Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.
2012-01-01
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186
Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G
2012-07-03
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.
Designing in vivo concentration gradients with discrete controlled release: a computational model
NASA Astrophysics Data System (ADS)
Walker, Edgar Y.; Barbour, Dennis L.
2010-08-01
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air–surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen rati...
Salt, Alec N
2008-01-01
Hypothesis Local application of dexamethasone-21-dihydrogene-phosphate (Dex-P) to the round window membrane (RWM) of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. Background In recent years, intratympanically-applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after round window (RW) application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur with lower concentrations expected in apical turns after RW application. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Methods Dex-P (10mg/ml) was administered to the RWM of guinea pigs (n=9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which ten samples, each of approximately 1μl, were taken sequentially from the cochlear apex into capillary tubes. Dex-P concentration of the samples was determined by HPLC. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in scala tympani to be quantified. Results The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along scala tympani (ST). After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17•103. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. Conclusion The existence of substantial basal-apical concentration gradients of Dex-P in ST perilymph was demonstrated experimentally. If the variability in peak concentration and gradient is also present under clinical conditions this may contribute to the heterogeneity of outcome that is observed after intratympanic application of glucocorticoids for various inner ear diseases. PMID:18277312
Mathematical modeling of sample stacking methods in microfluidic systems
NASA Astrophysics Data System (ADS)
Horek, Jon
Gradient focusing methods are a general class of experimental techniques used to simultaneously separate and increase the cross-sectionally averaged concentration of charged particle mixtures. In comparison, Field Amplified Sample Stacking (FASS) techniques first concentrate the collection of molecules before separating them. Together, we denote gradient focusing and FASS methods "sample stacking" and study the dynamics of a specific method, Temperature Gradient Focusing (TGF), in which an axial temperature gradient is applied along a channel filled with weak buffer. Gradients in electroosmotic fluid flow and electrophoretic species velocity create the simultaneous separating and concentrating mechanism mentioned above. In this thesis, we begin with the observation that very little has been done to model the dynamics of gradient focusing, and proceed to solve the fundamental equations of fluid mechanics and scalar transport, assuming the existence of slow axial variations and the Taylor-Aris dispersion coefficient. In doing so, asymptotic methods reduce the equations from 3D to 1D, and we arrive at a simple 1D model which can be used to predict the transient evolution of the cross-sectionally averaged analyte concentration. In the second half of this thesis, we run several numerical focusing experiments with a 3D finite volume code. Comparison of the 1D theory and 3D simulations illustrates not only that the asymptotic theory converges as a certain parameter tends to zero, but also that fairly large axial slip velocity gradients lead to quite small errors in predicted steady variance. Additionally, we observe that the axial asymmetry of the electrophoretic velocity model leads to asymmetric peak shapes, a violation of the symmetric Gaussians predicted by the 1D theory. We conclude with some observations on the effect of Peclet number and gradient strength on the performance of focusing experiments, and describe a method for experimental optimization. Such knowledge is useful for design of lab-on-a-chip devices.
Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci
2016-05-01
Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Bashir, Adil; Gropler, Robert; Ackerman, Joseph
2015-01-01
Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549
Wang, Lei; Liu, Wenming; Wang, Yaolei; Wang, Jian-chun; Tu, Qin; Liu, Rui; Wang, Jinyi
2013-02-21
Recent microfluidic advancements in oxygen gradients have greatly promoted controllable oxygen-sensitive cellular investigations at microscale resolution. However, multi-gradient integration in a single microfluidic device for tissue-mimicking cell investigation is not yet well established. In this study, we describe a method that can generate oxygen and chemical concentration gradients in a single microfluidic device via the formation of an oxygen gradient in a chamber and a chemical concentration gradient between adjacent chambers. The oxygen gradient dynamics were systematically investigated, and were quantitatively controlled using simple exchange between the aerial oxygen and the oxygen-free conditions in the gas-permeable polydimethylsiloxane channel. Meanwhile, the chemical gradient dynamics was generated using a special channel-branched device. For potential medical applications of the established oxygen and chemical concentration gradients, a tumor cell therapy assessment was performed using two antitumor drugs (tirapazamine and bleomycin) and two tumor cell lines (human lung adenocarcinoma A549 cells and human cervical carcinoma HeLa cells). The results of the proof-of-concept experiment indicate the dose-dependent antitumor effect of the drugs and hypoxia-induced cytotoxicity of tirapazamine. We demonstrate that the integration of oxygen and chemical concentration gradients in a single device can be applied to investigating oxygen- and chemical-sensitive cell events, which can also be valuable in the development of multi-gradient generating procedures and specific drug screening.
NASA Astrophysics Data System (ADS)
Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.
2012-07-01
Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
Plontke, Stefan K.; Mynatt, Robert; Gill, Ruth M.; Borgmann, Stefan; Salt, Alec N.
2008-01-01
Objectives The distribution of gentamicin along the fluid spaces of the cochlea following local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected and histological studies indicate that hair cell damage is greater at the base than at the apex following local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. Methods A recently-developed method of sampling perilymph from the cochlear apex of guinea pigs was used, in which the samples represent fluid originating from different regions along scala tympani. Gentamicin concentration was determined in sequential apical samples which were taken following up to three hours of local application to the round window niche. Results Substantial gradients of gentamicin along the length of scala tympani were demonstrated and quantified, averaging more than 4000 times greater concentration at the base compared to the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. Conclusions The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients. PMID:17603318
Plontke, Stefan K; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Salt, Alec N
2008-04-01
Local application of dexamethasone-21-dihydrogen-phosphate (Dex-P) to the round window (RW) membrane of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. In recent years, intratympanically applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after RW application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur after RW application, with lower concentrations expected in apical turns. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Dexamethasone-21-dihydrogen-phosphate (10 mg/ml) was administered to the RW membrane of guinea pigs (n = 9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which 10 samples, each of approximately 1 mul, were taken sequentially from the cochlear apex into capillary tubes. Dexamethasone-21-dihydrogen-phosphate concentration of the samples was analyzed by high-performance liquid chromatography. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in ST to be quantified. The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along ST. After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17,000. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. The existence of substantial basal-apical concentration gradients of Dex-P in ST perilymph were demonstrated experimentally. If the variability in peak concentration and gradient is also present under clinical conditions, this may contribute to the heterogeneity of outcome that is observed after intratympanic application of glucocorticoids for various inner ear diseases.
Creasy, Arch; Barker, Gregory; Carta, Giorgio
2017-03-01
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, L.; Wang, X. M.; Munger, J. W.
2015-07-01
Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake in the top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts, during 1993-2000. All three gradient methods (AGM, MBR, and MGM) produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3) differed significantly between these methods, with the AGM, MBR, and MGM method being 2.28, 1.45, and 1.18 times that of the EC, respectively. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3). Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach to monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.
NASA Technical Reports Server (NTRS)
Darras, R.
1979-01-01
The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.
NASA Astrophysics Data System (ADS)
Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong
2012-09-01
The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.
High-Resolution Autoradiography
1955-01-01
alloy the tungsten concontrationl of it 1-mnicron culbe is: (8,9 gmI) (8.88 mcg m1-2nl/micron gradient will probably not be so sharp am fit( gradients ...phases of Ilite work: (a) Applicattion and( develop- lie( iiirkeh used. ment (If the( wet-process autorodiographic method will (b)i Trwo methods exist...34 concentration gradients are sufficiently large, the same solution since the range of beta particles in water Wet-process autoradiography as developed for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
Prediction and validation of concentration gradient generation in a paper-based microfluidic channel
NASA Astrophysics Data System (ADS)
Jang, Ilhoon; Kim, Gang-June; Song, Simon
2016-11-01
A paper-based microfluidic channel has obtained attention as a diagnosis device that can implement various chemical or biological reactions. With benefits of thin, flexible, and strong features of paper devices, for example, it is often utilized for cell culture where controlling oxygen, nutrients, metabolism, and signaling molecules gradient affects the growth and movement of the cells. Among various features of paper-based microfluidic devices, we focus on establishment of concentration gradient in a paper channel. The flow is subject to dispersion and capillary effects because a paper is a porous media. In this presentation, we describe facile, fast and accurate method of generating a concentration gradient by using flow mixing of different concentrations. Both theoretical prediction and experimental validation are discussed along with inter-diffusion characteristics of porous flows. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.
Gordon, J M
2000-08-01
Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.
Fácio, Cássio L; Previato, Lígia F; Machado-Paula, Ligiane A; Matheus, Paulo Cs; Araújo, Edilberto
2016-12-01
This study aimed to assess and compare sperm motility, concentration, and morphology recovery rates, before and after processing through sperm washing followed by swim-up or discontinuous density gradient centrifugation in normospermic individuals. Fifty-eight semen samples were used in double intrauterine insemination procedures; 17 samples (group 1) were prepared with sperm washing followed by swim-up, and 41 (group 2) by discontinuous density gradient centrifugation. This prospective non-randomized study assessed seminal parameters before and after semen processing. A dependent t-test was used for the same technique to analyze seminal parameters before and after semen processing; an independent t-test was used to compare the results before and after processing for both techniques. The two techniques produced decreases in sample concentration (sperm washing followed by swim-up: P<0.000006; discontinuous density gradient centrifugation: P=0.008457) and increases in motility and normal morphology sperm rates after processing. The difference in sperm motility between the two techniques was not statistically significant. Sperm washing followed by swim-up had better morphology recovery rates than discontinuous density gradient centrifugation (P=0.0095); and the density gradient group had better concentration recovery rates than the swim-up group (P=0.0027). The two methods successfully recovered the minimum sperm values needed to perform intrauterine insemination. Sperm washing followed by swim-up is indicated for semen with high sperm concentration and better morphology recovery rates. Discontinuous density gradient centrifugation produced improved concentration recovery rates.
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.
1980-01-01
Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
NASA Astrophysics Data System (ADS)
Rumsey, Ian C.; Walker, John T.
2016-06-01
The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. Flux uncertainty is dominated by uncertainty in the chemical concentrations gradients during the day but uncertainty in the chemical concentration gradients and transfer velocity are of the same order at night. Results show the instrument is sufficiently precise for flux gradient applications.
Plontke, Stefan K; Mynatt, Robert; Gill, Ruth M; Borgmann, Stefan; Salt, Alec N
2007-07-01
The distribution of gentamicin along the fluid spaces of the cochlea after local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected, and histologic studies indicate that hair cell damage is greater at the base than at the apex after local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. A recently developed method of sampling perilymph from the cochlear apex of guinea pigs was used in which the samples represent fluid originating from different regions along the scala tympani. Gentamicin concentration was determined in sequential apical samples that were taken after up to 3 hours of local application to the round window niche. Substantial gradients of gentamicin along the length of the scala tympani were demonstrated and quantified, averaging more than 4,000 times greater concentration at the base compared with the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients.
Koh, Wonryull; Blackwell, Kim T
2011-04-21
Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.
NASA Astrophysics Data System (ADS)
Raven, Sara
2015-09-01
Background: Studies have shown that students' knowledge of osmosis and diffusion and the concepts associated with these processes is often inaccurate. This is important to address, as these concepts not only provide the foundation for more advanced topics in biology and chemistry, but are also threaded throughout both state and national science standards. Purpose: In this study, designed to determine the completeness and accuracy of three specific students' knowledge of molecule movement, concentration gradients, and equilibrium, I sought to address the following question: Using multiple evaluative methods, how can students' knowledge of molecule movement, concentration gradients, and equilibrium be characterized? Sample: This study focuses on data gathered from three students - Emma, Henry, and Riley - all of whom were gifted/honors ninth-grade biology students at a suburban high school in the southeast United States. Design and Methods: Using various qualitative data analysis techniques, I analyzed multiple sources of data from the three students, including multiple-choice test results, written free-response answers, think-aloud interview responses, and student drawings. Results: Results of the analysis showed that students maintained misconceptions about molecule movement, concentration gradients, and equilibrium. The conceptual knowledge students demonstrated differed depending on the assessment method, with the most distinct differences appearing on the multiple-choice versus the free-response questions, and in verbal versus written formats. Conclusions: Multiple levels of assessment may be required to obtain an accurate picture of content knowledge, as free-response and illustrative tasks made it difficult for students to conceal any misconceptions. Using a variety of assessment methods within a section of the curriculum can arguably help to provide a deeper understanding of student knowledge and learning, as well as illuminate misconceptions that may have remained unknown if only one assessment method was used. Furthermore, beyond simply evaluating past learning, multiple assessment methods may aid in student comprehension of key concepts.
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
Advanced methods for preparation and characterization of infrared detector materials
NASA Technical Reports Server (NTRS)
Broerman, J. G.; Morris, B. J.; Meschter, P. J.
1983-01-01
Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Erisken, Cevat; Kalyon, Dilhan M; Wang, Hongjun; Ornek-Ballanco, Ceren; Xu, Jiahua
2011-05-01
The ability to fabricate tissue engineering scaffolds containing systematic gradients in the distributions of stimulators provides additional means for the mimicking of the important gradients observed in native tissues. Here the concentration distributions of two bioactive agents were varied concomitantly for the first time (one increasing, whereas the other decreasing monotonically) in between the two sides of a nanofibrous scaffold. This was achieved via the application of a new processing method, that is, the twin-screw extrusion and electrospinning method, to generate gradients of insulin, a stimulator of chondrogenic differentiation, and β-glycerophosphate (β-GP), for mineralization. The graded poly(ɛ-caprolactone) mesh was seeded with human adipose-derived stromal cells and cultured over 8 weeks. The resulting tissue constructs were analyzed for and revealed indications of selective differentiation of human adipose-derived stromal cells toward chondrogenic lineage and mineralization as functions of position as a result of the corresponding concentrations of insulin and β-GP. Chondrogenic differentiation of the stem cells increased at insulin-rich locations and mineralization increased at β-GP-rich locations.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li
2014-11-01
A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. © 2014 SETAC.
Goutal, Sébastien; Auvity, Sylvain; Legrand, Tiphaine; Hauquier, Fanny; Cisternino, Salvatore; Chapy, Hélène; Saba, Wadad; Tournier, Nicolas
2016-05-10
In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 μg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Hahn, Hartmut; Salt, Alec N.; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared; Plontke, Stefan K.
2012-01-01
Hypothesis To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations and lower base-to apex concentration gradients in scala tympani (ST) of the guinea pig than after intratympanic (round window, RW) application. Background Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to apex concentration gradients in ST. Methods Two μL of dexamethasone-phosphate (10 mg/mL) were injected into ST either through the RW membrane which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by the means of an established computer model and compared with prior experiments performed by our group with the same experimental techniques but using intratympanic applications. Results Single intracochlear injections over 20 min resulted in approximately ten times higher peak concentrations (on average) than 2-3 hours of intratympanic application to the round window niche. Intracochlear drug levels were less variable and could be measured for at least up to 220 min. Concentration gradients along scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. Conclusion With significantly higher, less variable drug levels and smaller base-to apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks. PMID:22588238
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal
2012-06-01
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-06-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
Observation and simulation of flow on soap film induced by concentration gradient
NASA Astrophysics Data System (ADS)
Ohnishi, Mitsuru; Yoshihara, Shoichi; Azuma, Hisao
The behavior of the flow and capillary wave induced on the film surface by the surfactant concentration difference is studied. Flat soap film is used as a model of thin film. The result is applicable to the case of flow by thermal gradient. The Schlieren method is used to observe the flow and the wave on the soap film. It is found that the wave velocities, in the case of a high surface tension difference, are linearly related to the square root of the surface tension difference.
Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02
Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.
2003-01-01
Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.
Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.
Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo
2016-09-14
Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.
Murine intracochlear drug delivery: reducing concentration gradients within the cochlea.
Borkholder, David A; Zhu, Xiaoxia; Hyatt, Brad T; Archilla, Alfredo S; Livingston, William J; Frisina, Robert D
2010-09-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8 to 49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Murine Intracochlear Drug Delivery: Reducing Concentration Gradients within the Cochlea
Borkholder, David A.; Zhu, Xiaoxia; Hyatt, Brad T.; Archilla, Alfredo S.; Livingston, William J.; Frisina, Robert D.
2010-01-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8-49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. PMID:20451593
Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code
NASA Astrophysics Data System (ADS)
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2018-02-01
Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations
NASA Astrophysics Data System (ADS)
Hosny, Neveen A.; Lee, David A.; Knight, Martin M.
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.
Hosny, Neveen A; Lee, David A; Knight, Martin M
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Smith, Lesley J.; Kukanich, Butch K.; Krugner-Higby, Lisa A.; Schmidt, Brynn H.; Heath, Timothy D.
2013-01-01
Objective To evaluate the pharmacokinetics, in dogs, of liposome-encapsulated oxymorphone and hydromorphone made by the ammonium sulfate gradient loading technique (ASG). Animals Four healthy purpose-bred Beagles aged 9.5 ± 3.2 months and weighing 13.4 ± 2.3 kg. Study Design Randomized cross-over design. Methods Each dog was given either 4.0 mg kg−1 of ASG-oxymorphone or 8.0 mg kg−1 of ASG-hydromorphone SC on separate occasions with a 3-month washout period. Blood was collected at baseline and at serial time points up to 1032 hours (43 days) after injection for determination of serum opioid concentrations. Serum opioid concentrations were measured with HPLC-MS and pharmacokinetic parameters were calculated using commercial software and non-compartmental methods. Results Serum concentrations of oxymorphone remained above the limit of quantification for 21 days, while those for hydromorphone remained above the limit of quantification for 29 days. Cmax for ASG-oxymorphone was 7.5 ng mL−1; Cmax for ASG-hydromorphone was 5.7 ng mL−1. Conclusions and clinical relevance Oxymorphone and hydromorphone, when encapsulated into liposomes using the ammonium sulfate gradient loading technique, result in measureable serum concentrations for between 3 to 4 weeks. This formulation may have promise in the convenient use of opioids for clinical treatment of chronically painful conditions in dogs. PMID:23601353
An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow
Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing
2014-01-01
Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
NASA Astrophysics Data System (ADS)
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
Korohoda, W; Golda, J; Sroka, J; Wojnarowicz, A; Jochym, P; Madeja, Z
1997-01-01
A new "U" shaped, pocket-like chamber was used to observe the chemotactic responses of individual cells. This method permits monitoring of both the development of the concentration gradient of a tested substance and cell locomotion. We investigated the chemotactic responses of Amoeba proteus and observed that the amoebae moved in positively and negatively developing [H+] gradients towards the solution of lower pH in a pH range 5.75-7.75. The chemotactic response of amoebae to [H+] gradients required the presence of extracellular calcium ions. It was blocked and random locomotion was restored by the replacement of calcium with magnesium in the cell medium. Time-lapse video recording and data processing were accomplished with computer-assisted methods. This made it possible to compare selected methods of data presentation and analysis for cells locomoting in isotropic and anisotropic conditions. The cell trajectories were determined and displayed in circular diagrams, lengths of cell tracks and final cell displacements were estimated and a few parameters characterizing cell locomotion were computed.
Quantifying intracellular hydrogen peroxide perturbations in terms of concentration
Huang, Beijing K.; Sikes, Hadley D.
2014-01-01
Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730
Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method.
Gu, Shuqing; Lu, Youlan; Ding, Yaping; Li, Li; Zhang, Fenfen; Wu, Qingsheng
2013-09-24
A simple but robust droplet-based microfluidic system was developed for dose-response enzyme inhibition assay by combining concentration gradient generation method with electrochemical detection method. A slotted-vials array and a tapered tip capillary were used for reagents introduction and concentration gradient generation, and a polydimethylsiloxane (PDMS) microfluidic chip integrated with microelectrodes was used for droplet generation and electrochemical detection. Effects of oil flow rate and surfactant on electrochemical sensing were investigated. This system was validated by measuring dose-response curves of three types of acetylcholinesterase (AChE) inhibitors, including carbamate pesticide, organophosphorus pesticide, and therapeutic drugs regulating Alzheimer's disease. Carbaryl, chlorpyrifos, and tacrine were used as model analytes, respectively, and their IC50 (half maximal inhibitory concentration) values were determined. A whole enzyme inhibition assay was completed in 6 min, and the total consumption of reagents was less than 5 μL. This microfluidic system is applicable to many biochemical reactions, such as drug screening and kinetic studies, as long as one of the reactants or products is electrochemically active. Copyright © 2013 Elsevier B.V. All rights reserved.
Theoretical analysis of degradation mechanisms in the formation of morphogen gradients
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
2015-07-01
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.
Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang
2016-08-22
Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measuring Diffusion of Liquids by Common-Path Interferometry
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2003-01-01
A method of observing the interdiffusion of a pair of miscible liquids is based on the use of a common-path interferometer (CPI) to measure the spatially varying gradient of the index refraction in the interfacial region in which the interdiffusion takes place. Assuming that the indices of refraction of the two liquids are different and that the gradient of the index of refraction of the liquid is proportional to the gradient in the relative concentrations of either liquid, the diffusivity of the pair of liquids can be calculated from the temporal variation of the spatial variation of the index of refraction. This method yields robust measurements and does not require precise knowledge of the indices of refraction of the pure liquids. Moreover, the CPI instrumentation is compact and is optomechanically robust by virtue of its common- path design. The two liquids are placed in a transparent rectangular parallelepiped test cell. Initially, the interface between the liquids is a horizontal plane, above which lies pure liquid 2 (the less-dense liquid) and below which lies pure liquid 1 (the denser liquid). The subsequent interdiffusion of the liquids gives rise to a gradient of concentration and a corresponding gradient of the index of refraction in a mixing layer. For the purpose of observing the interdiffusion, the test cell is placed in the test section of the CPI, in which a collimated, polarized beam of light from a low-power laser is projected horizontally through a region that contains the mixing layer.
Mynatt, Robert; Hale, Shane A; Gill, Ruth M; Plontke, Stefan K; Salt, Alec N
2006-06-01
Local applications of drugs to the inner ear are increasingly being used to treat patients' inner ear disorders. Knowledge of the pharmacokinetics of drugs in the inner ear fluids is essential for a scientific basis for such treatments. When auditory function is of primary interest, the drug's kinetics in scala tympani (ST) must be established. Measurement of drug levels in ST is technically difficult because of the known contamination of perilymph samples taken from the basal cochlear turn with cerebrospinal fluid (CSF). Recently, we reported a technique in which perilymph was sampled from the cochlear apex to minimize the influence of CSF contamination (J. Neurosci. Methods, doi: 10.1016/j.jneumeth.2005.10.008 ). This technique has now been extended by taking smaller fluid samples sequentially from the cochlear apex, which can be used to quantify drug gradients along ST. The sampling and analysis methods were evaluated using an ionic marker, trimethylphenylammonium (TMPA), that was applied to the round window membrane. After loading perilymph with TMPA, 10 1-muL samples were taken from the cochlear apex. The TMPA content of the samples was consistent with the first sample containing perilymph from apical regions and the fourth or fifth sample containing perilymph from the basal turn. TMPA concentration decreased in subsequent samples, as they increasingly contained CSF that had passed through ST. Sample concentration curves were interpreted quantitatively by simulation of the experiment with a finite element model and by an automated curve-fitting method by which the apical-basal gradient was estimated. The study demonstrates that sequential apical sampling provides drug gradient data for ST perilymph while avoiding the major distortions of sample composition associated with basal turn sampling. The method can be used for any substance for which a sensitive assay is available and is therefore of high relevance for the development of preclinical and clinical strategies for local drug delivery to the inner ear.
Mynatt, Robert; Hale, Shane A.; Gill, Ruth M.; Plontke, Stefan K.
2006-01-01
ABSTRACT Local applications of drugs to the inner ear are increasingly being used to treat patients' inner ear disorders. Knowledge of the pharmacokinetics of drugs in the inner ear fluids is essential for a scientific basis for such treatments. When auditory function is of primary interest, the drug's kinetics in scala tympani (ST) must be established. Measurement of drug levels in ST is technically difficult because of the known contamination of perilymph samples taken from the basal cochlear turn with cerebrospinal fluid (CSF). Recently, we reported a technique in which perilymph was sampled from the cochlear apex to minimize the influence of CSF contamination (J. Neurosci. Methods, doi: http://10.1016/j.jneumeth.2005.10.008). This technique has now been extended by taking smaller fluid samples sequentially from the cochlear apex, which can be used to quantify drug gradients along ST. The sampling and analysis methods were evaluated using an ionic marker, trimethylphenylammonium (TMPA), that was applied to the round window membrane. After loading perilymph with TMPA, 10 1-μL samples were taken from the cochlear apex. The TMPA content of the samples was consistent with the first sample containing perilymph from apical regions and the fourth or fifth sample containing perilymph from the basal turn. TMPA concentration decreased in subsequent samples, as they increasingly contained CSF that had passed through ST. Sample concentration curves were interpreted quantitatively by simulation of the experiment with a finite element model and by an automated curve-fitting method by which the apical–basal gradient was estimated. The study demonstrates that sequential apical sampling provides drug gradient data for ST perilymph while avoiding the major distortions of sample composition associated with basal turn sampling. The method can be used for any substance for which a sensitive assay is available and is therefore of high relevance for the development of preclinical and clinical strategies for local drug delivery to the inner ear. PMID:16718612
Danger, Grégoire; Ross, David
2008-08-01
Scanning temperature gradient focusing (TGF) is a recently described technique for the simultaneous concentration and separation of charged analytes. It allows for high analyte peak capacities and low LODs in microcolumn electrophoretic separations. In this paper, we present the application of scanning TGF for chiral separations of amino acids. Using a mixture of seven carboxyfluorescein succinimidyl ester-labeled amino acids (including five chiral amino acids) which constitute the Mars7 standard, we show that scanning TGF is a very simple and efficient method for chiral separations. The modulation of TGF separation parameters (temperature window, pressure scan rate, temperature range, and chiral selector concentration) allows optimization of peak efficiencies and analyte resolutions. The use of hydroxypropyl-beta-CD at low concentration (1-5 mmol/L) as a chiral selector, with an appropriate pressure scan rate ( -0.25 Pa/s) and with a low temperature range (3-25 degrees C over 1 cm) provided high resolution between enantiomers (Rs >1.5 for each pair of enantiomers) using a short, 4 cm long capillary. With these new results, the scanning TGF method appears to be a viable method for in situ trace biomarker analysis for future missions to Mars or other solar system bodies.
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosny, Neveen A.; Lee, David A.; Knight, Martin M.
2010-02-01
Extracellular oxygen concentrations influence cell metabolism and tissue function. Fluorescence Lifetime Imaging Microscopy (FLIM) offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods show limited spatial resolution and/or require custom made systems. This study describes a new optimised approach for quantitative extracellular oxygen detection, providing an off-the-shelf system with high spatial resolution and an improved lifetime determination over previous techniques, while avoiding systematic photon pile-up. Fluorescence lifetime detection of an oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was measured using a Becker&Hickl time-correlated single photon counting (TCSPC) card with excitation provided by a multi-photon laser. This technique was able to identify a subpopulation of isolated chondrocyte cells, seeded in three-dimensional agarose gel, displaying a significant spatial oxygen gradient. Thus this technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Wang, Peifang; Wang, Teng; Yao, Yu; Wang, Chao; Liu, Cui; Yuan, Ye
2016-01-01
Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil. PMID:27271644
NASA Astrophysics Data System (ADS)
Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong
2016-09-01
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.
Role of spatial averaging in multicellular gradient sensing.
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-05-20
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Role of spatial averaging in multicellular gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-06-01
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
NASA Technical Reports Server (NTRS)
Johnson, James E.; Bandy, Alan R.; Thornton, Donald C.; Bates, Timothy S.
1993-01-01
Atmospheric carbonyl sulfide COS concentrations were measured by three analytical systems during the Chemical Instrumentation Test and Evaluation (CITE 3) project. The three systems all used cryogenic sample preconcentration and gas chromatographic (GC) separation but differed in the method of detection. The FPD system used a flame photometric detector, the MS system used a mass selective detector, and the ECD-S system used a fluorinating catalyst followed by an electron capture detector. With the FPD system, we found a mean COS concentration of 510 ppt over the North Atlantic and 442 ppt over the Tropical Atlantic. With the ECD-S system, we found a mean COS concentration of 489 ppt over the North Atlantic and 419 ppt over the Tropical Atlantic. All three systems registered a latitudinal gradient in atmospheric COS of between 1.6 and 2.0 ppt per degree of latitude, with increasing COS concentrations northward which was similar to the gradient measured by Bingemer et al. (1990). It is difficult to reconcile the measured latitudinal concentration gradient with present theories of the global COS budget since the largest sink of COS is thought to be a flux to land plants, most of which are in the northern hemisphere.
Do chemical gradients within soil aggregates reflect plant/soil interactions?
NASA Astrophysics Data System (ADS)
Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike
2016-04-01
As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site-specific: On P-rich study sites the results reveal a significant depletion of citric acid-extractable PO4 and P on aggregate surfaces in subsoil horizons, while at the other study sites a slight enrichment at the aggregate surfaces could be observed. Total P concentrations show no distinct gradients within topsoil aggregates, but a slight P enrichment at the surface of subsoil aggregates at the P-rich site. A strong correlation with the total Al concentrations may indicate a P speciation change within aggregates (e.g., due to acidification processes). These results were also confirmed by P K-edge XANES spectra of aggregate core and shell samples of the P-rich site: In the aggregate shells of topsoil as well as subsoil aggregates, organic P forms are most dominant (82 and 80 %, respectively) than in the aggregate interior (54 and 66%, respectively). Moreover, P in the shell seems to be completely associated to Al, whereas some of the P in the aggregate interior is bound to Fe and/or Ca. Overall, our results show that plant/soil interactions impact on small-scale distribution and bioavailability of nutrients by root uptake and root-induced aggregate engineering.
An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice.
Sato, Asako; Kadokura, Kanae; Uchida, Hideyuki; Tsukada, Kosuke
2014-10-31
In a hepatic lobule, different sets of metabolic enzymes are expressed in the periportal (PP) and pericentral (PC) regions, forming a functional zonation, and the oxygen gradient is considered a determinant of zone formation. It is desirable to reproduce lobular microenvironment in vitro, but incubation of primary hepatocytes in conventional culture dishes has been limited at fixed oxygen concentrations due to technical difficulties. We designed a cell culture microdevice with an oxygen gradient to reproduce the hepatic microenvironment in vitro. The oxygen gradient during cell culture was monitored using a laser-assisted phosphorescence quenching method, and the cellular oxygen consumption rate could be estimated from changes in the gradient. Culture medium was continuously exchanged through microchannels installed in the device to maintain the oxygen gradient for a long term without transient hyper-oxygenation. The oxygen consumption rates of hepatocytes at 70.0mmHg and 31.4mmHg of partial oxygen pressure, which correspond to PP and PC regions in the microdevice, were 3.67×10(-10) and 3.15×10(-10)mol/s/10(6) cells, respectively. Antimycin A changed the oxygen gradient profile, indicating that cellular respiration can be estimated during cell culture. RT-PCR analysis of hepatocytes cultured under the oxygen gradient showed that mRNA expression of PEPCK and GK significantly increased in culture areas corresponding to PP and PC regions, respectively. These results indicate that the developed microdevice can reproduce the hepatic lobular microenvironment. The oxygen gradient in the microdevice can be closely controlled by changing the sizes of gas channels and the ambient oxygen concentration around the device; therefore, it could be expected to mimic the oxygen gradient of various organs, and it may be applicable to other pathological models. Copyright © 2014 Elsevier Inc. All rights reserved.
Didar, Tohid Fatanat; Tabrizian, Maryam
2012-11-07
Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.
Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y
2001-01-01
The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.
Cimetta, Elisa; Cannizzaro, Christopher; James, Richard; Biechele, Travis; Moon, Randall T; Elvassore, Nicola; Vunjak-Novakovic, Gordana
2010-12-07
In developing tissues, proteins and signaling molecules present themselves in the form of concentration gradients, which determine the fate specification and behavior of the sensing cells. To mimic these conditions in vitro, we developed a microfluidic device designed to generate stable concentration gradients at low hydrodynamic shear and allowing long term culture of adhering cells. The gradient forms in a culture space between two parallel laminar flow streams of culture medium at two different concentrations of a given morphogen. The exact algorithm for defining the concentration gradients was established with the aid of mathematical modeling of flow and mass transport. Wnt3a regulation of β-catenin signaling was chosen as a case study. The highly conserved Wnt-activated β-catenin pathway plays major roles in embryonic development, stem cell proliferation and differentiation. Wnt3a stimulates the activity of β-catenin pathway, leading to translocation of β-catenin to the nucleus where it activates a series of target genes. We cultured A375 cells stably expressing a Wnt/β-catenin reporter driving the expression of Venus, pBARVS, inside the microfluidic device. The extent to which the β-catenin pathway was activated in response to a gradient of Wnt3a was assessed in real time using the BARVS reporter gene. On a single cell level, the β-catenin signaling was proportionate to the concentration gradient of Wnt3a; we thus propose that the modulation of Wnt3a gradients in real time can provide new insights into the dynamics of β-catenin pathway, under conditions that replicate some aspects of the actual cell-tissue milieu. Our device thus offers a highly controllable platform for exploring the effects of concentration gradients on cultured cells.
Similar solutions of double-diffusive dissipative layers along free surfaces
NASA Astrophysics Data System (ADS)
Napolitano, L. G.; Viviani, A.; Savino, R.
1990-10-01
Free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection) generated by temperature and concentration gradients is discussed together with the formation of double-diffusive boundary layers along liquid-gas interfaces. Similarity solutions for each class of free convection are derived and the resulting nonlinear two-point problems are solved numerically using the quasi-linearization method. Velocity, temperature, concentration profiles, interfacial velocity, heat and mass transfer bulk coefficients for various Prandtl and Schmidt numbers, and different values of the similarity parameters are determined. The convective flows are of particular interest because they are considered to influence the processes of crystal growth, both on earth and in a microgravity environment.
NASA Astrophysics Data System (ADS)
Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.
2011-12-01
The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.
1998-01-01
A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.
NASA Astrophysics Data System (ADS)
Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu
2015-10-01
Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.
[Distribution characteristics of heavy metals along an elevation gradient of montane forest].
Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan
2011-12-01
In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.
Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.
Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung
2018-04-11
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of paper gradient concentration strips for antifungal combination testing of Candida spp.
Siopi, Maria; Siafakas, Nikolaos; Zerva, Loukia; Meletiadis, Joseph
2015-11-01
In vitro combination testing with broth microdilution chequerboard (CHEQ) method is widely used although it is time-consuming, cumbersome and difficult to apply in routine setting of clinical microbiology laboratory. A new gradient concentration paper strip method, the Liofilchem(®) MIC test strips (MTS), provides an alternative easy and fast method enabling the simultaneous diffusion of both drugs in combination. We therefore tested a polyene+azole and an azole+echinocandin combination against 18 Candida isolates with the CHEQ method based on EUCAST guidelines and the MTS method in research and routine settings. Fractional inhibitory concentration (FIC) indices were calculated after 24 and 48 h of incubation based on complete and prominent (FIC-2) growth inhibition endpoints. Reproducibility and agreement within 1 twofold dilution was assessed. The FICs of the two methods were correlated quantitatively with t-test and Pearson analysis and qualitatively with Chi-squared test. The reproducibility of the CHEQ and MTS method was 88-100% and their agreement was 80% with 62-77% of MTS FICs being higher than the corresponding CHEQ FICs. A statistically significant Pearson correlation (r = 0.86, P = 0.0003) and association (χ(2) = 17.05, df = 4, P = 0.002) was found between MTS FIC and CHEQ FIC-2 after 24 h. Categorical agreement was 63% with no very major or major errors. All MTS synergistic interactions were also synergistic with the CHEQ method. © 2015 Blackwell Verlag GmbH.
Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi
2006-05-05
Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.
Statistics of chemical gradients in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.
2017-12-01
As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799
Localized, gradient-reversed ultrafast z-spectroscopy in vivo at 7T.
Wilson, Neil E; D'Aquilla, Kevin; Debrosse, Catherine; Hariharan, Hari; Reddy, Ravinder
2016-10-01
To collect ultrafast z-spectra in vivo in situations where voxel homogeneity cannot be assured. Saturating in the presence of a gradient encodes the frequency offset spatially across a voxel. This encoding can be resolved by applying a similar gradient during readout. Acquiring additional scans with the gradient polarity reversed effectively mirrors the spatial locations of the frequency offsets so that the same physical location of a positive offset in the original scan will contribute a negative offset in the gradient-reversed scan. Gradient-reversed ultrafast z-spectroscopy (GRUFZS) was implemented and tested in a modified, localized PRESS sequence at 7T. Lysine phantoms were scanned at various concentrations and compared with coventionally-acquired z-spectra. Scans were acquired in vivo in human brain from homogeneous and inhomogeneous voxels with the ultrafast direction cycled between read, phase, and slice. Results were compared to those from a similar conventional z-spectroscopy PRESS-based sequence. Asymmetry spectra from GRUFZS are more consistent and reliable than those without gradient reversal and are comparable to those from conventional z-spectroscopy. GRUFZS offers significant acceleration in data acquisition compared to traditional chemical exchange saturation transfer methods with high spectral resolution and showed higher relative SNR effficiency. GRUFZS offers a method of collecting ultrafast z-spectra in voxels with the inhomogeneity often found in vivo. Magn Reson Med 76:1039-1046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu
2013-01-01
Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998
Negative Transference Numbers in Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash
Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.
NASA Astrophysics Data System (ADS)
Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon
2016-11-01
In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.
Preparation and the influencing factors of timozolomide liposomes.
Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian
2009-01-01
To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.
On the Concentration Gradient across a Spherical Source Washed by Slow Flow
Jaffe, Lionel
1965-01-01
A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
Centrifugal precipitation chromatography
Ito, Yoichiro; Lin, Qi
2009-01-01
Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553
Wang, Wei; Chen, Jun; Cai, Bao-Chang; Fang, Yun
2008-09-01
To study the influencing factors in preparation of brucine liposomes by ammonium sulfate transmembrane gradients. The brucine liposomes were separated by Sephadex G-50, and the influence of various factors on the entrapment efficiencies were investigated. The entrapment efficiency was enhanced by increased ammonium sulfate concentration, ethanol volume and PC concentration. Burcine liposomes prepared by ammonium sulfate transmembrance gradients can get a high entrapment efficiency, the main influencing factors were ammonium sulfate concentration, ethanol volume and PC concentration.
Influence of concentration polarization on DNA translocation through a nanopore.
Zhai, Shengjie; Zhao, Hui
2016-05-01
Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1985-01-01
A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.
Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm
2018-03-13
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
A microfluidic multi-injector for gradient generation.
Chung, Bong Geun; Lin, Francis; Jeon, Noo Li
2006-06-01
This paper describes a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients of soluble molecules. Compared to conventional glass micropipette-based methods that generate a single gradient, the MMI exploits microfluidic integration and actuation of multiple pulsatile injectors to generate arbitrary overlapping gradients that have not previously been possible. The MMI device is fabricated in poly(dimethylsiloxane) (PDMS) using multi-layer soft lithography and consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuation of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients around the orifice. The volume of solution released per actuation cycle ranged from 30 picolitres to several hundred picolitres and increased linearly with the duration of valve opening. The shape of the measured gradient profile agreed closely with the simulated diffusion profile from a point source. Steady state gradient profiles could be attained within 10 minutes, or less with an optimized pulse sequence. Overlapping gradients from 2 injectors were generated and characterized to highlight the advantages of MMI over conventional micropipette assays. The MMI platform should be useful for a wide range of basic and applied studies on chemotaxis and axon guidance.
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
Fritz, Brad G; Arntzen, Evan V
2007-01-01
Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.
Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun
2012-01-03
We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society
Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul
2008-01-01
We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whaley-Martin, K. J.; Koch, I.; Reimer, K. J.
Arsenic is naturally found in the tissues of marine animals, usually as the non-toxic arsenical arsenobetaine, but exposure to elevated arsenic concentrations in the environment may alter the arsenic species distribution within tissues of the organism. This study examined the arsenic species in the tissues of the marine periwinkle (Littorina littorea) along an arsenic concentration gradient in the sediment. The arsenicals in L. littorea were examined using the complementary analytical methods high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC–ICPMS) and X-ray absorption spectroscopy (XAS). Total arsenic concentrations in the periwinkle tissues ranged from 56 to 840more » mg · kg -1 dry weight (equivalent to 13 to 190 mg · kg -1 wet weight). Inorganic arsenicals were found to be positively correlated with total arsenic concentrations (R 2 = 0.993) and reached 600 mg · kg -1 dry weight, the highest reported to date in marine organisms. These high inorganic arsenic concentrations within this low trophic organism pose a potential toxicological risk to higher trophic consumers.« less
Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho
2018-01-01
In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.
ENHANCED CONCENTRATION AND ISOLATION OF CYCLOSPORA CAYETANENSIS OOCYSTS FROM HUMAN FECAL SAMPLES
Cyclospora cayetanensis is the causative agent of cyclosporiasis, an emerging infections disease. A new method for the purification of Cycloposra cayetanensis oocysts from fecal matter has been developed, using a modified detachment solution and a Renocal-sucrose gradient sedimen...
Diffusiophoresis in one-dimensional solute gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics.more » The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.« less
NASA Astrophysics Data System (ADS)
Niu, Ran; Khodorov, Stanislav; Weber, Julian; Reinmüller, Alexander; Palberg, Thomas
2017-11-01
Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.
NASA Astrophysics Data System (ADS)
Zander, Nicole E.
The effects of fiber alignment and surface chemistry, including the covalent attachment and physical adsorption of the extracellular matrix (ECM) proteins laminin and collagen, on the neurite outgrowth of neuron-like PC12 cells were examined. Neuron-like PC12 cells responded to fiber orientation, and were successfully contact-guided by aligned electrospun nanofibers. In addition, fibers with attached protein, either physically adsorbed or covalently attached, improved neurite outgrowth lengths. Furthermore, aligning the fibers and attaching the ECM protein laminin, in particular, significantly improved neurite outgrowth over randomly oriented fibers with laminin. Since this research suggested that protein concentration on the fibers was the dominant driving force for improved neurite outgrowth, the effect of protein concentration, incorporated onto the surface of the nanofibers, on neurite outgrowth was examined. Two ways to control protein concentration on the fibers were explored—the variation of the fiber-protein reaction time and the variation of the protein soaking solution concentration. In addition, analytical methods to quantify the concentration of protein, as well as the protein coverage, on the surface of the fibers were developed. Although most of the fiber mats had multilayer protein coverage, and hence physically adsorbed proteins which could potentially mean a loss in bioactivity, the neuron-like PC12 cell neurites responded in a dose-dependent manner with increased neurite lengths on scaffolds with higher protein concentrations. The work was extended further by forming protein gradients on the fiber mats in hopes of locally directing neurite outgrowth and orientation. Fiber mats with both linear gradients (continuous change in protein concentration) and step gradients (six regions of uniform protein coverage, with protein concentration increasing from region to region) were fabricated and analyzed. The step gradients formed in the aligned fiber direction showed the most promise for use in cell culture assays. While surface chemistry and topography are important, porosity of the scaffold is also critical to control cellular infiltration and tissue formation. To enhance the porosity of our electrospun nanofiber scaffolds and improve the infiltration of cells, two methods were explored to control porosity. In the first method, the scaffold polymer polycaprolactone was co-electrospun with a sacrificial polymer polyethylene oxide, which was removed after the bi-component fiber mat was formed. In doing so, the void space was increased. In the second method, the spinning solution concentration of polycaprolactone was varied to control fiber diameter and porosity. The second method proved to be more effective at improving the cellular infiltration of PC12 cells. Two orders of magnitude range of fiber diameters were achieved, and nearly full infiltration of PC12 cells was observed for the mats with the highest porosity. The pore sizes of these mats were on the order of the size of the cell bodies (approximately 6-10 µm). Although the majority of this work focuses on using conventional electrospinning to generate solid-core fibers, core-shell fibers, have many applications in tissue engineering, among other fields. We explored an efficient way to generate these fibers from an emulsion solution using a conventional electrospinning apparatus. We characterized the fibers using an atomic force microscope (AFM) elastic modulus mapping technique, along with AFM phase imaging, angle-resolved x-ray photoelectron spectroscopy and thermal gravimetric analysis, to determine the chemical and molar composition of the core and shell layers. This work presents novel analytical techniques for the characterization of core-shell nanofibers in order to better predict and understand their material properties. (Abstract shortened by UMI.).
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Process equipped with a sloped UV lamp for the fabrication of gradient-refractive-index lenses.
Liu, Jui-Hsiang; Chiu, Yi-Hong
2009-05-01
In this investigation, a method for the preparation of gradient-refractive-index (GRIN) lenses by UV-energy-controlled polymerization has been developed. A glass reaction tube equipped with a sloped UV lamp was designed. Methyl methacrylate and diphenyl sulfide were used as the reactive monomer and nonreactive dopant, respectively. Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) was used as the initiator. The effects of initiator concentration, the addition of acrylic polymers, and the preparation conditions on the optical characteristics of the GRIN lenses produced by this method were also investigated. Refractive index distributions and image transmission properties were estimated for all GRIN lenses prepared.
NASA Astrophysics Data System (ADS)
Song, Qingguana; Wang, Cheng; Han, Yong; Gao, Dayuan; Duan, Yingliang
2017-06-01
Since detonation often initiates and propagates in the non-homogeneous mixtures, investigating its behavior in non-uniform mixtures is significant not only for the industrial explosion in the leakage combustible gas, but also for the experimental investigations with a vertical concentration gradient caused by the difference in the molecular weight of gas mixture. Objective of this work is to show the detonation behavior in the mixture with different concentration gradients with detailed chemical reaction mechanism. A globally planar detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in spatial discretization and the third-order Additive Runge-Kutta schemes in time discretization. The different shocked combustion modes appear in the rich-fuel and poor-fuel layers due to the concentration gradient effect. Globally, for the cases with the lower gradient detonation can be sustained in a way of the alternation of the multi-heads mode and single-head mode, whereas for the cases with the higher gradient detonation propagates with a single-head mode. Institute of Chemical Materials, CAEP.
Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav
2014-01-01
Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities. PMID:25474688
Osmotic phenomena in application for hyperbaric oxygen treatment.
Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G
2011-03-01
Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.
Experimental studies on islets isolation, purification and function in rats
Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli
2015-01-01
To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021
Fischer, C; Scherfer-Brähler, V; Müller-Schlösser, F; Schröder-Printzen, I; Weidner, W
2007-05-01
Microcalorimetric measurements can be used for recording exothermic or endothermic summation effects of a great variety of biological processes. The aim of the present study was to examine the usefullness of the microcalorimetry method to characterise the biological activity of spermatozoa. The heat flow of bovine fresh sperm as well as cryosperm samples were measured after Percoll density-gradient centrifugation in a 4-channel microcalorimeter. Various calibration times, volumes of samples and sperm concentrations were tested and analysed. Sperm concentration was recorded by a computer-assisted, computer-aided software system method (CASA). Using a calibration time of 15 minutes, the heat signal of the fresh and cryosperm samples showed a characteristic peak after 39.5 min and 38.1 min (mean), respectively, with a significant correlation to sample volume and sperm concentration (p < 0.05). For obtaining the best results, a sample volume of 1 ml and a sperm concentration of more than 50 x 10 (6)/mL was used. With microcalorimetric measurements the biological activity of spermatozoa could be recorded for reproducible results, thus opening the way to an automatised ejaculate analysis in the future. More investigations are necessary to correlate microcalorimetric parameters with semen function.
Meridional distribution of molecular hydrogen and its deuterium content in the atmosphere
NASA Astrophysics Data System (ADS)
Rice, Andrew; Quay, Paul; Stutsman, Johnny; Gammon, Richard; Price, Heather; Jaeglé, Lyatt
2010-06-01
The atmospheric molecular hydrogen concentration and its deuterium abundance were measured in remote air samples collected onboard six Pacific Ocean ship transects between 37°N and 77°S during years 2001 through 2005. The data reveal a year-round interhemispheric gradient in H2 concentration and isotopic composition with the extratropical Northern Hemisphere lower in H2 concentration by 17 ± 11 ppb and δD of H2 by 16 ± 12‰ than the Southern Hemisphere (95% confidence). On the basis of these snapshots, the interhemispheric gradient in δD was observed to be smallest in September through November, a time that experiences the largest gradient in concentration, and the largest in April, a time that has a small gradient in concentration. A simple hemispheric box model of the atmosphere indicates that, while the hemispheric asymmetry in soil sink of H2 is primarily responsible for the observed interhemispheric gradient in H2 concentration, the hemispheric difference in the δD of the H2 sources and sinks are equally responsible for the observed interhemispheric gradient in δD. Both the inverse correlation between interhemispheric H2 and δD gradients and their seasonal changes point to the importance of the H2 produced by photochemical sources. Comparisons with a three-dimensional chemical transport model shows reasonable agreement with mean behavior in both variables and provides an accounting for H2 sources and sinks within ±15% without a dramatic change in the H2 budget. Anomalous H2 concentrations and δD in tropics and low-latitude regions observed during the November-December 2001 meridional H2 and δD snapshot is thought to be a result of H2 emissions from biomass burning, possibly from continental Africa.
Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M
1994-01-01
1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083
Assessment of tannin variation in Tamarisk foliage across a latitudinal gradient
Hussey, A.M.; Kimball, B.A.; Friedman, J.M.
2011-01-01
Certain phenotypic traits of plants vary with latitude of origin. To understand if tannin concentration varies among populations of tamarisk (Tamarix spp.) according to a latitudinal gradient, an analytical method was adapted from an enological tannin assay. The tannin content (wet basis) of tamarisk foliage collected from 160 plants grown in a common garden ranged from 8.26 to 62.36 mg/g and was not correlated with the latitude of the original North American plant collection site. Tannins do not contribute to observed differences in herbivory observed among these tamarisk populations.
Evaluation of land use regression models for NO2 in El Paso, Texas, USA
Gonzales, Melissa; Myers, Orrin; Smith, Luther; Olvera, Hector A.; Mukerjee, Shaibal; Li, Wen-Whai; Pingitore, Nicholas; Amaya, Maria; Burchiel, Scott; Berwick, Marianne
2012-01-01
Developing suitable exposure estimates for air pollution health studies is problematic due to spatial and temporal variation in concentrations and often limited monitoring data. Though land use regression models (LURs) are often used for this purpose, their applicability to later periods of time, larger geographic areas, and seasonal variation is largely untested. We evaluate a series of mixed model LURs to describe the spatial-temporal gradients of NO2 across El Paso County, Texas based on measurements collected during cool and warm seasons in 2006–2007 (2006–7). We also evaluated performance of a general additive model (GAM) developed for central El Paso in 1999 to assess spatial gradients across the County in 2006–7. Five LURs were developed iteratively from the study data and their predictions were averaged to provide robust nitrogen dioxide (NO2) concentration gradients across the county. Despite differences in sampling time frame, model covariates and model estimation methods, predicted NO2 concentration gradients were similar in the current study as compared to the 1999 study. Through a comprehensive LUR modeling campaign, it was shown that the nature of the most influential predictive variables remained the same for El Paso between the 1999 and 2006–7. The similar LUR results obtained here demonstrate that, at least for El Paso, LURs developed from prior years may still be applicable to assess exposure conditions in subsequent years and in different seasons when seasonal variation is taken into consideration. PMID:22728301
Biosensing in a microelectrofluidic system using optical whispering-gallery mode spectroscopy
Huang, Lei; Guo, Zhixiong
2011-01-01
Label-free detection of biomolecules using an optical whispering-gallery mode sensor in a microelectrofluidic channel is simulated. Negatively charged bovine serum albumin is considered as the model protein analyte. The analyte transport in aqueous solution is controlled by an externally applied electrical field. The finite element method is employed for solving the equations of the charged species transport, the Poisson equation of electric potential, the equations of conservation of momentum and energy, and the Helmholtz equations of electromagnetic waves. The adsorption process of the protein molecules on the microsensor head surface is monitored by the resonance frequency shifts. Frequency shift caused by temperature variation due to Joule heating is analyzed and found to be negligible. The induced shifts behave in a manner similar to Langmuir-like adsorption kinetics; but the time constant increases due to the presence of the external electrical field. A correlation of the frequency shift, the analyte feed concentration in the solution, and the applied voltage gradient is obtained, in which an excellent linear relationship between the frequency shift and the analyte concentration is revealed. The applied voltage gradient enhances significantly the analyte concentration in the vicinity of the sensor surface; thus, the sensor sensitivity which has a power function of the voltage gradient with exponent 2.85 in the controlled voltage range. Simulated detection of extremely low protein concentration to the pico-molar level is carried out. PMID:22662041
Liu, Xiaoyang; Abbott, Nicholas L
2011-04-15
We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (<1 V) that are sufficiently small to avoid electrolysis of water, can be performed in solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun
2017-11-01
With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.
NASA Astrophysics Data System (ADS)
Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar
2017-11-01
A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Tegen, Ina; Rind, David
2000-01-01
To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.
Multilayered Magnetic Gelatin Membrane Scaffolds
Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek
2016-01-01
A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743
Multilayered Magnetic Gelatin Membrane Scaffolds.
Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek
2015-10-21
A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications.
Gas1 extends the range of Hedgehog action by facilitating its signaling
Martinelli, David C.; Fan, Chen-Ming
2007-01-01
Cellular signaling initiated by Hedgehog binding to Patched1 has profound importance in mammalian embryogenesis, genetic disease, and cancer. Hedgehog acts as a morphogen to specify distinctive cell fates using different concentration thresholds, but our knowledge of how the concentration gradient is interpreted into the activity gradient is incomplete. The membrane protein Growth Arrest-Specific Gene 1 (GAS1) was thought to be a negative regulator of the Hedgehog concentration gradient. Here, we report unexpected genetic evidence that Gas1 positively regulates Hedgehog signaling in multiple developmental contexts, an effect particularly noticeable at regions where Hedgehog acts at low concentration. Using a combination of in vitro cell culture and in ovo electroporation assays, we demonstrate that GAS1 acts cooperatively with Patched1 for Hedgehog binding and enhances signaling activity in a cell-autonomous manner. Our data support a model in which GAS1 helps transform the Hedgehog protein gradient into the observed activity gradient. We propose that Gas1 is an evolutionarily novel, vertebrate-specific Hedgehog pathway regulator. PMID:17504940
A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods
Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li
2007-01-01
Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols. PMID:17883868
Mass Transfer and Rheology of Fiber Suspensions
NASA Astrophysics Data System (ADS)
Wang, Jianghui
Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Diviš, Pavel; Kadlecová, Milada; Ouddane, Baghdad
2016-05-01
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Su, Pai-Hsiang; Lai, Yen-Hsun
2017-01-01
The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors
1977-01-01
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response. PMID:264125
Drift and Behavior of E. coli Cells
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Colin, Rémy; Sourjik, Victor; Endres, Robert G.
2017-12-01
Chemotaxis of the bacterium Escherichia coli is well understood in shallow chemical gradients, but its swimming behavior remains difficult to interpret in steep gradients. By focusing on single-cell trajectories from simulations, we investigated the dependence of the chemotactic drift velocity on attractant concentration in an exponential gradient. While maxima of the average drift velocity can be interpreted within analytical linear-response theory of chemotaxis in shallow gradients, limits in drift due to steep gradients and finite number of receptor-methylation sites for adaptation go beyond perturbation theory. For instance, we found a surprising pinning of the cells to the concentration in the gradient at which cells run out of methylation sites. To validate the positions of maximal drift, we recorded single-cell trajectories in carefully designed chemical gradients using microfluidics.
Tietz, D; Gombocz, E; Chrambach, A
1991-10-01
This study presents a computerized evaluation of pore gradient gel electrophoretograms to arrive at estimates for both the particle-free mobility and retardation coefficient, which is related to particle size. Agarose pore gradient gels ranging from 0.2 to 1.1% agarose were formed. Gel gradients were stabilized during their formation by a density gradient of 0-20% 5-(N-2,3-dihydroxypropylacetamido)- 2,4,6-triiodo-N,N'bis-(2,3-dihydroxypropyl)-isophthalamide (Nycodenz). Densitometry of gelled-in Bromophenol Blue showed that these pore gradients exhibited a linear central segment and were reproducible. Migration distances of polystyrene sulfate microspheres (36.5 nm radius) in agarose pore gradient gel electrophoresis were determined by time-lapse photography at several durations of electrophoresis. These migration distances were evaluated as a function of migration time as previously reported (D. Tietz, Adv. Electrophoresis 1988, 2, 109-169). Although this is not necessarily required, the mathematical approach used in this study assumed linearity of both the pore gradient and the Ferguson plot for reasons of simplicity. The data evaluation on the basis of the extended Ogston model is incorporated in a user-friendly program, GRADFIT, which is designed for personal computers (Macintosh). The results obtained are compared with (1) conventional electrophoresis using several gels of single concentration with and without Nycodenz, and (ii) a different mathematical approach for the analysis of gradient gels (Rodbard et al., Anal. Biochem. 1971, 40, 135-157). Moreover, a simple procedure for evaluating linear pore gradient gels using linear regression analysis is presented. It is concluded that the values of particle-free mobility and retardation coefficient derived from pore gradient gel electrophoresis using the different mathematical methods are statistically indistinguishable from each other. However, these values are different, albeit close, to those obtained from conventional Ferguson plots. One of the possible reasons for this relatively minor discrepancy is that the particle-free mobility changed slightly during electrophoresis, which has a different effect on electrophoresis in homogeneous gels (single time measurement) and pore gradient gels (multiple time measurements). The characterization of particles according to size and charge by pore gradient electrophoresis provides a significant operational simplification and sample economy compared to that requiring the use of several gel concentrations, although at the price of increased requirements of instrumentation.
Danger, Grégoire; Ross, David
2008-10-01
The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.
NASA Astrophysics Data System (ADS)
Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi
2015-03-01
Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid screening applications; however the 30 nm magnetic particles are preferable for specific detection applications. This immunomagnetic bioseparator can be integrated with either conventional culture methods or some rapid detection methods, such as biosensors and PCR, for more sensitive detection of foodborne pathogens.
Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung
2016-08-31
Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.
Modeling of salt and pH gradient elution in ion-exchange chromatography.
Schmidt, Michael; Hafner, Mathias; Frech, Christian
2014-01-01
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparative free-flow electrophoresis as a method of fractionation of natural organic materials
Leenheer, J.A.; Malcolm, R.L.
1973-01-01
Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.
Blechta, Vratislav; Kurfürst, Milan; Sýkora, Jan; Schraml, Jan
2007-03-23
LC-NMR utilizing (1)H and (29)Si NMR spectroscopy is ideally suited for the analysis of silicones. It is shown that reversed phase gradient LC-NMR surpasses standard gel permeation chromatography (GPC) and diffusion ordered spectroscopy (DOSY) in the analysis of model hydride terminated polydimethylsiloxane. (1)H and (29)Si NMR in the stopped-flow arrangement leads to full identification of the components. Concentration gradient introduces a dependence of the (29)Si shifts on solvent composition, this dependence can be substantially reduced by a proposed method of referencing. It is shown that the ADEQUATE version of powerful but insensitive 2D INADEQUATE experiment can be used for complete line assignment.
Störmer, Elke; Bauer, Steffen; Kirchheiner, Julia; Brockmöller, Jürgen; Roots, Ivar
2003-01-05
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.
NASA Astrophysics Data System (ADS)
Yuan, Wei; Hu, Jinyi; Zhou, Bo; Deng, Jun; Zhang, Zhaochun; Tang, Yong
2015-09-01
The passive direct methanol fuel cell (DMFC) is a promising candidate power source for portable applications but has to deal with many technical challenges before practical use. This study presents a preliminary investigation on the use of a woven carbon fiber fabric (WCFF) for constructing a gradient porous structure based on the traditional design. The WCFF, carbon paper and carbon-black micro porous layer (MPL) combine into a carbon-based assembly which acts as a mass-transfer-controlling medium at the anode of a passive DMFC. Results show that this novel setup is able to significantly improve the cell performance and facilitate high-concentration operation. A maximum power density of 16.4 mWcm-2 is obtained when two layers of the WCFF are used at a methanol concentration of 8M. This work provides an effective method for using concentrated methanol with no need for major change of the fuel cell configuration.
NASA Technical Reports Server (NTRS)
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)
2000-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition the rapid kinetic exchange and high bulk concentration maintain a saturated surface with a uniform surface concentrations. This prevents retarding surface tension gradients and keeps the velocity high. In our first report last year, we detailed experimental results which verified the theory of remobilization in ground based experiments in which the steady velocity of rising bubbles was measured in a continuous phase consisting of a glycerol/water mixture containing a polyethylene glycol surfactant C12E6 (CH3(CH2)11(OCH2CH2)6OH). In our report this year, we detail our efforts to describe theoretically the remobilization observed. We construct a model in which a bubble rises steadily by buoyancy in a continuous (Newtonian) viscous fluid containing surfactant with a uniform far field bulk concentration. We account for the effects of inertia as well as viscosity in the flow in the continuous phase caused by the bubble motion (order one Reynolds number), and we assume that the bubble shape remains spherical (viscous and inertial forces are smaller than capillary forces, i e. small Weber and capillary numbers). The surfactant distribution is calculated by solving the mass transfer equations including convection and diffusion in the bulk, and finite kinetic exchange the bulk and the surface. Convective effects dominate diffusive mass transfer in the bulk of the liquid (high Peclet numbers) except in a thin boundary layer near the surface. A finite volume method is used to numerically solve the hydrodynamic and mass transfer equations on a staggered grid which accounts specifically for the thin boundary layer. We present the results of the nondimensional drag as a function of the bulk concentration of surfactant for different rates of kinetic exchange, from which we develop criteria for the concentration necessary to develop a prescribed degree of remobilization. The criteria compare favorably with the experimental results.
Biomimetic approaches to control soluble concentration gradients in biomaterials.
Nguyen, Eric H; Schwartz, Michael P; Murphy, William L
2011-04-08
Soluble concentration gradients play a critical role in controlling tissue formation during embryonic development. The importance of soluble signaling in biology has motivated engineers to design systems that allow precise and quantitative manipulation of gradient formation in vitro. Engineering techniques have increasingly moved to the third dimension in order to provide more physiologically relevant models to study the biological role of gradient formation and to guide strategies for controlling new tissue formation for therapeutic applications. This review provides an overview of efforts to design biomimetic strategies for soluble gradient formation, with a focus on microfluidic techniques and biomaterials approaches for moving gradient generation to the third dimension. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
Locke, I. C.; Ramsey, M. P.; Hill, S. S.; Carpenter, B. G.
1993-01-01
The activity of most deoxyribonuclease enzymes can be monitored by measuring the change in absorbance at 260 nm which accompanies the breakdown of the double-stranded structure of native DNA. An automated method for determining deoxyribonuclease activity, based on such an absorbance change, which can overcome problems of inhibition arising from the presence of inorganic cations, is described. Variations in inorganic cation concentration is a particular problem when measuring the activity of chromatographic fractions eluted via a salt gradient. A comparison is made between the automated and a manual method for the assay of deoxyribonuclease active constituents, of the medicament ‘Varidase’, eluted from a Cellex-D (Bio-Rad Laboratories Ltd) anionic exchange resin using a 0.05-1.0 M sodium chloride gradient. PMID:18924962
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.
2016-12-01
In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts of permafrost thawing and forest fires on nutrient dynamics in arctic streams.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
NASA Astrophysics Data System (ADS)
Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.
2016-12-01
Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in medical settings and shed light on understanding the mechanics of microbial evolution.
Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Patrick Allen
2005-12-17
Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges of 5%-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.« less
Xie, Xiangyang; Li, Zhiping; Zhang, Ling; Chi, Qiang; Yang, Yanfang; Zhang, Hui; Yang, Yang; Mei, Xingguo
2015-01-01
A novel accelerated method of good correlations with "real-time" release to evaluate in vitro thymopentin release from poly (D, L-lactide-co-glycolide) (PLGA) microsphere was developed. Thymopentin-loaded microspheres were made from three types of PLGA, and peptide release was studied in various conditions. Incomplete release of peptide (<60%) from microspheres was found in accelerated testing with two typical release media. This problem was circumvented by adding organic solvents to the release media and varying the temperature in the media heating process. Release media containing three kinds of organic solvents at 50 °C were tested, respectively, and hydro-alcoholic solution was selected for further study. After the surfactant concentration (0.06%, W/V) and ethanol concentration (20%, V/V) were fixed, a gradient heating program, consisting of three stages and each stage with a different temperature, was introduced to enhance the correlations between the short- and long-term release. After adjusting the heating time of each stage, a good correlation (R(2) = 9896, formulation 8 K; R(2) = 0.9898, formulation 13 K; R(2) = 0.9886, formulation 28 K) between accelerated and "real-time" release was obtained. By optimizing the conditions as ethanol concentration and temperature gradients, this accelerated method may be appropriate for similar peptide formulations that not well correlate with "real-time" release.
The effect of solute concentration on hindered gradient diffusion in polymeric gels
NASA Astrophysics Data System (ADS)
Buck, Kristan K. S.; Dungan, Stephanie R.; Phillips, Ronald J.
1999-10-01
The effect of solute concentration on hindered diffusion of sphere-like colloidal solutes in stiff polymer hydrogels is examined theoretically and experimentally. In the theoretical development, it is shown that the presence of the gel fibres enhances the effect of concentration on the thermodynamic driving force for gradient diffusion, while simultaneously reducing the effect of concentration on the hydrodynamic drag. The result is that gradient diffusion depends more strongly on solute concentration in gels than it does in pure solution, by an amount that depends on the partition coefficient and hydraulic permeability of the gel solute system. Quantitative calculations are made to determine the concentration-dependent diffusivity correct to first order in solute concentration. In order to compare the theoretical predictions with experimental data, rates of diffusion have been measured for nonionic micelles and globular proteins in solution and agarose hydrogels at two gel concentrations. The measurements were performed by using holographic interferometry, through which one monitors changes in refractive index as gradient diffusion takes place within a transparent gel. If the solutes are modelled as spheres with short-range repulsive interactions, then the experimentally measured concentration dependence of the diffusivities of both the protein and micelles is in good agreement with the theoretical predictions.
Trail-following behavior ofReticulitermes hesperus Banks (Isoptera: Rhinotermitidae).
Grace, J K; Wood, D L; Frankie, G W
1988-02-01
The behavior ofReticulitermes hesperus Banks pseudergates (workers) was assessed on artificial trails containing different concentrations of sternal gland extract. On nongiadient trails, more pseudergates were recruited to trails of greater pheromone concentration, they traveled a greater distance without pausing, and their rate of locomotion increased over that observed on trails of lesser concentration (positive orthokinesis). Of the individuals pausing before completing trails of high concentration, fewer left the trails or reversed direction (negative klinokinesis) than on trails of lower concentration. Termites walking down concentration gradients failed to complete these trails to the low-concentration termini. At a point representing an average decrease of slightly more than 10-fold in the original concentration of pheromone, individuals reversed their direction of travel and returned to the high-concentration terminus. Termites walking up pheromone gradients proceeded to the high-concentration termini without reversing direction.R. hesperus pseudergates are thus able to orient along a gradient of trail pheromone by longitudinal klinotaxis.
Versatile Action of Picomolar Gradients of Progesterone on Different Sperm Subpopulations
Uñates, Diego Rafael; Guidobaldi, Héctor Alejandro; Gatica, Laura Virginia; Cubilla, Marisa Angélica; Teves, María Eugenia; Moreno, Ayelén; Giojalas, Laura Cecilia
2014-01-01
High step concentrations of progesterone may stimulate various sperm physiological processes, such as priming and the acrosome reaction. However, approaching the egg, spermatozoa face increasing concentrations of the hormone, as it is secreted by the cumulus cells and then passively diffuses along the cumulus matrix and beyond. In this context, several questions arise: are spermatozoa sensitive to the steroid gradients as they undergo priming and the acrosome reaction? If so, what are the functional gradual concentrations of progesterone? Do spermatozoa in different physiological states respond differentially to steroid gradients? To answer these questions, spermatozoa were confronted with progesterone gradients generated by different hormone concentrations (1 pM to 100 µM). Brief exposure to a 10 pM progesterone gradient stimulated priming for the acrosome reaction in one sperm subpopulation, and simultaneously induced the acrosome reaction in a different sperm subpopulation. This effect was not observed in non-capacitated cells or when progesterone was homogeneously distributed. The results suggest a versatile role of the gradual distribution of very low doses of progesterone, which selectively stimulate the priming and the acrosome reaction in different sperm subpopulations. PMID:24614230
Calibration of groundwater vulnerability mapping using the generalized reduced gradient method.
Elçi, Alper
2017-12-01
Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Calibration of groundwater vulnerability mapping using the generalized reduced gradient method
NASA Astrophysics Data System (ADS)
Elçi, Alper
2017-12-01
Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods.
Placental Glucose Transfer: A Human In Vivo Study
Holme, Ane M.; Roland, Marie Cecilie P.; Lorentzen, Bjørg; Michelsen, Trond M.; Henriksen, Tore
2015-01-01
Objectives The placental transfer of nutrients is influenced by maternal metabolic state, placenta function and fetal demands. Human in vivo studies of this interplay are scarce and challenging. We aimed to establish a method to study placental nutrient transfer in humans. Focusing on glucose, we tested a hypothesis that maternal glucose concentrations and uteroplacental arterio-venous difference (reflecting maternal supply) determines the fetal venous-arterial glucose difference (reflecting fetal consumption). Methods Cross-sectional in vivo study of 40 healthy women with uncomplicated term pregnancies undergoing planned caesarean section. Glucose and insulin were measured in plasma from maternal and fetal sides of the placenta, at the incoming (radial artery and umbilical vein) and outgoing vessels (uterine vein and umbilical artery). Results There were significant mean (SD) uteroplacental arterio-venous 0.29 (0.23) mmol/L and fetal venous-arterial 0.38 (0.31) mmol/L glucose differences. The transplacental maternal-fetal glucose gradient was 1.22 (0.42) mmol/L. The maternal arterial glucose concentration was correlated to the fetal venous glucose concentration (r = 0.86, p<0.001), but not to the fetal venous-arterial glucose difference. The uteroplacental arterio-venous glucose difference was neither correlated to the level of glucose in the umbilical vein, nor fetal venous-arterial glucose difference. The maternal-fetal gradient was correlated to fetal venous-arterial glucose difference (r = 0.8, p<0.001) and the glucose concentration in the umbilical artery (r = −0.45, p = 0.004). Glucose and insulin concentrations were correlated in the mother (r = 0.52, p = 0.001), but not significantly in the fetus. We found no significant correlation between maternal and fetal insulin values. Conclusions We did not find a relation between indicators of maternal glucose supply and the fetal venous-arterial glucose difference. Our findings indicate that the maternal-fetal glucose gradient is significantly influenced by the fetal venous-arterial difference and not merely dependent on maternal glucose concentration or the arterio-venous difference on the maternal side of the placenta. PMID:25680194
Vierheller, Janine; Neubert, Wilhelm; Falcke, Martin; Gilbert, Stephen H.; Chamakuri, Nagaiah
2015-01-01
Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic spaces and concentration profiles along the 100 μm of the whole cell, as well as the sub-millisecond time scale of local concentration changes and the change of lumenal Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We developed a novel computational approach to resolve the concentration gradients from dyadic space to cell level by using a quasistatic approximation within the dyad and finite element methods for integrating the partial differential equations. We show whole cell Ca2+-concentration profiles using three previously published RyR-channel Markov schemes. PMID:26441674
Kong, Xianghong; He, Qiang; Yue, Aishan; Wu, Shuangmin; Li, Jianhua
2010-06-01
An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method was developed for the determination of arbutin in apple juice concentrate. Samples were diluted with water, then cleaned-up with a PS-DVB column. Quantitation was carried out using an external standard method. UPLC was performed on an Eclipse Plus C, column (100 mm x 2.1 mm, 1.8 microm) using a gradient solvent system (methanol-water). MS/MS was performed with multiple reaction monitoring (MRM) mode. The detection limit of arbutin was 0.02 mg/L. The method showed good linear relationship at the range of 0.04-2.0 mg/L. The recoveries ranged from 75.2% to 102.7% with relative standard deviations (RSDs) less than 8.9%. The method is simple, fast and sensitive. It's suitable for quantitative and qualitative analysis of arbutin in apple juice concentrate.
A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.
De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K
2011-05-01
The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
USDA-ARS?s Scientific Manuscript database
Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...
Characterization of potential EC flux underestimation of "sticky" trace gas species
NASA Astrophysics Data System (ADS)
Neftel, Albrecht; Hensen, Arjan; Ibrom, Andreas; Ammann, Christof; Voglmeier, Karl; Brümmer, Christian
2017-04-01
Eddy covariance (EC) flux measurements of "sticky" trace gas species are affected of damping of high frequency variations of the gas concentration. Several approaches have been developed to correct for this effect (see e.g. Ibrom et al., 2007, Ammann et al., 2006). These approaches have in common that the spectral properties of the scalar are compared with the sonic temperature deduced from the Sonic anemometer data that is only marginally damped. A main difference between the two method is that one uses power spectra, while the other is based on co-spectra of the gas concentration with the vertical wind speed. NH3 fluxes used in the analysis stem from two field experiments: a) Posieux intercomparison October 2015: NH3 emissions of a grazed pasture measured with Eddy Covariance using an Aerodyne quantum cascade laser and with a horizontal gradient measurement using MiniDOAS systems (Sintermann et al., 2016) in conjunction with a dispersion model. b) Dronten experiment June 2016 in the Netherlands: NH3 emissions from two manured circles within 40m diameters have been determined with four different approaches (Eddy Covariance, Integrated Horizontal Flux approach, horizontal gradients and plume measurements). Despite correction with standard methods, turbulent NH3 flux measurements with the eddy covariance method seem still be underestimated when, e.g., compared to flux estimated using gradient methods. We discuss possible correction algorithms and how such underestimations can be recognized in the usual case, where no alternative flux estimation methods are available. References: Ammann, C., Brunner, A., Spirig, C., and Neftel, A. 2006: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643-4651 Ibrom, A., Dellwik, E., Jensen, N.O., Flyvbjerg, H. and Pilegaard, K., 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147: 140 -156. Sintermann, J., Dietrich, K., Hani, C., Bell, M., Jocher, M., and Neftel, A. 2016 A miniDOAS instrument optimised for ammonia field measurements, Atmos Meas Tech, 9, 2721-2734
Savill, George P; Michalski, Adam; Powers, Stephen J; Wan, Yongfang; Tosi, Paola; Buchner, Peter; Hawkesford, Malcolm J
2018-05-25
Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.
Mikesell, J.L.; Senftle, F.E.
1987-01-01
Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.
Duncan, David B.
1992-01-01
A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primeau, Francois William
2016-02-11
This report lists the accomplishments of the project, which includes: (1) analysis of inorganic nutrient concentration data as well as suspended particulate organic matter data in the ocean to demonstrate that the carbon to nitrogen to phosphorus ratios (C:N:P) of biological uptake and export vary on large spatial scales, (2) the development of a new computationally efficient method for simulating biogeochemical tracers in earth system models, (3) the application of the method to help calibrate an improved representation of dissolved organic matter in the ocean that includes variable C:N:P stoichiometry. This research is important because biological uptake of carbon andmore » nutrients in the upper ocean and export by sinking particles and downward mixing of dissolved organic matter helps maintain a vertical gradient in the carbon dioxide concentration in the ocean. This gradient is key to understanding the partitioning of CO2 between the ocean and the atmosphere. The final report lists seven peer reviewed scientific publications, one Ph.D. thesis, one technical report and two papers in preparation.« less
Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey
2014-04-15
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
NASA Astrophysics Data System (ADS)
Pumpanen, Jukka; Shurpali, Narasinha; Kulmala, Liisa; Kolari, Pasi; Heinonsalo, Jussi
2017-04-01
Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C in CO2 in different soil layers in a boreal forest in Southern Finland and compared them to seasonal variation in GPP. Our results show that Ra followed a seasonal variation in GPP with a time lag of about 2 weeks. The contribution of Ra on soil CO2 efflux was largest in July and August. There was also a distinct seasonal pattern in the vertical distribution of soil CO2 concentration and the abundances of natural isotopes 13C/12C in soil CO2 which reflected the changes in biological activity in the soil profile. Our results indicate that all methods were able to distinguish seasonal variability in Ra and Rh. The soil CO2 gradient method was able to reproduce the temporal variation in soil CO2 effluxes relatively well when compared to those measured with chambers. However, variation in soil moisture also causes significant variation in soil air CO2 concentrations which interferes with the variation resulted from soil temperatures and belowground allocation of carbon from recent photosynthate. Also, the assumptions used in gradient method calculations, such as soil porosity and transport distances have to be taken into account when interpreting the results.
Mirajkar, Nandita S; Gebhart, Connie J
2016-03-01
Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics. © 2016 The Author(s).
Ding, Yong-Xue; Streitmatter, Seth; Wright, Bryon E.; Hlady, Vladimir
2010-01-01
A gradient of negative surface charge based on 1-D spatial variation from surface sulfhydryl to mixed sulfhydryl-sulfonate moities was prepared by controlled UV oxidation of 3-mercaptopropylsilane monolayer on fused silica. Adsorption of three human plasma proteins, albumin (HSA), immunoglobulin G (IgG), and fibrinogen (Fgn) onto such surface gradient was studied using spatially-resolved total internal reflection fluorescence (TIRF) and autoradiography. Adsorption was measured from dilute solutions equivalent to 1/100 (TIRF, autoradiography), and 1/500 and 1/1000 (autoradiography) of protein’s physiological concentrations in plasma. All three proteins adsorbed more to the non-oxidized sulfhydryl region than to the oxidized, mixed sulfhydryl-sulfonate region of the gradient. In the case of HSA the adsorption contrast along the gradient was largest when the adsorption took place from more dilute protein solutions. Increasing the concentration to 1/100 of protein plasma concentration eliminated the effect of the gradient on HSA adsorption and to the lesser extent on IgG adsorption. In the case of Fgn the greatest adsorption contrast was observed at the highest concentration used. Based on adsorption kinetics, the estimated binding affinity of HSA for the sulfhydryl region what twice the affinity for the mixed sulfhydryl-sulfonate region of the gradient. For IgG and Fgn the initial adsorption was transport-limited and the initial adsorption rates approached the computed flux of the protein to the surface. PMID:20568822
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A
2006-11-01
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.
Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.
Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang
2017-11-01
The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.
Simulation of solidification in a Bridgman cell
NASA Technical Reports Server (NTRS)
Dakhoul, Y. M.; Farmer, R. C.
1984-01-01
Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation.
1994-07-27
of the split-flow and recirculation modifications in typical Air Force painting operations; itwas a proof-of- concept study only. It is recognized...recirculating ventilation. 4 To Implement this flow-reduction concept , it must first be established that recirculation does not cause an accumulation of toxic...ventilation concept . The concentration gradient is determined by height and direction of paint application. If the concentration in the top portion is
Statistics of Experiments on Cluster Formation and Transport in a Gravitational Field
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
Metastable state relaxation in a gravitational field is investigated in the case of non-critical binary solutions. A relaxation description is presented in terms of the time-dependent Ginzburg-Landau formalism for a non-conserved order parameter. A new ansatz for solution of the corresponding partial nonlinear stochastic differential equation is discussed. It is proved that, for the supersaturated solution under consideration, the metastable state relaxation in a gravitational field leads to formation of solute concentration gradients due to the sedimentation of subcritical solute clusters. The pure discussion of the possible methods to compare theoretical results and experimental data related to solute sedimentation in a gravitational field is presented. It is shown that in order to describe these experiments it is necessary to deal both with the value of the solute concentration gradient and with its formation rate. The stochastic nature of the sedimentation process is shown.
NASA Astrophysics Data System (ADS)
Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin
2015-07-01
Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 µg cm-2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the mesothelioma hazard posed by nanomaterials.
Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays
NASA Technical Reports Server (NTRS)
Li, Jun; Cassell, Alan M.; Arumugam, Prabhu U.
2013-01-01
A method has been developed for concentrating, or partly separating, particles of a selected species from a liquid or gas containing these particles, and flowing in a channel. An example of this is to promote an accumulation (and thus concentration) of the selected particle (e.g., biological species such as E. coli, salmonella, anthrax, tobacco mosaic virus or herpes simplex, and non-biological materials such as nano- and microparticles, quantum dots, nanowires, nano - tubes, and other inorganic particles) adjacent to the first surface. Additionally, this method can also determine if the particle species is present in the liquid. This is accomplished by providing an insulating material in an interstitial volume between two or more adjacent nanostructure electrodes. It can also be accomplished by providing a functionalizing substance, located on a selected region of the insulating material surface, which promotes attachment of the selected species particles to the functionalized surface, and measuring a selected electrical property such as electrical impedance, conductance, or capacitance. A time-varying electrical field E, having a root-mean-square intensity of E(sup 2) rms, with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array with a very high-magnitude gradient near exposed electrode tips. A dielectrophoretic force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected particle species to the surface. An electrical property value Z(meas) is measured at the functionalized surface, and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface. Some advantages of this innovation are that an array of nanostructure electrodes can provide an electric field intensity gradient that is one or more orders of magnitude greater than the corresponding gradient provided by a conventional microelectrode arrangement, and that, as a result of the high-magnitude field intensity gradients, a nanostructure concentrator can trap particles from high-speed microfluidic flows. This is critical for applications where the entire analysis must be performed in a few minutes
Design keys for paper-based concentration gradient generators.
Schaumburg, Federico; Urteaga, Raúl; Kler, Pablo A; Berli, Claudio L A
2018-08-03
The generation of concentration gradients is an essential operation for several analytical processes implemented on microfluidic paper-based analytical devices. The dynamic gradient formation is based on the transverse dispersion of chemical species across co-flowing streams. In paper channels, this transverse flux of molecules is dominated by mechanical dispersion, which is substantially different than molecular diffusion, which is the mechanism acting in conventional microchannels. Therefore, the design of gradient generators on paper requires strategies different from those used in traditional microfluidics. This work considers the foundations of transverse dispersion in porous substrates to investigate the optimal design of microfluidic paper-based concentration gradient generators (μPGGs) by computer simulations. A set of novel and versatile μPGGs were designed in the format of numerical prototypes, and virtual experiments were run to explore the ranges of operation and the overall performance of such devices. Then physical prototypes were fabricated and experimentally tested in our lab. Finally, some basic rules for the design of optimized μPGGs are proposed. Apart from improving the efficiency of mixers, diluters and μPGGs, the results of this investigation are relevant to attain highly controlled concentration fields on paper-based devices. Copyright © 2018 Elsevier B.V. All rights reserved.
One-Dimension Diffusion Preparation of Concentration-Gradient Fe₂O₃/SiO₂ Aerogel.
Zhang, Ting; Wang, Haoran; Zhou, Bin; Ji, Xiujie; Wang, Hongqiang; Du, Ai
2018-06-21
Concentration-gradient Fe₂O₃/SiO₂ aerogels were prepared by placing an MTMS (methyltrimethoxysilane)-derived SiO₂ aerogel on an iron gauze with an HCl atmosphere via one-dimensional diffusion, ammonia-atmosphere fixing, supercritical fluid drying and thermal treatment. The energy dispersive spectra show that the Fe/Si molar ratios change gradually from 2.14% to 18.48% with a height of 40 mm. Pore-size distribution results show that the average pore size of the sample decreases from 15.8 nm to 3.1 nm after diffusion. This corresponds well with TEM results, indicating a pore-filling effect of the Fe compound. In order to precisely control the gradient, diffusion kinetics are further studied by analyzing the influence of time and position on the concentration of the wet gel. At last, it is found that the diffusion process could be fitted well with the one-dimensional model of Fick’s second law, demonstrating the feasibility of the precise design and control of the concentration gradient.
Thurman, E.M.; Malcolm, R.L.
1979-01-01
A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.
2013-01-01
Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the present study suggest that density gradient ultracentrifugation using NaBiEDTA is a useful screening method for the study of lipoprotein profiles in dogs. Therefore, this method could potentially be used for diagnostic purposes for the separation of dogs suspected of having lipoprotein abnormalities from healthy dogs. PMID:23497598
Jensen, Stephanie M; Nguyen, Celina T; Jewett, John C
2016-09-01
Dengue virus (DENV) is a mosquito-transmitted flavivirus that infects approximately 100 million people annually. Multi-day protocols for purification of DENV reduce the infective titer due to viral sensitivity to both temperature and pH. Herein we describe a 5-h protocol for the purification of all DENV serotypes, utilizing traditional gradient-free ultracentrifugation followed by selective virion precipitation. This protocol allows for the separation of DENV from contaminating proteins - including intact C6/36 densovirus, for the production of infective virus at high concentration for protein-level analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Bai, Wei; Zhou, Yuan-Guo
2017-01-01
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice. PMID:29259540
Temperature gradient effects on vapor diffusion in partially-saturated porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, S.W.
1999-07-01
Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less
NASA Astrophysics Data System (ADS)
Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi
2010-01-01
We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.
Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver
2010-08-21
A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.
Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang
2014-01-01
To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.
Duncan, D.B.
1992-11-24
A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube. 1 figure.
2014-01-01
Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
Cornelisse, C J; Hermens, W T; Joe, M T; Duijndam, W A; van Duijn, P
1976-11-01
A numerical method was developed for computing the steady-state concentration gradient of a diffusible enzyme reaction product in a membrane-limited compartment of a simplified theoretical cell model. In cytochemical enzyme reactions proceeding according to the metal-capture principle, the local concentration of the primary reaction product is an important factor in the onset of the precipitation process and in the distribution of the final reaction product. The following variables were incorporated into the model: enzyme activity, substrate concentration, Km, diffusion coefficient of substrate and product, particle radius and cell radius. The method was applied to lysosomal acid phosphatase. Numerical values for the variables were estimated from experimental data in the literature. The results show that the calculated phosphate concentrations inside lysosomes are several orders of magnitude lower than the critical concentrations for efficient phosphate capture found in a previous experimental model study. Reasons for this apparent discrepancy are discussed.
Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography
NASA Astrophysics Data System (ADS)
Karicheva, E.; Guseva, N.; Kambalina, M.
2016-03-01
Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.
Measurement and Perturbation of Morphogen Lifetime: Effects on Gradient Shape
Drocco, Jeffrey A.; Grimm, Oliver; Tank, David W.; Wieschaus, Eric
2011-01-01
Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation. PMID:22004733
Mallik, Rangan; Raman, Srividya; Liang, Xiaoli; Grobin, Adam W; Choudhury, Dilip
2015-09-25
A rapid robust reversed-phase UHPLC method has been developed for the analysis of total benzalkonium chloride in preserved drug formulation. A systematic Quality-by-Design (QbD) method development approach using commercial, off the shelf software (Fusion AE(®)) has been used to optimize the column, mobile phases, gradient time, and other HPLC conditions. Total benzalkonium chloride analysis involves simple sample preparation. The method uses gradient elution from an ACE Excel 2 C18-AR column (50mm×2.1mm, 2.0μm particle size), ammonium phosphate buffer (pH 3.3; 10mM) as aqueous mobile phase and methanol/acetonitrile (85/15, v/v) as the organic mobile phase with UV detection at 214nm. Using these conditions, major homologs of the benzalkonium chloride (C12 and C14) have been separated in less than 2.0min. The validation results confirmed that the method is precise, accurate and linear at concentrations ranging from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The recoveries ranged from 99% to 103% at concentrations from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The validation results also confirmed the robustness of the method as predicted by Fusion AE(®). Copyright © 2015 Elsevier B.V. All rights reserved.
Isotopic Expression of Soil Denitrification across Gradients in Nitrogen and Carbon Availability
NASA Astrophysics Data System (ADS)
Walker, R.; Houlton, B. Z.; Perakis, S. S.
2016-12-01
Denitrification removes biologically available nitrogen (N) from ecosystems, making it an important control over the biosphere's N balance, with implications for air quality, human health and climate change. Despite its importance, estimates of the global soil denitrification flux remain highly uncertain. Major challenges lie in directly measuring the gaseous by-products of denitrification and scaling this complex microbial processes in both space and time. Process-based models constrained by empirical isotopic evidence have emerged as a method to help overcome these challenges. These models use the terrestrial 15N budget, along with soil moisture and N input data, to quantify denitrification fluxes and its gaseous forms, including NO, N2O and N2. However, the robustness of this method is limited by incomplete understanding of isotopic expression of denitrification and how it varies across known controls, such as carbon (C) and nitrate (NO3) availability. Here, we present a quantitative assessment of the isotope effect expression of in situ soil denitrification across gradients in N and C concentrations. This experiment tests the hypothesis that isotopic expression of soil denitrification (a kinetic process) increases with NO3 availability (reaction substrate) and decreases with increasing availability of organic C (electron donor). To test the impact of NO3 availability on the isotope effect of denitrification, field incubations experiments were conducted across a natural soil N gradient, ranging from 0.11 to 0.69% N. Similarly, the impact of electron donor availability was tested by conducting field incubations across a natural soil C gradient ranging from 1.94 to 11.60%. Data show that in lower N sites, the percent of NO3 consumed during the incubation was higher, while C availability neither affected the fraction of NO3 consumed nor the rate of consumption. These findings suggest that greater NO3 concentrations allow for greater isotope expression of denitrification in soil, supporting the working hypothesis. These results will be complemented by laboratory experiments in which NO3 concentration, C availability, and temperature are systematically varied. Future goals include the incorporation of these data into existing models to improve estimates of global N fluxes.
Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis
NASA Astrophysics Data System (ADS)
Yalcin, Sinan Eren
The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.
On the Convergence Analysis of the Optimized Gradient Method.
Kim, Donghwan; Fessler, Jeffrey A
2017-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.
On the Convergence Analysis of the Optimized Gradient Method
Kim, Donghwan; Fessler, Jeffrey A.
2016-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707
Barata, David; Spennati, Giulia; Correia, Cristina; Ribeiro, Nelson; Harink, Björn; van Blitterswijk, Clemens; Habibovic, Pamela; van Rijt, Sabine
2017-09-07
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
Studies of bacterial aerotaxis in a microfluidic device
Adler, Micha; Erickstad, Michael; Gutierrez, Edgar; Groisman, Alex
2012-01-01
Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O2]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O2] across a long gradient channel, with characteristic [O2] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O2] gradient, and the distribution of cells across the channel is analyzed near the channel outlet at a throughput of >105 cells per hour. Aerotaxis experiments are performed in [O2] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O2] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O2], but rather prefer the highest accessible [O2]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria. PMID:23010909
Ge, Zhengwei; Wang, Wei; Yang, Chun
2011-04-07
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.
Morales, P; Vantman, D; Barros, C; Vigil, P
1991-03-01
Several techniques have been used for selecting motile spermatozoa including Percoll and albumin gradients, swim-up, and glass wool filtration. A high yield of motile spermatozoa as well as an enhancement of motility are the most desirable features of a practical method. An equally important consideration is whether or not these techniques select functionally normal spermatozoa. In this study we have compared two methods for separation of motile cells, swim-up and Percoll gradient. Normal semen samples from 12 different men were used in this study. Each sample was simultaneously processed by swim-up and Percoll gradient using modified Tyrode's medium. After the sperm concentration was adjusted to 1 x 10(7) spermatozoa/ml, the suspensions were incubated at 37 degrees C, 5% CO2 in air. In each suspension the percentage of sperm recovery, percentage of motile spermatozoa, percentage of acrosome reacted spermatozoa (either spontaneously or stimulated with human follicular fluid), percentage of zona-free hamster oocytes penetrated, and number of spermatozoa bound to the human zona pellucida were determined. The results obtained indicated that the percentage of sperm recovery was higher with the Percoll gradient than with the swim-up procedure (P less than 0.001). However, no significant differences were found between these two sperm populations in the percentage of motile cells, in the percentage of acrosome reacted spermatozoa, and in the percentage of zona-free hamster oocytes penetrated. In addition, the number of spermatozoa bound per zona pellucida was similar for spermatozoa selected by Percoll or swim-up. We conclude that there were no functional differences between the spermatozoa selected by either method.
Freydank; Krasia; Tiddy; Patrickios
2000-05-01
A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.
Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.
2007-01-01
Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865
NASA Astrophysics Data System (ADS)
Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.
2012-12-01
Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty estimates. The method is demonstrated on a Danish field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the co-simulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Hahn, Hartmut; Salt, Alec N; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared J; Plontke, Stefan K
2012-06-01
To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations, and lower base-to-apex concentration gradients in the scala tympani (ST) of the guinea pig than after intratympanic (round window [RW]) application. Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to-apex concentration gradients in ST. Two microliters of dexamethasone-phosphate (10 mg/ml) were injected into ST either through the RW membrane, which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by means of an established computer model and compared with previous experiments performed by our group with the same experimental techniques but using intratympanic applications. Single intracochlear injections of 20 minutes resulted in approximately 10 times higher peak concentrations (on average) than 2 to 3 hours of intratympanic application to the RW niche. Intracochlear drug levels were less variable and could be measured for over 220 minutes. Concentration gradients along the scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. With significantly higher, less variable drug levels and smaller base-to-apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks.
Cleveland, Danielle; Brumbaugh, William G.; MacDonald, Donald D.
2017-01-01
Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater.
NASA Technical Reports Server (NTRS)
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)
2001-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble surface much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition, the rapid kinetic exchange and high bulk concentration maintain a saturated surface with uniform surface concentrations. This prevents retarding surface tension gradients and keeps the thermocapillary velocity high. In our reports over the first 2 years, we presented numerical simulations of the bubble motion and surfactant transport which verified theoretically the concept of remobilization, and the development of an apparatus to track and measure the velocity of rising bubbles in a glycerol/water surfactant solution. This year, we detail experimental observations of remobilization. Two polyethylene oxide surfactants were studied, C12E6 (CH3(CH2)11(OCH2)6OH) and C10E8 (CH3(CH2)4(OCH2CH2)8OH). Measurements of the kinetic exchange for these surfactants show that the one with the longer hydrophobe chain C12E6 has a lower rate of kinetic exchange. In addition, this surfactant is much less soluble in the glycerol/water mixture because of the shorter ethoxylate chain. As a result, we found that C12E6 had only a very limited ability to remobilize rising bubbles because of the limited kinetic exchange and reduced solubility. However, C10E8, with its higher solubility and more rapid exchange was found to dramatically remobilize rising bubbles. We also compared our theoretical calculations to the experimental measurements of velocity for both the non-remobilizing and remobilizing surfactants and found excellent agreement. We further observed that for C10E8 at high concentrations, which exceeded the critical micelle concentrations, additional remobilization was measured. In this case the rapid exchange of monomer between micelle and surfactant provides an additional mechanism for maintaining a uniform surface concentrations.
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.
2018-05-01
In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.
Using growth-based methods to determine direct effects of salinity on soil microbial communities
NASA Astrophysics Data System (ADS)
Rath, Kristin; Rousk, Johannes
2015-04-01
Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by measuring the bacterial growth response to added NaCl in a soil suspension. The bacterial community tolerance to salt increased along the salt gradients with higher in situ soil salinity. In samples from the low-saline end of the gradient, bacterial growth rates in the soil suspension showed a clear concentration-response relationship to NaCl resulting in inhibition curves. This relationship gradually changed toward higher salt concentrations. In soil samples from high salinity sites, bacterial growth was no longer inhibited by adding high concentrations of NaCl to the bacterial soil suspension. In fact, adding NaCl even promoted bacterial growth rates. These results show that salinity played an ecologically significant role in shaping communities at the highly saline end of the gradients and provide evidence for a direct salt effect on the microbial community
Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent
2017-02-01
Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO 3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO 3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO 3 concentrations suggest that significant lateral flow prevented NO 3 enrichment; iii) low NO 3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO 3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing groundwater contamination. Such fluxes, once taken into account in fertilizer management, would allow optimizing fertilizer consumption and mitigate high nitrate concentrations in groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Metal concentrations in urban riparian sediments along an urbanization gradient
Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat
2012-01-01
Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...
Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D
2015-01-25
Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.
GRADFLEX: Fluctuations in Microgravity
NASA Technical Reports Server (NTRS)
Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.
2004-01-01
We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.
Bankston, Theresa E; Stone, Melani C; Carta, Giorgio
2008-04-25
This work provides the theoretical foundation and a range of practical application examples of a recently developed method to measure protein mass transfer in adsorbent particles using refractive index-based optical microscopy. A ray-theoretic approach is first used to predict the behavior of light traveling through a particle during transient protein adsorption. When the protein concentration gradient in the particle is sharp, resulting in a steep refractive index gradient, the rays bend and intersect, thereby concentrating light in a sharp ring that marks the position of the adsorption front. This behavior is observed when mass transfer is dominated by pore diffusion and the adsorption isotherm is highly favorable. Applications to protein cation-exchange, hydrophobic interaction, and affinity adsorption are then considered using, as examples, the three commercial, agarose-based stationary phases SP-Sepharose-FF, Butyl Sepharose 4FF, and MabSelect. In all three cases, the method provides results that are consistent with measurements based on batch adsorption and previously published data confirming its utility for the determination of protein mass transfer kinetics under a broad range of practically relevant conditions.
Dynamics of reactive microbial hotspots in concentration gradients
NASA Astrophysics Data System (ADS)
Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy
2017-04-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
Wu, Chih Cheng; Lee, Grace W M; Yang, Shinhao; Yu, Kuo-Pin; Lou, Chia Ling
2006-10-15
Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.
Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells
Altamura, Emiliano; Milano, Francesco; Tangorra, Roberto R.; Trotta, Massimo; Omar, Omar Hassan; Stano, Pasquale
2017-01-01
Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min−1. Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology. PMID:28320948
NASA Astrophysics Data System (ADS)
Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin
2018-03-01
Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.
Fink, Laurel A; Manley, Steven L
2011-12-01
This study introduces an innovative method for biomonitoring using giant kelp (Macrocystis pyrifera) sieve tube sap (STS) metal concentrations as an indication of pollution influence. STS was sampled from fronds collected from 10 southern California locations, including two reference sites on Santa Catalina Island. Using ICP-MS methodology, STS concentrations of 17 different metals were measured (n=495). Several metals associated with pollution showed the highest STS concentrations and most seasonal variation from populations inside the Port of Los Angeles/Long Beach. Lowest concentrations were measured at less-urbanized areas: Santa Catalina Island and Malibu. Some metals showed a spatial gradient in STS metal concentration with increasing distance from point sources (i.e. Los Angeles River). Cluster analyses indicate that polluted seawater may affect kelp uptake of metals essential for cellular function. Results show that this method can be useful in describing bioavailable metal pollution with implications for accumulation within an important ecosystem. Copyright © 2011 Elsevier Ltd. All rights reserved.
He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali
2010-01-01
Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897
NASA Astrophysics Data System (ADS)
Béranger, Sandra C.; Sleep, Brent E.; Lollar, Barbara Sherwood; Monteagudo, Fernando Perez
2005-01-01
An analytical, one-dimensional, multi-species, reactive transport model for simulating the concentrations and isotopic signatures of tetrachloroethylene (PCE) and its daughter products was developed. The simulation model was coupled to a genetic algorithm (GA) combined with a gradient-based (GB) method to estimate the first order decay coefficients and enrichment factors. In testing with synthetic data, the hybrid GA-GB method reduced the computational requirements for parameter estimation by a factor as great as 300. The isotopic signature profiles were observed to be more sensitive than the concentration profiles to estimates of both the first order decay constants and enrichment factors. Including isotopic data for parameter estimation significantly increased the GA convergence rate and slightly improved the accuracy of estimation of first order decay constants.
NASA Astrophysics Data System (ADS)
Murugesan, Nithya; Singha, Siddhartha; Panda, Tapobrata; Das, Sarit K.
2016-03-01
Studies on chemotaxis in microfluidics device have become a major area of research to generate physiologically similar environment in vitro. In this work, a novel micro-fluidic device has been developed to study chemo-taxis of cells in near physiological condition which can create controllable, steady and long-range chemical gradients using various chemo-effectors in a micro-channel. Hydrogels like agarose, collagen, etc, can be used in the device to maintain exclusive diffusive flux of various chemical species into the micro-channel under study. Variations of concentrations and flow rates of Texas Red dextran in the device revealed that an increase in the concentration of the dye in the feed from 6 to 18 μg ml-1, causes a steeper chemical gradient in the device, whereas the flow rate of the dye has practically no effect on the chemical gradient in the device. This observation confirms that a diffusion controlled chemical gradient is generated in the micro-channel. Chemo-taxis of E. coli cells were studied under the steady gradient of a chemo-attractant and a chemo-repellent separately in the same chemical gradient generator. For sorbitol and NiSO4·6H2O, the bacterial cells exhibit a steady distribution in the micro channel after 1 h and 30 min, respectively. From the distribution of bacterial population chemo-tactic strength of the chemo-effectors was estimated for E. coli. In a long microfluidic channel, migration behavior of bacterial cells under diffusion controlled chemical gradient showed chemotaxis, random movement, aggregation, and concentration dependent reverse chemotaxis.
NASA Astrophysics Data System (ADS)
Borg, A.; Bolinder, J.; Fuchs, L.
The main purpose of this work is to develop a method for simultaneous measurement of velocity and passive scalar concentration by means of digital particle image velocimetry and planar laser-induced fluorescence. Details of the implementation of the method are given, and the technique is applied to measurements of concentration and velocity in the centre-plane of a liquid jet with a Reynolds number of 6,000. The measurements are compared with large eddy simulations. Mean velocities and concentrations, fluctuating velocities and concentrations, and correlation between fluctuating velocities and concentrations are analysed for the first six diameters downstream of the jet exit. The general agreement between measured and simulated results was found to be good, in particular for mean quantities. Mean profiles are also found to be in good agreement with other experimental work on jets reported in the literature. The ``whole-plane'' measurement method was found to be very useful for detailed comparisons of turbulent statistics with simulated data. The inadequacy of models for turbulent mass transport based on the standard gradient diffusion concept is demonstrated through the experimental data.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Manganese oxide helices, rings, strands, and films, and methods for their preparation
Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie
2003-01-07
Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.
Annual sediment flux estimates in a tidal strait using surrogate measurements
Ganju, N.K.; Schoellhamer, D.H.
2006-01-01
Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights reserved.
Korchazhkina, Olga; Exley, Christopher; Andrew Spencer, Stephen
2003-09-05
A selective and sensitive method based on derivatisation with 2,4-dinitrophenylhydrazine (DNPH) and consecutive HPLC gradient separation is described for the determination of malondialdehyde (MDA) in urine. Preparation of urine samples involved a one-step derivatisation/extraction procedure. Separation was achieved using a Waters SymmetryC(18) column (3.9 x 150 mm) and linear gradient of acetonitrile in water (from 30% to 70% in 30 min). The overall detection limit of the method was 56 nM of MDA in urine. The recovery of MDA was 94.3+/-8.6%. MDA in urine of healthy volunteers, measured using the method of standard additions, was 0.019+/-0.012 microM/mmol creatinine. MDA in the same samples measured using the 2-thiobarbituric acid (TBA) assay was 0.181+/-0.063 microM/mmol creatinine. We demonstrate that the commonly used TBA assay in conjunction with HPLC may overestimate the MDA concentration in human urine by almost 10-fold.
Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A
2007-04-01
A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Ghai, Ishan; Pira, Alessandro; Scorciapino, Mariano Andrea; Bodrenko, Igor; Benier, Lorraine; Ceccarelli, Matteo; Winterhalter, Mathias; Wagner, Richard
2017-03-16
A major challenge in the discovery of the new antibiotics against Gram-negative bacteria is to achieve sufficiently fast permeation in order to avoid high doses causing toxic side effects. So far, suitable assays for quantifying the uptake of charged antibiotics into bacteria are lacking. We apply an electrophysiological zero-current assay using concentration gradients of β-lactamase inhibitors combined with single-channel conductance to quantify their flux rates through OmpF. Molecular dynamic simulations provide in addition details on the interactions between the nanopore wall and the charged solutes. In particular, the interaction barrier for three β-lactamase inhibitors is surprisingly as low as 3-5 kcal/mol and only slightly above the diffusion barrier of ions such as chloride. Within our macroscopic constant field model, we determine that at a zero-membrane potential a concentration gradient of 10 μM of avibactam, sulbactam, or tazobactam can create flux rates of roughly 620 molecules/s per OmpF trimer.
Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng
2009-09-01
This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.
Singh, Milind; Berkland, Cory
2008-01-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis
Wolfram, Christopher J.; Rubloff, Gary W.; Luo, Xiaolong
2016-01-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication. PMID:27917249
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis.
Wolfram, Christopher J; Rubloff, Gary W; Luo, Xiaolong
2016-11-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication.
Singh, Milind; Berkland, Cory; Detamore, Michael S
2008-12-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, X.-L.; Boissard, C.; Juan, A. J.; Hewitt, C. N.; Gallagher, M.
1997-08-01
Volatile organic compound (VOC) emission fluxes from Gorse (Ulex europaeus) were measured during May 30-31, 1995 at Kelling Heath in eastern England by using bag enclosure and gradient methods simultaneously. The enclosure measurements were made from branches at different stages of physiological development (flowering, after flowering, and mixed). Isoprene was found to represent 90% of the total VOC emissions, and its emission rates fluctuated from 6 ng (g dwt)-1 h-1 in the early morning to about 9700 ng(g dwt)-1 h-1 at midday. Averaged emission rates standardized to 20°C were 1625, 2120, and 3700 ng (g dwt)-1 h-1 for the new grown, "mixed," and flowering branch, respectively. Trans-ocimene and α-pinene were the main monoterpenes emitted and represented, on average, 47.6% and 36.9% of the total monoterpenes. Other monoterpenes, camphene, sabinene, β-pinene, myrcene, limonene and γ-terpinene, were positively identified but together represented less than 1.5% of the total VOC emissions from gorse. Maximum isoprene concentrations in air at the site were measured around midday at 2 m (174 parts per trillion by volume, or pptv) and 6 m (149 pptv), and minimum concentrations were measured during the night (8 pptv at both heights). Mean daytime α-pinene air concentrations of 141 and 60 pptv at 2 and 6 m height were determined, but trans-ocimene concentrations were less than the analytical detection limit (4 pptv), suggesting rapid chemical removal of this compound from air. The isoprene fluxes calculated by the micrometeorological gradient method showed a pattern similar to that of those calculated by the enclosure method, with isoprene emission rates maximum at midday (100 μg m-2 h-1) and not detectable during the nighttime. Assessment of the fraction of the site covered by gorse plants enabled an extrapolation of emission fluxes from the enclosure measurements. When averaged over the 2 day experiment, isoprene fluxes of 29.8 and 27.8 μg m-2 h-1 were obtained from the gradient and the enclosure extrapolation respectively. These isoprene fluxes to the atmosphere represented between 0.12% and 0.35% of the net assimilated carbon (as CO2) uptake rate for gorse.
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers
Inaba, Shusei; Vohra, Varun
2017-01-01
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.
Inaba, Shusei; Vohra, Varun
2017-05-09
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.
Kagawa, Yuki; Haraguchi, Yuji; Tsuneda, Satoshi; Shimizu, Tatsuya
2017-05-01
Recent progress in tissue engineering technology has enabled us to develop thick tissue constructs that can then be transplanted in regenerative therapies. In clinical situations, it is vital that the engineered tissues to be implanted are safe and functional before use. However, there is currently a limited number of studies on real-time quality evaluation of thick living tissue constructs. Here we developed a system for quantifying the internal activities of engineered tissues, from which we can evaluate its quality in real-time. The evaluation was achieved by measuring oxygen concentration profiles made along the vertical axis and the thickness of the tissues estimated from cross-sectional images obtained noninvasively by an optical coherence tomography system. Using our novel system, we obtained (i) oxygen concentration just above the tissues, (ii) gradient of oxygen along vertical axis formed above the tissues within culture medium, and (iii) gradient of oxygen formed within the tissues in real-time. Investigating whether these three parameters could be used to evaluate engineered tissues during culturing, we found that only the third parameter was a good candidate. This implies that the activity of living engineered tissues can be monitored in real-time by measuring the oxygen gradient within the tissues. The proposed measuring strategy can be applied to developing more efficient culturing methods to support the fabrication of engineered thick tissues, as well as providing methods to confirm the quality in real-time. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 855-864, 2017. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Paustian, Joel Scott
Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.
Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S
2011-01-01
High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168
Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn
2007-01-01
Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.
Adaptive microfluidic gradient generator for quantitative chemotaxis experiments.
Anielski, Alexander; Pfannes, Eva K B; Beta, Carsten
2017-03-01
Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.
Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl
2010-12-14
A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
NASA Astrophysics Data System (ADS)
Shirokova, V.; Graves, L.; Stojanovic, S.; Enright, A. M.; Bank, C.; Ferris, F. G.
2013-12-01
A pristine glaciofluvial aquifer displaying naturally occurring geochemical gradients was investigated using hydrogeological, geophysical, and microbiological methods. A network of 25 piezometers was used to collect samples for groundwater chemical analysis, including parameters such as total iron (Fe), ferrous iron (Fe2+), sulphate (SO42-), sulfur (S2-), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), silica (SiO2), phosphate (PO43-), pH, and oxidation reduction potential (ORP). Ion concentration values between piezometers were interpolated using kriging and inverse distance weighting. Yearly analysis of the network shows spatially and temporally persistent plumes of iron and sulfur. A 3D model of the aquifer was compiled to aid in the understanding of the nature and origin of the geochemical gradients. The resulting maps showed zones with high concentrations of dissolved total iron (predominantly soluble ferric iron and complexed iron compounds), followed immediately downgradient by a high concentration of ferrous iron. Similarly, zones of high sulfide concentration were followed by areas of high sulfate concentration. There was some overlap between the iron and sulfur plumes, and ion concentrations were higher in years with a lower water table elevation. Metagenomic analysis revealed a diverse microbial community in the sediment, capable of the biogeochemical cycling of iron, sulfur, and nitrogen. The aquifer basin, as bounded by a till aquitard, was delineated using ground penetrating radar tomography from 45 lines. The plumes corresponded to an area where there is large, channel-like depression in the till boundary. Flow vectors from hydrogeological modelling indicated increased velocity followed by a slowing and convergence of groundwater in this location. Resistivity values from 20 lines varied in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. The resistivity surveys consistently showed low resistivity values in areas of ionic enrichment, the location of the geochemical plumes, and high resistivity values at the top of the vadose zone including below dry sand outcrops. Fluorescent microscopy suggests the plumes are associated with attached subsurface bacteria dominated by species such as Gallionella and Leptothrix. These bacteria are likely responsible for conductive anomalies (<200 Ohm.m), observed in the resistivity models, that were at the centre of areas with high ionic concentrations. The above aquifer chemical network is currently being computationally simulated, and attempts are being made to determine the extents to which biotic and abiotic processes contribute to the formation of the geochemical gradients.
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
Mangal, V; Zhu, Y; Shi, Y X; Guéguen, C
2016-11-01
Diffusive gradient in thin films (DGT) and phytoplankton communities were evaluated for the measurement of Cd and V at environmentally relevant concentrations in laboratory settings and in the Churchill River estuary (Manitoba, Canada) during an annual spring melt. Despite rapid changes in hydrology and water quality, DGT samplers and intracellular Cd and V concentrations were positively correlated (0.79 < r(2) < 0.99), suggesting comparable accumulation trends between both DGT-labile and intracellular monitoring techniques. The largest accumulated concentrations of both Cd and V by DGT and phytoplankton accumulation methods were found later into the river discharge period. In controlled settings, accumulated Cd and V concentrations by the diatom Attheya septentrionalis displayed a strong correlation with metals accumulated by DGTs (r(2) > 0.99). Principal component analysis (PCA) reinforced similarities between both metal monitoring techniques and assessed how changing environmental variables during the river discharge period influenced each monitoring technique. Cd accumulation was influenced by DOC concentrations and protein-like DOM whereas ionic strength (i.e. conductivity) and humic-like DOM influenced V accumulation. The present findings suggest that (1) DGT is a versatile tool for monitoring bioaccumulation of Cd and V in highly dynamic environmental systems and (2) DOC concentration, DOM composition, conductivity, pH, and river discharge influence the bioavailability of Cd and V in estuarine and riverine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnetic Control of Concentration Gradient in Microgravity
NASA Technical Reports Server (NTRS)
Leslie, Fred; Ramachandran, Narayanan
2005-01-01
A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.
A. Dennis Lemly
1997-01-01
This paper describes a method for deriving site-specific water quality criteria for selenium using a two-step process: (1) gather information on selenium residues and biological effects at the site and in down-gradient systems and (2) examine criteria based on the degree of bioaccumulation, the relationship between mea-sured residues and threshold concentrations for...
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Jefferson, I.; Madun, A.; Abidin, M. H. Z.; Rogers, C. D. F.
2018-04-01
Electrokinetic stabilisation (EKS) method has the ability to solve the problems of soft highly compressibility soil. This study will present the results from an experimental study of EKS on soft soils using inactive kaolinite clay, inert electrode and distilled water (DW) as a pure system mechanism before any chemical stabilisers being used in this research. Therefore, this will provide a baseline study to improve the efficiency of EKS approach. The test model was using inert electrode of Electrokinetic Geosythentic (EKG) developed at the Newcastle University to apply a constant voltage gradient of 50 V/m across a soil sample approximately 400 mm. Distilled water was used at the pore electrolyte fluid compartments supplied under zero hydraulic gradient conditions for the periods of 3, 7 and 14 days. Throughout the monitoring, physical and chemical characteristics were measured. Results from the monitoring data, physical and chemical properties of the pure system showed the development of pH gradient, the changes of electrical conductivity and chemical concentrations with regards to the distance from anode and treatment periods due to the electrochemical effects even though there was no chemical stabilisers were introduced or released from the degradation of electrodes.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
Jonášová, Eleonóra Parelius; Bjørkøy, Astrid; Stokke, Bjørn Torger
2016-12-01
Optical aberrations due to refractive index mismatches occur in various types of microscopy due to refractive differences between the sample and the immersion fluid or within the sample. We study the effects of lateral refractive index differences by fluorescence confocal laser scanning microscopy due to glass or polydimethylsiloxane cuboids and glass cylinders immersed in aqueous fluorescent solution, thereby mimicking realistic imaging situations in the proximity of these materials. The reduction in fluorescence intensity near the embedded objects was found to depend on the geometry and the refractive index difference between the object and the surrounding solution. The observed fluorescence intensity gradients do not reflect the fluorophore concentration in the solution. It is suggested to apply a Gaussian fit or smoothing to the observed fluorescence intensity gradient and use this as a basis to recover the fluorophore concentration in the proximity of the refractive index step change. The method requires that the reference and sample objects have the same geometry and refractive index. The best results were obtained when the sample objects were also used for reference since small differences such as uneven surfaces will result in a different extent of aberration.
Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da
2007-06-22
A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.
Carbonyl Sulfide: is it AN Isotope of CO2 on Steroids?
NASA Astrophysics Data System (ADS)
Berry, J. A.; Campbell, J. E.; Baker, I. T.; Whelan, M.; Hilton, T. W.
2015-12-01
The behavior of OCS in the atmosphere is very similar to that of CO2 and reminiscent of an isotopologue. It is stable, has a turnover time of a couple of years (similar to that of 18O in CO2). It can be measured with adequate accuracy - despite the fact that its abundance is one millionth that of CO2, but there is one dramatic difference. The seasonal variation in the concentration of OCS relative to its background concentration can be 6-10 fold larger than the corresponding variation in CO2 concentration. Furthermore there are large spatial gradients in atmospheric OCS, with the concentrations being generally lower over the continents than the ocean, and lower in the atmospheric boundary layer over vegetated surfaces than in the free troposphere. These gradients have been clearly resolved by flask sampling from aircraft and recently by satellite measurements. The dynamics of OCS are larger than any other conserved atmospheric gas and certainly dwarf isotopic gradients. There are strong differences in the kinetics of CO2 and OCS exchange with leaves (similar to an isotopic fractionation), but these are not responsible for the large atmospheric signals. The major driver of these gradients is a large spatial separation between the major sources of OCS (the tropical ocean) and the major sink (the terrestrial biosphere). This talk will review the biogeochemical cycle of OCS; the kinetics of its exchange with leaves and soils; the distribution of sources and sinks, and the local and large scale gradients of OCS concentration in the atmosphere.
NASA Technical Reports Server (NTRS)
Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.
1991-01-01
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.
Response of soil microbial communities to roxarsone pollution along a concentration gradient.
Liu, Yaci; Zhang, Zhaoji; Li, Yasong; Wen, Yi; Fei, Yuhong
2017-07-29
The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.
Visualization of an endogenous retinoic acid gradient across embryonic development.
Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi
2013-04-18
In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.
NASA Technical Reports Server (NTRS)
Venable, D. D.; Punjabi, A. R.; Poole, L. R.
1984-01-01
A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.
Plasma N-Terminal Pro B-Type Natriuretic Peptide Concentrations in Dogs with Pulmonic Stenosis
KOBAYASHI, Keiya; HORI, Yasutomo; CHIMURA, Syuuichi
2014-01-01
ABSTRACT The detailed information between plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) concentrations and dogs with pulmonic stenosis (PS) is still unknown. The aim of the present study was to investigate the clinical utility of measuring plasma NT-proBNP concentrations in dogs with PS and to determine whether plasma NT-proBNP concentration could be used to assess disease severity. This retrospective study enrolled 30 client-owned, untreated dogs with PS (asymptomatic [n=23] and symptomatic [n=7]) and 11 healthy laboratory beagles. Results of physical examination, thoracic radiography and echocardiography were recorded. Plasma NT-proBNP concentrations were measured using commercial laboratories. Compared to the healthy control dogs, cardiothoracic ratio was significantly increased in dogs with both asymptomatic and symptomatic PS. Similarly, the ratio of the main pulmonary artery to aorta was significantly decreased in dogs with both asymptomatic and symptomatic PS. The pulmonic pressure gradient in the symptomatic PS dogs was significantly higher than that in the asymptomatic PS dogs. Plasma NT-proBNP concentration was significantly elevated in the symptomatic PS dogs compared to the healthy control dogs and the asymptomatic PS dogs. Furthermore, the Doppler-derived pulmonic pressure gradient was significantly correlated with the plasma NT-proBNP concentration (r=0.78, r2=0.61, P<0.0001). Plasma NT-proBNP concentration >764 pmol/l to identify severe PS had a sensitivity of 76.2% and specificity of 81.8%. The plasma NT-proBNP concentration increased by spontaneous PS, i.e. right-sided pressure overload and can be used as an additional method to assess the severity of PS in dogs. PMID:24561377
Plasma N-terminal pro B-type natriuretic peptide concentrations in dogs with pulmonic stenosis.
Kobayashi, Keiya; Hori, Yasutomo; Chimura, Syuuichi
2014-06-01
The detailed information between plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) concentrations and dogs with pulmonic stenosis (PS) is still unknown. The aim of the present study was to investigate the clinical utility of measuring plasma NT-proBNP concentrations in dogs with PS and to determine whether plasma NT-proBNP concentration could be used to assess disease severity. This retrospective study enrolled 30 client-owned, untreated dogs with PS (asymptomatic [n=23] and symptomatic [n=7]) and 11 healthy laboratory beagles. Results of physical examination, thoracic radiography and echocardiography were recorded. Plasma NT-proBNP concentrations were measured using commercial laboratories. Compared to the healthy control dogs, cardiothoracic ratio was significantly increased in dogs with both asymptomatic and symptomatic PS. Similarly, the ratio of the main pulmonary artery to aorta was significantly decreased in dogs with both asymptomatic and symptomatic PS. The pulmonic pressure gradient in the symptomatic PS dogs was significantly higher than that in the asymptomatic PS dogs. Plasma NT-proBNP concentration was significantly elevated in the symptomatic PS dogs compared to the healthy control dogs and the asymptomatic PS dogs. Furthermore, the Doppler-derived pulmonic pressure gradient was significantly correlated with the plasma NT-proBNP concentration (r=0.78, r(2)=0.61, P<0.0001). Plasma NT-proBNP concentration >764 pmol/l to identify severe PS had a sensitivity of 76.2% and specificity of 81.8%. The plasma NT-proBNP concentration increased by spontaneous PS, i.e. right-sided pressure overload and can be used as an additional method to assess the severity of PS in dogs.
NASA Astrophysics Data System (ADS)
Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea
2017-10-01
Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer (0-310 m) ozone concentrations shows that the ratio between these two quantities is the largest in summer (86%) and the lowest in winter (49%). We conclude that satellite measurements that represent the 0-3 km integrated ozone column are not necessarily a good proxy for surface ozone and may lead to incorrect conclusions about the surface ozone seasonal variability. The ratio between the urban layer NO2 average concentration and the boundary layer NO2 average concentration obtained from SAOZ NO2 tropospheric columns is always less than 50%, meaning NO2 does not decrease linearly in the PBL, but with a sharper decrease close to the surface.
Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming
2015-01-27
We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Increased dimensionality of cell-cell communication can decrease the precision of gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
Gradient sensing is a biological computation that involves comparison of concentrations measured in at least two different locations. As such, the pre- cision of gradient sensing is limited by the intrinsic stochasticity in the com- munication that brings such distributed information to the same location. We have recently analyzed such limitations experimentally and theoretically in multicellular gradient sensing in mammary epithelial cell organoids. For 1d chains of collectively sensing cells, the communication noise puts a se- vere constraint on how the accuracy of gradient sensing increases with the number of cells in the sensor. A question remains as to whether the effect of the noise can be mitigated by the extra spatial averaging allowed in sensing by 2d and 3d cellular organoids. Here we show using computer simulations that, counterintuitively, such spatial averaging decreases gradient sensitiv- ity (while it increases concentration sensitivity). We explain the findings analytically and propose that a recently introduced Regional Excitation - Global Inhibition model of gradient sensing can overcome this limitation and use 2d or 3d spatial averaging to improve the sensing accuracy. Supported by NSF Grant PHY/1410978 and James S. McDonnell Foundation Grant # 220020321.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching
1992-01-01
Semiconductor crystals such as Hg(1-x)Cd(x)Te grown by unidirectional solidification Bridgmann method have shown compositional segregations in both the axial and radial directions. Due to the wide separation between the liquidus and the solidus of its pseudobinary phase diagram, there is a diffusion layer of higher HgTe content built up in the melt near the melt-solid interface which gives a solute concentration gradient in the axial direction. Because of the higher thermal conductivity in the melt than that in the crystal there is a thermal leakage through the fused silica crucible wall near the melt-solid interface. This gives a thermal gradient in the radial direction. Hart (1971), Thorpe, Hutt and Soulsby (1969) have shown that under such condition a fluid will become convectively unstable as a result of different diffusivities of temperature and solute. It is quite important to understand the effects of this thermosolute convection on the compositional segregation in the unidirectionally solidified crystals. To reach this goal, we start with a simplified problem. We study the nature of fluid flows of a stratified solution in a cylindrical container with a radial temperature gradient. The cylindrical container wall is considered to be maintained at a higher temperature than that at the center of the solution and the solution in the lower gravitational direction has higher solute concentration which decrease linearly to a lower concentration and then remain constant to the top of the solution. The sample solution is taken to be salt water.
Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
NASA Astrophysics Data System (ADS)
Seric, Ivana; Afkhami, Shahriar; Kondic, Lou
2018-01-01
We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.
Reversible mechanosensitive ion pumping as a part of mechanoelectrical transduction.
Markin, V. S.; Tsong, T. Y.
1991-01-01
To explain the ability of some mechanosensitive cells to reverse the process of mechanotransduction and to generate mechanical oscillations and emit sound, a piezo-conformational coupling model (PCC model) is proposed. The model includes a transport protein which changes either its volume (PV-coupling) or its area in the membrane (gamma A-coupling) when undergoing conformational transitions. Such a protein can interact with an oscillating pressure to pump ions and create a transmembrane gradient if the affinities of the protein for ions are different at the two sides of membrane. The frequency and concentration windows for mechanical energy transduction were determined. Under optimal conditions, the efficiency of energy transduction can approach the theoretical maximum of 100%. If the concentration gradient exceeds the static head value (quasi-equilibrium which can be built up and maintained by this transport system), the energy transduction reverses and the transporter becomes a generator of mechanical oscillations at the expense of a concentration gradient. Estimation of thermodynamic parameters of the pump shows that the PV-coupling model would require large pressure oscillations to work while the gamma A-coupling model could work in physiological conditions. The gamma A-coupling mechanism may be used by cells for two purposes. In the reverse mode, it can be a force generator for various applications. In the direct mode, it may serve bioenergetic purposes by harvesting the energy of mechanical oscillations and storing it in the form of a concentration gradient. This pump has an unusual thermodynamic feature: it can distinguish the two components of the electrochemical potential gradient,i.e., the concentration gradient and the electrical potential, the latter serving as a permissive switch to open, or close, the pump when the potential reaches the threshold value.Predictions of the PCC model and its probable involvement in biological mechanotransduction are dicussed. PMID:1873468
Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality.
Zhumadilov, Agzam; Boyko, Matthew; Gruenbaum, Shaun E; Brotfain, Evgeny; Bilotta, Federico; Zlotnik, Alexander
2015-05-01
Pathologically elevated glutamate concentrations in the brain's extracellular fluid are associated with several acute and chronic brain insults. Studies have demonstrated that by decreasing the concentration of glutamate in the blood, thereby increasing the concentration gradient between the brain and the blood, the rate of brain-to-blood glutamate efflux can be increased. Blood glutamate scavengers, pyruvate and oxaloacetate have shown great promise in providing neuroprotection in many animal models of acute brain insults. However, glutamate scavengers' potential systemic toxicity, side effects and pharmacokinetic properties may limit their use in clinical practice. In contrast, extracorporeal methods of blood glutamate reduction, in which glutamate is filtered from the blood and eliminated, may be an advantageous adjunct in treating acute brain insults. Here, we review the current evidence for the glutamate-lowering effects of hemodialysis, peritoneal dialysis and hemofiltration. The evidence reviewed here highlights the need for clinical trials.
Gradient microfluidics enables rapid bacterial growth inhibition testing.
Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing
2014-03-18
Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).
Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.
Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena
2018-06-22
Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.
Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes
NASA Astrophysics Data System (ADS)
Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.
1995-09-01
Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.
Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient
Trubl, Gareth; Solonenko, Natalie; Chittick, Lauren; ...
2016-05-17
Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types ofmore » high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g –1of soil than other methods tested. All method combinations yielded VLPs g –1of soil on the 10 8order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g –1of soil among the soil types. In conclusion, this research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies.« less
Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubl, Gareth; Solonenko, Natalie; Chittick, Lauren
Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types ofmore » high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g –1of soil than other methods tested. All method combinations yielded VLPs g –1of soil on the 10 8order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g –1of soil among the soil types. In conclusion, this research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies.« less
Development and testing of Parabolic Dish Concentrator No. 1
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Thostesen, T. O.
1984-01-01
Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems.
In Situ Bioremediation of MTBE in Groundwater
2003-06-01
by-products (carbon dioxide and water ). Groundwater leaving the down-gradient edge of the treatment zone contains MTBE at concentrations less than... groundwater treatment approaches ineffective or impracticable. Currently, conventional pump and treat (P&T) followed by aboveground water treatment and...carbon dioxide and water ). Groundwater leaving the down gradient edge of the treatment zone contains MTBE at concentrations less than or equal to the
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients.
Sarvestani, Ali N; Shamloo, Amir; Ahmadian, Mohammad Taghi
2016-06-01
Paramecium or other ciliates have the potential to be utilized for minimally invasive surgery systems, making internal body organs accessible. Paramecium shows interesting responses to changes in the concentration of specific ions such as K(+), Mg(2+), and Ca(2+) in the ambient fluid. Some specific responses are observed as, changes in beat pattern of cilia and swimming toward or apart from the ion source. Therefore developing a model for chemotactic motility of small organisms is necessary in order to control the directional movements of these microorganisms before testing them. In this article, we have developed a numerical model, investigating the effects of Ca(2+) on swimming trajectory of Paramecium. Results for Ca(2+)-dependent chemotactic motility show that calcium gradients are efficient actuators for controlling the Paramecium swimming trajectory. After applying a very low Ca(2+) gradient, a directional chemotaxis of swimming Paramecium is observable in this model. As a result, chemotaxis is shown to be an efficient method for controlling the propulsion of these small organisms.
Realization of a thermal cloak-concentrator using a metamaterial transformer.
Liu, Ding-Peng; Chen, Po-Jung; Huang, Hsin-Haou
2018-02-06
By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak-concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
Dynamics of Reactive Microbial Hotspots in Concentration Gradient.
NASA Astrophysics Data System (ADS)
Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.
2017-12-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T
2004-12-01
The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies from 0.38 to 0.18 per year. In wells without adequate hydrogen the rate varies from 0.015 to 0.006 per year.
Leston, Alan R; Ollison, Will M
2017-11-01
Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.
Decontamination of combustion gases in fluidized bed incinerators
Leon, Albert M.
1982-01-01
Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.
NASA Astrophysics Data System (ADS)
Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.
2012-09-01
Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Mao, Weihua; Chronik, Blaine A; Feldman, Rebecca E; Smith, Michael B; Collins, Christopher M
2006-06-01
We present a method to calculate the electric (E)-fields within and surrounding a human body in a gradient coil, including E-fields induced by the changing magnetic fields and "conservative" E-fields originating with the scalar electrical potential in the coil windings. In agreement with previous numerical calculations, it is shown that magnetically-induced E-fields within the human body show no real concentration near the surface of the body, where nerve stimulation most often occurs. Both the magnetically-induced and conservative E-fields are shown to be considerably stronger just outside the human body than inside it, and under some circumstances the conservative E-fields just outside the body can be much larger than the magnetically-induced E-fields there. The order of gradient winding and the presence of conductive RF shield can greatly affect the conservative E-field distribution in these cases. Though the E-fields against the outer surface of the body are not commonly considered, understanding gradient E-fields may be important for reasons other than peripheral nerve stimulation (PNS), such as potential interaction with electrical equipment. Copyright 2006 Wiley-Liss, Inc.
Bicarbonate diffusion through mucus.
Livingston, E H; Miller, J; Engel, E
1995-09-01
The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.
NASA Astrophysics Data System (ADS)
Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.
2010-12-01
We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.
Arumugam, Abiramasundari; Joshi, Amita; Vasu, Kamala K
2017-11-01
The present work focused on the application of design of experiment (DoE) principles to the development and optimization of a stability-indicating method (SIM) for the drug imidapril hydrochloride and its degradation products (DPs). The resolution of peaks for the DPs and their drug in a SIM can be influenced by many factors. The factors studied here were pH, gradient time, organic modifier, flow rate, molar concentration of the buffer, and wavelength, with the aid of a Plackett-Burman design. Results from the Plackett-Burman study conspicuously showed influence of two factors, pH and gradient time, on the analyzed response, particularly, the resolution of the closely eluting DPs (DP-5 and DP-6) and the retention time of the last peak. Optimization of the multiresponse processes was achieved through Derringer's desirability function with the assistance of a full factorial design. Separation was achieved using a C18 Phenomenex Luna column (250 × 4.6 mm id, 5 µm particle size) at a flow rate of 0.8 mL/min at 210 nm. The optimized mobile phase composition was ammonium-acetate buffer (pH 5) in pump A and acetonitrile-methanol (in equal ratio) in pump B with a run time of 40 min using a gradient method.
Haakensen, M; Schubert, A; Ziola, B
2009-03-15
Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2017-08-01
A method is presented for deriving random velocity gradient tensors given a source tensor. These synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the source tensor, but we do not impose direct constraints upon scalar quantities typically derived from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having presented our method and the associated mathematical concepts, we apply it to homogeneous, isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor is understood well. We show that, as well as the concentration of data along the Vieillefosse tail, actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy (Q>0 ) and excess enstrophy production (R<0 ). We also examine the topology implied by the strain eigenvalues and find that for the statistically significant results there is a particularly strong relative preference for the formation of disklike structures in the (Q<0 ,R<0 ) quadrant. With the method shown to be useful for a turbulence that is already understood well, it should be of even greater utility for studying complex flows seen in industry and the environment.
Hydraulic effects in a radiative atmosphere with ionization
NASA Astrophysics Data System (ADS)
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
Predicting subtle behavioral responses of invertebrates to soil contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donkin, S.G.
1995-12-31
At concentration levels well below those which cause death and injury to soil invertebrates, a toxic chemical plume may yet effectively damage a soil ecosystem by triggering avoidance behavior among sensitive invertebrates as they move along the concentration gradient. The result may be a soil ecosystem lacking the benefits of effective nutrient cycling and mineralization which a thriving invertebrate population provides. While determining actual detection limits of invertebrates for chemical gradients in soils is experimentally difficult, theoretical calculations have suggested that such limits may be extremely low, and hence many organisms may sense and avoid concentrations of chemicals far belowmore » levels commonly considered acceptable. The minimum gradient (G) that can be detected by a receptor depends on the receptor radius (R), the chemical concentration (C), the diffusion constant of the chemical (D), the velocity of the organism (v), and the time over which the receptor integrates the chemical signal (t). In addition, the characteristics of that gradient are determined by interactions between the chemical and the soil particles (sorption/desorption), and advection through the pore spaces. The example of lead (Pb), a neurotoxic metal with demonstrated behavioral effects on the free-living nematode Caenorhabditis elegans, is used to model a chemical migrating through a soil. Based on experimentally determined Pb concentrations which elicited avoidance behavior in nematodes, and sorption characteristics of defined Pb-soil systems, the minimum detectable gradient (G) produced by a solubilized Pb plume in several soils was modeled. The results predict maximum allowable Pb levels in a soil if a healthy invertebrate community is desired, and suggest areas for further research into the subtle behavioral effects of environmental toxicants ore sensitive invertebrates.« less
Eisele, Adam P; Mukerjee, Shaibal; Smith, Luther A; Thoma, Eben D; Whitaker, Donald A; Oliver, Karen D; Wu, Tai; Colon, Maribel; Alston, Lillian; Cousett, Tamira A; Miller, Michael C; Smith, Donald M; Stallings, Casson
2016-04-01
A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.
Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela
2009-01-12
Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.
Three-dimensional desirability spaces for quality-by-design-based HPLC development.
Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M
2015-04-01
In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
Green, R; Giebisch, G
1975-11-01
Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.
Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
Lim, Jitkang; Yeap, Swee Pin; Leow, Chee Hoe; Toh, Pey Yi; Low, Siew Chun
2014-05-01
Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-01-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112
Bacterial chemotaxis along vapor-phase gradients of naphthalene.
Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y
2010-12-15
The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-06-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
2018-01-01
Background Initial administration of ≥60% nitrous oxide (N2O) to rats evokes hypothermia, but after repeated administrations the gas instead evokes hyperthermia. This sign reversal is driven mainly by increased heat production. To determine whether rats will behaviorally oppose or assist the development of hyperthermia, we previously performed thermal gradient testing. Inhalation of N2O at ≥60% causes rats to select cooler ambient temperatures both during initial administrations and during subsequent administrations in which the hyperthermic state exists. Thus, an available behavioral response opposes (but does not completely prevent) the acquired hyperthermia that develops over repeated high-concentration N2O administrations. However, recreational and clinical uses of N2O span a wide range of concentrations. Therefore, we sought to determine the thermoregulatory adaptations to chronic N2O administration over a wide range of concentrations. Methods This study had two phases. In the first phase we adapted rats to twelve 3-h N2O administrations at either 0%, 15%, 30%, 45%, 60% or 75% N2O (n = 12 per group); outcomes were core temperature (via telemetry) and heat production (via respirometry). In the second phase, we used a thermal gradient (range 8°C—38°C) to assess each adapted group’s thermal preference, core temperature and locomotion on a single occasion during N2O inhalation at the assigned concentration. Results In phase 1, repeated N2O administrations led to dose related hyperthermic and hypermetabolic states during inhalation of ≥45% N2O compared to controls (≥ 30% N2O compared to baseline). In phase 2, rats in these groups selected cooler ambient temperatures during N2O inhalation but still developed some hyperthermia. However, a concentration-related increase of locomotion was evident in the gradient, and theoretical calculations and regression analyses both suggest that locomotion contributed to the residual hyperthermia. Conclusions Acquired N2O hyperthermia in rats is remarkably robust, and occurs even despite the availability of ambient temperatures that might fully counter the hyperthermia. Increased locomotion in the gradient may contribute to hyperthermia. Our data are consistent with an allostatic dis-coordination of autonomic and behavioral thermoregulatory mechanisms during drug administration. Our results have implications for research on N2O abuse as well as research on the role of allostasis in drug addiction. PMID:29672605
Electrical characteristics in reverse electrodialysis using nanoporous membranes
NASA Astrophysics Data System (ADS)
Chanda, Sourayon; Tsai, Peichun Amy
2017-11-01
We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
Application of the conjugate-gradient method to ground-water models
Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.
1984-01-01
The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)
Mars, J.C.; Crowley, J.K.
2003-01-01
Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.
Diffusion of radon through concrete block walls: A significant source of indoor radon
Lively, R.S.; Goldberg, L.F.
1999-01-01
Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.
Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients.
Dasbiswas, Kinjal; Hannezo, Edouard; Gov, Nir S
2018-02-27
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Stienstra, Nicolaas A; Sikma, Maaike A; van Dapperen, Anouk L; de Lange, Dylan W; van Maarseveen, Erik M
2016-12-01
Tacrolimus is an immunosuppressant mainly used in the prophylaxis of solid organ transplant rejection. Therapeutic drug monitoring of tacrolimus is essential for avoiding toxicity related to overexposure and transplant rejection from underexposure. Previous studies suggest that unbound tacrolimus concentrations in the plasma may serve as a better predictor of tacrolimus-associated nephrotoxicity and neurotoxicity compared to tacrolimus concentration in whole blood. Monitoring the plasma concentrations of unbound tacrolimus might be of interest in preventing tacrolimus-related toxicity. Therefore, the aim was to develop a method for the measurement of total and unbound tacrolimus concentrations in plasma. The sample preparation for the determination of the plasma concentrations of unbound tacrolimus consisted of an easy-to-use ultrafiltration method followed by solid-phase extraction. To determine the total concentration of tacrolimus in plasma, a simple method based on protein precipitation was developed. The extracts were injected into a Thermo Scientific HyPurity C18 column using gradient elution. The analytes were detected by liquid chromatography-tandem mass spectrometry with positive ionization. The method was validated over a linear range of 1.00-200 ng/L for unbound tacrolimus concentrations in plasma and 100-3200 ng/L for total plasma concentrations. The lower limit of quantification was 1.00 ng/L in ultrafiltrate and 100 ng/L in plasma. The inaccuracy and imprecision for the determination of unbound tacrolimus concentrations in ultrafiltrate and plasma showed a maximum coefficients of variation (CV) of 11.7% and a maximum bias of 3.8%. A rapid and easy method based on ultrafiltration and liquid chromatography-tandem mass spectrometry was established to measure the total and unbound tacrolimus concentrations in plasma. This method can facilitate further investigations on the relationship between plasma concentrations of unbound tacrolimus and clinical outcomes in transplant recipients.
Chamberlain, Chester E; Jeong, Juhee; Guo, Chaoshe; Allen, Benjamin L; McMahon, Andrew P
2008-03-01
Sonic hedgehog (Shh) ligand secreted by the notochord induces distinct ventral cell identities in the adjacent neural tube by a concentration-dependent mechanism. To study this process, we genetically engineered mice that produce bioactive, fluorescently labeled Shh from the endogenous locus. We show that Shh ligand concentrates in close association with the apically positioned basal body of neural target cells, forming a dynamic, punctate gradient in the ventral neural tube. Both ligand lipidation and target field response influence the gradient profile, but not the ability of Shh to concentrate around the basal body. Further, subcellular analysis suggests that Shh from the notochord might traffic into the neural target field by means of an apical-to-basal-oriented microtubule scaffold. This study, in which we directly observe, measure, localize and modify notochord-derived Shh ligand in the context of neural patterning, provides several new insights into mechanisms of Shh morphogen action.
Protein gradient films of fibroin and gelatine.
Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas
2013-10-01
Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
Peng, Ran; Li, Dongqing
2015-02-15
Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Kraus, Johanna M.; Stricker, Craig A.; Clements, William H.; Wolf, Ruth E.
2017-01-01
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ~0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g. larvae) to assess risk to wildlife that feed on subsequent life stages (e.g. adults).
Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E
2017-02-21
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).
NASA Astrophysics Data System (ADS)
Lian, Jianyu
In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring
NASA Astrophysics Data System (ADS)
Friberg, Mariel D.; Kahn, Ralph A.; Holmes, Heather A.; Chang, Howard H.; Sarnat, Stefanie Ebelt; Tolbert, Paige E.; Russell, Armistead G.; Mulholland, James A.
2017-06-01
Spatiotemporal characterization of ambient air pollutant concentrations is increasingly relying on the combination of observations and air quality models to provide well-constrained, spatially and temporally complete pollutant concentration fields. Air quality models, in particular, are attractive, as they characterize the emissions, meteorological, and physiochemical process linkages explicitly while providing continuous spatial structure. However, such modeling is computationally intensive and has biases. The limitations of spatially sparse and temporally incomplete observations can be overcome by blending the data with estimates from a physically and chemically coherent model, driven by emissions and meteorological inputs. We recently developed a data fusion method that blends ambient ground observations and chemical-transport-modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and associated correlations. In this study, we assess the ability of the data fusion method to produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas (Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. Three sets of comparisons are performed: (1) the CTM concentrations are evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations are compared with the monitor data, (3) a comprehensive cross-validation analysis against observed data evaluates the quality of the data fusion model simulations across multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant concentrations and uncertainties are not only consistent with observations, emissions, and meteorology, but substantially improve CTM-derived results for nearly all pollutants and all cities, with the exception of NO2 for Birmingham. The greatest improvements occur for O3 and PM2.5. Squared spatiotemporal correlation coefficients range between simulations and observations determined using cross-validation across all cities for air pollutants of secondary and mixed origins are R2 = 0.88-0.93 (O3), 0.81-0.89 (SO4), 0.67-0.83 (PM2.5), 0.52-0.72 (NO3), 0.43-0.80 (NH4), 0.32-0.51 (OC), and 0.14-0.71 (PM10). Results for relatively homogeneous pollutants of secondary origin, tend to be better than those for more spatially heterogeneous (larger spatial gradients) pollutants of primary origin (NOx, CO, SO2 and EC). Generally, background concentrations and spatial concentration gradients reflect interurban airshed complexity and the effects of regional transport, whereas daily spatial pattern variability shows intra-urban consistency in the fused data. With sufficiently high CTM spatial resolution, traffic-related pollutants exhibit gradual concentration gradients that peak toward the urban centers. Ambient pollutant concentration uncertainty estimates for the fused data are both more accurate and smaller than those for either the observations or the model simulations alone.
Automated agar plate streaker: a linear plater on Society for Biomolecular Sciences standard plates.
King, Gregory W; Kath, Gary S; Siciliano, Sal; Simpson, Neal; Masurekar, Prakash; Sigmund, Jan; Polishook, Jon; Skwish, Stephen; Bills, Gerald; Genilloud, Olga; Peláez, Fernando; Martín, Jesus; Dufresne, Claude
2006-09-01
Several protocols for bacterial isolation and techniques for aerobic plate counting rely on the use of a spiral plater to deposit concentration gradients of microbial suspensions onto a circular agar plate to isolate colony growth. The advantage of applying a gradient of concentrations across the agar surface is that the original microbiological sample can be applied at a single concentration rather than as multiple serial dilutions. The spiral plater gradually dilutes the sample across a compact area and therefore saves time preparing dilutions and multiple agar plates. Commercial spiral platers are not automated and require manual sample loading. Dispensing of the sample volume and rate of gradients are often very limited in range. Furthermore, the spiral sample application cannot be used with rectangular microplates. Another limitation of commercial spiral platers is that they are useful only for dilute, filtered suspensions and cannot plate suspensions of coarse organic particles therefore precluding the use of many kinds of microorganism-containing substrata. An automated agar plate spreader capable of processing 99 rectangular microplates in unattended mode is described. This novel instrument is capable of dispensing discrete volumes of sample in a linear pattern. It can be programmed to dispense a sample suspense at a uniform application rate or across a decreasing concentration gradient.
Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin
2013-01-01
In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.
Gradient optimization and nonlinear control
NASA Technical Reports Server (NTRS)
Hasdorff, L.
1976-01-01
The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.
Development of novel microfluidic platforms for neural stem cell research
NASA Astrophysics Data System (ADS)
Chung, Bonggeun
This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have also developed a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients. MMI consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuations of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients. The development of novel gradient-generating microfluidic platforms will help in advancing our understanding of brain development and provide a versatile tool with basic and applied studies in stem cell biology.
Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.
2000-01-01
The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kdpw (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.
NASA Astrophysics Data System (ADS)
Balss, Karin Maria
The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.
Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen
2002-09-20
Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.
Double diffusive conjugate heat transfer: Part I
NASA Astrophysics Data System (ADS)
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.
Kaschak, Timothy; Boyd, Daniel; Lu, Franklin; Derfus, Gayle; Kluck, Brian; Nogal, Bartek; Emery, Craig; Summers, Christie; Zheng, Kai; Bayer, Robert; Amanullah, Ashraf; Yan, Boxu
2011-01-01
We report a case study of an IgG1 with a unique basic charge variant profile caused by C-terminal proline amidation on either one or two heavy chains. The proline amidation was sensitive to copper ion concentration in the production media during cell culture: the higher the Cu ( 2+) ion concentration, the higher the level of proline amidation detected. This conclusion was supported by the analysis of samples that revealed direct correlation between the proline amidation level observed from peptide maps and the level of basic peaks measured by imaged capillary isoelectric focusing and a pH gradient ion-exchange chromatography method. The importance of these observations to therapeutic antibody production is discussed.
Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.
2017-01-01
The use of “off-the-shelf” acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAGASSE,ROBERT R.; THOMPSON,KYLE R.
The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diametermore » of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.« less
Chen, Feng; Hu, Zhe-Yi; Laizure, S Casey; Hudson, Joanna Q
2017-03-01
Optimal dosing of antibiotics in critically ill patients is complicated by the development of resistant organisms requiring treatment with multiple antibiotics and alterations in systemic exposure due to diseases and extracorporeal drug removal. Developing guidelines for optimal antibiotic dosing is an important therapeutic goal requiring robust analytical methods to simultaneously measure multiple antibiotics. An LC-MS/MS assay using protein precipitation for cleanup followed by a 6-min gradient separation was developed to simultaneously determine five antibiotics in human plasma. The precision and accuracy were within the 15% acceptance range. The formic acid concentration was an important determinant of signal intensity, peak shape and matrix effects. The method was designed to be simple and successfully applied to a clinical pharmacokinetic study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Lisa, E-mail: Lisa.Sprenger@tu-dresden.de; Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison ofmore » the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.« less
Mercury speciation and mobilization in a wastewater-contaminated groundwater plume
Lamborg, Carl H.; Kent, Doug B.; Swarr, Gretchen J.; Munson, Kathleen M.; Kading, Tristan; O'Connor, Alison E.; Fairchild, Gillian M.; LeBlanc, Denis R.; Wiatrowski, Heather A.
2013-01-01
We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg(II) to Hg0 within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone.
High-pressure nuclear magnetic resonance studies of fuel cell membranes
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane
This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.
Microfluidic platform for optimization of crystallization conditions
NASA Astrophysics Data System (ADS)
Zhang, Shuheng; Gerard, Charline J. J.; Ikni, Aziza; Ferry, Gilles; Vuillard, Laurent M.; Boutin, Jean A.; Ferte, Nathalie; Grossier, Romain; Candoni, Nadine; Veesler, Stéphane
2017-08-01
We describe a universal, high-throughput droplet-based microfluidic platform for crystallization. It is suitable for a multitude of applications, due to its flexibility, ease of use, compatibility with all solvents and low cost. The platform offers four modular functions: droplet formation, on-line characterization, incubation and observation. We use it to generate droplet arrays with a concentration gradient in continuous long tubing, without using surfactant. We control droplet properties (size, frequency and spacing) in long tubing by using hydrodynamic empirical relations. We measure droplet chemical composition using both an off-line and a real-time on-line method. Applying this platform to a complicated chemical environment, membrane proteins, we successfully handle crystallization, suggesting that the platform is likely to perform well in other circumstances. We validate the platform for fine-gradient screening and optimization of crystallization conditions. Additional on-line detection methods may well be integrated into this platform in the future, for instance, an on-line diffraction technique. We believe this method could find applications in fields such as fluid interaction engineering, live cell study and enzyme kinetics.
Kakimoto, Kensaku; Toriba, Akira; Ohno, Takanori; Ueno, Mariko; Kameda, Takayuki; Tang, Ning; Hayakawa, Kazuichi
2008-05-15
To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.
Harik-Khan, R; Moats, W A
1995-01-01
A procedure for identifying and quantitating violative beta-lactams in milk is described. This procedure integrates beta-lactam residue detection kits with the multiresidue automated liquid chromatographic (LC) cleanup method developed in our laboratory. Spiked milk was deproteinized, extracted, and subjected to reversed-phase LC using a gradient program that concentrated the beta-lactams. Amoxicillin, ampicillin, cephapirin, ceftiofur, cloxacillin, and penicillin G were, thus, separated into 5 fractions that were subsequently tested for activity by using 4 kits. beta-lactams in the positive fractions were quantitated by analytical LC methods developed in our laboratory. The LC cleanup method separated beta-lactam antibiotics from each other and from interferences in the matrix and also concentrated the antibiotics, thus increasing the sensitivity of the kits to the beta-lactam antibiotics. The procedure facilitated the task of identifying and measuring the beta-lactam antibiotics that may be present in milk samples.
Rapid NMR method for the quantification of organic compounds in thin stillage.
Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T
2011-10-12
Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Rahsepar, Amirali; George, Richard; Lardo, Albert; Mittal, Rajat
2014-11-01
Coronary computed tomography angiography (CTA) is a promising tool for assessment of coronary stenosis and plaque burden. Recent studies have shown the presence of axial contrast concentration gradients in obstructed arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Data from our CFD patient-specific simulations reveals that contrast dispersions are generated by intracoronary advection effects, and therefore, encode the coronary flow velocity. This novel method- Transluminal Attenuation Flow Encoding (TAFE) - is used to estimate the flowrate in phantom studies as well as preclinical experiments. Our results indicate a strong correlation between the values estimated from TAFE and the values measured in these experiments. The flow physics of contrast dispersion associated with TAFE will be discussed. This work is funded by grants from Coulter Foundation and Maryland Innovation Initiative. The authors have pending patents in this technology and RM and ACL have other financial interests associated with TAFE.
Illamola, S M; Labat, L; Benaboud, S; Tubiana, R; Warszawski, J; Tréluyer, J M; Hirt, D
2014-08-15
Lopinavir is an HIV protease inhibitor with high protein binding (98-99%) in human plasma. This study was designed to develop an ultrafiltration method to measure the unbound concentrations of lopinavir overcoming the non-specific binding issue. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of total concentrations of lopinavir in plasma was developed and validated, and an adaptation was also optimized and validated for the determination of unbound concentrations. The chromatographic separation was performed with a C18 column (100 mm × 2.1mm i.d., 5 μm particle size) using a mobile phase containing deionized water with formic acid, and acetonitrile, with gradient elution at a flow-rate of 350 μL min(-1). Identification of the compounds was performed by multiple reaction monitoring, using electrospray ionization in positive ion mode. The method was validated over a clinical range of 0.01-1 μg/mL for human plasma ultrafiltrate and 0.1-15 μg/mL in human plasma. The inter and intra-assay accuracies and precisions were between 0.23% and 11.37% for total lopinavir concentrations, and between 3.50% and 13.30% for plasma ultrafiltrate (unbound concentration). The ultrafiltration method described allows an accurate separation of the unbound fraction of lopinavir, circumscribing the loss of drug by nonspecific binding (NSB), and the validated LC-MS/MS methodology proposed is suitable for the determination of total and unbound concentrations of lopinavir in clinical practice. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of hydrothermal resources of North Dakota. Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, K.L.; Howell, F.L.; Winczewski, L.M.
1981-06-01
The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less
Zhu, Haitao; Demachi, Kazuyuki; Sekino, Masaki
2011-09-01
Positive contrast imaging methods produce enhanced signal at large magnetic field gradient in magnetic resonance imaging. Several postprocessing algorithms, such as susceptibility gradient mapping and phase gradient mapping methods, have been applied for positive contrast generation to detect the cells targeted by superparamagnetic iron oxide nanoparticles. In the phase gradient mapping methods, smoothness condition has to be satisfied to keep the phase gradient unwrapped. Moreover, there has been no discussion about the truncation artifact associated with the algorithm of differentiation that is performed in k-space by the multiplication with frequency value. In this work, phase gradient methods are discussed by considering the wrapping problem when the smoothness condition is not satisfied. A region-growing unwrapping algorithm is used in the phase gradient image to solve the problem. In order to reduce the truncation artifact, a cosine function is multiplied in the k-space to eliminate the abrupt change at the boundaries. Simulation, phantom and in vivo experimental results demonstrate that the modified phase gradient mapping methods may produce improved positive contrast effects by reducing truncation or wrapping artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.
Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R
2017-08-17
Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.
Quick, Harrison; Groth, Caroline; Banerjee, Sudipto; Carlin, Bradley P.; Stenzel, Mark R.; Stewart, Patricia A.; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.
2014-01-01
Summary This paper develops a hierarchical framework for identifying spatiotemporal patterns in data with a high degree of censoring using the gradient process. To do this, we impute censored values using a sampling-based inverse CDF method within our Markov chain Monte Carlo algorithm, thereby avoiding burdensome integration and facilitating efficient estimation of other model parameters. We illustrate use of our methodology using a simulated data example, and uncover the danger of simply substituting a space- and time-constant function of the level of detection for all missing values. We then fit our model to area measurement data of volatile organic compounds (VOC) air concentrations collected on vessels supporting the response and clean-up efforts of the Deepwater Horizon oil release that occurred starting April 20, 2010. These data contained a high percentage of observations below the detectable limits of the measuring instrument. Despite this, we were still able to make some interesting discoveries, including elevated levels of VOC near the site of the oil well on June 26th. Using the results from this preliminary analysis, we hope to inform future research on the Deepwater Horizon study, including the use of gradient methods for assigning workers to exposure categories. PMID:25599019
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Solute-mediated interactions between active droplets
NASA Astrophysics Data System (ADS)
Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna
2017-09-01
Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.
NASA Astrophysics Data System (ADS)
Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo
2017-09-01
The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.
Le Guellec, C; Gaudet, M L; Breteau, M
1998-11-20
We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.
Simulation of ferromagnetic nanomaterial flow of Maxwell fluid
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.
2018-03-01
Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced.
Manhard, Mary Kate; Harkins, Kevin D; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D
2017-03-01
MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/L bone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
High-performance liquid chromatographic method for guanylhydrazone compounds.
Cerami, C; Zhang, X; Ulrich, P; Bianchi, M; Tracey, K J; Berger, B J
1996-01-12
A high-performance liquid chromatographic method has been developed for a series of aromatic guanylhydrazones that have demonstrated therapeutic potential as anti-inflammatory agents. The compounds were separated using octadecyl or diisopropyloctyl reversed-phase columns, with an acetonitrile gradient in water containing heptane sulfonate, tetramethylammonium chloride, and phosphoric acid. The method was used to reliably quantify levels of analyte as low as 785 ng/ml, and the detector response was linear to at least 50 micrograms/ml using a 100 microliters injection volume. The assay system was used to determine the basic pharmacokinetics of a lead compound, CNI-1493, from serum concentrations following a single intravenous injection in rats.
Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui
2014-12-16
Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.
2018-01-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
NASA Astrophysics Data System (ADS)
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.
2018-02-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
Belz, S; Frickel, C; Wolfrom, C; Nau, H; Henze, G
1994-11-04
A method for the simultaneous determination of the antifolates methotrexate and 7-hydroxymethotrexate as well as the folates 5-methyltetrahydrofolic acid and folinic acid (5-formyltetrahydrofolic acid) in serum and cerebrospinal fluid (CSF) is described. High-performance liquid chromatography with gradient elution and dual detection (ultraviolet absorption and fluorescence) was used to separate and quantitate the analytes. Serum samples containing high levels of the substances of interest and CSF samples were injected directly onto the HPLC column. For determination of low concentrations, serum samples were subjected to a solid-phase extraction method for clean-up and concentration purposes. The determination limits were 10 ng/ml for both antifolates, 100 ng/ml for folinic acid, and 0.1 ng/ml for the physiologically occurring methylated folate which is about 1/100 the serum concentration in healthy children. The suitability of the method for pharmacokinetic monitoring of high-dose methotrexate therapy combined with leucovorin rescue administered to children with acute lymphoblastic leukemia was demonstrated. Minimum values of the serum folate during treatment ranged from 0.2 to 3.1 ng/ml. Even those very low concentrations could be reliably measured.
Beeston, Michael Philip; Glass, Hylke Jan; van Elteren, Johannes Teun; Slejkovec, Zdenka
2007-09-19
A new method has been developed to analyse the mobility of elements within soils employing counter-current flow soil contacting in a fluidised bed (FB) column. This method alleviates the problem of irreproducible peaks suffered by state-of-the-art micro-column techniques as a result of particle compaction. Reproducible extraction profiles are produced through the leaching of soil with a linear gradient of 0.05 mol L(-1) ammonium sulphate to 0.11 mol L(-1) acetic acid using a high pressure liquid chromatography (HPLC) quaternary pump, and the continuous monitoring of the elements in the leachate with inductively coupled plasma mass spectrometry (ICP-MS). Quantification of the procedure is achieved with an external flow injection (FI) calibration method. Flow rate and FB column length were investigated as critical parameters to the efficiency of the extraction methodology. It was found that an increase in the column length from 10 to 20 cm using a flow rate of 0.15 mL min(-1) produced the same increase in extracted elemental concentration as an increase in flow rate from 0.15 to 0.30 mL min(-1). In both examples, the increase in the concentration of elements leached from the soil may be ascribed to the increase in the concentration gradient between the solid and liquid. The exhaustive nature of the technique defines the maximum leachable concentration within the operationally defined leaching parameters of the exchangeable phase, providing a more accurate assessment of the risk associated with the elements in the soil for the phase providing the greatest risk to the environment. The multi-elemental high sensitivity nature of the on-line detector provides an accurate determination of the associations present between the elements in the soil, and the identification of multiple phases within the exchangeable phase through the presence of multiple peaks in the extraction profiles. It is possible through the deconvolution of these extraction profiles that the concentration corresponding to the peaks identified can be defined.
Concentration gradients and growth/decay characteristics of the seasonal sea ice cover
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Zwally, H. J.
1984-01-01
The characteristics of sea ice cover in both hemispheres are analyzed and compared. The areal sea ice cover in the entire polar regions and in various geographical sectors is quantified for various concentration intervals and is analyzed in a consistent manner. Radial profiles of brightness temperatures from the poles across the marginal zone are also evaluated at different transects along regular longitudinal intervals during different times of the year. These radial profiles provide statistical information about the ice concentration gradients and the rates at which the ice edge advances or retreats during a complete annual cycle.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Swietach, Pawel; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D
2005-04-01
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.
Detection of ultra-low levels of DNA changes by drinking water: epidemiologically important finding.
Kumari, Parmila; Kamiseki, Meiko; Biyani, Manish; Suzuki, Miho; Nemoto, Naoto; Aita, Takuyo; Nishigaki, Koichi
2015-02-01
The safety of drinking water is essential to our health. In this context, the mutagenicity of water needs to be checked strictly. However, from the methodological limit, the lower concentration (less than parts per million) of mutagenicity could not be detected, though there have been of interest in the effect of less concentration mutagens. Here, we describe a highly sensitive mutation assay that detects mutagens at the ppb level, termed genome profiling-based mutation assay (GPMA). This consists of two steps; (i) Escherichia coli culture in the medium with/without mutagens and (ii) Genome profiling (GP) method (an integrated method of random PCR, temperature gradient gel electrophoresis and computer-aided normalization). Owing to high sensitivity of this method, very low concentration of mutagens in tap water could be directly detected without introducing burdensome concentration processes, enabling rapid measurement of low concentration samples. Less expectedly, all of the tap waters tested (22 samples) were shown to be significantly mutagenic while mineral waters were not. Resultantly, this article informs two facts that the GPMA method is competent to measure the mutagenicity of waters directly and the experimental results supported the former reports that the city tap waters contain very low level of mutagenicity reagent trihalomethanes. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Kanehiro Kitayama; Dieter Mueller-Dombois
1995-01-01
The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (> 4000 mm)age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on...
Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A
2014-02-01
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.
Gravity gradient preprocessing at the GOCE HPF
NASA Astrophysics Data System (ADS)
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Preprocessing of gravity gradients at the GOCE high-level processing facility
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin
2009-07-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.; Knox, A.; Kuhne, W.
2015-10-15
DOE sites conduct traditional environmental monitoring programs that require collecting, processing, and analyzing water, sediment, and fish samples. However, recently developed passive sampling technologies, such as Diffusive Gradient in Thin films (DGT), may measure the chemical phases that are available and toxic to organisms (the bioavailable fraction), thereby producing more accurate and economical results than traditional methods. Our laboratory study showed that dissolved copper concentrations measured by DGT probes were strongly correlated with the uptake of copper by Lumbriculus variegatus, an aquatic worm, and with concentrations of copper measured by conventional methods. Dissolved copper concentrations in DGT probes increased with timemore » of exposure, paralleling the increase in copper with time that ocurred in Lumbriculus. Additional studies with a combination of seven dissolved metals showed similar results. These findings support the use of DGT as a biomimetic monitoring tool and provide a basis for refinement of these methods for cost-effective environmental monitoring at DOE sites.« less
Plontke, Stefan K.; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N.
2006-01-01
Hypothesis: Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Background: Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. Methods: A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. Results: For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. Conclusion: The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice. PMID:17119332
Sloto, Ronald A.
2002-01-01
The U.S. Geological Survey conducted borehole geophysical logging, collected and analyzed water-level data, and sampled sections of a rock core to determine the concentration of volatile organic compounds in the aquifer matrix of the Stockton Formation. Borehole geophysical logs were run in three monitor wells. At well 05MW04I, the vertical gradient was upward at depths above 42 feet below land surface (ft bls), downward between 42 and 82 ft bls, and upward below 82 ft bls. At well 05MW05I, a downward vertical gradient was present. At well 05MW12I, the vertical gradient was downward above 112 ft bls and upward below 112 ft bls.Three water-bearing fractures in a 17-foot long rock core from 23.5 to 40.5 ft bls were identified and sampled. Three samples were analyzed from each water-bearing fracture—at the fracture face, 2 centimeters (cm) below the fracture, and 4 cm below the fracture. Fifteen compounds were detected; however, concentrations of seven compounds were less than 1 microgram per kilogram (mg/kg) when detected. Concentrations of benzene (from 0.39 to 3.3 mg/kg), 1,1-dichloroethene (1,1-DCE) (from 0.15 to 13 mg/kg), 1,1,1-trichloroethane (TCA) (from 0.17 to 22 mg/kg), and trichloroethylene (TCE) (from 0.092 to 9.6 mg/kg) were detected in all samples. The highest concentrations detected were for toluene, which was detected at a concentration of 32 and 86 mg/kg in the samples from unweathered sandstone at 2 and 4 cm below the fracture, respectively. Concentrations generally decreased with distance below the fracture in the mudstone samples. Concentrations of benzene and toluene increased with distance below the fractures in the unweathered sandstone samples. Concentrations of 1,1-DCE, TCA, and TCE were higher in the mudstone samples than in the samples from sandstone. Toluene concentrations were higher in unweathered sandstone than in weathered sandstone or mudstone.The effect of the pumping of Horsham Water and Sewer Authority public supply well 26 (HWSA-26), 0.2 mile southwest of the base boundary, on groundwater levels on the base was determined by shutting the well down for 6 days to allow water levels to recover. Water levels in 22 nearby wells were measured. The only well (02MW01I) that showed an unambiguous response to the shutdown of well HWSA-26 is 1,350 feet directly along strike from well HWSA-26. The recovery of well 05MW11I in response to the shutdown of well HWSA-26 is masked by recharge from snowmelt but probably does not exceed about 0.2 feet on the basis of the water level in well 05MW11I, which showed a response to the pumping of well HWSA-26 that ranged from 0.5 to 0.15 foot.Horizontal gradients differ with depth, and the rate and direction of ground-water flow and contaminant movement is depth dependent. The potentiometric-surface map for water levels measured in wells screened between 5 and 44 ft bls in the aquifer shows a ground-water mound that is the high point on a regional ground-water divide. From this divide, ground water flows both northwest toward Park Creek and southeast toward Pennypack Creek. The hydraulic gradient around this mound is relatively flat to the southeast and particularly flat to the northwest. The potentiometric-surface map for water levels measured in wells screened between 40 and 100 ft bls in the aquifer shows a very flat hydraulic gradient. Differences in the elevation of the potentiometric surface are less than 2 feet. The potentiometric-surface map for water levels measured in wells screened between 105 and 179 ft bls in the aquifer shows a steep hydraulic gradient between Sites 5 and 2 and a relatively flat hydraulic gradient between Sites 5 and 3. Water levels measured on October 7, 1999, showed downward vertical head gradients for all well clusters at Site 5. Vertical gradients ranged from 0.01 at well cluster 05MW10 to 0.2 at cluster 05MW11. Most gradients were between 0.01 and 0.026. Vertical head gradients vary with time. The variability is caused by a difference in the magnitude of water-level fluctuations between shallow and the deep fractures. The difference in the magnitude of water-level fluctuations is because of differences in lithology and aquifer storativity.
Phase equilibria in the UO 2-PuO 2 system under a temperature gradient
NASA Astrophysics Data System (ADS)
Kleykamp, Heiko
2001-04-01
The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.
Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens
NASA Astrophysics Data System (ADS)
Zhuang, Jiang; Wei, Guopeng; Wright Carlsen, Rika; Edwards, Matthew R.; Marculescu, Radu; Bogdan, Paul; Sitti, Metin
2014-05-01
This paper presents a modeling and experimental framework to characterize the chemotaxis of Serratia marcescens (S. marcescens) relying on two-dimensional and three-dimensional tracking of individual bacteria. Previous studies mainly characterized bacterial chemotaxis based on population density analysis. Instead, this study focuses on single-cell tracking and measuring the chemotactic drift velocity VC from the biased tumble rate of individual bacteria on exposure to a concentration gradient of l-aspartate. The chemotactic response of S. marcescens is quantified over a range of concentration gradients (10-3 to 5 mM/mm) and average concentrations (0.5×10-3 to 2.5 mM). Through the analysis of a large number of bacterial swimming trajectories, the tumble rate is found to have a significant bias with respect to the swimming direction. We also verify the relative gradient sensing mechanism in the chemotaxis of S. marcescens by measuring the change of VC with the average concentration and the gradient. The applied full pathway model with fitted parameters matches the experimental data. Finally, we show that our measurements based on individual bacteria lead to the determination of the motility coefficient μ (7.25×10-6 cm2/s) of a population. The experimental characterization and simulation results for the chemotaxis of this bacterial species contribute towards using S. marcescens in chemically controlled biohybrid systems.
Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S
2015-08-07
A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid and sensitive method for determination of withaferin-A in human plasma by HPLC.
Patial, Pankaj; Gota, Vikram
2011-02-01
To develop and validate a rapid and sensitive high-performance liquid chromatographic method for determination of withaferin-A in human plasma. Withaferin-A, the active molecule of a traditional Indian herb, has demonstrated several biological activities in preclinical models. A validated bioassay is not available for its pharmacokinetic evaluation. The chromatographic system used a reverse-phase C18 column with UV-visible detection at 225 nm. The mobile phase consisted of water and acetonitrile applied in a gradient flow. Withaferin-A was extracted by simple protein-precipitation technique. The calibration curve was linear in the concentration range of 0.05-1.6 µg/ml. The method has the desired sensitivity to detect the plasma concentration range of withaferin-A that is likely to show biological activity based on in vitro data. This is the first HPLC method ever described for the estimation of withaferin-A in human plasma which could be applied for pharmacokinetic studies.
Hardcastle, Chris D; Harris, Joel M
2015-08-04
The ability of a vesicle membrane to preserve a pH gradient, while allowing for diffusion of neutral molecules across the phospholipid bilayer, can provide the isolation and preconcentration of ionizable compounds within the vesicle interior. In this work, confocal Raman microscopy is used to observe (in situ) the pH-gradient preconcentration of compounds into individual optically trapped vesicles that provide sub-femtoliter collectors for small-volume samples. The concentration of analyte accumulated in the vesicle interior is determined relative to a perchlorate-ion internal standard, preloaded into the vesicle along with a high-concentration buffer. As a guide to the experiments, a model for the transfer of analyte into the vesicle based on acid-base equilibria is developed to predict the concentration enrichment as a function of source-phase pH and analyte concentration. To test the concept, the accumulation of benzyldimethylamine (BDMA) was measured within individual 1 μm phospholipid vesicles having a stable initial pH that is 7 units lower than the source phase. For low analyte concentrations in the source phase (100 nM), a concentration enrichment into the vesicle interior of (5.2 ± 0.4) × 10(5) was observed, in agreement with the model predictions. Detection of BDMA from a 25 nM source-phase sample was demonstrated, a noteworthy result for an unenhanced Raman scattering measurement. The developed model accurately predicts the falloff of enrichment (and measurement sensitivity) at higher analyte concentrations, where the transfer of greater amounts of BDMA into the vesicle titrates the internal buffer and decreases the pH gradient. The predictable calibration response over 4 orders of magnitude in source-phase concentration makes it suitable for quantitative analysis of ionizable compounds from small-volume samples. The kinetics of analyte accumulation are relatively fast (∼15 min) and are consistent with the rate of transfer of a polar aromatic molecule across a gel-phase phospholipid membrane.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Tang, J.
2003-12-01
Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.E.; Dickhut, R.M.
1997-03-01
Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less
Construction of high-density bacterial colony arrays and patterns by the ink-jet method.
Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas
2004-01-05
We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.
Vertical suspended sediment fluxes observed from a formation of underwater gliders
NASA Astrophysics Data System (ADS)
Merckelbach, Lucas; Riethmueller, Rolf
2014-05-01
In order to understand and predict the pathways and deposition of fine sediments in coastal regions valid parameterisations of the fluxes across interfaces (sea bed - water column or a pycnocline) are paramount. Traditionally, these parameterisations are based on the concept of a critical shear stress, but more recently a probabilistic approach has been proposed, in which the resuspension of sediment is assumed to have a certain likelihood, depending on the external forcing. Both approaches find their justification, to some extent, from the results of laboratory experiments, however, in-situ data, essential for model validation, are scarce. In this study we develop a field method to estimate the (fine) sediment fluxes between the seabed and the water column, and across the pycnocline. The method is applied to a stratified shallow sea (the North Sea in Summer). In order to assess the results, these fluxes are interpreted in terms of bottom shear stress and current shear between upper and lower layer, respectively. The method was tested in an experiment with two underwater gliders in Summer 2013 in the German Bight. Both gliders were equipped with optical backscatter sensors, the measurements of which serve as a proxy for suspended sediment concentration. The profiling character of the gliders allows to calculate the rate of change of the layer-averaged sediment concentration, as observed by the platform. The local, Lagrangian rate of change of sediment concentration is the balance between the fluxes across the layer's interfaces. Due to a horizontal speed of the glider of about 0.5 m/s, horizontal gradients in sediment concentration cause the observed and the local rate of change of sediment concentration to be significantly different. The novelty of this experiment was that the two gliders were flown in a rigid formation, where one glider trailed the other at a more or less constant distance of 5 km, controlled by an algorithm. This allowed the local rate of change to be quantified - and therefore the net fluxes across the interfaces - by accounting for the effects of horizontal gradients. The validity of this method was assessed by comparing the settling and resuspension/entrainment fluxes with physical drivers: current shear near the pycnocline and bottom shear, with wind effects and tidal motion as proxies, respectively.
Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries
NASA Astrophysics Data System (ADS)
Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind
2007-03-01
Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
NASA Astrophysics Data System (ADS)
Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.
2014-10-01
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavridis, M.; Isliker, H.; Vlahos, L.
2014-10-15
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony
2015-09-15
Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less
Liu, Jun-Jen; Hong, Ruey-Long; Cheng, Wen-Fang; Hong, Keelung; Chang, Fu-Hsiung; Tseng, Yun-Long
2002-08-01
Topotecan (TPT), a topoisomerase I inhibitor, is presently undergoing clinical evaluation worldwide. Previous studies have shown that entrapping TPT within multi-lamellar vesicle liposome can stabilize the lactone moiety, which is structurally important for biological activity. However, low drug:lipid ratios due to the amphipathic character and small entrapment volume in the unilamellar vesicle limits the development of pharmaceutically acceptable liposomal formulation. With an aim to improve on this drawback, we herein describe a method that utilizes the ammonium sulfate gradient to entrap TPT into liposomes. By this method, the encapsulation efficiency was over 90% and a drug:lipid molar ratio as high as 1:5.4 was reached. In comparison with free drug, liposome-encapsulated TPT is more stable in physiological conditions and shows higher in vitro cytotoxicity. Because of increased blood circulation time, the initial plasma concentration and area under the plasma concentration of liposomal drugs were 14 and 40 times, respectively, of those of free drug. Furthermore, liposome encapsulation enhanced the antitumor activity of TPT in syngeneic murine C-26 and human HTB-9 xenograft models in vivo. At a dose of 5 mg/kg, the tumor growth delay of liposomal formulation was significantly than that of free TPT. Based on these results, we believe that this liposomal TPT formulation is worthy of further clinical study. Copyright 2002 Lippincott Williams & Wilkins.
Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.; ...
2016-05-24
CO 2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO 2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO 2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather eventsmore » associated with extratropical cyclones induce CO 2 flux pulses, resulting in further increase in annual CO 2 effluxes by 16%. Therefore, CO 2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO 2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO 2 emissions should account for both daytime-nighttime efflux difference and enhanced emissions during synoptic weather events. Furthermore, the analysis here can guide carbon emission sampling to improve regional carbon estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.
CO 2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO 2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO 2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather eventsmore » associated with extratropical cyclones induce CO 2 flux pulses, resulting in further increase in annual CO 2 effluxes by 16%. Therefore, CO 2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO 2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO 2 emissions should account for both daytime-nighttime efflux difference and enhanced emissions during synoptic weather events. Furthermore, the analysis here can guide carbon emission sampling to improve regional carbon estimates.« less
Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin
2015-02-03
The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.
Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.
Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell
2017-11-08
Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.
Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E
2014-04-16
Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.
Gentamicin concentration gradients in scala tympani perilymph following systemic applications
Hahn, Hartmut; Salt, Alec N.; Schumacher, Ulrike; Plontke, Stefan K.
2013-01-01
In prior studies it was shown that round window membrane (RWM) application of gentamicin produced a robust baso-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Meniere’s disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg/bw over a period of three hours or as a 300 mg/kg/bw subcutaneous bolus injection. Three and five hours after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively. Ten sequential 1 μL-perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with amount of drug applied and time before sampling. While the basal-apical gradient measured after local drug applications to the RW niche is likely the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of scala tympani relative to endolymph in the apical turns. PMID:24192668
Gentamicin concentration gradients in scala tympani perilymph following systemic applications.
Hahn, Hartmut; Salt, Alec N; Schumacher, Ulrike; Plontke, Stefan K
2013-01-01
It has been shown in prior studies that round window membrane (RWM) application of gentamicin produced a robust basal-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Ménière's disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg body weight (BW) over a period of 3 h or as a 300 mg/kg BW subcutaneous bolus injection. At 3 and 5 h after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively, and 10 sequential 1-µl perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in the highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with the amount of drug applied and time before sampling. While it is likely that the basal-apical gradient measured after local drug applications to the round window niche is the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from the blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of ST relative to endolymph in the apical turns. © 2013 S. Karger AG, Basel.
Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun
2017-05-01
To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P < 0.05). The addition of Zn exhibited a strong antagonism to the physiological toxicity induced by Cd. The Pearson correlation coefficient presented positive correlations (P < 0.01, R > 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.
Development of glucose measurement system based on pulsed laser-induced ultrasonic method
NASA Astrophysics Data System (ADS)
Ren, Zhong; Wan, Bin; Liu, Guodong; Xiong, Zhihua
2016-09-01
In this study, a kind of glucose measurement system based on pulsed-induced ultrasonic technique was established. In this system, the lateral detection mode was used, the Nd: YAG pumped optical parametric oscillator (OPO) pulsed laser was used as the excitation source, the high sensitivity ultrasonic transducer was used as the signal detector to capture the photoacoustic signals of the glucose. In the experiments, the real-time photoacoustic signals of glucose aqueous solutions with different concentrations were captured by ultrasonic transducer and digital oscilloscope. Moreover, the photoacoustic peak-to-peak values were gotten in the wavelength range from 1300nm to 2300nm. The characteristic absorption wavelengths of glucose were determined via the difference spectral method and second derivative method. In addition, the prediction models of predicting glucose concentrations were established via the multivariable linear regression algorithm and the optimal prediction model of corresponding optimal wavelengths. Results showed that the performance of the glucose system based on the pulsed-induced ultrasonic detection method was feasible. Therefore, the measurement scheme and prediction model have some potential value in the fields of non-invasive monitoring the concentration of the glucose gradient, especially in the food safety and biomedical fields.
Migration of Point Defects in the Field of a Temperature Gradient
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.
2018-04-01
The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.
Wilding, Thomas K; Brown, Edmund; Collier, Kevin J
2012-10-01
Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.
Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.
Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming
2016-03-01
Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1994-09-01
The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
NASA Astrophysics Data System (ADS)
Liu, Zhao-wei; Zhu, De-jun; Chen, Yong-can; Wang, Zhi-gang
2014-12-01
RIV1Q is the stand-alone water quality program of CE-QUAL-RIV1, a hydraulic and water quality model developed by U.S. Army Corps of Engineers Waterways Experiment Station. It utilizes an operator-splitting algorithm and the advection term in governing equation is treated using the explicit two-point, fourth-order accurate, Holly-Preissmann scheme, in order to preserve numerical accuracy for advection of sharp gradients in concentration. In the scheme, the spatial derivative of the transport equation, where the derivative of velocity is included, is introduced to update the first derivative of dependent variable. In the stream with larger cross-sectional variation, steep velocity gradient can be easily found and should be estimated correctly. In the original version of RIV1Q, however, the derivative of velocity is approximated by a finite difference which is first-order accurate. Its leading truncation error leads to the numerical error of concentration which is related with the velocity and concentration gradients and increases with the decreasing Courant number. The simulation may also be unstable when a sharp velocity drop occurs. In the present paper, the derivative of velocity is estimated with a modified second-order accurate scheme and the corresponding numerical error of concentration decreases. Additionally, the stability of the simulation is improved. The modified scheme is verified with a hypothetical channel case and the results demonstrate that satisfactory accuracy and stability can be achieved even when the Courant number is very low. Finally, the applicability of the modified scheme is discussed.
Mechanisms of gap gene expression canalization in the Drosophila blastoderm.
Gursky, Vitaly V; Panok, Lena; Myasnikova, Ekaterina M; Manu; Samsonova, Maria G; Reinitz, John; Samsonov, Alexander M
2011-01-01
Extensive variation in early gap gene expression in the Drosophila blastoderm is reduced over time because of gap gene cross regulation. This phenomenon is a manifestation of canalization, the ability of an organism to produce a consistent phenotype despite variations in genotype or environment. The canalization of gap gene expression can be understood as arising from the actions of attractors in the gap gene dynamical system. In order to better understand the processes of developmental robustness and canalization in the early Drosophila embryo, we investigated the dynamical effects of varying spatial profiles of Bicoid protein concentration on the formation of the expression border of the gap gene hunchback. At several positions on the anterior-posterior axis of the embryo, we analyzed attractors and their basins of attraction in a dynamical model describing expression of four gap genes with the Bicoid concentration profile accounted as a given input in the model equations. This model was tested against a family of Bicoid gradients obtained from individual embryos. These gradients were normalized by two independent methods, which are based on distinct biological hypotheses and provide different magnitudes for Bicoid spatial variability. We showed how the border formation is dictated by the biological initial conditions (the concentration gradient of maternal Hunchback protein) being attracted to specific attracting sets in a local vicinity of the border. Different types of these attracting sets (point attractors or one dimensional attracting manifolds) define several possible mechanisms of border formation. The hunchback border formation is associated with intersection of the spatial gradient of the maternal Hunchback protein and a boundary between the attraction basins of two different point attractors. We demonstrated how the positional variability for hunchback is related to the corresponding variability of the basin boundaries. The observed reduction in variability of the hunchback gene expression can be accounted for by specific geometrical properties of the basin boundaries. We clarified the mechanisms of gap gene expression canalization in early Drosophila embryos. These mechanisms were specified in the case of hunchback in well defined terms of the dynamical system theory.
Performance optimization in electric field gradient focusing.
Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L
2009-01-02
Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).
Gradients estimation from random points with volumetric tensor in turbulence
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro
2017-06-16
An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation of blown boundary layers with an improved wall jet system
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1980-01-01
Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.
Swarming behavior of gradient-responsive Brownian particles in a porous medium.
Grančič, Peter; Štěpánek, František
2012-07-01
Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.
A new gradient shimming method based on undistorted field map of B0 inhomogeneity.
Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang
2016-04-01
Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng
2015-09-01
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
Magnetoelectrets prepared by using temperature gradient method
NASA Astrophysics Data System (ADS)
Ojha, Pragya; Qureshi, M. S.; Malik, M. M.
2015-05-01
A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.
Celli, A; Sanchez, S; Behne, M; Hazlett, T; Gratton, E; Mauro, T
2010-03-03
Ionic gradients are found across a variety of tissues and organs. In this report, we apply the phasor representation of fluorescence lifetime imaging data to the quantitative study of ionic concentrations in tissues, overcoming technical problems of tissue thickness, concentration artifacts of ion-sensitive dyes, and calibration across inhomogeneous tissue. We used epidermis as a model system, as Ca(2+) gradients in this organ have been shown previously to control essential biologic processes of differentiation and formation of the epidermal permeability barrier. The approach described here allowed much better localization of Ca(2+) stores than those used in previous studies, and revealed that the bulk of free Ca(2+) measured in the epidermis comes from intracellular Ca(2+) stores such as the Golgi and the endoplasmic reticulum, with extracellular Ca(2+) making a relatively small contribution to the epidermal Ca(2+) gradient. Due to the high spatial resolution of two-photon microscopy, we were able to measure a marked heterogeneity in average calcium concentrations from cell to cell in the basal keratinocytes. This finding, not reported in previous studies, calls into question the long-held hypothesis that keratinocytes increase intracellular Ca(2+), cease proliferation, and differentiate passively in response to changes in extracellular Ca(2+). The experimental results obtained using this approach illustrate the power of the experimental and analytical techniques outlined in this report. Our approach can be used in mechanistic studies to address the formation, maintenance, and function of the epidermal Ca(2+) gradient, and it should be broadly applicable to the study of other tissues with ionic gradients. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leinov, E.; Jackson, M.
2013-12-01
Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is evident. Moreover, the contribution of the exclusion potential increases as the permeability of the rock samples decreases. Our results demonstrate that the relative contribution of exclusion and diffusion potentials, expressed in terms of the macroscopic Hittorf transport number, is the same regardless of whether ion transport is in response to temperature or concentration gradients. Hence, it is possible to predict the contribution of TE potentials from EC potential measurements, and vice-versa. Moreover, it is often not valid to ignore the contribution of exclusion potentials, as has been assumed in previous studies; the relative contribution of exclusion and diffusion potentials depends upon the surface charge, the mobility contrast between the co- and counter ions, and the thickness of the electrical double layer relative to the pore-radius, and is predicted reasonably well by the simple model of Westermann-Clark and Christoforou [1986]. Finally, EC and TE potentials may be large in magnitude and make a significant contribution to the measured SP in many natural settings. Westermann-Clark, G.B. and C.C. Christoforou, (1986), The exclusion-diffusion potential in charged porous membranes, J. Electroanal. Chem. 198, 213-231.
Computational and Theoretical Study of the Physical Constraints on Chemotaxis
NASA Astrophysics Data System (ADS)
Varennes, Julien
Cell chemotaxis is crucial to many biological functions including development, wound healing, and cancer metastasis. Chemotaxis is the process in which cells migrate in response to chemical concentration gradients. Recent experiments show that cells are capable of detecting shallow gradients as small as a 1% concentration difference, and multicellular groups can improve on this by an additional order of magnitude. Examples from morphogenesis and metastasis demonstrate collective response to gradients equivalent to a 1 molecule difference in concentration across a cell body. While the physical constraints to cell gradient sensing are well understood, how the sensory information leads to cell migration, and coherent multicellular movement in the case of collectives, remains poorly understood. Here we examine how extrinsic sensory noise leads to error in chemotactic performance. First, we study single cell chemotaxis and use both simulations and analytical models to place physical constraints on chemotactic performance. Next we turn our attention to collective chemotaxis. We examine how collective cell interactions can improve chemotactic performance. We develop a novel model for quantifying the physical limit to chemotactic precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by examining the effects of intercellular communication on collective chemotaxis. We use simulations to test how well collectives can chemotax through very shallow gradients with the help of communication. By studying these computational and theoretical models of individual and collective chemotaxis, we address the gap in knowledge between chemical sensing and directed migration.
Escalation of polymerization in a thermal gradient
Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter
2013-01-01
For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280
Cover of coastal vegetation as an indicator of eutrophication along environmental gradients.
Wikström, Sofia A; Carstensen, Jacob; Blomqvist, Mats; Krause-Jensen, Dorte
2016-01-01
Coastal vegetation communities are important for primary production, biodiversity, coastal protection, carbon and nutrient cycling which, in combination with their sensitivity to eutrophication, render them potential indicators of environmental status for environmental policies like the EU Water and Marine Strategy Framework Directives. We evaluated one potential indicator for coastal vegetation, the cumulative cover at depths where the vegetation is light limited, by investigating its response to eutrophication along gradients in natural conditions. We used a large data set covering the Swedish coastline, spanning broad gradients in nutrient level, water clarity, seabed substrate, physical exposure and climate in addition to a salinity gradient from 0.5 to 30.5. Macroalgal cover increased significantly along gradients of declining nutrient concentration and increasing water clarity when we had accounted for diver effects, spatio-temporal sampling variability, salinity gradients, wave exposure and latitude. The developed empirical model explained 79% of the variation in algal cover across 130 areas. Based on this, we identified macroalgal cover as a promising indicator across the Baltic Sea, Kattegat and Skagerrak. A parallel analysis of soft-substrate macrophytes similarly identified significant increases in cover with decreasing concentrations of total nitrogen and increasing salinity, but the resulting empirical model explained only 52% of the variation in cover, probably due to the spatially more variable nature of soft-substrate vegetation. The identified general responses of vegetation cover to gradients of eutrophication across wide ranges in environmental settings may be useful for monitoring and management of marine vegetation in areas with strong environmental gradients.
Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L
2011-12-15
Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture.
The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.
Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael
2017-10-05
Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.
Becker, Diego Fedrizzi Petry; Linden, Rafael; Schmitt, Jairo Lizandro
2017-04-15
Richness, coverage and concentration of heavy metals in vascular epiphytes were analyzed in isolated trees along an urbanization gradient in Southern Brazil. A total of 20 phorophytes were sampled in the main street of each site. Concentrations of chromium, cadmium, lead, manganese, nickel and zinc were measured in the leaves of Tillandsia recurvata L. using Graphite Furnace Atomic Absorption Spectrophotometry. A decreasing gradient of epiphyte richness and coverage was observed as urbanization increased. Vehicle fleet and demographic density were the parameters most correlated with the reduction of epiphytic diversity. In T. recurvata, significantly higher values of cadmium, lead and zinc were recorded in the most urbanized areas, and were strongly related to the vehicle fleet and to the demographic density in these sites. The results demonstrated that these parameters could be applied to the diagnosis of environmental quality in urban areas, allowing standardized analyses in other regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Migrating Myeloid Cells Sense Temporal Dynamics of Chemoattractant Concentrations.
Petrie Aronin, Caren E; Zhao, Yun M; Yoon, Justine S; Morgan, Nicole Y; Prüstel, Thorsten; Germain, Ronald N; Meier-Schellersheim, Martin
2017-11-21
Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments. Published by Elsevier Inc.
An evaluation of the latitudinal gradient of chlorophyll in the California Current
NASA Astrophysics Data System (ADS)
Dietrich, W.; Broughton, J.; Kudela, R. M.
2013-12-01
Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be the dominant factor responsible for the existence of this chlorophyll gradient.
NASA Astrophysics Data System (ADS)
Barge, L. M.; Flores, E.; Abedian, Y.; Maltais, T.; Cameron, R.; Hermis, N.; Chin, K.; Russell, M. J.; Baum, M. M.
2017-07-01
Hydrothermal minerals in alkaline vents can promote phosphorus and organic concentration, redox reactions driven by catalytic metal sulfides, and the ambient pH and redox gradients can affect the synthesis of organics.
Decomposing socioeconomic inequalities in childhood obesity: evidence from Ireland.
Walsh, Brendan; Cullinan, John
2015-01-01
The objective of this paper is to quantify and decompose the socioeconomic gradient in childhood obesity in the Republic of Ireland. The analysis is performed using data from the first wave of the Growing Up in Ireland survey, a nationally representative survey of 8568 nine-year-old children conducted in 2007 and 2008. We estimate concentration indices to quantify the extent of the socioeconomic gradient in childhood obesity and undertake a subsequent decomposition analysis to pinpoint the key factors underpinning the observed inequalities. Overall the results confirm a strong socioeconomic gradient in childhood obesity in the Republic of Ireland. Concentration indices of obesity (CI=-0.168) and overweight/obese (CI=-0.057) show that the gradient is more pronounced in obese children, while results from the decomposition analysis suggest that the majority of the inequality in childhood obesity is explained by parental level variables. Our findings suggest that addressing childhood obesity inequalities requires coordinated policy responses at both the child and parental level. Copyright © 2014 Elsevier B.V. All rights reserved.
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
Determination of boundaries between ranges of high and low gradient of beam profile.
Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr
2016-01-01
This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.
Pure phase encode magnetic field gradient monitor.
Han, Hui; MacGregor, Rodney P; Balcom, Bruce J
2009-12-01
Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of magnetization through the FIDs. Two critical problems remain. The gradient waveform duration is limited by the sample T(2)*, while the k-space maxima are limited by gradient dephasing. The method presented is based on pure phase encode FIDs and solves the above two problems in addition to permitting high strength gradient measurement. A small doped water phantom (1-3 mm droplet, T(1), T(2), T(2)* < 100 micros) within a microprobe is excited by a series of closely spaced broadband RF pulses each followed by FID single point acquisition. Two trial gradient waveforms have been chosen to illustrate the technique, neither of which could be measured by the conventional RF microprobe measurement. The first is an extended duration gradient waveform while the other illustrates the new method's ability to measure gradient waveforms with large net area and/or high amplitude. The new method is a point monitor with simple implementation and low cost hardware requirements.
Tobata-Kudo, H; Higo, H; Koga, M; Tada, I
2000-09-01
The movements of the infective third-stage larvae (L3) of a rodent parasitic nematode Strongyloides ratti were examined on a sodium chloride (NaCl) gradient set up on agarose plates. The movements of larvae were followed by observing their tracks on the surface of the agarose. The direction of movement depended on the NaCl concentration at the point of their initial placement on the gradient. Larvae placed at between 230 and 370 mM NaCl tended to migrate towards areas of lower concentration. On the other hand, when placed at concentrations less than 20 mM NaCl, larvae tended to migrate initially towards higher concentrations but did not linger in areas where the concentration was over approximately 80 mM NaCl. It seems that S. ratti L3, tested in vitro, prefer regions with a concentration of NaCl below 80 mM NaCl. Two typical chemokinetic behaviors are seen; a unidirectional avoidance movement when initially placed in unfavorable environmental conditions and a random dispersal movement when placed within an area of favorable conditions. Track patterns were straight in the avoidance movement but included multiple changes of direction and loops in the dispersal movement. This study introduces an assay system suitable for studying chemokinetic behavior of larvae of Strongyloides ratti.
König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen
2013-03-19
To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.
The development of concentration gradients in a suspension of chemotactic bacteria
NASA Technical Reports Server (NTRS)
Hillesdon, A. J.; Pedley, T. J.; Kessler, J. O.
1995-01-01
When a suspension of bacterial cells of the species Bacillus subtilis is placed in a chamber with its upper surface open to the atmosphere complex bioconvection patterns are observed. These arise because the cells: (1) are denser than water; and (2) usually swim upwards, so that the density of an initially uniform suspension becomes greater at the top than the bottom. When the vertical density gradient becomes large enough, an overturning instability occurs which ultimately evolves into the observed patterns. The reason that the cells swim upwards is that they are aerotactic, i.e., they swim up gradients of oxygen, and they consume oxygen. These properties are incorporated in conservation equations for the cell (N) and oxygen (C) concentrations, and these are solved in the pre-instability phase of development when N and C depend only on the vertical coordinate and time. Numerical results are obtained for both shallow- and deep-layer chambers, which are intrinsically different and require different mathematical and numerical treatments. It is found that, for both shallow and deep chambers, a thin boundary layer, densely packed with cells, forms near the surface. Beneath this layer the suspension becomes severely depleted of cells. Furthermore, in the deep chamber cases, a discontinuity in the cell concentration arises between this cell-depleted region and a cell-rich region further below, where no significant oxygen concentration gradients develop before the oxygen is fully consumed. The results obtained from the model are in good qualitative agreement with the experimental observations.
Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren
2016-02-01
Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.
Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R
2016-11-01
Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.
Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa
2016-01-01
Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901
Annan, Kodwo
2012-01-01
The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO3 − concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal HCO3 − concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers. PMID:23197994
Non-Gradient Blue Native Polyacrylamide Gel Electrophoresis.
Luo, Xiaoting; Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun
2017-02-02
Gradient blue native polyacrylamide gel electrophoresis (BN-PAGE) is a well established and widely used technique for activity analysis of high-molecular-weight proteins, protein complexes, and protein-protein interactions. Since its inception in the early 1990s, a variety of minor modifications have been made to this gradient gel analytical method. Here we provide a major modification of the method, which we call non-gradient BN-PAGE. The procedure, similar to that of non-gradient SDS-PAGE, is simple because there is no expensive gradient maker involved. The non-gradient BN-PAGE protocols presented herein provide guidelines on the analysis of mitochondrial protein complexes, in particular, dihydrolipoamide dehydrogenase (DLDH) and those in the electron transport chain. Protocols for the analysis of blood esterases or mitochondrial esterases are also presented. The non-gradient BN-PAGE method may be tailored for analysis of specific proteins according to their molecular weight regardless of whether the target proteins are hydrophobic or hydrophilic. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Restricted exchange microenvironments for cell culture.
Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F
2018-03-01
Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.
Speeding up nuclear magnetic resonance spectroscopy by the use of SMAll Recovery Times - SMART NMR
NASA Astrophysics Data System (ADS)
Vitorge, Bruno; Bodenhausen, Geoffrey; Pelupessy, Philippe
2010-11-01
A drastic reduction of the time required for two-dimensional NMR experiments can be achieved by reducing or skipping the recovery delay between successive experiments. Novel SMAll Recovery Times (SMART) methods use orthogonal pulsed field gradients in three spatial directions to select the desired pathways and suppress interference effects. Two-dimensional spectra of dilute amino acids with concentrations as low as 2 mM can be recorded in about 0.1 s per increment in the indirect domain.
NASA Astrophysics Data System (ADS)
Syrakos, Alexandros; Varchanis, Stylianos; Dimakopoulos, Yannis; Goulas, Apostolos; Tsamopoulos, John
2017-12-01
Finite volume methods (FVMs) constitute a popular class of methods for the numerical simulation of fluid flows. Among the various components of these methods, the discretisation of the gradient operator has received less attention despite its fundamental importance with regards to the accuracy of the FVM. The most popular gradient schemes are the divergence theorem (DT) (or Green-Gauss) scheme and the least-squares (LS) scheme. Both are widely believed to be second-order accurate, but the present study shows that in fact the common variant of the DT gradient is second-order accurate only on structured meshes whereas it is zeroth-order accurate on general unstructured meshes, and the LS gradient is second-order and first-order accurate, respectively. This is explained through a theoretical analysis and is confirmed by numerical tests. The schemes are then used within a FVM to solve a simple diffusion equation on unstructured grids generated by several methods; the results reveal that the zeroth-order accuracy of the DT gradient is inherited by the FVM as a whole, and the discretisation error does not decrease with grid refinement. On the other hand, use of the LS gradient leads to second-order accurate results, as does the use of alternative, consistent, DT gradient schemes, including a new iterative scheme that makes the common DT gradient consistent at almost no extra cost. The numerical tests are performed using both an in-house code and the popular public domain partial differential equation solver OpenFOAM.
Noise reduction in the intracellular pom1p gradient by a dynamic clustering mechanism.
Saunders, Timothy E; Pan, Kally Z; Angel, Andrew; Guan, Yinghua; Shah, Jagesh V; Howard, Martin; Chang, Fred
2012-03-13
Chemical gradients can generate pattern formation in biological systems. In the fission yeast Schizosaccharomyces pombe, a cortical gradient of pom1p (a DYRK-type protein kinase) functions to position sites of cytokinesis and cell polarity and to control cell length. Here, using quantitative imaging, fluorescence correlation spectroscopy, and mathematical modeling, we study how its gradient distribution is formed. Pom1p gradients exhibit large cell-to-cell variability, as well as dynamic fluctuations in each individual gradient. Our data lead to a two-state model for gradient formation in which pom1p molecules associate with the plasma membrane at cell tips and then diffuse on the membrane while aggregating into and fragmenting from clusters, before disassociating from the membrane. In contrast to a classical one-component gradient, this two-state gradient buffers against cell-to-cell variations in protein concentration. This buffering mechanism, together with time averaging to reduce intrinsic noise, allows the pom1p gradient to specify positional information in a robust manner. Copyright © 2012 Elsevier Inc. All rights reserved.
Huang, Po-Hsun; Chan, Chung Yu; Li, Peng; Nama, Nitesh; Xie, Yuliang; Wei, Cheng-Hsin; Chen, Yuchao; Ahmed, Daniel; Huang, Tony Jun
2015-11-07
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.
A different approach to estimate nonlinear regression model using numerical methods
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.
Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi
2017-09-26
Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.
Liu, Junguo; Song, Jiuxue; Huang, Karen; Michel, Deborah; Fang, Jim
2018-05-01
A high-performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP-Max column (250 × 4.6 mm, 4 μm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water-1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute-and-shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-arabinoside, cyanidin-3-xyloside and quercetin-3-galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples. Copyright © 2017 John Wiley & Sons, Ltd.
We conducted a stream survey in the Narragansett Bay Watershed designed to target a gradient of development intensity, and to examine how associated changes in nutrients, carbon, and stressors affect periphyton and macroinvertebrates. Concentrations of nutrients, cations, and ani...
Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie
2015-01-01
Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Methylmercury bioaccumulation in an urban estuary: Delaware River USA.
Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia
2017-09-01
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.
Understanding particulate coating microstructure development
NASA Astrophysics Data System (ADS)
Roberts, Christine Cardinal
How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Linear solvation energy relationships in normal phase chromatography based on gradient separations.
Wu, Di; Lucy, Charles A
2017-09-22
Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D. Kirk; Burr, M.D.; Striegl, Robert G.
2006-01-01
Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.
NASA Astrophysics Data System (ADS)
McGann, Brendan J.
Laser induced breakdown spectroscopy (LIBS) is used to simultaneously measure hydrocarbon fuel concentration and temperature in high temperature, high speed, compressible, and reacting flows, a regime in which LIBS has not been done previously. Emission spectra from the plasma produced from a focused laser pulse is correlated in the combustion region of a model scramjet operating in supersonic wind tunnel. A 532 nm Nd:YAG laser operating at 10 Hz is used to induce break-down. The emissions are captured during a 10 ns gate time approximately 75 ns after the first arrival of photons at the measurement location in order to minimize the measurement uncertainty in the turbulent, compressible, high-speed, and reacting environment. Three methods of emission detection are used and a new backward scattering direction method is developed that is beneficial in reducing the amount of optical access needed to perform LIBS measurements. Measurements are taken in the model supersonic combustion and the ignition process is shown to be highly dependent on fuel concentration and gas density as well as combustion surface temperature, concentration gradient, and flow field. Direct spectrum matching method is developed and used for quantitative measurements. In addition, a comprehensive database of spectra covering the fuel concentrations and gas densities found in the wind tunnel of Research Cell 19 at Wright Patterson Air Force Base is created which can be used for further work.
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Xiu; Wang, Yueyun
2018-03-01
Landsat data are widely used in various earth observations, but the clouds interfere with the applications of the images. This paper proposes a weighted variational gradient-based fusion method (WVGBF) for high-fidelity thin cloud removal of Landsat images, which is an improvement of the variational gradient-based fusion (VGBF) method. The VGBF method integrates the gradient information from the reference band into visible bands of cloudy image to enable spatial details and remove thin clouds. The VGBF method utilizes the same gradient constraints to the entire image, which causes the color distortion in cloudless areas. In our method, a weight coefficient is introduced into the gradient approximation term to ensure the fidelity of image. The distribution of weight coefficient is related to the cloud thickness map. The map is built on Independence Component Analysis (ICA) by using multi-temporal Landsat images. Quantitatively, we use R value to evaluate the fidelity in the cloudless regions and metric Q to evaluate the clarity in the cloud areas. The experimental results indicate that the proposed method has the better ability to remove thin cloud and achieve high fidelity.
Quantification of the effect of temperature gradients in soils on subsurface radon signal
NASA Astrophysics Data System (ADS)
Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam
2017-04-01
Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.
Liquid chromatographic determination of sennosides in Cassia angustifolia leaves.
Srivastava, Alpuna; Pandey, Richa; Verma, Ram K; Gupta, Madan M
2006-01-01
A simple liquid chromatographic method was developed for the determination of sennosides B and A in leaves of Cassia angustifolia. These compounds were extracted from leaves with a mixture of methanol-water (70 + 30, v/v) after defatting with hexane. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 270 nm using a photodiode array detector. The method involves the use of an RP-18 Lichrocart reversed-phase column (5 microm, 125 x 4.0 mm id) and a binary gradient mobile-phase profile. The various other aspects of analysis, namely, peak purity, similarity, recovery, repeatability, and robustness, were validated. Average recoveries of 98.5 and 98.6%, with a coefficient of variation of 0.8 and 0.3%, were obtained by spiking sample solution with 3 different concentration solutions of standards (60, 100, and 200 microg/mL). Detection limits were 10 microg/mL for sennoside B and 35 microg/mL for sennoside A, present in the sample solution. The quantitation limits were 28 and 100 microg/mL. The analytical method was applied to a large number of senna leaf samples. The new method provides a reliable tool for rapid screening of C. angustifolia samples in large numbers, which is needed in breeding/genetic engineering and genetic mapping experiments.
Safranow, Krzysztof; Machoy, Zygmunt
2005-05-25
A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.
Soil and periphyton indicators of anthropogenic water-quality changes in a rainfall-driven wetland
McCormick, P.V.
2011-01-01
Surface soils and periphyton communities were sampled across an oligotrophic, soft-water wetland to document changes associated with pulsed inputs of nutrient- and mineral-rich canal drainage waters. A gradient of canal-water influence was indicated by the surface-water specific conductance, which ranged between 743 and 963 ??S cm-1 in the canals to as low as 60 ??S cm-1 in the rainfall-driven wetland interior. Changes in soil chemistry and periphyton taxonomic composition across this gradient were described using piecewise regressions models. The greatest increase in soil phosphorus (P) concentration occurred at sites closest to the canal while soil mineral (sulfur, calcium) concentrations increased most rapidly at the lower end of the gradient. Multiple periphyton shifts occurred at the lower end of the gradient and included; (1) a decline in desmids and non-desmid filamentous chlorophytes, and their replacement by a diatom-dominated community; (2) the loss of soft-water diatom indicator species and their replacement by hard-water species. Increased dominance by cyanobacteria and eutrophic diatom indicators occurred closer to the canals. Soil and periphyton changes indicated four zones of increasing canal influence across the wetland: (1) a zone of increasing mineral concentrations where soft-water taxa remained dominant; (2) a transition towards hard-water, oligotrophic diatoms as mineral concentrations increased further; (3) a zone of dominance by these hard-water species; (4) a zone of rapidly increasing P concentrations and dominance by eutrophic taxa. In contrast to conclusions drawn from routine water-chemistry monitoring, measures of chemical and biological change presented here indicate that most of this rainfall-driven peatland receives some influence from canal discharges. These changes are multifaceted and induced by shifts in multiple chemical constituents. ?? 2010 US Government.
Flow distribution in parallel microfluidic networks and its effect on concentration gradient
Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.
2015-01-01
The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
Rosen, Michael R; Alvarez, David A; Goodbred, Steven L; Leiker, Thomas J; Patiño, Reynaldo
2010-01-01
The delineation of lateral and vertical gradients of organic contaminants in lakes is hampered by low concentrationsand nondetection of many organic compounds in water. Passive samplers (semipermeable membrane devices [SPMDs] and polar organic chemical integrative samplers [POCIS]) are well suited for assessing gradients because they can detect synthetic organic compounds (SOCs) at pg L(-1) concentrations. Semi-permeable membrane devices and POCIS were deployed in Lake Mead, at two sites in Las Vegas Wash, at four sites across Lake Mead, and in the Colorado River downstream from Hoover Dam. Concentrations of hydrophobic SOCs were highest in Las Vegas Wash downstream from waste water and urban inputs and at 8 m depth in Las Vegas Bay (LVB) where Las Vegas Wash enters Lake Mead. The distribution of hydrophobic SOCs showed a lateral distribution across 10 km of Lake Mead from LVB to Boulder Basin. To assess possible vertical gradient SOCs, SPMDs were deployed at 4-m intervals in 18 m of water in LVB. Fragrances and legacy SOCs were found at the greatest concentrations at the deepest depth. The vertical gradient of SOCs indicated that contaminants were generally confined to within 6 m of the lake bottom during the deployment interval. The high SOC concentrations, warmer water temperatures, and higher total dissolved solids concentrations at depth are indicative of a plume of Las Vegas Wash water moving along the lake bottom. The lateral and vertical distribution of SOCs is discussed in the context of other studies that have shown impaired health of fish exposed to SOCs.
Khan, Nymul E; Adewuyi, Yusuf G
2011-01-21
A new method for the determination of peroxydisulfate using ion chromatography has been developed. Elution of peroxydisulfate was effected by isocratic elution using 200 mM NaOH at 40°C. A modification of the method using gradient elution was able to simultaneously determine other common inorganic ions (nitrate, nitrite, sulfate and chloride) down to significantly low concentrations in a peroxydisulfate matrix. The relative standard deviations (RSD) were in the range of 0.5-5%, for peak areas and <0.2% for peak retention times. The recoveries were between 95% and 120% for a concentration range of about 0.5-42 ppm. The limit of detection for peroxydisulfate ion was 0.2 ppm and for the other ions were ≤2×10(-2) ppm. The calibration curves were linear with slope and intercepts close to 1 and 0, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-01
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
Simulation of the temperature distribution in crystals grown by Czochralski method
NASA Technical Reports Server (NTRS)
Dudokovic, M. P.; Ramachandran, P. A.
1985-01-01
Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.
Diffusiophoresis of charged colloidal particles in the limit of very high salinity.
Prieve, Dennis C; Malone, Stephanie M; Khair, Aditya S; Stout, Robert F; Kanj, Mazen Y
2018-06-13
Diffusiophoresis is the migration of a colloidal particle through a viscous fluid, caused by a gradient in concentration of some molecular solute; a long-range physical interaction between the particle and solute molecules is required. In the case of a charged particle and an ionic solute (e.g., table salt, NaCl), previous studies have predicted and experimentally verified the speed for very low salt concentrations at which the salt solution behaves ideally. The current study presents a study of diffusiophoresis at much higher salt concentrations (approaching the solubility limit). At such large salt concentrations, electrostatic interactions are almost completely screened, thus eliminating the long-range interaction required for diffusiophoresis; moreover, the high volume fraction occupied by ions makes the solution highly nonideal. Diffusiophoretic speeds were found to be measurable, albeit much smaller than for the same gradient at low salt concentrations.
Effect of Refractive Index Variation on Two-Wavelength Interferometry for Fluid Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
1998-01-01
Two wavelength interferometry can in principle be used to measure changes in both temperature and concentration in a fluid, but measurement errors may be large if the fluid dispersion is small. This paper quantifies the effects of uncertainties in dn/dT and dn/dC on the measured temperature and concentration when using the simple expression dn = (dn/dT)dT + (dn/dC)dC. For the data analyzed here, ammonium chloride in water from -5 to 10(exp infinity) C over a concentration range of 2-14% and for wavelengths 514.5 and 633 nm, it is shown that the gradients must be known to within 0.015% to produce a modest 10% uncertainty in the measured temperature and concentration. These results show that real care must be taken to ensure the accuracy of refractive index gradients when using two wavelength interferometry for the simultaneous measurement of temperature and concentration.
Increasing Sensitivity In Continuous-Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.
NASA Astrophysics Data System (ADS)
Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong
2017-01-01
Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.
Chen, Wei; Pan, Suhong; Cheng, Hao; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C
2018-06-15
A passive water sampler based on the diffusive gradients in thin-films (DGT) technique was developed and tested for 3 groups of endocrine disrupting chemicals (EDCs, including oestrogens, alkyl-phenols and bisphenols). Three different resins (hydrophilic-lipophilic-balanced (HLB), XAD18 and Strata-XL-A (SXLA)) were investigated for their suitability as the binding phase for DGT devices. Laboratory tests across a range of pH (3.5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter concentration (0-20 mg L -1 ) showed HLB and XAD18-DGT devices were more stable compared to SXLA-DGT. HLB-DGT and XAD18-DGT accumulated test chemicals with time consistent with theoretical predictions, while SXLA-DGT accumulated reduced amounts of chemical. DGT performance was also compared in field deployments up to 28 days, alongside conventional active sampling at a wastewater treatment plant. Uptake was linear to the samplers over 18 days, and then began to plateau/decline, indicating the maximum deployment time in those conditions. Concentrations provided by the DGT samplers compared well with those provided by auto-samplers. DGT integrated concentrations over the deployment period in a way that grab-sampling cannot. The advantages of the DGT sampler over active sampling include: low cost, ease of simultaneous multi-site deployment, in situ analyte pre-concentration and reduction of matrix interferences compared with conventional methods. Compared to other passive sampler designs, DGT uptake is independent of flow rate and therefore allows direct derivation of field concentrations from measured compound diffusion coefficients. This passive DGT sampler therefore constitutes a viable and attractive alternative to conventional grab and active water sampling for routine monitoring of selected EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin
2007-06-01
This letter presents a dielectrophoretic (DEP) separation method of particles under continuous flow. The method consists of flowing two particle populations through a microfluidic channel, in which the vertical walls are the electrodes of the DEP device. The irregular shape of the electrodes generates both electric field and fluid velocity gradients. As a result, the particles that exhibit negative DEP can be trapped in the fluidic dead zones, while the particles that experience positive DEP are concentrated in the regions with high velocity and collected at the outlet. The device was tested with dead and living yeast cells.
Xue, Xiuzhan; Yu, Cunming; Wang, Jingming; Jiang, Lei
2016-12-27
Microbubbles are tiny bubbles with diameters below 50 μm. Because of their minute buoyant force, the microbubbles stagnate in aqueous media for a long time, and they sometimes cause serious damage. Most traditional methods chosen for elimination of gas bubbles utilize buoyancy forces including chemical methods and physical methods, and they only have a minor effect on microbubbles. Several approaches have been developed to collect and transport microbubbles in aqueous media. However, the realization of innovative strategies to directly collect and transport microbubbles in aqueous media remains a big challenge. In nature, both spider silk and cactus spines take advantage of their conical-shaped surface to yield the gradient of Laplace pressure and surface free energy for collecting fog droplets from the environment. Inspired by this, we introduce here the gradient of Laplace pressure and surface free energy to the interface of superhydrophobic copper cones (SCCs), which can continuously collect and directionally transport CO 2 microbubbles (from tip side to base side) in CO 2 -supersaturated solution. A gas layer was formed when the microbubbles encounter the SCCs. This offers a channel for microbubble directional transportation. The efficiency of microbubble transport is significantly affected by the apex angle of SCCs and the carbon dioxide concentration. The former provides different gradients of Laplace pressure as the driving force. The latter represents the capacity, which offers the quantity of CO 2 microbubbles for collection and transportation. We believe that this approach provides a simple and valid way to remove microbubbles.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Uccellini, L. W.
1983-01-01
In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.
Quantifying Dynamic Changes in Plantar Pressure Gradient in Diabetics with Peripheral Neuropathy.
Lung, Chi-Wen; Hsiao-Wecksler, Elizabeth T; Burns, Stephanie; Lin, Fang; Jan, Yih-Kuen
2016-01-01
Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP) and peak pressure gradient (PPG) during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA) has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG, and PGA were calculated for four foot regions - first toe (T1), first metatarsal head (M1), second metatarsal head (M2), and heel (HL). Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared with non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P = 0.02) and PPG was 214% (P < 0.001) larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P = 0.04), suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
Optoelectrofluidic field separation based on light-intensity gradients
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-01-01
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461
Optoelectrofluidic field separation based on light-intensity gradients.
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-07-14
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.
Diffusion processes in tumors: A nuclear medicine approach
NASA Astrophysics Data System (ADS)
Amaya, Helman
2016-07-01
The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.
The equivalent magnetizing method applied to the design of gradient coils for MRI.
Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart
2008-01-01
This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.
HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves.
Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina
2013-10-01
A high-performance liquid chromatographic method with gradient elution and diode-array detection was developed to quantify free phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salycilic, elagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in walnut leaves. Chromatographic separation was performed on a Hypersil Gold C18 column (5 µm particle size, 250 × 4.6 mm) and detection was conducted at three different wavelengths (254, 278 and 300 nm) according to the absorption maxima of the analyzed compounds. Validation procedures were conducted and the method was proven to be precise, accurate and sensitive. The developed method has been applied to analyze walnut leaves samples from nine different cultivars, with the same agricultural, geographical and climatic conditions. The experimental results revealed high concentrations of myricetin, catechin hydrate and rutin, and low concentrations of quercetin and epicatechin aglycones. Ellagic acid was established as the dominating phenolic acid of walnut leaves, followed by trans-cinnamic, chlorogenic and caffeic acids. Juglone content varied between 44.55 and 205.12 mg/100 g fresh weight. Significant differences were detected among cultivars for the concentration levels of phenolics.
Lijia, Xu; Guo, Jianru; Chen, QianQian; Baoping, Jiang; Zhang, Wei
2014-06-01
A sensitive and selective ultra high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method for the determination of phlorizin and phloretin in human plasma has been firstly developed. Samples were prepared after protein precipitation and analyzed on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. Negative electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile-water (0.02% formic acid), using a gradient procedure. The analytes and internal standard dihydroquercetin were both detected by use of multiple reaction monitoring mode. The method was linear in the concentration range of 2.5-1000.0 ng/mL. The lower limit of quantification (LLOQ) was 2.5 ng/mL. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 9.2%. The accuracy determined at three concentrations was within ± 7.3% in terms of relative error. The total run time was 12.0 min. This assay offers advantages in terms of expediency, and suitability for the analysis of phlorizin and phloretin in various biological fluids. Copyright © 2014 Elsevier B.V. All rights reserved.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M
2015-12-01
Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.
What are the driving forces for water lifting in the xylem conduit?
Zimmermann, Ulrich; Schneider, Heike; Wegner, Lars H; Wagner, Hans-Jürgen; Szimtenings, Michael; Haase, Axel; Bentrup, Friedrich-Wilhelm
2002-03-01
After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Böhm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to - 0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interfacial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.