,000 MWh/yr (Expected) Contact(s): Webmaster Solar Company: Solar Reserve Start Production
Zero-reabsorption doped-nanocrystal luminescent solar concentrators.
Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L
2014-04-22
Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.
Concentrating Solar Power Projects - Kathu Solar Park | Concentrating Solar
): Eskom Plant Configuration Solar Field Heat-Transfer Fluid Type: Thermal oil Solar-Field Inlet Temp: 293Â (Net): 100.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 4.5 hours Thermal Storage Description: Molten salt
Concentrating Solar Power Projects - National Solar Thermal Power Facility
| Concentrating Solar Power | NREL National Solar Thermal Power Facility Status Date: February 13, 2014 Project Overview Project Name: National Solar Thermal Power Facility Country: India Location Capacity (Net): 1.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: None
NASA Technical Reports Server (NTRS)
Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri
2003-01-01
The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt
2016-01-01
At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.
Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin
2001-01-01
According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.
Concentrating Solar Power Projects in Australia | Concentrating Solar Power
¬"alphabetical by project name. You can browse a project profile by clicking on the project name | NREL Australia Concentrating solar power (CSP) projects in Australia are listed belowââ
Concentrated solar power generation using solar receivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Bruce N.; Treece, William Dean; Brown, Dan
Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
SCARLET development, fabrication and testing for the Deep Space 1 spacecraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.M.; Allen, D.M.
1997-12-31
An advanced version of ``Solar Concentrator Arrays with Refractive Linear Element Technology`` (SCARLET) is being assembled for use on the first NASA/JPL New Millennium spacecraft: Deep Space 1 (DS1). The array is scaled up from the first SCARLET array that was built for the METEOR satellite in 1995 and incorporates advanced technologies such as dual-junction solar cells and an improved structural design. Due to the failure of the Conestoga launch vehicle, this will be the first flight of a modular concentrator array. SCARLET will provide 2.6 kW to the DS1 spacecraft to be launched in July 1998 for a missionmore » that includes fly-bys of the asteroid McAuliffe, Mars, and the comet West-Kohoutek-Ikemura. This paper describes the SCARLET design, fabrication/assembly, and testing program for the flight system.« less
Concentrating Solar Power Projects in Greece | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. MINOS NREL Greece Concentrating solar power (CSP) projects in Greece are listed belowââ¬"
Concentrating Solar Power Projects in Saudi Arabia | Concentrating Solar
belowââ¬"alphabetical by project name. You can browse a project profile by clicking on the project Power | NREL Saudi Arabia Concentrating solar power (CSP) projects in Saudi Arabia are listed
Concentrating Solar Power Projects in South Africa | Concentrating Solar
belowââ¬"alphabetical by project name. You can browse a project profile by clicking on the project Power | NREL South Africa Concentrating solar power (CSP) projects in South Africa are listed
Error-Tolerant Quasi-Paraboloidal Solar Concentrator
NASA Technical Reports Server (NTRS)
Wagner, Howard A.
1988-01-01
Scalloping reflector surface reduces sensitivity to manufacturing and aiming errors. Contrary to intuition, most effective shape of concentrating reflector for solar heat engine is not perfect paraboloid. According to design studies for Space Station solar concentrator, scalloped, nonimaging approximation to perfect paraboloid offers better overall performance in view of finite apparent size of Sun, imperfections of real equipment, and cost of accommodating these complexities. Scalloped-reflector concept also applied to improve performance while reducing cost of manufacturing and operation of terrestrial solar concentrator.
Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2002-01-01
Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.
The Solar Ultraviolet Magnetograph Investigation Sounding Rocket Program
NASA Technical Reports Server (NTRS)
West, E. A.; Kobayashi, K.; Davis, J. M.; Gary, G. A.
2007-01-01
This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the unique optical components that have been developed to meet those objectives. A sounding rocket payload has been developed to test the feasibility of magnetic field measurements in the Sun's transition region. The optics have been optimized for simultaneous measurements of two magnetic sensitive lines formed in the transition region (CIV at 1550 A and MgII at 2800 A). This paper will concentrate on the polarization properties SUMI's toroidal varied-line-space (TVLS) gratings and its system level testing as we prepare to launch in the Summer of 2008.
Environmental Exposure Effects on Composite Materials for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Hoffman, D. J.
1980-01-01
The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.
JEDI: Jobs and Economic Development Impacts Model Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Hendrickson; S.Tegen
2009-12-01
The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local(usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels,concentrating solar power, coal, and natural gas power plants.
Bennett, Charles L.
2007-09-18
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
NASA Astrophysics Data System (ADS)
Hull, J. R.
Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.
Concentrating Solar Power Projects - Redstone Solar Thermal Power Plant |
Concentrating Solar Power | NREL Redstone Solar Thermal Power Plant Status Date: September 8 , 2016 Project Overview Project Name: Redstone Solar Thermal Power Plant Country: South Africa Location ): 100.0 MW Turbine Capacity (Net): 100.0 MW Cooling Method: Dry cooling Thermal Storage Storage Type: 2
GaAs/Ge solar panels for the SAMPEX program
NASA Technical Reports Server (NTRS)
Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John
1992-01-01
GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.
Performance evaluation of the solar kinetics T-700 line concentrating solar collector
NASA Technical Reports Server (NTRS)
1981-01-01
A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.
Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing
NASA Technical Reports Server (NTRS)
Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael
2003-01-01
Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.
Hybrid photovoltaic and thermoelectric module for high concentration solar system
NASA Astrophysics Data System (ADS)
Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka
2017-09-01
A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.
Concentrating Solar Power Projects in Algeria | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. ISCC Hassi NREL Algeria Concentrating solar power (CSP) projects in Algeria are listed belowââ¬"
Concentrating Solar Power Projects in Israel | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Ashalim Ashalim NREL Israel Concentrating solar power (CSP) projects in Israel are listed belowââ¬"
Concentrating Solar Power Projects in Egypt | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. ISCC Kuraymat NREL Egypt Concentrating solar power (CSP) projects in Egypt are listed belowââ¬"
Concentrating Solar Power Projects in Kuwait | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Shagaya CSP NREL Kuwait Concentrating solar power (CSP) projects in Kuwait are listed belowââ¬"
Concentrating Solar Power Projects in Turkey | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Greenway CSP NREL Turkey Concentrating solar power (CSP) projects in Turkey are listed belowââ¬"
Concentrating Solar Power Projects in Italy | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Archimede ASE NREL Italy Concentrating solar power (CSP) projects in Italy are listed belowââ¬"
Concentrating Solar Power Projects in Chile | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Atacama-1 NREL Chile Concentrating solar power (CSP) projects in Chile are listed belowââ¬"
Concentrating Solar Power Projects in Mexico | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Agua Prieta II NREL Mexico Concentrating solar power (CSP) projects in Mexico are listed belowââ¬"
Simplified Calculation Of Solar Fluxes In Solar Receivers
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep
1990-01-01
Simplified Calculation of Solar Flux Distribution on Side Wall of Cylindrical Cavity Solar Receivers computer program employs simple solar-flux-calculation algorithm for cylindrical-cavity-type solar receiver. Results compare favorably with those of more complicated programs. Applications include study of solar energy and transfer of heat, and space power/solar-dynamics engineering. Written in FORTRAN 77.
Hybrid solar lighting systems and components
Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN
2007-06-12
A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.
Methods and systems for concentrated solar power
Ma, Zhiwen
2016-05-24
Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Performance of the Southern California Edison Company Stirling dish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, C.W.; Stone, K.W.
1993-10-01
McDonnell Douglas Astronautics Company (MDAC) and United Stirling AB of Sweden (USAB) formed a joint venture in 1982 to develop and produce a Stirling dish solar generating system. In this report, the six year development and testing program continued by the Southern California Edison Company (SCE) is described. Each Stirling dish module consists of a sun tracking dish concentrator developed by the MDAC and a Stirling engine driven power conversion unit (PCU) developed by USAB. The Stirling dish system demonstrated twice the peak and daily solar-to-electric conversion efficiency of any other system then under development. This system continues to setmore » the performance standard for solar to electric systems being developed in the early 1990`s. Test data are presented and used to estimate the performance of a commercial system.« less
Concentrating Solar Power Projects in Denmark | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Aalborg CSP-Brà NREL Denmark Concentrating solar power (CSP) projects in Denmark are listed belowââ¬"
Concentrating Solar Power Projects in Canada | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. City of NREL Canada Concentrating solar power (CSP) projects in Canada are listed belowââ¬"
GRID Alternatives: Solar Programs in Underserved Communities
Introduces GRID Alternatives: Solar Programs in Underserved Communities, a program that partners with a variety of organizations to help low-income communities access the benefits of solar technology.
Fundamentals and techniques of nonimaging optics for solar energy concentration
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallaher, J. J.
1980-09-01
Recent progress in basic research into the theoretical understanding of nonimaging optical systems and their application to the design of practical solar concentration was reviewed. Work was done to extend the previously developed geometrical vector flux formalism with the goal of applying it to the analysis of nonideal concentrators. Both phase space and vector flux representation for traditional concentrators were generated. Understanding of the thermodynamically derived relationship between concentration and cavity effects led to the design of new lossless and low loss concentrators for absorbers with gaps. Quantitative measurements of the response of real collector systems and the distribution of diffuse insolation shows that in most cases performance exceeds predictions in solar applications. These developments led to improved nonimaging solar concentrator designs and applications.
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
The Role of Solar Technology Programs In Meeting Our Energy Needs
ERIC Educational Resources Information Center
Valentine, Ivan E.; Larson, Milton E.
1978-01-01
Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)
Concentrating Solar Power Projects - Lake Cargelligo | Concentrating Solar
Solar Storage Receiver, set out in a multi tower solar array. The Project consists of eight SSR's each mounted on its own tower. This graphite receiver acts as receiver, boiler and storage system. Status Date Manufacturer: Lloyd Energy Systems Pty Ltd Receiver Type: Graphite solar storage receiver Heat-Transfer Fluid
Rankline-Brayton engine powered solar thermal aircraft
Bennett, Charles L [Livermore, CA
2012-03-13
A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Rankine-Brayton engine powered solar thermal aircraft
Bennett, Charles L [Livermore, CA
2009-12-29
A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Compact, semi-passive beam steering prism array for solar concentrators.
Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A
2017-05-10
In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandwisch, D.W.
1997-02-01
The objectives of this subcontract are to advance Solar Cells, Inc.`s (SCI`s) photovoltaic manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. Activities during the second year of the program concentrated on process development, equipment design and testing, quality assurance, and ES and H programs. These efforts broadly addressed the issues of the manufacturing process for producing thin-film monolithic CdS/CdTe photovoltaic modules.
Hybrid solar lighting distribution systems and components
Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN
2011-07-05
A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
Concentrating Solar Power Projects - Saguaro Power Plant | Concentrating
Solar Power | NREL Saguaro Power Plant This page provides information on Saguaro, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 14, 2017 Project Overview Project Name: Saguaro Power Plant Country: United
NREL, Abengoa Making Concentrating Solar Power System Manufacturing More
Cost Effective | Energy Systems Integration Facility | NREL Abengoa NREL, Abengoa Making Concentrating Solar Power System Manufacturing More Cost Effective Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar
Concentrating Solar Power Projects - La Dehesa | Concentrating Solar Power
| NREL Dehesa This page provides information on La Dehesa, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Dehesa Country: Spain Location: La Garrovilla (Badajoz ? Background Technology: Parabolic trough Status: Operational Country: Spain City: La Garrovilla Region
High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System
NASA Technical Reports Server (NTRS)
Nakamura, T.; Case, J. A.; Timmons, M. L.
2004-01-01
This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.
Solar Technician Program Blows Hot
ERIC Educational Resources Information Center
Ziegler, Peg Moran
1977-01-01
A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)
NASA's Solar System Exploration Program
NASA Technical Reports Server (NTRS)
Robinson, James
2005-01-01
A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary
Involving Scientists in the NASA / JPL Solar System Educators Program
NASA Astrophysics Data System (ADS)
Brunsell, E.; Hill, J.
2001-11-01
The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, A.; Arya, R.; Carr, L.
1992-05-01
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe{sub 2} (CIS) submodules with area greater than 900 cm{sup 2}. To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell. 7 refs.
NASA Astrophysics Data System (ADS)
Laget, R.
1986-01-01
Studies that led to selection of the distributed concentration biplane concept for the solar cell generator to be flown on the coorbiting platform mission, and the major characteristics of such a spaceborne solar array are summarized. It is concluded that there is not a considerable interest in concentration either for array area reduction or cost reduction, although improvements of 15% for both domains are feasible. Only predevelopment activities to verify concentrator performances and system studies to assess respective importance of cost and area saving may increase the level of interest of concentrator solar arrays for this kind of mission.
Design of a new concentrated photovoltaic system under UAE conditions
NASA Astrophysics Data System (ADS)
Hachicha, Ahmed Amine; Tawalbeh, Muahammad
2017-06-01
Concentrated Photovoltaic Systems (CPVs) are considered one of the innovative designs for concentrated solar power applications. By concentrating the incident radiation, the solar cells will be able to produce much more electricity compared to conventional PV systems. However, the temperature of the solar cells increases significantly with concentration. Therefore, cooling of the solar cells will be needed to maintain high conversion efficiency. In this work, a novel design of CPV system is proposed and implemented under UAE conditions for electricity generation and hot water production. The proposed design integrates a water cooling system and PV system to optimize both the electrical and thermal performances of the CPV system.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Hsu, L. C.
1977-01-01
Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Kuhlman, J
1981-01-31
The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less
The 25 percent-efficient GaAs Cassegrainian concentrator cell
NASA Technical Reports Server (NTRS)
Hamaker, H. C.; Grounner, M.; Kaminar, N. R.; Kuryla, M. S.; Ladle, M. J.; Liu, D. D.; Macmillan, H. F.; Partain, L. D.; Virshup, G. F.; Werthen, J. G.
1989-01-01
Very high-efficiency GaAs Cassegrainian solar cells have been fabricated in both the n-p and p-n configurations. The n-p configuration exhibits the highest efficiency at concentration, the best cells having an efficiency eta of 24.5 percent (100X, AM0, temperature T = 28 C). Although the cells are designed for operation at this concentration, peak efficiency is observed near 300 suns (eta = 25.1 percent). To our knowledge, this is the highest reported solar cell efficiency for space applications. The improvement in efficiency over that reported at the previous SPRAT conference is attributed primarily to lower series resistance and improved grid-line plating procedures. Using previously measured temperature coefficients, researchers estimate that the n-p GaAs cells should deliver approximately 22.5 percent efficiency at the operating conditions of 100 suns and T = 80 C. This performance exceeds the NASA program goal of 22 percent for the Cassegrainian cell. One hundred Cassegrainian cells have been sent to NASA as deliverables, sixty-eight in the n-p configuration and thirty-two in the p-n configuration.
Adaptive sensor-based ultra-high accuracy solar concentrator tracker
NASA Astrophysics Data System (ADS)
Brinkley, Jordyn; Hassanzadeh, Ali
2017-09-01
Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.
Solar Advisor Model User Guide for Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.; Blair, N.; Mehos, M.
2008-08-01
The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.
Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar
(CSP) project, with data organized by background, participants, and power plant configuration. Abengoa Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower percent. The 160-meter tower was designed to reduce the visual impact of its height. The plant has the
A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System
NASA Technical Reports Server (NTRS)
Smitherman, David V.
2013-01-01
A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-07-01
Progress is reported in this multidisciplinary research program. Genetic selection of superior trees, physiological basis of vigor, tissue culture systems leading to cloning of diploid and haploid cell lines are discussed in the Program A report. The physiological basis of enhanced oleoresin formation in southern pines when treated with sublethal concentrations of the herbicide paraquat was investigated in Program B. In Program C, metabolic changes in the stems of slash pine, in vivo, after application with paraquat were determined. The use of phdoem and xylem tissue slices as a laboratory model for studying paraquat associated- and normal-terpene synthesis in pinesmore » is discussed. The biochemistry and physiology of methane formation from cellulose during anaerobic fermentation are discussed in the Program D report. (DMC)« less
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India
NASA Astrophysics Data System (ADS)
Agrawal, Tanmay; Varun; Kumar, Anoop
2015-10-01
Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.
Optical Waveguide Solar Energy System for Lunar Materials Processing
NASA Technical Reports Server (NTRS)
Nakamura, T.; Case, J. A.; Senior, C. L.
1997-01-01
This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.
NASA Technical Reports Server (NTRS)
1979-01-01
The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.
Adaptive, full-spectrum solar energy system
Muhs, Jeffrey D.; Earl, Dennis D.
2003-08-05
An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.
Concentration of solar radiation by white painted transparent plates.
Smestad, G; Hamill, P
1982-04-01
A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
Solar Mirror Fabrication in the Technical Services Building
1966-02-21
Daniel Bernatowicz, Chief of the Advanced Power Systems Branch at the National Aeronautics and Space Administration (NASA) Lewis Research Center, examines a 20-foot section of a solar mirror being fabricated in the Jig Bore Room of the Technical Services Building. NASA Lewis was conducting a wide-ranging effort to explore methods of generating electrical power for spacecraft. One method employed a large parabolic mirror to concentrate the sun’s energy. The mirror had to remain rigid and withstand micrometeoroids, but remain light and compact enough to be easily launched. In 1963 Bernatowicz and his researchers undertook a program to design a solar mirror to work with the Brayton cycle system on a space station. The mirror in this photograph was prepared for a conference on Advanced Technology in Space Power Systems held at Lewis in late August 1966. Lewis experts discussed advances with batteries, fuel cells, isotope and thermoelectric generators, and the SNAP-8 space power system. Lewis was developing several types of solar mirrors to work with a Brayton cycle electric generating system. The mirror’s 12 sections were shaped using a unique forming process developed at Lewis, coated with an epoxy, and plated with aluminum. The mirror concentrated the Sun's rays on a heat storage receiver containing lithium fluoride. This material was heated to produce power in a turbogenerator system, while additional heat was stored for use when the unit was in the Earth's shadow.
Ultralightweight Fresnel Lens Solar Concentrators for Space Power
NASA Technical Reports Server (NTRS)
ONeill, M. J.; McDanal, A. J.
2000-01-01
The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.
Concentrating Solar Power Projects - Planta Solar 10 | Concentrating Solar
under a purely commercial approach. PS10's technologies-including glass-metal heliostats, pressurized Manufacturer (Model): Abengoa (Solucar 120) Heliostat Description: Glass-metal Tower Height: 115 m Receiver
Concentrating Solar Power Projects - Mojave Solar Project | Concentrating
Country: United States Location: Harper Dry Lake, California Owner(s): Mojave Solar, LLC Technology : Operational Country: United States City: Harper Dry Lake State: California County: San Bernardino Lat/Long
Concentrating Solar Power Projects - Solaben 6 | Concentrating Solar Power
: Operational Start Year: 2013 Do you have more information, corrections, or comments? Background Technology MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: August 2013
Concentrating Solar Power Projects - Solaben 1 | Concentrating Solar Power
: Operational Start Year: 2013 Do you have more information, corrections, or comments? Background Technology MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: August 2013
Self-pressurizing Stirling engine
Bennett, Charles L.
2010-10-12
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Parametric analysis of ATM solar array.
NASA Technical Reports Server (NTRS)
Singh, B. K.; Adkisson, W. B.
1973-01-01
The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.
NASA Technical Reports Server (NTRS)
1973-01-01
Articles pertaining to the solar studies and the Skylab program are presented, with emphasis on the usefulness of the Apollo Telescope Mount (ATM) program. A description of Skylab objectives and key mission events is included along with articles about the sun. Skylab solar studies which are reported include these topics: ATM solar observatory, scientific instruments, crew operations and crew training, and the joint observing program. The Skylab associated solar programs are also reported.
Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie
2017-11-01
Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.
Fleming, Austin; Folsom, Charles; Ban, Heng; ...
2015-11-13
Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.
NASA Astrophysics Data System (ADS)
Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul
2015-04-01
Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.
NASA advanced space photovoltaic technology-status, potential and future mission applications
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.
1989-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.
U.S. Solar-Terrestrial Research Program
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
The Committee on Solar-Terrestrial Research (CSTR) of the National Research Council of the National Academy of Sciences is charged with looking after the health of solar-terrestrial research in the United States. In 1984 the National Academy Press published the CSTR report “National Solar-Terrestrial Research Program.” This program implements the recommendations of the earlier National Research Council study “Solar-Terrestrial Research for the 1980's” (1981). The earlier study, which took over 18 months to complete and involved the participation of more than 150 scientists, specifically identified the principal scientific and management recommendations required for a balanced solar-terrestrial program. The present study was undertaken by CSTR in the fall of 1983 in response to a request from several concerned federal agencies and the Board on Atmospheric Sciences and Climate. Together, the two studies constitute a set that prescribes a broad-gaged solar-terrestrial program.
Advanced solar concentrator mass production, operation, and maintenance cost assessment
NASA Technical Reports Server (NTRS)
Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.
1981-01-01
The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.
Foaming of aluminium-silicon alloy using concentrated solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.
2010-06-15
Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mouldmore » design. (author)« less
Design of a high-power, high-brightness Nd:YAG solar laser.
Liang, Dawei; Almeida, Joana; Garcia, Dário
2014-03-20
A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24 W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.
Outer Planet Science Missions enabled by Solar Power
NASA Astrophysics Data System (ADS)
Kaplan, M.; Klaus, K.; Smith, D. B.
2009-12-01
Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.
Concentrating Solar Power Projects - Orellana | Concentrating Solar Power |
: Operational Start Year: 2012 Do you have more information, corrections, or comments? Background Technology (Estimated) Contact(s): SolarPACES Start Production: August 2012 Cost (approx): 240,000,000 Euro PPA/Tariff
Concentrating Solar Power Projects - Solacor 2 | Concentrating Solar Power
Status: Operational Start Year: 2012 Do you have more information, corrections, or comments? Background : 100,000 MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: March 9
Concentrating Solar Power Projects - Solaben 2 | Concentrating Solar Power
Status: Operational Start Year: 2012 Do you have more information, corrections, or comments? Background : 100,000 MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: October
Concentrating Solar Power Projects - Solacor 1 | Concentrating Solar Power
Status: Operational Start Year: 2012 Do you have more information, corrections, or comments? Background : 100,000 MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: February
Concentrating Solar Power Projects - ASE Demo Plant | Concentrating Solar
: Parabolic trough Turbine Capacity: Gross: 0.35 MW Status: Operational Start Year: 2013 Do you have more Start Production: 2013 Project Type: Demonstration Participants Developer(s): Archimede Solar Energy
Concentrating Solar Power Projects - Dhursar | Concentrating Solar Power |
: 125.0 MW Status: Operational Start Year: 2014 Do you have more information, corrections, or comments Electricity Generation: 280,000 MWh/yr (Expected) Contact(s): Webmaster Solar Start Production: November 11
Concentrating Solar Power Projects - Solaben 3 | Concentrating Solar Power
Status: Operational Start Year: 2012 Do you have more information, corrections, or comments? Background : 100,000 MWh/yr (Estimated) Contact(s): Allison Lenthall Company: Abengoa Solar Start Production: June
Concentrating Solar Power Projects - Arenales | Concentrating Solar Power |
MW Status: Operational Start Year: 2013 Do you have more information, corrections, or comments Electricity Generation: 166,000 MWh/yr (Estimated) Contact(s): SolarPACES Break Ground: November 2011 Start
The rise of non-imaging optics for rooftop solar collectors
NASA Astrophysics Data System (ADS)
Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom
2016-09-01
In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.
Falling Particles: Concept Definition and Capital Cost Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoddard, Larry; Galluzzo, Geoff; Adams, Shannon
2016-06-30
The Department of Energy’s (DOE) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles.« less
Reducing Energy Burden with Solar: Colorado's Strategy and a Roadmap for
purchasing other necessities. In some circumstances, solar photovoltaics (PV) can reduce this energy burden -income community solar demonstration projects Incorporating PV into its weatherization program Promoting utility investment in low-income PV programs. In 2015, CEO launched its low-income community solar program
Idaho | Midmarket Solar Policies in the United States | Solar Research |
to develop a 500 kW community solar project. State Incentive Programs Program Administrator Incentive and incentive programs. Net metering and interconnection Idaho Power: Net Metering and Interconnection
Concentrating Solar Power Projects - Gulang 100MW Thermal Oil Parabolic
Trough project | Concentrating Solar Power | NREL Gulang 100MW Thermal Oil Parabolic Trough project Status Date: September 29, 2016 Project Overview Project Name: Gulang 100MW Thermal Oil Parabolic ): Webmaster Solar Participants Developer(s): Changzhou Royal Tech Solar Thermal Equipment Co., Ltd. Owner(s
Improving solar-pumped laser efficiency by a ring-array concentrator
NASA Astrophysics Data System (ADS)
Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.
2018-01-01
We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.
High-performance flat-panel solar thermoelectric generators with high thermal concentration
NASA Astrophysics Data System (ADS)
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-07-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
A thermal storage capacity market for non dispatchable renewable energies
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz
2017-06-01
Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.
Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator
NASA Astrophysics Data System (ADS)
Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul
2016-09-01
The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.
Concentrating Solar Power Basics | NREL
concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar toward the sun, focusing sunlight on tubes (or receivers) that run the length of the mirrors. The mirrors to allow the mirrors greater mobility in tracking the sun. A dish/engine system uses a mirrored
Solar Collector Mirror for Brayton Power System
1966-09-21
NASA’s Lewis Research Center conducted extensive research programs in the 1960s and 1970s to develop systems that provide electrical power in space. One system, the Brayton cycle engine, converted solar thermal energy into electrical power. This system operated on a closed-loop Brayton thermodynamic cycle. The Brayton system relied on this large mirror to collect radiation from the sun. The mirror concentrated the Sun's rays on a heat storage receiver which warmed the Brayton system’s working fluid, a helium-xenon gas mixture. The heated fluid powered the system’s generator which produced power. In the mid-1960s Lewis researchers constructed this 30-foot diameter prototype of a parabolic solar mirror for the Brayton cycle system. The mirror had to be rigid, impervious to micrometeorite strikes, and lightweight. This mirror was comprised of twelve 1-inch thick magnesium plate sections that were coated with aluminum. The mirror could be compactly broken into its sections for launch.
Survey of solar thermal test facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masterson, K.
The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less
Stretched Lens Array Photovoltaic Concentrator Technology Developed
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
2004-01-01
Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.
Solar-B E/PO Program at Chabot Space and Science Center, Oakland, California
NASA Astrophysics Data System (ADS)
Burress, B. S.
2005-05-01
Chabot Space and Science Center in Oakland, California, conducts the Education/Public Outreach program for the Lockheed-Martin Solar and Astrophysics Lab Solar-B Focal Plane Package project. Since opening its doors in August 2000, Chabot has carried out this program in activities and educational products in the public outreach, informal education, and formal education spheres. We propose a poster presentation that illustrates the spectrum of our Solar-B E/PO program. Solar-B, scheduled to launch in September 2006, is another step in an increasingly sophisticated investigation and understanding of our Sun, its behavior, and its effects on the Earth and our technological civilization. A mission of the Japan Aerospace Exploration Agency (JAXA), Solar-B is an international collaboration between Japan, the US/NASA, and the UK/PPARC. Solar-B's main optical telescope, extreme ultraviolet imaging spectrometer, and x-ray telescope will collect data on the Sun's magnetic dynamics from the photosphere through the corona at higher spatial and time resolution than on current and previous solar satellite missions, furthering our understanding of the Sun's behavior and, ultimately, its effects on the Earth. Chabot's E/PO program for the Lockheed-Martin Solar-B Focal Plane Package is multi-faceted, including elements focused on technology/engineering, solar physics, and Sun-Earth Connection themes. In the Public Outreach arena, we conduct events surrounding NASA Sun-Earth Day themes and programs other live and/or interactive events, facilitate live solar viewing, and present a series of exhibits focused on the Solar-B and other space-based missions, the dynamic Sun, and light and optics. In the Informal Education sector we run a solar day camp for kids and produce educational products, including a poster on the Solar-B mission and CDROM multimedia packages. In Formal Education, we develop classroom curriculum guides and conduct workshops training teachers in their implementation. Our poster presentation will address the highlights of our program in all three of these areas.
Participation in multilateral effort to develop high performance integrated CPC evacuated collectors
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallagher, J. J.
1992-05-01
The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.
Code of Federal Regulations, 2012 CFR
2012-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
Code of Federal Regulations, 2013 CFR
2013-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
Code of Federal Regulations, 2014 CFR
2014-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
Solar concentrator with integrated tracking and light delivery system with summation
Maxey, Lonnie Curt
2015-05-05
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
Solar concentrator with integrated tracking and light delivery system with collimation
Maxey, Lonnie Curt
2015-06-09
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
NASA Technical Reports Server (NTRS)
Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III
2013-01-01
The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir
2015-09-28
It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.
NASA Astrophysics Data System (ADS)
Guo, Minghuan; Wang, Zhifeng; Sun, Feihu
2016-05-01
The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed to be circular Gaussian type. Then a parabolic trough solar collector of Euro Trough 150 is used as an example object to apply this BRT method. Euro Trough 150 is composed of RP3 mirror facets, with the focal length of 1.71m, aperture width of 5.77m, outer tube diameter of 0.07m. Also to verify the simulated flux density distributions, we establish a modified MCRT method. For this modified MCRT method, the random rays with weighted energy elements are launched in the close-related rectangle region in the aperture plane of the parabolic concentrator and the optical errors are statistically modeled in the stages of forward ray tracing process. Given the same concentrator geometric parameters and optical error values, the simulated results from these two ray tracing methods are in good consistence. The two highlights of this paper are the new optical simulation method, BRT, and figuring out the close-related mirror surface region for BRT and the close-related aperture region for MCRT in advance to effectively simulate the solar flux distribution on the absorber surface of a parabolic trough collector.
Concentrating Solar Power Projects by Technology | Concentrating Solar
) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block
Concentrating Solar Power Projects - Diwakar | Concentrating Solar Power |
Gross: 100.0 MW Status: Under construction Start Year: 2013 Do you have more information, corrections ): SolarPACES Start Production: March 2013 PPA/Tariff Rate: 10.5 Rs per kWh Project Type: Commercial
Concentrating Solar Power Projects - Agua Prieta II | Concentrating Solar
Turbine Capacity: Net: 12.0 MW Gross: 14.0 MW Status: Under construction Start Year: 2014 Do you have more ): SolarPACES Break Ground: November 2011 Start Production: 2014 Project Type: Commercial Incentives: Global
Concentrating Solar Power Projects - Megha Solar Plant | Concentrating
: Parabolic trough Turbine Capacity: Net: 50.0 MW Gross: 50.0 MW Status: Operational Start Year: 2014 Do you /Planned) Contact(s): Webmaster Solar Break Ground: December 2011 Start Production: November 13, 2014 Cost
Concentrating Solar Power Projects - ISCC Duba 1 | Concentrating Solar
: Parabolic trough Turbine Capacity: Net: 43.0 MW Gross: 43.0 MW Status: Under construction Start Year: 2017 Solar Break Ground: 2016 Start Production: 2017 Participants Developer(s): Saudi Electricity Co. Owner(s
Non-tracking solar energy collector system
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1978-01-01
A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.
Battle Keeps Solar Energy in Receiver
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Hale, R. R.
1982-01-01
Mirror structure in solar concentrator reduces heat loss by reflection and reradiation. Baffle reflects entering rays back and forth in solar-concentrator receiver until they reach heat exchanger. Similarly, infrared energy reradiated by heat exchanger is prevented from leaving receiver. Surfaces of baffle and inside wall of receiver are polished and highly reflective at solar and infrared wavelengths.
Concentrating Solar Power Projects in the United States | Concentrating
States are listed belowââ¬"alphabetical by state, then by project name. You can browse a project profile by clicking on the project name. Arizona Maricopa Solar Project (Maricopa) Saguaro Power Plant Solana Generating Station (Solana) California Genesis Solar Energy Project Ivanpah Solar Electric
Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events
NASA Technical Reports Server (NTRS)
Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.;
2001-01-01
A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.
Micro Solar Cells with Concentration and Light Trapping Optics
NASA Astrophysics Data System (ADS)
Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph
2013-03-01
Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293
Nonimaging concentrators for solar thermal energy
NASA Astrophysics Data System (ADS)
Winston, R.; Gallagher, J. J.
1980-03-01
A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.
Concentrator enhanced solar arrays design study
NASA Technical Reports Server (NTRS)
Lott, D. R.
1978-01-01
The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
Planar waveguide concentrator used with a seasonal tracker.
Bouchard, Sébastien; Thibault, Simon
2012-10-01
Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.
Code of Federal Regulations, 2011 CFR
2011-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Code of Federal Regulations, 2010 CFR
2010-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Availability of solar energy reports from the National Solar Data Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
This booklet discusses the various types of reports published by the National Solar Data Program, lists the reports issued prior to July 15, 1981, and provides order blanks for obtaining copies of reports. The reports identified in the following pages are segmented into nine types: monthly performance reports; solar energy performance evaluation reports; solar performance bulletins;environmental data reports;solar project description reports;solar project cost reports;program information reports;comparative reports; and reliability and material assessment reports. For convenience, available site-specific reports are listed alphabetically by site name, solar system type, and by state. These reports are disseminated through the US Department of Energy,more » Technical Information Center, P.O. Box 62, Oak Ridge, Tennessee 37830.« less
Concentrating Solar Power Projects - Atacama-1 | Concentrating Solar Power
Capacity: Net: 110.0 MW Gross: 110.0 MW Status: Under construction Start Year: 2018 Do you have more Contact(s): Luis Rejano Company: Abengoa Solar Break Ground: May 14, 2014 Start Production: June 2018
NASA Technical Reports Server (NTRS)
Forney, J. A.; Walker, D.; Lanier, M.
1979-01-01
Computer program, SHCOST, was used to perform economic analyses of operational test sites. The program allows consideration of the economic parameters which are important to the solar system user. A life cycle cost and cash flow comparison is made between a solar heating system and a conventional system. The program assists in sizing the solar heating system. A sensitivity study and plot capability allow the user to select the most cost effective system configuration.
Modeling and analysis of the solar concentrator in photovoltaic systems
NASA Astrophysics Data System (ADS)
Mroczka, Janusz; Plachta, Kamil
2015-06-01
The paper presents the Λ-ridge and V-trough concentrator system with a low concentration ratio. Calculations and simulations have been made in the program created by the author. The results of simulation allow to choose the best parameters of photovoltaic system: the opening angle between the surface of the photovoltaic module and mirrors, resolution of the tracking system and the material for construction of the concentrator mirrors. The research shows the effect each of these parameters on the efficiency of the photovoltaic system and method of surface modeling using BRDF function. The parameters of concentrator surface (eg. surface roughness) were calculated using a new algorithm based on the BRDF function. The algorithm uses a combination of model Torrance-Sparrow and HTSG. The simulation shows the change in voltage, current and output power depending on system parameters.
DOE Solar Energy Technologies Program FY 2005 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.
Air pollution may alter efforts to mitigate climate change
NASA Astrophysics Data System (ADS)
Yassaa, Noureddine
2016-02-01
Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).
NASA Astrophysics Data System (ADS)
Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.
1995-03-01
The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.
Nonimaging solar concentrator with uniform irradiance
NASA Astrophysics Data System (ADS)
Winston, Roland; O'Gallagher, Joseph J.; Gee, Randy C.
2004-09-01
We report results of a study our group has undertaken under NREL/DOE auspices to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators.
An update on SCARLET hardware development and flight programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.A.; Murphy, D.M.; Piszczor, M.F.
1995-10-01
Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such asmore » MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the `array level` and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.« less
Optimization of antireflection coating design for multijunction solar cells and concentrator systems
NASA Astrophysics Data System (ADS)
Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin
2008-06-01
Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.
2013-01-01
One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-09-01
NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.
Concentrating Solar Power Projects - Ilanga I | Concentrating Solar Power |
Fluid Type: Thermal oil Solar-Field Inlet Temp: 293°C Solar-Field Outlet Temp: 393°C Power Block Turbine Capacity (Gross): 100.0 MW Turbine Capacity (Net): 100.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 4.5 hours Thermal Storage Description: Molten salt
SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
1997-01-01
The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.
Non-tracking solar concentrator with a high concentration ratio
Hinterberger, Henry
1977-01-01
A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.
NASA Astrophysics Data System (ADS)
Freeland, S.; Hurlburt, N.
2005-12-01
The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.
Initial Test Bed for Very High Efficiency Solar Cells
2008-05-01
efficiency, both at the solar cell and module levels. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...Benítez, P. (2005). Nonimaging Optics . Boston: Elsevier Academic Press. [6] Luque, A.L. & Andreev, V.M. (2007). Concentrator Photovoltaics. New York: Springer. ...lateral optical concentrating system, which splits the incident solar spectrum into several bands and allows different optical and photovoltaic
High-performance flat-panel solar thermoelectric generators with high thermal concentration.
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-05-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved
Experiments on solar photovoltaic power generation using concentrator and liquid cooling
NASA Technical Reports Server (NTRS)
Beam, B. H.; Hansen, C. F.
1975-01-01
Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.
Integrated Solar Concentrator and Shielded Radiator
NASA Technical Reports Server (NTRS)
Clark, David Larry
2010-01-01
A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.
1990-01-01
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.
Air Brayton Solar Receiver, phase 2
NASA Technical Reports Server (NTRS)
Deanda, L. E.
1981-01-01
An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Gustafson, Robert J.
2011-01-01
A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beesing, M. E.; Buchholz, R. L.; Evans, R. A.
1980-01-01
An investigation of the optical performance of a variety of concentrating solar collectors is reported. The study addresses two important issues: the accuracy of reflective or refractive surfaces required to achieve specified performance goals, and the effect of environmental exposure on the performance concentrators. To assess the importance of surface accuracy on optical performance, 11 tracking and nontracking concentrator designs were selected for detailed evaluation. Mathematical models were developed for each design and incorporated into a Monte Carlo ray trace computer program to carry out detailed calculations. Results for the 11 concentrators are presented in graphic form. The models andmore » computer program are provided along with a user's manual. A survey data base was established on the effect of environmental exposure on the optical degradation of mirrors and lenses. Information on environmental and maintenance effects was found to be insufficient to permit specific recommendations for operating and maintenance procedures, but the available information is compiled and reported and does contain procedures that other workers have found useful.« less
South Dakota | Solar Research | NREL
South Dakota. Utilities and developers may offer community solar programs. State Incentive Programs Program Administrator Incentive Renewable Energy System Exemption South Dakota Department of Revenue and more than $2 million. The incentive was designed for wind, but solar PV is also eligible. Utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff; Murphy, Sean
A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, John T.; Cliburn, Jill
The Community Solar Value Project (CSVP) is designed to assist electric utilities in designing better community solar programs. Better programs seek new sources of value to promote “win-win” solutions between utilities and their customers. The CSVP focused on five “challenge areas” in identifying new sources of value: - Strategic solar design for community solar projects (including technology choices, siting, orientation, and related issues) - Market research and targeted marketing approaches (for program design and for customer recruitment) - Procurement and financing (for establishing best practices that can bring economies of scale and economies of expertise) - Integration of “companion measures”more » (such as storage and demand-response options that can benefit customer and utility net load shapes) - Pricing in program design (including best practices for integration of identified value in program prices or credits) The CSVP directly engaged the Sacramento Municipal Utility District (SMUD), the Public Service Company of New Mexico (PNM), and more than a dozen other utilities to develop improved community solar program designs. The outcomes include a plan at SMUD for over 100 MW or more of community and shared solar and support for new or expanded programs at 15 other utilities so far. Resulting best-practice solutions have not only informed program applications, but also have generated discussion among experts and industry associations about the new opportunities and challenges CSVP has brought forth. In these ways, the CSVP has impacted community solar programs and DER plans, competitive innovations and policies nationwide. The CSVP team has been led by Extensible Energy under John Powers, President and CEO. Jill Cliburn, of Santa Fe, NM-based Cliburn and Associates, has served as Principal Investigator. The team also benefitted from expertise from Navigant, Olivine Inc. and Millennium Energy, LLC, in addition to the collaborative and cost-sharing contributions of its utility partners. The CSVP team participated fully in the Solar Market Pathways Program, which was initiated under the U.S. Department of Energy SunShot program and reports to the U.S. Department of Energy Solar Energy Technologies Office. This report summarizes a multi-disciplinary project that took place over 33 months from January, 2015 through September, 2017.« less
Flat-plate solar array project. Volume 2: Silicon material
NASA Technical Reports Server (NTRS)
Lutwack, R.
1986-01-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
A high-resolution optical measurement system for rapid acquisition of radiation flux density maps
NASA Astrophysics Data System (ADS)
Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd
2017-06-01
To identify the power and flux density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based measurement system FATMES (Flux and Temperature Measurement System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing measurement system. The measurement system FMAS (Flux Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new measurement system is no longer associated with the facilities Solar Furnace and High Flux Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The measurement accuracy of FMAS is determined to at most ±3 % until now. The error of measurement of FATMES is at least 2 % higher according to the conducted comparison tests.
Flat-plate solar array project. Volume 2: Silicon material
NASA Astrophysics Data System (ADS)
Lutwack, R.
1986-10-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells
NASA Astrophysics Data System (ADS)
Saadah, Mohammed Ahmed
The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.
Concentrating Solar Power Projects - Andasol-3 | Concentrating Solar Power
, 2013 Project Overview Project Name: Andasol-3 (AS-3) Country: Spain Location: Aldeire (Granada) Owner(s : Granada Lat/Long Location: 37°13' 42.7" North, 3°4' 6.73" West Land Area: 200 hectares Solar
Achievement of ultrahigh solar concentration with potential for efficient laser pumping.
Gleckman, P
1988-11-01
Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.
Solar concentrator with diffuser segments
NASA Astrophysics Data System (ADS)
Esparza, Diego; Moreno, Ivan
2011-08-01
Solar energy systems use concentrating optics with photovoltaic cells for optimizing the performance. Advanced concentrators are designed to maximize both the light collection and the spatial uniformity of radiation. This is important because irradiance uniformity is critical for all types of photovoltaic cells. This is difficult to achieve with traditional concentrators, which are built with polished optical surfaces. In this work we propose a new concept of solar concentrator which uses small diffuser segments in key points to increase the irradiation uniformity. We experimentally demonstrate this new concept by analyzing the effects on both efficiency and irradiance uniformity due to the incorporation of scattering ribbons in a compound parabolic concentrator.
NASA Technical Reports Server (NTRS)
Wilkerson, Gary W.; Huegele, Vinson
1998-01-01
The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.
Teaching and sharing about the Sun in the United States and with Spanish language resources
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Craig, N.; Hawkins, I.; Walker, C.
2007-05-01
The United States has many different scientific agencies that fund research on solar science, including the National Aeronautics and Space Agency (NASA) and the National Science Foundation (NSF). Because there is a large population of Spanish-speaking people in the US, some of the resources developed by the education components of research projects take into account broader cultural perspectives on science and are developed in Spanish. We will describe the education and outreach programs of three solar programs funded by NASA and NSF, the Solar TErrestrial RElations Observatory (STEREO) program, the "We Are One Under the Sun" Program, and the National Optical Astronomy Observatory (NOAO) education program. The STEREO program aims to teach about the Sun through different venues including teacher workshops and courses, teacher materials, turning solar data from STEREO into sound, working with museums, and creating solar posters, CDs, DVDs, and lenticulars. The "We are One Under the Sun" program focuses on Native Americans and Hispanics of Native heritage. It works by merging culture, ancient observatories, and the latest NASA solar science to engage children, youth, and the general public in science and technology through solar traditions in their own indigenous culture. The NOAO Educational Outreach Program was established to make the science and scientists of NOAO more accessible to the K-12 and college-level communities. We will focus on the NOAO solar projects and Spanish-Language Astronomy Materials Educational Center program, which provides multiple types of Spanish- language materials for teachers. These programs have had different levels of outreach in Spanish-speaking countries, namely Mexico (STEREO and "We are One Under the Sun") and Chile (NOAO). We will describe these efforts and give links to the Spanish and English resources available to learn and teach about the Sun.
ERIC Educational Resources Information Center
Green, C. Paul; Orsak, Charles G.
To determine the need for the development of a vocational education program in solar energy, an advisory committee considered opportunities for solar energy technicians and the need for the development of training programs and curricula and formulated recommendations for a program and curriculum. They concluded that the immediate need for persons…
NASA Technical Reports Server (NTRS)
Jenkins, Gregory S.
1993-01-01
Solar energy at the top of the atmosphere (solar constant), rotation rate, and carbon dioxide (CO2) may have varied significantly over Earth's history, especially during the earliest times. The sensitivity of a general circulation model to faster rotation, enhanced CO2 concentration, and reduced solar constant is presented. The control simulation of this study has a solar constant reduced by 10% the present amount, zero land fraction using a swamp ocean surface, CO2 concentrations of 330 ppmv, present-day rotation rate, and is integrated under mean diurnal and seasonal solar forcing. Four sensitivity test are performed under zero land fraction and reduced solar constant conditions by varying the earth's rotation rate atmospheric CO2 concentration and solar constant. The global mean sea surface temperatures (SSTs) compared to the control simulation: were 6.6 K to 12 K higher than the control's global mean temperature of 264.7 K. Sea ice is confined to higher latitudes in each experiment compared to the control, with ice-free areas equatorward of the subtropics. The warm SSTs are associated with a 20% reduction in clouds for the rotation rate experiments and higher CO2 concentrations in the other experiments. These results are in contrast to previous studies that have used energy balance and radiative convective models. Previous studies required a much larger atmospheric CO2 increase to prevent an ice-covered Earth. The results of the study, suggest that because of its possible feedback with clouds, the general circulation of the atmosphere should be taken into account in understanding the climate of early Earth. While higher CO2 concentrations are likely in view of the results, very large atmospheric CO2 concentrations may not be necessary to counterbalance the lower solar constant that existed early in Earth's history.
NASA Technical Reports Server (NTRS)
1978-01-01
General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.
Future NASA solar system exploration activities: A framework for international cooperation
NASA Technical Reports Server (NTRS)
French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.
1992-01-01
The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.
75 FR 78992 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
...--Solar Energy Development in Six Southwestern States, To Establish a New BLM Solar Energy Program applicable to Utility-Scale Solar Energy Development and DOE's Proposed Action to Develop new Program... 01/20/2011. EIS No. 20100339, Final EIS, BLM, CA, Adoption--Genesis Solar Energy Project, Application...
Indiana | Solar Research | NREL
Incentive Programs Indiana exempts solar PV modules, racking, and inverter from state sales and use taxes . The entire solar generating system is exempt from property taxation. Utility Incentive Programs Utility Incentive Limitations Northern Indiana Public Service Company (Solar PV feed-in-tariff) $0.1564
Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Leigh, Larry M.; Tinker, Michael L.; McConnaughey, Paul (Technical Monitor)
2002-01-01
Solar-thermal propulsion is a concept for producing thrust sufficient for orbital transfers and requires innovative, lightweight structures. This note presents a description of an inflatable concentrator that consists of a torus, lens simulator, and three tapered struts. Modal testing was discussed for characterization and verification of the solar concentrator assembly. Finite element shell models of the concentrator were developed using a two-step nonlinear approach, and results were compared to test data. Reasonable model-to-test agreement was achieved for the torus, and results for the concentrator assembly were comparable to the test for several modes.
Simple Köhler homogenizers for image-forming solar concentrators
NASA Astrophysics Data System (ADS)
Zhang, Weiya; Winston, Roland
2010-08-01
By adding simple Köhler homogenizers in the form of aspheric lenses generated with an optimization approach, we solve the problems of non-uniform irradiance distribution and non-square irradiance pattern existing in some image-forming solar concentrators. The homogenizers do not require optical bonding to the solar cells or total internal reflection surface. Two examples are shown including a Fresnel lens based concentrator and a two-mirror aplanatic system.
Solar Thermal Propulsion for Microsatellite Manoeuvring
2004-09-01
of 14-cm and 56-cm diameter solar concentrating mirrors has clearly validated initial optical ray trace modelling and suggests that there is...concentrating mirror’s focus, permitting multiple mirror inputs to heat a single receiver and allowing the receiver to be placed anywhere on the host...The STE is conceptually simple, relying on a mirror or lens assembly to collect and concentrate incident solar radiation. This energy is focused, by
Self-tracking solar concentrator with an acceptance angle of 32°.
Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe
2014-12-15
Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).
Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, JT; Park, S; Chen, CL
2013-03-01
We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less
Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R
2015-03-01
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.
2015-03-15
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less
Natural conditions and administrative settings for concentrating photovoltaics in China
NASA Astrophysics Data System (ADS)
Fu, Ling; Chen, Xiaoyuan; Leutz, Ralf
2012-10-01
It is an inevitable trend for China to develop green technologies to help the country to produce cleaner energy and to consume it more efficiently, under the pressure of energy security concern, the nation's emissions trajectory and sustainable economic development. The abundant solar resources in West China provide a big potential to utilize the solar energy. Under the promotion of key incentive policies including both feed-in-tariff (FIT) mechanisms and government rebate programs, China has become a major global solar force in photovoltaic (PV) industry both in manufacturing and in the installation of flat-plate products, with 16 GW production and 2.75 GW installation achieved in the year 2011. As a branch of PV technology, concentrating photovoltaics (CPV) technology with several years' development history in China is presently moving from pilot facilities to commercial-scale applications. Several MW-CPV power plants have been installed by both domestic and western companies in China, factories with several hundred-MW production capacity are being planned or built. Sustainable performance and reliability improvement of CPV modules, a vertical integration of supply chain in CPV industry aiming at a cost reduction, a sufficient grid infrastructure for facilitating the West-East and North-South electricity transmission will promote Chinese CPV market to actually initiate, develop and mature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.
2010-06-01
This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policymore » recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.« less
Threshold pump power of a solar-pumped dye laser
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.
1988-01-01
Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.
More Efficient Solar Thermal-Energy Receiver
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1987-01-01
Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
Simple Experiments on the Use of Solar Energy
ERIC Educational Resources Information Center
Vella, G. J.; Goldsmid, H. J.
1976-01-01
Describes 5 solar energy experiments that can be used in secondary school: flat-plate collector, solar thermoelectric generator, simple concentrators, solar cell, and natural storage of solar energy. (MLH)
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2006-05-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.
Transmissive Diffractive Optical Element Solar Concentrators
NASA Technical Reports Server (NTRS)
Baron, Richard; Moynihan, Philip; Price, Douglas
2008-01-01
Solar-thermal-radiation concentrators in the form of transmissive diffractive optical elements (DOEs) have been proposed as alternatives to mirror-type solar concentrators now in use. In comparison with functionally equivalent mirror-type solar concentrators, the transmissive, diffractive solar concentrators would weigh and cost less, and would be subject to relaxed mechanical tolerances. A DOE concentrator would be made from a thin, flat disk or membrane of a transmissive material having a suitable index of refraction. By virtue of its thinness, the DOE concentrator would have an areal mass density significantly less than that of a functionally equivalent conventional mirror. The DOE concentrator would have a relatively wide aperture--characterized by a focal-length/aperture-diameter ratio ('f number') on the order of 1. A kinoform (a surface-relief phase hologram) of high diffractive order would be microfabricated onto one face of the disk. The kinoform (see figure) would be designed to both diffract and refract incident solar radiation onto a desired focal region, without concern for forming an image of the Sun. The high diffractive order of this kinoform (in contradistinction to the low diffractive orders of some other kinoforms) would be necessary to obtain the desired f number of 1, which, in turn, would be necessary for obtaining a desired concentration ratio of 2,500 or greater. The design process of optimizing the concentration ratio of a proposed DOE solar concentrator includes computing convolutions of the optical bandwidth of the Sun with the optical transmission of the diffractive medium. Because, as in the cases of other non-imaging, light-concentrating optics, image quality is not a design requirement, the process also includes trading image quality against concentration ratio. A baseline design for one example calls for an aperture diameter of 1 m. This baseline design would be scalable to a diameter as large as 10 m, or to a smaller diameter for a laboratory test article. Initial calculations have indicated that the characteristics of the test article would be readily scalable to a full-size unit.
Computing Spacecraft Solar-Cell Damage by Charged Particles
NASA Technical Reports Server (NTRS)
Gaddy, Edward M.
2006-01-01
General EQFlux is a computer program that converts the measure of the damage done to solar cells in outer space by impingement of electrons and protons having many different kinetic energies into the measure of the damage done by an equivalent fluence of electrons, each having kinetic energy of 1 MeV. Prior to the development of General EQFlux, there was no single computer program offering this capability: For a given type of solar cell, it was necessary to either perform the calculations manually or to use one of three Fortran programs, each of which was applicable to only one type of solar cell. The problem in developing General EQFlux was to rewrite and combine the three programs into a single program that could perform the calculations for three types of solar cells and run in a Windows environment with a Windows graphical user interface. In comparison with the three prior programs, General EQFlux is easier to use.
Solar and magnetospheric science
NASA Technical Reports Server (NTRS)
Timothy, A. F.; Schmerling, E. R.; Chapman, R. D.
1976-01-01
The current status of the Solar Physics Program and the Magnetospheric Physics Program is discussed. The scientific context for each of the programs is presented, then the current programs and future plans are outlined.
Facilities | Concentrating Solar Power | NREL
sun in elevation and azimuth. Concentrating collectors require 2-axis tracking to focus sunlight on a would imply tracking to minimize variation in solar resource during on-sun testing. As applicable, the . Hexagonal mirrors of the HFSF's primary system concentrate the sun, which can be further concentrated as
Installation package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.
Optical design of a solar flux homogenizer for concentrator photovoltaics.
Kreske, Kathi
2002-04-01
An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.
Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo
2016-03-01
The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.
Development of solar concentrators for high-power solar-pumped lasers.
Dinh, T H; Ohkubo, T; Yabe, T
2014-04-20
We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2 m×2 m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0 W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.
Solar dynamic power for Space Station Freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
Solar dynamic power for space station freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells
NASA Astrophysics Data System (ADS)
Sancho-Martínez, Diego; Schmid, Martina
2017-11-01
Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10 × to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µm2 to 1 mm2). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.
Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability
NASA Astrophysics Data System (ADS)
French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.
2010-10-01
Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.
Concentrating Solar Power Projects in Morocco | Concentrating Solar Power |
;alphabetical by project name. You can browse a project profile by clicking on the project name. Airlight Energy Ait-Baha Pilot Plant eCare Solar Thermal Project IRESEN 1 MWe CSP-ORC pilot project ISCC Ain Beni
California Multifamily Affordable Solar Housing Program: benefitting both owners and tenants
California’s Multifamily Affordable Solar Housing (MASH) program has brought solar energy to thousands of multifamily building owners and tenants across the state. Discover lessons learned through this case study.
NASA Technical Reports Server (NTRS)
Rockey, D. E.
1979-01-01
A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.
Cost Estimates Of Concentrated Photovoltaic Heat Sink Production
2016-06-01
steady year-round sunshine and in many cases high levels of direct normal irradiance (DNI). Beyond traditional PV , some climates favor rooftop solar ...water heating, but the majority of installed solar systems, are PV (EIA, 2015). Solar power generation has great benefits for the DON considering the...systems concentrate and focus sunlight onto a smaller focal point in order to take advantage of the highly efficient solar cells. Generally, PV
Boston, Massachusetts: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston ismore » facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.« less
Revised congressional budget request, FY 1982. Conservation and renewable energy program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
Programs dealing with conservation and renewable energy are reprinted from the Revised Congressional Budget Request FY 1982. From Volume 7, Energy Conservation, information is presented on: buildings and community systems; industrial programs; transportation programs; state and local programs; inventor's program energy conversion technology; energy impact assistance; and residential/commercial retrofit. From Volume 2, Energy Supply Research and Development, information and data are presented on: solar building applications; solar industrial applications; solar power applications; solar information systems; SERI facility; solar international activities; alcohol fuels; geothermal; and hydropower. From Volume 6, Energy Production, Demonstration, and Distribution, information and data on solar energy production,more » demonstration, and distribution are presented. From Volume 3, Energy Supply and R and D Appropriation, information and data on electric energy systems and energy storage systems are included. From Volume 4, information and data are included on geothermal resources development fund. In Volume 5, Power Marketing Administrations, information and data are presented on estimates by appropriations, positions and staff years by appropriation, staffing distribution, and power marketing administrations. Recissions and deferrals for FY 1981 are given. (MCW)« less
NREL Projects Awarded More Than $3 Million to Advance Novel Solar
in Grid Operations," evaluating a research solution to better integrate solar power generation funding program, which advances state-of-the-art techniques for predicting solar power generation to Office to advance predictive modeling of solar power as part of its Solar Forecasting 2 funding program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.
Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidalmore » variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period.« less
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Solar concentrator panel and gore testing in the JPL 25-foot space simulator
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Argoud, M. J.
1981-01-01
The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.
2016-09-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.
2017-01-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Optimization of concentrator photovoltaic solar cell performance through photonic engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, James
The goal of this program was to incorporate two new and innovative design concepts into the design and production of CPV cells that have near zero added cost, yet significantly increase the operational efficiency of CPV modules. The program focused developing luminescent coupling effects and radiative cooling layers to increase efficiency and suppress CPV module power losses due to spectral variations and heating. The major results of the program were: 1) The optics of three commercial refractive (Fresnel) concentrators were characterized and prevent application of radiative cooling concepts due to strong mid-IR absorption (4-12µm) required to effectively radiate blackbody radiationmore » from the cells and provide cooling. Investigation of alternative materials for the concentrator lenses produced only undesirable options—materials with reasonable mid-IR transmission for cooling only had about 30-40 visible transmission, thus reducing incident sunlight by >50%. While our investigation was somewhat limited, our work suggests that the only viable concentrator system that can incorporate radiative cooling utilizes reflective optics. 2) With limited ability to test high concentration CPV cells (requires outdoor testing), we acquired both semi-crystalline and crystalline Si cells and tested them in our outdoor facility and demonstrated 4°C cooling using a simple silica layer coating on the cells. 3) Characterizing Si cells in the IR associated with radiative cooling, we observed very significant near-IR absorption that increases the cell operating temperature by a similar amount, 4-5°C. By appropriate surface layer design, one can produce a layer that is highly reflective in the near-IR (1.5-4µm) and highly emissive in the mid-IR (5-15µm), thus reducing cell operational temperature by 10°C and increasing efficiency by ~1% absolute. The radiative cooling effect in c-Si solar cells might be further improved by providing a higher thermal conductive elastomer for securing the cover glass on top of the AR-coating. Since it was never imagined that the front surface would provide any cooling for solar cells, thermal conductivity of this elastomer was never a design consideration, but, improving the conductivity could decrease cell temperature by another 3-4°C. The combined effect could be an ~1.5% absolute increase in cell and module efficiency, a very significant improvement. 4) Developed a numerical model to explore dependence of luminescent coupling efficiency over a broad range of operating conditions. We developed a novel method and facility to experimentally measure the luminescent coupling that can be used to confirm the dependence of luminescent coupling on multi-junction cell design parameters.« less
The design of large petal-type paraboloidal solar collectors for the ASTEC Program requires a capability for determining the distortion and stress...analysis of a parabolic curved beam is given along with a numerical solution and digital program. The dynamic response of the ASTEC flight-test vehicle is discussed on the basis of modal analysis.
Spraylon fluorocarbon encapsulation for silicon solar cell arrays
NASA Technical Reports Server (NTRS)
1977-01-01
A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.
Saudi Arabia's experience in solar energy applications
NASA Astrophysics Data System (ADS)
Huraib, Fahad S.
The progress in solar energy research in Saudi Arabia is discussed with emphasis on the efforts of a government research entity - King Adbulaziz City for Science and Technology (KACST). Three programs currently underway at KACST are considered: the continuation of activities initiated under the Solar Energy Research American/Saudi (SOLERAS) program, a Saudi/German program, and projects developed and conducted completely by KACST. The objectives, management structure, and program organization of SOLEARS are outlined, and attention is focused on urban, rural/agricultural, and industrial applications as well as resource development activities and accomplishments. Solar-hydrogen projects pursued together with Germany are reviewed, and their objectives, program management, and technical plans are covered. Domestic programs dealing with photovoltaic-powered lightning and hot-water systems are summarized.
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
Review of avian mortality studies at concentrating solar power plants
NASA Astrophysics Data System (ADS)
Ho, Clifford K.
2016-05-01
This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.
NASA Astrophysics Data System (ADS)
Clover, J. M.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Bisi, M. M.; Tokumaru, M.; Fujiki, K.
2010-12-01
The Solar Mass Ejection Imager (SMEI) observes Thomson-scattered white light from heliospheric electrons across almost all of the sky nearly all of the time since early 2003. Interplanetary scintillation (IPS) observations of velocity and g-level provide similar structure information but with a less-complete sky-and-time coverage. The Solar TErrestrial RElations Observatory (STEREO) twin spacecraft outer Heliospheric Imagers (HI-2) currently image the heliosphere in Thomson-scattered light near the ecliptic plane far from Earth. The Solar-Terrestrial Environment Laboratory (STELab) IPS observations provide IPS velocity and g-level values, which in conjunction with our tomographic reconstruction program, yield velocities and densities of the inner heliosphere in three dimensions. The same tomographic program substitutes SMEI Thomson-scattering brightness information for the g-level values to derive heliospheric densities from these data alone. We look at the global structure of the heliosphere concentrating mainly on three events from 2007 through the rise phase of Solar Cycle 24. The first event, observed in both the IPS and SMEI defines the three-dimensional velocity and density structure around the time of the shock observed at Earth on 02:02 UT 17 December 2007. The second event, seen only by SMEI, is that of the 23-26 April 2008 coronal mass ejection (CME) and its interplanetary counterpart. The third event is the CME (and its interplanetary counterpart) that took place 17 January 2010 and arrived at STEREO-B about four days later. For each event, we isolate the particular portion of the heliosphere attributed to the transient density structure using our tomographic technique, and then estimate its extent.
Expanding public outreach: The solar system ambassadors program.
NASA Astrophysics Data System (ADS)
Ferrari, K.
The Solar System Ambassadors Program is a public outreach program sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California designed to work with motivated volunteers across the nation. These competitively selected volunteers or- ganize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non_traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. In this talk I will give an overview of the program and discuss lessons learned. The Solar System Ambassadors Program is , an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA)
Advanced tendencies in development of photovoltaic cells for power engineering
NASA Astrophysics Data System (ADS)
Strebkov, D. S.
2015-01-01
Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Solar-Terrestrial Science Strategy Workshop
NASA Technical Reports Server (NTRS)
Banks, Peter M. (Editor); Roberts, William T. (Editor); Kropp, Jack (Editor)
1989-01-01
The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program.
Method and apparatus for uniformly concentrating solar flux for photovoltaic applications
Jorgensen, Gary J.; Carasso, Meir; Wendelin, Timothy J.; Lewandowski, Allan A.
1992-01-01
A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.
Concentrating Solar Power Projects - Delingha 50MW Thermal Oil Parabolic
Trough project | Concentrating Solar Power | NREL Delingha 50MW Thermal Oil Parabolic Trough project Status Date: April 17, 2017 Project Overview Project Name: Delingha 50MW Thermal Oil Parabolic Contractor: IDOM : Thermal energy storage system engineering Plant Configuration Solar Field # of Loops: 190
Concentrating Solar Power Projects - Urat Middle Banner 100MW Thermal Oil
Parabolic Trough project | Concentrating Solar Power | NREL Middle Banner 100MW Thermal Oil Thermal Oil Parabolic Trough project Country: China Location: Urat Middle Banner (Inner Mongolia) Owner(s , 2017 Start Production: 2018 Participants Developer(s): Changzhou Royal Tech Solar Thermal Equipment Co
Concentrating Solar Power Projects - Rayspower Yumen 50MW Thermal Oil
Trough project | Concentrating Solar Power | NREL Rayspower Yumen 50MW Thermal Oil Trough project Status Date: January 31, 2017 Project Overview Project Name: Rayspower Yumen 50MW Thermal Oil . Plant Configuration Solar Field Heat-Transfer Fluid Type: Thermal oil Power Block Turbine Capacity
Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting
NASA Astrophysics Data System (ADS)
Yao, Yuhan; Liu, He; Wu, Wei
2014-06-01
We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Fincannon, James
1995-01-01
The United States and Russia have agreed to jointly develop a solar dynamic (SD) system for flight demonstration on the Russian MIR space station starting in late 1997. Two important components of this SD system are the solar concentrator and heat receiver provided by Russia and the U.S., respectively. This paper describes optical analysis of the concentrator and solar flux predictions on target receiver surfaces. The optical analysis is performed using the code CIRCE2. These analyses account for finite sun size with limb darkening, concentrator surface slope and position errors, concentrator petal thermal deformation, gaps between petals, and the shading effect of the receiver support struts. The receiver spatial flux distributions are then combined with concentrator shadowing predictions. Geometric shadowing patterns are traced from the concentrator to the target receiver surfaces. These patterns vary with time depending on the chosen MIR flight attitude and orbital mechanics of the MIR spacecraft. The resulting predictions provide spatial and temporal receiver flux distributions for any specified mission profile. The impact these flux distributions have on receiver design and control of the Brayton engine are discussed.
Solar Resources for Local Governments | State, Local, and Tribal
integrating photovoltaic systems throughout the city. City and County Solar Photovoltaics Training Program NREL is offering a no-cost PV training program for 50 cities and counties seeking to go solar on their facilities-both buildings and land. For detailed information on the training program, view the City and
Ohm's Law and Solar Energy. Courseware Evaluation for Vocational and Technical Education.
ERIC Educational Resources Information Center
Gates, Earl; And Others
This courseware evaluation rates the Ohm's Law and Solar Energy program developed by the Iowa Department of Public Instruction. (The program--not contained in this document--covers Ohm's law and resistance problems, passive solar energy, and project ideas and sources.) Part A describes the program in terms of subject area (construction and…
Concentrating Solar Power Projects - Morón | Concentrating Solar Power |
, 2018 Project Overview Project Name: Morón Country: Spain Location: Morón de la Frontera (Seville ? Background Technology: Parabolic trough Status: Operational Country: Spain City: Morón de la Frontera Region NREL Morón This page provides information on Morón, a concentrating solar power (CSP) project
Low-income Renewable Energy Programs: Case Studies of State Policy in California and Massachusetts
NASA Astrophysics Data System (ADS)
Kelly, Kaitlin
Energy policies aimed at reducing the burden of monthly utility costs on low-income families have been established since the 1970s. Energy use impacts low-income families and organizations through housing specific costs, health and wellness, and opportunity costs. States have begun to run renewable energy installation programs aimed at reducing costs for low-income communities. This thesis examines two of these programs, the solar photovoltaic policies in California as part of the Single Family Affordable Solar Housing and Multi-family Affordable Solar Housing programs, and the Low-income Solar Housing program in Massachusetts. Lessons learned from reviewing these programs are that renewable energy programs are an effective strategy for reducing utility costs for low-income communities, but that the total effectiveness of the program is dependent on removing cost barriers, implementing energy efficiency improvements, and increasing consumer education through established community networks and relationships.
Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE
NASA Technical Reports Server (NTRS)
Stern, Theodore G.; Lyons, John
2000-01-01
A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.
The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design
NASA Technical Reports Server (NTRS)
White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald
1988-01-01
The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.
Looking skyward to study ecosystem carbon dynamics
Dye, Dennis G.
2012-01-01
Between May and October 2011 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, conducted a field campaign at the ARM Southern Great Plains site in north central Oklahoma to evaluate a new instrument for quantitative image-based monitoring of sky conditions and solar radiation. The High Dynamic Range All-Sky Imaging System (HDR-ASIS) was developed by USGS to support studies of cloud- and aerosol-induced variability in the geometric properties of solar radiation (the sky radiance distribution) and its effects on photosynthesis and uptake of carbon dioxide (CO2) by terrestrial ecosystems. Under a clean, cloudless atmosphere when the Sun is above the horizon, most of the solar radiation reaching an area of the Earth's surface is concentrated in a beam coming directly from the Sun; a relatively small proportion arrives as diffuse radiation from the rest of the sky. Clouds and atmospheric aerosols cause increased scattering of the beam radiation, which increases the proportion of diffuse radiation at the surface.
Method for processing silicon solar cells
Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.
1997-05-06
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.
Method for processing silicon solar cells
Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.
1997-01-01
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.
Solar pumped lasers: Work in progress at the University of Chicago
NASA Astrophysics Data System (ADS)
Winston, Roland
Of the variety of solar energy conversion schemes that have been explored, the conversion of solar flux to coherent laser radiation is relatively new. Solar flux at sufficiently high concentrations to overcome threshold for the really important laser materials has not been available. This technological inhibition has recently been overcome through the application of nonimaging optics through the demonstration of concentration levels of 84,000 suns at the University of Chicago in a refractive medium (sapphire) and of over 20,000 suns in air at the Solar Energy Research Institute High Flux Facility. A thermodynamic overview is presented of solar lasers including solid state lasers and dye lasers.
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
High saturation solar light beam induced current scanning of solar cells.
Vorster, F J; van Dyk, E E
2007-01-01
The response of the electrical parameters of photovoltaic cells under concentrated solar irradiance has been the subject of many studies performed in recent times. The high saturation conditions typically found in solar cells that are subjected to highly concentrated solar radiation may cause electrically active cell features to behave differently than under monochromatic laser illumination, normally used in light beam induced current (LBIC) investigations. A high concentration solar LBIC (S-LBIC) measurement system has been developed to perform localized cell characterization. The responses of silicon solar cells that were measured qualitatively include externally biased induced cell current at specific cell voltages, I(V), open circuit voltage, V(oc), and the average rate of change of the cell bias with the induced current, DeltaV/DeltaI(V), close to the zero bias region. These images show the relative scale of the parameters of a cell up to the penetration depth of the solar beam and can be obtained with relative ease, qualifying important electrical response features of the solar cell. The S-LBIC maps were also compared with maps that were similarly obtained using a high intensity He-Ne laser beam probe. This article reports on the techniques employed and initial results obtained.
View-limiting shrouds for insolation radiometers
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Trentelman, G. F.
1985-01-01
Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.
ERIC Educational Resources Information Center
Burns, Barbara; And Others
The solar energy labor force is analyzed by identifying the importance of education and training in the commercialization and diffusion of solar technologies, discussing issues for planning and analysis of solar education and training efforts, and illustrating the range of programs and courses presently available. Four general perspectives are…
An atlas of solar events: 1996 2005
NASA Astrophysics Data System (ADS)
Artzner, G.; Auchère, F.; Delaboudinière, J. P.; Bougnet, M.
2006-01-01
Coronal mass ejections (CMEs) are observed in the plane of the sky in coronographic images. As the solar surface is masked by an occulting disk it is not clear whether halo CMEs are directed towards or away from the Earth. Observations of the solar corona on the solar disk by the extreme ultraviolet imaging telescope (EIT) on board the Solar Heliospheric Observatory SoHO can help to resolve this. Quasi-continuous observations of the solar corona were obtained from April 1997 up to the current date at a 12 min cadence in the coronal line of FeXII, as part of a “CME watch program”. At a slower 6 h cadence an additional synoptic program investigates the chromosphere and the corona at four different wavelengths. Large coronal solar events appear when viewing animations of the CME watch program. Fainter events do appear when viewing running difference animations of the CME watch program. When looking for additional spectral information from raw running differences of the synoptic program it is difficult to disentangle intrinsic solar events from the parasitic effect of the solar rotation. We constructed at www.ias.u-psud.fr/medoc/EIT/movies/ an atlas of more than 40,000 difference images from the synoptic programme, corrected for an average solar rotation, as well as more than 200,000 instantaneous and difference images from the CME watch program. We present case studies of specific events in order to investigate the source of darkenings or dimmings in difference images, due to the removal of emitting material, the presence of obscuring material or large changes in temperature. As the beneficial effect of correcting for the solar rotation vanishes at the solar limb, we do not investigate the case of prominence Doppler dimming. As a by-product of the atlas of solar events we obtain a number of quiet time sequences well suited to precisely measure the differential solar rotation by the apparent displacement of tracers.
Advanced reflector materials for solar concentrators
NASA Astrophysics Data System (ADS)
Jorgensen, Gary; Williams, Tom; Wendelin, Tim
1994-10-01
This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.
NASA Technical Reports Server (NTRS)
Gokcen, N. A.; Loferski, J. J.
1979-01-01
The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, C.S.; Osborn, D.E.
Through a small grant from the Center for Renewable Resources and a matching grant from the Arizona Solar Energy Commission, the Arizona Solar Energy Association has produced a state-wide catalogue of model solar projects. This catalogue presents some of the best solar and conservation projects in the state. It includes solar buildings, educational programs, community development programs, agricultural and industrial projects, state and legislative efforts, and commercial and business programs. Project selection was based on five main considerations: (1) cost-effectiveness, (2) valuable use of resources, (3) generation of jobs and transfer of skills, (4) replicability, and (5) scope. Shorter descriptionsmore » of significant projects not meeting the selection criteria were also included. The development of the catalogue program, its use and impact as a networking tool and the development and implementation of a regular updating program are described. The success of this type of program on information exchange, public education, and cross fertilization are explored. Special emphasis projects from the catalogue are also described.« less
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.
Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays
NASA Astrophysics Data System (ADS)
O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy
2001-11-01
We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
An implementation plan for priorities in solar-system space physics
NASA Technical Reports Server (NTRS)
Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.
1985-01-01
The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.
NASA Astrophysics Data System (ADS)
Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.
2015-09-01
Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, B.
1984-04-03
A solar concentrator comprises a solid block of a transparent material having a planar incident surface positioned to receive solar rays and, opposite this surface, a curved reflective surface so that the material of the block completely fills the space between these surfaces. At the incident surface an absorber is provided and the curvature of the reflective surface is such that it is at least partly parabolical and adapted to reflect solar rays traversing the body through the body again to the absorber.
Multi-crystalline II-VI based multijunction solar cells and modules
Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.
2015-06-30
Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.
National Program Plan for Research and Development in Solar Heating and Cooling. Interim Report.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the Energy Research and Development Administration (ERDA) program plan for solar heating and cooling of buildings and for agricultural and industrial process applications. An overview of the program plan is followed by a description of the ten paths to the solar heating and cooling of buildings and a brief discussion of the…
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, M.W.
1994-12-27
A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, Mark W.
1994-01-01
A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.
Activity and accomplishments of dish/Stirling electric power system development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1985-01-01
The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R
2014-09-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.
2018-01-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Solar System Educators Program
NASA Astrophysics Data System (ADS)
Knudsen, R.
2004-11-01
The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.
Applications of maximally concentrating optics for solar energy collection
NASA Astrophysics Data System (ADS)
O'Gallagher, J.; Winston, R.
1985-11-01
A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.
Theory and design of line-to-point focus solar concentrators with tracking secondary optics.
Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo
2013-12-10
The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.
Concentrating Solar Power Projects - Majadas I | Concentrating Solar Power
: March 20, 2017 Project Overview Project Name: Majadas I Country: Spain Location: Majadas de Tiétar (Cà comments? Background Technology: Parabolic trough Status: Operational Country: Spain City: Majadas de Tià : Biphenyl/Diphenyl oxide Solar-Field Outlet Temp: 393°C Power Block Turbine Capacity (Gross): 50.0 MW
Arkansas | Solar Research | NREL
programs. State Incentive Programs There are currently no statewide solar financial incentive programs in Wyoming. Program Administrator Incentive Arkansas Energy Technology Loans for Green Technology Arkansas for the most up-to-date and accurate information on state and utility policies and incentive programs
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Concentrating Solar Power Projects - Olivenza 1 | Concentrating Solar Power
Manufacturer: Siemens Turbine Description: 5 extractions Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description: Cooling Towers