Sample records for concentration mic method

  1. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population

    PubMed Central

    Lardieri, Allison B.; Heil, Emily L.; Morgan, Jill A.

    2017-01-01

    OBJECTIVES Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. METHODS This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. RESULTS A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. CONCLUSIONS The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC. PMID:28337080

  2. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.

    PubMed

    Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A

    2017-01-01

    Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.

  3. ANTI-ADHESIVE AND ANTI-BIOFILM ACTIVITIES IN VITRO OF LINEZOLID, VANCOMYCIN, TIGECYCLINE AND DAPTOMYCIN AGAINST STAPHYLOCOCCUS HAEMOLYTICUS.

    PubMed

    Juda, Marek; Helon, Pawel; Malm, Anna

    2016-11-01

    Biofilm may be formed on wide variety of surfaces, including indwelling medical devices, leading to several infectious diseases, e.g., bacteremia and sepsis. The most,important pathogens related with infections associated with medical devices are coagulase-negative staphylococci, including Staphylococcus haeinolyticus - bacterial species which express quite often the multidrug resistance. The four clinical multiresistant and methicillin-resistant S. haenzolyticus were included in the present study. The evaluation of drug susceptibility was performed by using disc-diffusion method and broth microdilution method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The biofilm formation on the Nelaton catheter and the effect of linezolid, vancomycin, tigecycline and daptomycin on the biofilm formation and disruption of mature structure was based on the method with TTC (2,3,5-triphenyltetrazolium chloride). The adhesion process of S. haenzolyticus to the Nelaton catheter was inhibited by antibiotics, as follows: line-zolid at concentration 0.25-0.5 x MIC, vancomycin - concentration 0.5 x MIC, tigecycline - concentration 0.25-4 x MIC and daptomycin - concentration 0.06-1 x MIC, depending on the isolate. Linezolid inhibited the biofilm formation at concentration between 0.5-1 x MIC, vancomycin - 1-2 x MIC, tigecycline - 0.5-4 x MIC and daptomycin - 0.06-2 x MIC. The concentration of linezolid eradicating the mature biofilm was found to be 1-2 x MIC, vancomycin - 2-8 x MIC, tigecycline - 2-4 x MIC and daptomycin - 0.06-2 x MIC. The most active antibiotic against S. haentolyticus biofilm formation and disruption of mature structure seems to be daptomycin.

  4. Assessment of formulas for calculating critical concentration by the agar diffusion method.

    PubMed Central

    Drugeon, H B; Juvin, M E; Caillon, J; Courtieu, A L

    1987-01-01

    The critical concentration of antibiotic was calculated by using the agar diffusion method with disks containing different charges of antibiotic. It is currently possible to use different calculation formulas (based on Fick's law) devised by Cooper and Woodman (the best known) and by Vesterdal. The results obtained with the formulas were compared with the MIC results (obtained by the agar dilution method). A total of 91 strains and two cephalosporins (cefotaxime and ceftriaxone) were studied. The formula of Cooper and Woodman led to critical concentrations that were higher than the MIC, but concentrations obtained with the Vesterdal formula were closer to the MIC. The critical concentration was independent of method parameters (dilution, for example). PMID:3619419

  5. Determination of antifungal activities in serum samples from mice treated with different antifungal drugs allows detection of an active metabolite of itraconazole.

    PubMed

    Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2006-01-01

    To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.

  6. Evaluation of graphical and statistical representation of analytical signals of spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty

    2017-09-01

    Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.

  7. Revisiting the susceptibility testing of Mycobacterium tuberculosis to ethionamide in solid culture medium.

    PubMed

    Lakshmi, Rajagopalan; Ramachandran, Ranjani; Kumar, D Ravi; Sundar, A Syam; Radhika, G; Rahman, Fathima; Selvakumar, N; Kumar, Vanaja

    2015-11-01

    Increase in the isolation of drug resistant phenotypes of Mycobacterium tuberculosis necessitates accuracy in the testing methodology. Critical concentration defining resistance for ethionamide (ETO), needs re-evaluation in accordance with the current scenario. Thus, re-evaluation of conventional minimum inhibitory concentration (MIC) and proportion sensitivity testing (PST) methods for ETO was done to identify the ideal breakpoint concentration defining resistance. Isolates of M. tuberculosis (n=235) from new and treated patients were subjected to conventional MIC and PST methods for ETO following standard operating procedures. With breakpoint concentration set at 114 and 156 µg/ml, an increase in specificity was observed whereas sensitivity was high with 80 µg/ml as breakpoint concentration. Errors due to false resistant and susceptible isolates were least at 80 µg/ml concentration. Performance parameters at 80 µg/ml breakpoint concentration indicated significant association between PST and MIC methods.

  8. Synergistic action of starch and honey against Candida albicans in correlation with diastase number

    PubMed Central

    Boukraa, Laïd; Benbarek, Hama; Moussa, Ahmed

    2008-01-01

    To evaluate the synergistic action of starch on the antifungal activity of honey, a comparative method of adding honey with and without starch to culture media was used. Candida albicans has been used to determine the minimum inhibitory concentration (MIC) of five varieties of honey. In a second step, lower concentrations of honey than the MIC were incubated with a set of concentrations of starch added to media to determine the minimum synergistic inhibitory concentration (MSIC). The MIC for the five varieties of honey without starch against C. albicans ranged between 40% and 45% (v/v). When starch was incubated with honey and then added to media, a MIC drop has been noticed with each variety. It ranged between 7% and 25%. A negative correlation has been established between the MIC drop and the diastase number (DN). PMID:24031175

  9. Effect of quinolones and other antimicrobial agents on cell-associated Legionella pneumophila.

    PubMed Central

    Havlichek, D; Saravolatz, L; Pohlod, D

    1987-01-01

    We evaluated the in vitro susceptibility of Legionella pneumophila ATCC 33152 (serogroup I) to 13 antibiotics alone and in combination with rifampin (0.1 mg/liter) by three methods. Extracellular susceptibility was determined by MIC determinations and time kill curves in buffered yeast extract broth, while intracellular susceptibility was determined by peripheral human monocytes in RPMI 1640 culture medium. Antibiotic concentrations equal to or greater than the broth dilution MIC inhibited or killed L. pneumophila by the time kill method, except this was not the case for trimethoprim-sulfamethoxazole. Antibiotic concentrations below the broth dilution MIC did not inhibit Legionella growth. The only antibiotic-rifampin combinations which produced improved killing of L. pneumophila by the time kill method were those in which the logarithmic growth of L. pneumophila occurred during the experiment (rosoxacin, amifloxacin, cinoxacin, trimethoprim-sulfamethoxazole, clindamycin, and doxycycline). Neither direct MICs nor time kill curve assays accurately predicted intracellular L. pneumophila susceptibility. Rifampin, erythromycin, ciprofloxacin, rosoxacin, enoxacin, amifloxacin, gentamicin, clindamycin, and doxycycline all inhibited intracellular L. pneumophila growth at readily achievable concentrations in serum. Cefoxitin and thienamycin showed no inhibition of growth, although they were present extracellularly at concentrations that were 20 to 1,000 times their broth dilution MICs. Clindamycin was the only antibiotic that was able to inhibit intracellular L. pneumophila growth at an extracellular concentration below its MIC. The gentamicin (5 mg/liter)-rifampin combination was the only antibiotic-rifampin combination which demonstrated decreased cell-associated Legionella survival in this model of in vitro susceptibility. PMID:3435101

  10. Susceptibility of Malassezia pachydermatis to aminoglycosides.

    PubMed

    Silva, Freddy Alejandro; Conde-Felipe, Magnolia; Rosario, Inmaculada; Ferrer, Otilia; Real, Fernando; Déniz, Soraya; Acosta, Félix; Padilla, Daniel; Acosta-Hernández, Begoña

    2017-12-01

    Previous studies have evaluated the action of gentamicin against Malassezia pachydermatis. The aim of this study was to evaluate in vitro susceptibility of M. pachydermatis to the aminoglycosides- gentamicin, tobramycin, netilmicin and framycetin. The minimum inhibitory concentration (MIC) of gentamicin was determined following methods M27-A3 microdilution and Etest ® . The Etest ® was used to determine the minimum inhibitory concentration (MIC) of the tobramycin and netilmicin. The Kirby-Bauer test was used to determine the antibiotic susceptibility to the framycetin. The MIC50 and MIC90 were 8.12 μg/mL and 32.5 μg/mL by microdilution method for gentamicin. The MIC50, determined by the Etest ® , was 8 μg/mL for gentamicin and netilmicin and 64 μg/mL for tobramycin. The MIC90 was 16 and 32 μg/mL for gentamicin and netilmicin respectively. The MIC90 was outside of the detectable limits for tobramycin. To framycetin, 28 strains (40%) of the 70 M. pachydermatis isolates tested showed a diameter of 22 mm, 22 strains (31.42%) showed a diameter of 20 mm, 16 strains showed a diameter of ≤ 18 mm, and only 5.71% of the isolates showed a diameter of ≥ 22 mm. This study provides evidence of high in vitro activity of the aminoglycosides-gentamicin, tobramycin, netilmicin and framycetin against M. pachydermatis. For gentamicin Etest ® showed similar values of MIC50 y MIC90 that the obtained by microdilution method. We considered Etest ® method could be a good method for these calculations with aminoglycosides. © 2017 Blackwell Verlag GmbH.

  11. In vitro effects of Salvia officinalis L. essential oil on Candida albicans

    PubMed Central

    Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit

    2013-01-01

    Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301

  12. [Comparative evaluation of the sensitivity of Acinetobacter to colistin, using the prediffusion and minimum inhibitory concentration methods: detection of heteroresistant isolates].

    PubMed

    Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R

    2011-01-01

    The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.

  13. Discrepancy in Vancomycin AUC/MIC Ratio Targeted Attainment Based upon the Susceptibility Testing in Staphylococcus aureus.

    PubMed

    Eum, Seenae; Bergsbaken, Robert L; Harvey, Craig L; Warren, J Bryan; Rotschafer, John C

    2016-09-27

    This study demonstrated a statistically significant difference in vancomycin minimum inhibitory concentration (MIC) for Staphylococcus aureus between a common automated system (Vitek 2) and the E-test method in patients with S. aureus bloodstream infections. At an area under the serum concentration time curve (AUC) threshold of 400 mg∙h/L, we would have reached the current Infectious Diseases Society of America (IDSA)/American Society of Health System Pharmacists (ASHP)/Society of Infectious Diseases Pharmacists (SIDP) guideline suggested AUC/MIC target in almost 100% of patients while using the Vitek 2 MIC data; however, we could only generate 40% target attainment while using E-test MIC data ( p < 0.0001). An AUC of 450 mg∙h/L or greater was required to achieve 100% target attainment using either Vitek 2 or E-test MIC results.

  14. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis

    PubMed Central

    Pasipanodya, Jotam G.; Denti, Paolo; Sirgel, Frederick; Lesosky, Maia; Gumbo, Tawanda; Meintjes, Graeme; McIlleron, Helen; Wilkinson, Robert J.

    2017-01-01

    Abstract Background. There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods. One hundred patients with pulmonary tuberculosis (65% human immunodeficiency virus coinfected) were intensively sampled to determine rifampicin, isoniazid, and pyrazinamide plasma concentrations after 7–8 weeks of therapy, and PK parameters determined using nonlinear mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 months, and 5–6 months. Minimum inhibitory concentrations (MICs) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 0- to 24-hour area under the curve (AUC0-24), maximum concentration (Cmax), AUC0-24/MIC, Cmax/MIC, and percentage of time that concentrations persisted above the MIC (%TMIC). Results. Twenty-six percent of patients had Cmax of rifampicin <8 mg/L, pyrazinamide <35 mg/L, and isoniazid <3 mg/L. No relationship was found between PK exposures and 2-month culture conversion using multivariate logistic regression after adjusting for MIC. However, MARS identified negative interactions between isoniazid Cmax and rifampicin Cmax/MIC ratio on 2-month culture conversion. If isoniazid Cmax was <4.6 mg/L and rifampicin Cmax/MIC <28, the isoniazid concentration had an antagonistic effect on culture conversion. For patients with isoniazid Cmax >4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions. PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion. PMID:28205671

  15. [Determination of sensitivity of biofilm-positive forms of microorganisms to antibiotics].

    PubMed

    Holá, Veronika; Růzicka, Filip; Tejkalová, Renata; Votava, Miroslav

    2004-10-01

    Nosocomial infections caused by biofilm-positive microorganisms are a serious therapeutic problem. In the biofilm, microorganisms are protected against adverse effects of the external environment, including the action of antibiotics. It is well known that the values of minimum inhibitory concentrations (MIC) determined for planktonic forms do not correspond to the actual concentrations of antibiotics necessary for the eradication of bacteria in a biofilm. The purpose of the study was to propose a method of determining minimum biofilm inhibitory concentrations (MBIC) and minimum biofilm eradication concentrations (MBEC) and to compare these values with MIC values. Biofilm-positive strains of Staphylococcus epidermidis were cultured so as to form a biofilm layer on polystyrene pegs. The biofilm on the pegs was then exposed to the action of antibiotics and after 18 hours we determined the minimum biofilm inhibitory concentration (MBIC). The evaluation of minimum biofilm eradication concentrations was done colorimetrically from the metabolic activity of surviving cells. MBIC and MBEC values were many times higher than MIC values. We selected such a duration of the biofilms cultivation on the pegs of the plate, which ensured that the number of bacterial cells corresponded to standard MIC assessment. The MBEC values established in our study indicate that the currently used concentrations of tested antibiotics cannot be used in monotherapy for an efficacious eradication of a biofilm. The MBEC determination is a far more laborious and time-consuming method than the determination of MIC, but the use of plates with pegs facilitates the handling of biofilms. The advantage of our method is the possibility of standardization of the size of the inoculum and thus of the whole MBEC assessment.

  16. Inhibitory and bactericidal activities of levofloxacin, ofloxacin, erythromycin, and rifampin used singly and in combination against Legionella pneumophila.

    PubMed Central

    Baltch, A L; Smith, R P; Ritz, W

    1995-01-01

    The susceptibilities of 56 Legionella pneumophila isolates (43 clinical and 15 environmental isolates) to levofloxacin, ofloxacin, erythromycin, and rifampin were studied with buffered charcoal yeast extract (BCYE) agar (inoculum, 10(4) CFU per spot), and the susceptibilities of five isolates were studied with buffered yeast extract (BYE) broth (inoculum, 10(5) CFU/ml). The MICs inhibiting 90% of strains tested on BCYE agar were 0.125, 0.25, 1.0, and < or = 0.004 micrograms/ml for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MICs by the BYE broth dilution method were 1 to 3, 2, 1 to 2, and 1 tube lower than those by the agar dilution method for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MBCs were 1 to 2 tubes higher than the broth dilution MICs for levofloxacin, 1 to 3 tubes higher than the broth dilution MICs for ofloxacin, 1 to 3 tubes higher than the broth dilution MICs for erythromycin, and the same as the broth dilution MICs for rifampin. In kinetic time-kill curve studies, at drug concentrations of 1.0 and 2.0 times the MIC, the most active drugs were levofloxacin and rifampin. At 72 h, concentrations of levofloxacin and rifampin of 2.0 times the MIC demonstrated a bactericidal effect against L. pneumophila. In contrast, at concentrations of 1.0 and 2.0 times the MICs regrowth was observed with ofloxacin and only a gradual decrease in the numbers of CFU per milliliter was observed with erythromycin. Only a minor inhibitory effect was observed with 0.25 or 0.5 time the MICs of all drugs at 24 to 48 h, with regrowth occurring at 72 h. In contrast to erythromycin or ofloxacin plus rifampin at 0.25 time the MICs, only levofloxacin plus rifampin demonstrated synergy. Thus, levofloxacin demonstrated the best inhibitory and bactericidal effects against L. pneumophila when it was studied alone or in a combination with rifampin. PMID:7486896

  17. Assessment of Minimum Inhibitory Concentrations of Telavancin by Revised Broth Microdilution Method in Phase 3 Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Clinical Isolates.

    PubMed

    Smart, Jennifer I; Corey, Gordon Ralph; Stryjewski, Martin E; Wang, Whedy; Barriere, Steven L

    2016-12-01

    The broth microdilution method (BMD) for testing telavancin minimum inhibitory concentrations (MICs) was revised (rBMD) in 2014 to improve the accuracy, precision, and reproducibility of the testing method. The aim of this study was to determine the effect of the revised method on telavancin MIC values for Staphylococcus aureus (S. aureus) clinical isolates obtained from hospital-acquired pneumonia (HAP) patients. Isolates from patients who participated in the phase 3 Assessment of Telavancin for Treatment of HAP Studies were retested using the rBMD method. Retesting of 647 isolates produced a range of telavancin MIC values from 0.015 µg/mL to 0.12 µg/mL with MIC 50/90 values of 0.06/0.06 µg/mL for the total pool of samples. For methicillin-resistant S. aureus (MRSA), MIC 50/90 values were 0.06/0.12 µg/mL. These values are up to 4-fold lower than MIC 50/90 values obtained using the original method. These results were used in part to justify lowering the telavancin breakpoints. All tested isolates remained susceptible to telavancin at the revised susceptibility breakpoint of ≤0.12 µg/mL. Overall, the clinical cure rate for microbiologically evaluable telavancin-treated patients was 78% for S. aureus, 76% for patients with MRSA, and 79% for patients with isolates with reduced susceptibility to vancomycin (MIC ≥1 µg/mL). Results from the rBMD method support the in vitro potency of telavancin against S. aureus. ATTAIN (NCT00107952 and NCT00124020). Theravance Biopharma Antibiotics, Inc.

  18. Effective concentration-based serum pharmacodynamics for antifungal azoles in a murine model of disseminated Candida albicans infection.

    PubMed

    Maki, Katsuyuki; Kaneko, Shuji

    2013-12-01

    An assessment of the effective in vivo concentrations of antifungal drugs is important in determining their pharmacodynamics, and therefore, their optimal dosage regimen. Here we establish the effective in vivo concentration-based pharmacodynamics of three azole antifungal drugs (fluconazole, itraconazole, and ketoconazole) in a murine model of disseminated Candida albicans infection. A key feature of this study was the use of a measure of mycelial (m) growth rather than of yeast growth, and pooled mouse sera rather than synthetic media as a growth medium, for determining the minimum inhibitory concentrations (MICs) of azoles for C. albicans (denoted serum mMICs). The serum mMIC assay was then used to measure antifungal concentrations and effects as serum antifungal titers in the serum of treated mice. Both serum mMIC and sub-mMIC values reflected the effective in vivo serum concentrations. Supra-mMIC and mMIC effects exhibited equivalent efficacies and were concentration-independent, while the sub-mMIC effect was concentration-dependent. Following administration of the minimum drug dosage that inhibited an increase in mouse kidney fungal burden, the duration periods of these effects were similar for all drugs tested. The average duration of either the mMIC effect including the supra-mMIC effect, the sub-mMIC effect, or the post-antifungal effect (PAFE) were 6.9, 6.5 and 10.6 h, respectively. Our study suggests that the area under the curve for serum drug concentration versus time, between the serum mMIC and the sub-mMIC, and exposure time above the serum sub-mMIC after the mMIC effect, are major pharmacodynamic parameters. These findings have important implications for effective concentration-based pharmacodynamics of fungal infections treated with azoles.

  19. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania.

    PubMed

    Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko

    2018-06-26

    Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.

  20. Association of macrophage inhibitory cytokine-1 with nutritional status, body composition and bone mineral density in patients with anorexia nervosa: the influence of partial realimentation.

    PubMed

    Dostálová, Ivana; Kaválková, Petra; Papežová, Hana; Domluvilová, Daniela; Zikán, Vít; Haluzík, Martin

    2010-04-23

    Macrophage inhibitory cytokine-1 (MIC-1) is a key inducer of cancer-related anorexia and weight loss. However, its possible role in the etiopathogenesis of nutritional disorders of other etiology such as anorexia nervosa (AN) is currently unknown. We measured fasting serum concentrations of MIC-1 in patients with AN before and after 2-month nutritional treatment and explored its relationship with nutritional status, metabolic and biochemical parameters. Sixteen previously untreated women with AN and twenty-five normal-weight age-matched control women participated in the study. We measured serum concentrations of MIC-1 and leptin by ELISA, free fatty acids by enzymatic colorimetric assay, and biochemical parameters by standard laboratory methods; determined resting energy expenditure by indirect calorimetry; and assessed bone mineral density and body fat content by dual-energy X-ray absorptiometry. ANOVA, unpaired t-test or Mann-Whitney test were used for groups comparison as appropriate. The comparisons of serum MIC-1 levels and other studied parameters in patients with AN before and after partial realimentation were assessed by paired t-test or Wilcoxon Signed Rank Test as appropriate. At baseline, fasting serum MIC-1 concentrations were significantly higher in patients with AN relative to controls. Partial realimentation significantly reduced serum MIC-1 concentrations in patients with AN but it still remained significantly higher compared to control group. In AN group, serum MIC-1 was inversely related to Buzby nutritional risk index, serum insulin-like growth factor-1, serum glucose, serum total protein, serum albumin, and lumbar bone mineral density and it significantly positively correlated with the duration of AN and age. MIC-1 concentrations in AN patients are significantly higher relative to healthy women. Partial realimentation significantly decreased MIC-1 concentration in AN group. Clinical significance of these findings needs to be further clarified.

  1. Combined Activity of Colloid Nanosilver and Zataria Multiflora Boiss Essential Oil-Mechanism of Action and Biofilm Removal Activity.

    PubMed

    Shirdel, Maryam; Tajik, Hossein; Moradi, Mehran

    2017-12-01

    Purpose: The aim of this study was to investigate antimicrobial and biofilm removal potential of Zataria multiflora essential oil (ZEO) and silver nanoparticle (SNP) alone and in combination on Staphylococcus aureus and Salmonella Typhimurium and evaluate the mechanism of action. Methods: The minimum inhibitory concentration (MIC), and optimal inhibitory combination (OIC) of ZEO and SNP were determined according to fractional inhibitory concentration (FIC) method. Biofilm removal potential and leakage pattern of 260-nm absorbing material from the bacterial cell during exposure to the compounds were also investigated. Results: MICs of SNP for both bacteria were the same as 25 μg/ mL. The MICs and MBCs values of ZEO were 2500 and 1250 μg/mL, respectively. The most effective OIC value for SNP and ZEO against Salm. Typhimurium and Staph. aureus were 12.5, 625 and 0.78, 1250 μg/ mL, respectively. ZEO and SNP at MIC and OIC concentrations represented a strong removal ability (>70%) on biofilm. Moreover, ZEO at MIC and OIC concentrations did a 6-log reduction of primary inoculated bacteria during 15 min contact time. The effect of ZEO on the loss of 260-nm material from the cell was faster than SNP during 15 and 60 min. Conclusion: Combination of ZEO and SNP had significant sanitizing activity on examined bacteria which may be suitable for disinfecting the surfaces.

  2. Susceptibility screening of hyphae-forming fungi with a new, easy, and fast inoculum preparation method.

    PubMed

    Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia

    2012-12-01

    In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.

  3. Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens.

    PubMed

    Zhao, D H; Yu, Y; Zhou, Y F; Shi, W; Deng, H; Liu, Y H

    2014-02-01

    The postantibiotic effect (PAE) and postantibiotic sub-minimum inhibitory concentration (MIC) effect (PA-SME) of valnemulin against Staphylococcus aureus were investigated in vitro using a spectrophotometric technique and classic viable count method. A standard curve was constructed by regression analysis of the number of colonies and the corresponding optical density (OD) at 630 nm of the inoculum. After exposure to valnemulin at different concentrations for an hour, the antibiotic was removed by centrifuging and washing. The PA-SMEs were measured after initial exposure to valnemulin at 4 × the MIC, and then, valnemulin was added to reach corresponding desired concentrations in the resuspended culture. Samples were collected hourly until the culture became turbid. The results were calculated by converting the OD values into the counts of bacteria in accordance with the curve. The MIC of valnemulin against eight strains was identically 0.125 μg ml(-1) . The mean PAEs were 2.12 h (1 × MIC) and 5.06 h (4 × MIC), and the mean PA-SMEs were 6.85 h (0.1 × MIC), 9.12 h (0.2 × MIC) and 10.8 h (0.3 × MIC). The results showed that the strains with identical MICs exhibited different PAEs and PA-SMEs. Valnemulin produced prolonged PAE and PA-SME periods for Staph. aureus, supporting a longer dosing interval while formulating a daily administration dosage. In this study, valnemulin demonstrated prolonged postantibiotic effects and postantibiotic sub-MIC effects on strains of Staphylococcus aureus. The strains with identical MICs of valnemulin exhibited different PAEs and PA-SMEs. Staphylococcus aureus isolated from different species has little impact on the postantibiotic effect of valnemulin. The result suggests a longer dosing interval while formulating a daily administration dosage, and it may play a valuable role of valnemulin in treating Staph. aureus infections in animals. © 2013 The Society for Applied Microbiology.

  4. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi.

    PubMed

    Abbaszadeh, S; Sharifzadeh, A; Shokri, H; Khosravi, A R; Abbaszadeh, A

    2014-06-01

    This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.

    PubMed

    Romulo, Andreas; Zuhud, Ervizal A M; Rondevaldova, Johana; Kokoska, Ladislav

    2018-12-01

    In many regions of Indonesia, there are numerous traditional herbal preparations for treatment of infectious diseases. However, their antimicrobial potential has been poorly studied by modern laboratory methods. This study investigates in vitro antimicrobial activity of 49 ethanol extracts from 37 plant species used in Indonesian traditional medicine for treatment against Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The plants were collected from the Biopharmaca collection garden, Bogor, Indonesia. The plant material was dried, finely grounded, extracted using ethanol, concentrated, and the dried residue was dissolved in 100% DMSO. Antimicrobial activity was determined in terms of a minimum inhibitory concentration (MIC) using a broth microdilution method in 96-well microplates. The extract of Orthosiphon aristatus (Blume) Miq. (Lamiaceae) leaf produced the strongest antimicrobial effect, inhibiting the growth of C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL), E. faecalis (MIC 256 μg/mL) and P. aeruginosa (MIC 256 μg/mL). The leaf extract of Woodfordia floribunda Salisb. (Lythraceae) also exhibited significant effect against C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL) and E. faecalis (MIC 256 μg/mL). Rotheca serrata (L.) Steane & Mabb. (Lamiaceae) leaf extract inhibited the growth of S. aureus (MIC 256 µg/mL) and C. albicans (MIC 256 µg/mL). The leaf extract of O. aristatus and W. floribunda exhibited a significant anti-candidal effect. Therefore, both of these plants can serve as prospective source materials for the development of new anti-candidal agents.

  6. Tannic Acid as a Potential Modulator of Norfloxacin Resistance in Staphylococcus Aureus Overexpressing norA.

    PubMed

    Diniz-Silva, Helena Taina; Cirino, Isis Caroline da Silva; Falcão-Silva, Vivyanne Dos Santos; Magnani, Marciane; de Souza, Evandro Leite; Siqueira-Júnior, José P

    2016-01-01

    Tannins have shown inhibitory effects against pathogenic bacteria, and these properties make tannins potential modifying agents in bacterial resistance. The minimum inhibitory concentration (MIC) of tannic acid (TA), gallic acid (GA) and norfloxacin (Nor) against Staphylococcus aureus SA-1119 (NorA-effluxing strain) was determined using broth microdilution tests. To assess the modulation of antibiotic resistance, the MIC of Nor was determined in growth media with or without TA or GA at a subinhibitory concentration (1/4 MIC). The checkerboard method was performed to obtain the fractional inhibitory concentration index (FICI) for the combined application of TA and Nor. TA displayed a weak inhibitory effect (MIC 512 μg/ml) against S. aureus SA-1119, while no inhibitory effect was displayed by GA (MIC >512 μg/ml). However, when TA was tested at a subinhibitory concentration in combination with Nor, the MIC of Nor against S. aureus SA-1119 decreased from 128 to 4 μg/ml (32-fold); this effect was not observed for GA. In the checkerboard assay, the MIC of TA and Nor decreased from 512 to 128 μg/ml (4-fold) and from 128 to 8 μg/ml (16-fold), respectively. The combination of TA and Nor presented an FICI as low as 0.31, which indicates a synergistic interaction. TA is a potential agent for increasing the clinical efficacy of Nor to control resistant S. aureus. © 2016 S. Karger AG, Basel.

  7. Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype.

    PubMed

    Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap

    2010-11-01

    We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.

  8. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study.

    PubMed

    Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan

    2016-09-01

    Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.

  9. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  10. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349

  11. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    PubMed Central

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good agreement with NCCLS proposed MIC ranges, and lack of interference of phosphate, the PDA method shows promise as a useful assay for antifungal susceptibility testing and screening for new antifungal agents, especially for drugs that may be affected by high (supraphysiologic) phosphate concentrations. PMID:11959582

  12. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia.

    PubMed

    Holmes, Natasha E; Turnidge, John D; Munckhof, Wendy J; Robinson, J Owen; Korman, Tony M; O'Sullivan, Matthew V N; Anderson, Tara L; Roberts, Sally A; Warren, Sanchia J C; Gao, Wei; Howden, Benjamin P; Johnson, Paul D R

    2013-04-01

    A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥ 400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a "real-world" context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥ 400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥ 400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods.

  13. Vancomycin AUC/MIC Ratio and 30-Day Mortality in Patients with Staphylococcus aureus Bacteremia

    PubMed Central

    Turnidge, John D.; Munckhof, Wendy J.; Robinson, J. Owen; Korman, Tony M.; O'Sullivan, Matthew V. N.; Anderson, Tara L.; Roberts, Sally A.; Warren, Sanchia J. C.; Gao, Wei; Howden, Benjamin P.; Johnson, Paul D. R.

    2013-01-01

    A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a “real-world” context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods. PMID:23335735

  14. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  15. In Vitro Activities of Various Antimicrobials Alone and in Combination with Tigecycline against Carbapenem-Intermediate or -Resistant Acinetobacter baumannii▿

    PubMed Central

    Scheetz, Marc H.; Qi, Chao; Warren, John R.; Postelnick, Michael J.; Zembower, Teresa; Obias, Arlene; Noskin, Gary A.

    2007-01-01

    The activities of tigecycline alone and in combination with other antimicrobials are not well defined for carbapenem-intermediate or -resistant Acinetobacter baumannii (CIRA). Pharmacodynamic activity is even less well defined when clinically achievable serum concentrations are considered. Antimicrobial susceptibility testing of clinical CIRA isolates from 2001 to 2005 was performed by broth or agar dilution, as appropriate. Tigecycline concentrations were serially increased in time-kill studies with a representative of the most prevalent carbapenem-resistant clone (strain AA557; imipenem MIC, 64 mg/liter). The in vitro susceptibility of the strain was tested by time-kill studies in duplicate against the average free serum steady-state concentrations of tigecycline alone and in combination with various antimicrobials. Ninety-three CIRA isolates were tested and were found to have the following antimicrobial susceptibility profiles: tigecycline, MIC50 of 1 mg/liter and MIC90 of 2 mg/liter; minocycline, MIC50 of 0.5 mg/liter and MIC90 of 8 mg/liter; doxycycline, MIC50 of 2 mg/liter and MIC90 of ≥32 mg/liter; ampicillin-sulbactam, MIC50 of 48 mg/liter and MIC90 of 96 mg/liter; ciprofloxacin, MIC50 of ≥16 mg/liter and MIC90 of ≥16 mg/liter; rifampin, MIC50 of 4 mg/liter and MIC90 of 8 mg/liter; polymyxin B, MIC50 of 1 mg/liter and MIC90 of 1 mg/liter; amikacin, MIC50 of 32 mg/liter and MIC90 of ≥32 mg/liter; meropenem, MIC50 of 16 mg/liter and MIC90 of ≥128 mg/liter; and imipenem, MIC50 of 4 mg/liter and MIC90 of 64 mg/liter. Among the tetracyclines, the isolates were more susceptible to tigecycline than minocycline and doxycycline, according to FDA breakpoints (95%, 88%, and 71% of the isolates were susceptible to tigecycline, minocycline, and doxycycline, respectively). Concentration escalation studies with tigecycline revealed a maximal killing effect near the MIC, with no additional extent or rate of killing at concentrations 2× to 4× the MIC for tigecycline. Time-kill studies demonstrated indifference for tigecycline in combination with the antimicrobials tested. Polymyxin B, minocycline, and tigecycline are the most active antimicrobials in vitro against CIRA. Concentration escalation studies demonstrate that tigecycline may need to approach concentrations higher than those currently achieved in the bloodstream to adequately treat CIRA bloodstream infections. Future studies should evaluate these findings in vivo. PMID:17307973

  16. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    PubMed Central

    2010-01-01

    Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections. PMID:20128889

  17. Susceptibility of Legionella spp. to mycinamicin I and II and other macrolide antibiotics: effects of media composition and origin of organisms.

    PubMed Central

    Edelstein, P H; Pasiecznik, K A; Yasui, V K; Meyer, R D

    1982-01-01

    Thirty-three strains of Legionella spp., 29 of which were L. pneumophila, were tested for their susceptibilities to erythromycin (EM), rosaramicin, tylosin, mycinamicin I (Sch-27897), and mycinamicin II (Sch-27896). Testing was performed using an agar dilution method with two different types of media: buffered charcoal yeast extract medium supplemented with 0.1% alpha-ketoglutarate (BCYE alpha) and filter-sterilized yeast extract medium with 0.1% alpha-ketoglutarate (BYE alpha). The minimal inhibitory concentrations (MICs) of the drugs tested relative to the MICs of erythromycin were: rosaramicin, MIC approximately equal to 0.2 EM MIC; tylosin, MIC approximately equal to 2 EM MIC; mycinamicin I, MIC approximately equal to 0.5 EM MIC; and mycinamicin II, MIC approximately equal to EM MIC. Both types of media caused equivalent partial inactivation of the macrolides which was apparently due entirely to pH effect. MICs on BCYE alpha were one to five times more than those observed on BYE alpha; this may be due to poorer growth on BYE alpha. PMID:7125633

  18. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).

  19. In Vitro Susceptibility Testing Methods for Caspofungin against Aspergillus and Fusarium Isolates

    PubMed Central

    Arikan, Sevtap; Lozano-Chiu, Mario; Paetznick, Victor; Rex, John H.

    2001-01-01

    We investigated the relevance of prominent reduction in turbidity macroscopically (MIC) and formation of aberrant hyphal tips microscopically (minimum effective concentration; MEC) in measuring the in vitro activity of caspofungin against Aspergillus and Fusarium. Caspofungin generated low MICs and MECs against Aspergillus, but not for Fusarium. While MICs increased inconsistently when the incubation time was prolonged, MEC appeared as a stable and potentially relevant endpoint in testing in vitro caspofungin activity. PMID:11120990

  20. In vitro assessment of the antimicrobial susceptibility of caprine isolates of Mycoplasma mycoides subsp. capri.

    PubMed

    Paterna, A; Tatay-Dualde, J; Amores, J; Prats-van der Ham, M; Sánchez, A; de la Fe, C; Contreras, A; Corrales, J C; Gómez-Martín, Á

    2016-08-01

    The minimum inhibitory concentration (MIC) and minimum mycoplasmacidal concentration (MMC) of 17 antimicrobials against 41 Spanish caprine isolates of Mycoplasma mycoides subsp. capri (Mmc) obtained from different specimens (milk, external auricular canal and semen) were determined using a liquid microdilution method. For half of the isolates, the MIC was also estimated for seven of the antimicrobials using an epsilometric test (ET), in order to compare both methods and assess the validity of ET. Mutations in genes gyrA, gyrB, parC and parE conferring fluoroquinolone resistance, which have been recently described in Mmc, were investigated using PCR. The anatomical origin of the isolate had no effect on its antimicrobial susceptibility. Moxifloxacin and doxycycline had the lowest MIC values. The rest of the fluoroquinolones studied (except norfloxacin), together with tylosin and clindamycin, also had low MIC values, although the MMC obtained for clindamycin was higher than for the other antimicrobials. For all the aminoglycosides, spiramycin and erythromycin, a notable level of resistance was observed. The ET was in close agreement with broth microdilution at low MICs, but not at intermediate or high MICs. The analysis of the genomic sequences revealed the presence of an amino acid substitution in codon 83 of the gene gyrA, which has not been described previously in Mmc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus.

    PubMed

    Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong

    2014-09-01

    Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.

  2. In vitro activity of a polyhexanide-betaine solution against high-risk clones of multidrug-resistant nosocomial pathogens.

    PubMed

    López-Rojas, Rafael; Fernández-Cuenca, Felipe; Serrano-Rocha, Lara; Pascual, Álvaro

    2017-01-01

    To determine the in vitro activity of a polyhexanide-betaine solution against collection strains and multidrug-resistant (MDR) nosocomial isolates, including high-risk clones. We studied of 8 ATCC and 21 MDR clinical strains of Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, including the multiresistant high-risk clones. The MICs and MBCs of a 0.1% polyhexanide-0.1% betaine solution were determined by microdilution. For each species, strains with the highest MICs were selected for further experiments. The dilution-neutralization test (PrEN 12054) was performed by incubating bacterial inocula of 10 6 CFU/mL for 1min with undiluted 0.1% polyhexanide-betaine solution. The CFUs were counted after neutralization. Growth curves and time-kill curves at concentrations of 0.25, 1, 4, and 8×MIC, were performed. MICs of recovered strains were determined when regrowth was observed in time-kill studies after 24h of incubation. Strains with reduced susceptibility were selected by serial passage on plates with increasing concentrations of polyhexanide-betaine, and MICs were determined. Polyhexanide-betaine MIC range was 0.5-8mg/L. MBCs equalled or were 1 dilution higher than MICs. The dilution-neutralization method showed total inoculum clearance of all strains. In time-kill curves, no regrowth was observed at 4×MIC, except for S. aureus (8×MIC). Increased MICs were not observed in time-kill curves, or after serial passages after exposure to polyhexanide-betaine. Polyhexanide-betaine presented bactericidal activity against all MDR clinical isolates tested, including high-risk clones, at significantly lower concentrations and time of activity than those commercially used. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Implementing Electric Potential Difference as a New Practical Parameter for Rapid and Specific Measurement of Minimum Inhibitory Concentration of Antibiotics.

    PubMed

    Mobasheri, Nasrin; Karimi, Mehrdad; Hamedi, Javad

    2018-06-05

    New methods to determine antimicrobial susceptibility of bacterial pathogens especially the minimum inhibitory concentration (MIC) of antibiotics have great importance in pharmaceutical industry and treatment procedures. In the present study, the MIC of several antibiotics was determined against some pathogenic bacteria using macrodilution test. In order to accelerate and increase the efficiency of culture-based method to determine antimicrobial susceptibility, the possible relationship between the changes in some physico-chemical parameters including conductivity, electrical potential difference (EPD), pH and total number of test strains was investigated during the logarithmic phase of bacterial growth in presence of antibiotics. The correlation between changes in these physico-chemical parameters and growth of bacteria was statistically evaluated using linear and non-linear regression models. Finally, the calculated MIC values in new proposed method were compared with the MIC derived from macrodilution test. The results represent significant association between the changes in EPD and pH values and growth of the tested bacteria during the exponential phase of bacterial growth. It has been assumed that the proliferation of bacteria can cause the significant changes in EPD values. The MIC values in both conventional and new method were consistent to each other. In conclusion, cost and time effective antimicrobial susceptibility test can be developed based on monitoring the changes in EPD values. The new proposed strategy also can be used in high throughput screening of biocompounds for their antimicrobial activity in a relatively shorter time (6-8 h) in comparison with the conventional methods.

  4. Anti-Candida albicans effectiveness of citral and investigation of mode of action.

    PubMed

    Lima, Igara Oliveira; de Medeiros Nóbrega, Fernanda; de Oliveira, Wylly Araújo; de Oliveira Lima, Edeltrudes; Albuquerque Menezes, Everardo; Cunha, Francisco Afrânio; Formiga Melo Diniz, Margareth de Fátima

    2012-12-01

    Candidiasis is a mycosis caused by Candida species, which is of clinical importance due to the increase in resistant yeasts. Candida infection has been a serious health problem due to the inappropriate use of antibiotics. Therefore, it is necessary to study molecules with an antifungal action. Citral is a monoterpene with known pharmacological properties, including antimicrobial action. The aim of this work was to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of citral and the probable mode of action. The MIC of citral was determined by the broth microdilution method using Sabouraud dextrose medium. Additionally, the interference of citral in cell wall (sorbitol assay) and the binding of citral to ergosterol and cholesterol were studied, carried out by broth microdilution method. The MIC and MFC of citral were 512 and 1024 µg/mL, respectively. The MIC of amphotericin B was 1 µg/mL. The mechanism of action did not involve either the cell wall or ergosterol. However, the presence of cholesterol increased the MIC of citral to 1024 µg/mL, indicating there is some interaction between citral and cholesterol. Amphotericin B was used as the positive control, and it showed a high MIC in the presence of ergosterol (32 µg/mL), while in the presence of cholesterol MIC increased to 4 µg/mL. Citral inhibits the growth of C. albicans. The probable mechanism of action did not involve the cell wall or ergosterol. Citral is able to interact with cholesterol. More studies are necessary to describe their effects completely.

  5. Short communication: In vitro antimicrobial susceptibility of Mycoplasma bovis isolates identified in milk from dairy cattle in Belgium, Germany, and Italy.

    PubMed

    Barberio, A; Flaminio, B; De Vliegher, S; Supré, K; Kromker, V; Garbarino, C; Arrigoni, N; Zanardi, G; Bertocchi, L; Gobbo, F; Catania, S; Moroni, P

    2016-08-01

    The objective of this study was to assess the in vitro antimicrobial susceptibility of 73 isolates of Mycoplasma bovis isolated from milk of dairy cattle herds of Belgium, Germany, and Italy. Minimal inhibitory concentration (MIC) values were determined by the microbroth dilution method for the following antimicrobials: erythromycin, spiramycin, tilmicosin, tylosin, lincomycin, enrofloxacin, doxycycline, oxytetracycline, florfenicol, and tiamulin. Macrolides, florfenicol, oxytetracycline, and enrofloxacin, were chosen because they represent antimicrobials families commonly used in several countries for treatment of M. bovis, and their MIC values in cattle population are reported in several studies, allowing a comparison with previous data. Doxycycline and tiamulin were selected to assess the susceptibility of M. bovis to new antimicrobials, because they are not registered in the European Union for the treatment of dairy cattle. Among the agents of the different antimicrobial classes, the macrolides showed the highest concentration to inhibit 90% of isolates (MIC90), all above the highest concentration tested: >8μg/mL for erythromycin, >16μg/mL for spiramycin, and >32μg/mL for tilmicosin and tylosin. Also the MIC90 of lincomycin was above the highest concentration tested (>32μg/mL), but the distribution of the MIC values was almost perfectly bimodal: 41 isolates had a MIC ≤0.5μg/mL and 30 isolates >32μg/mL. Oxytetracycline had a 2-fold higher concentration to inhibit 50% of isolates (2 vs. 0.5μg/mL) and 1-fold higher MIC90 (4 vs. 2μg/mL) than doxycycline. Enrofloxacin and florfenicol had both a MIC90 of 2μg/mL, whereas tiamulin had a MIC90 of 0.5μg/mL. Significant differences on the MIC values were found among the 3 countries for several antimicrobials: compared with Germany, Belgium and Italy showed significantly higher MIC for lincomycin, spiramycin, and tylosin, and lower for oxytetracycline and florfenicol. The Belgian isolates showed the lowest MIC for enrofloxacin compared with Germany and Italy. The MIC results obtained in our study suggest the presence of a high level of resistance of M. bovis isolates originating from milk to macrolides in all countries involved in this study. On the contrary, a low level of resistance was found against the antimicrobials that are not used in cattle, such as tiamulin and doxycycline, highlighting a possible link between antimicrobial treatments and development of resistance in the studied M. bovis population. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant mutants among Quinolones. LVF has better antibacterial effects and stronger capacity for restricting the selection of resistant mutants on ocular bacteria than other antibacterial agents.

  7. In vitro susceptibility of Sporothrix schenckii to six antifungal agents determined using three different methods.

    PubMed

    Alvarado-Ramírez, Eidi; Torres-Rodríguez, Josep M

    2007-07-01

    The in vitro susceptibility of Sporothrix schenckii to antifungal drugs has been determined with three different methods. Nineteen Peruvian clinical isolates of S. schenckii were tested against amphotericin B (AB), flucytosine (FC), fluconazole (FZ), itraconazole (IZ), voriconazole (VZ), and ketoconazole (KZ). Modified NCCLS M38-A, Sensititre YeastOne (SYO), and ATB Fungus 2 (ATBF2) methods were used to determine the MICs. ATCC isolates of Candida parapsilosis, Candida krusei, and Aspergillus flavus were used for quality control. Sporothrix inocula were prepared with the mycelial form growing on potato dextrose agar at 28 +/- 2 degrees C. MICs of AB, FC, FZ, and IZ were determined with all three methods, VZ with M38-A and SYO, and KZ with only SYO. The three methods showed high MICs of FZ and FC (MIC(90) of 0.5 microg/ml), being homogeneously lower than those of IZ and KZ. The M38-A method showed a variable MIC range of VZ (4.0 to 16 microg/ml); the geometric mean (GM) was 9.3 mug/ml. The MIC range of AB was wide (0.06 to 16 microg/ml), but the GM was 1.2 microg/ml, suggesting that the MIC is strain dependent. Agreement (two log(2) dilutions) between commercial techniques and the modified M38-A method was very high with FZ, IZ, and FC. In AB and VZ, the agreement was lower, being related to the antifungal concentrations of each method. The highest activity against S. schenckii was found with IZ and KZ. Lack of activity was observed with FZ, VZ, and FC. When AB is indicated for sporotrichosis, the susceptibility of the strain must be analyzed. Commercial quantitative antifungal methods have a limited usefulness in S. schenckii.

  8. Comparative antimicrobial characterization of LBM415 (NVP PDF-713), a new peptide deformylase inhibitor of clinical importance.

    PubMed

    Fritsche, Thomas R; Sader, Helio S; Cleeland, Roy; Jones, Ronald N

    2005-04-01

    LBM415 (NVP PDF-713) is the first member of the peptide deformylase (PDF) inhibitor class being developed for clinical trials as a parenteral and oral agent for treatment of community-acquired respiratory tract disease and serious infections caused by antimicrobial-resistant gram-positive cocci. In this study susceptibility testing results from 1,306 recent clinical isolates selected to over-represent resistance trends among the species were summarized. All staphylococci (153 strains; MIC at which 90% of isolates were inhibited [MIC90], 2 microg/ml), Streptococcus pneumoniae (170 strains; MIC90, 1 microg/ml), other streptococci (150 strains; MIC90, 1 microg/ml), enterococci (104 strains; MIC90, 4 microg/ml), Moraxella catarrhalis (103 strains; MIC90, 0.5 microg/ml), and Legionella pneumophila (50 strains; MIC90, 0.12 microg/ml) were inhibited at < or = 8 microg of LBM415/ml, as were 97% of Haemophilus influenzae isolates (300 strains; MIC90, 4 to 8 microg/ml). Among other bacterial groups, 100% of gram-positive and -negative anaerobes, including 22 Bacteroides spp. strains (31 strains total; MIC90, 1 microg/ml), were inhibited by < or = 4 microg/ml, whereas Enterobacteriaceae (112 strains) and most nonfermentative bacilli (107 strains) were not inhibited at readily achievable concentrations. The compound was found to have a dominantly bacteriostatic action, and spontaneous single-step mutational rates occurred at low levels (10(-6) to <10(-8)). Drug interaction studies failed to identify any class-specific synergistic interactions, nor were antagonistic interactions observed. Variations in broth and agar MIC test conditions demonstrated that, whereas the agar-based method trended towards a 1-log2 dilution-higher MIC than the broth method and was inoculum dependent, other variations in incubation environment, medium supplements, pH, or calcium concentration had little influence on LBM415 MIC results. Use of the efflux inhibitor phe-arg-beta-naphthylamide showed an average of 1 log2 dilution decrease in H. influenzae MICs, demonstrating the contribution of efflux pumps in influencing susceptibility to PDF inhibitors. The in vitro activity of LBM415 against targeted bacterial species, including resistant subsets, and other laboratory characteristics of this novel compound demonstrate the potential of PDF inhibitors as a new class of antimicrobial agents.

  9. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae

    DOE PAGES

    Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley; ...

    2018-01-11

    Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less

  10. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley

    Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less

  11. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration

    PubMed Central

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N.; Liu, Yongge

    2016-01-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. PMID:26976868

  12. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  13. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies

    PubMed Central

    Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; Aguirre, C.; Chan, R.; Meyer, K.; Kuhlman, A.; Townesmith, A.; Effio-Carbajal, J.; Frías-Fernandez, F.; Benito, M.

    2010-01-01

    Aim The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as “inflammation”. The aim of this study was to evaluate the Minimum Inhibitory Concentration (MIC) of their antibacterial properties against Gram-positive and Gram-negative bacteria. Materials and methods The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. Results The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against E. coli and 38 extracts against S. aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256mg/ml, with only 36 species showing inhibitory concentrations of <4mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. Conclusions The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. PMID:20678568

  14. Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

    PubMed Central

    Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung

    2011-01-01

    The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548

  15. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. British Veterinary Association.

  16. Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cefazolin potency against methicillin-resistant Staphylococcus aureus: a microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections

    PubMed Central

    Nicolau, David P; Silberg, Barry N

    2017-01-01

    Introduction Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. Materials and methods We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. Results The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. Conclusion The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections. PMID:28794647

  18. Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains

    PubMed Central

    Assadian, Ojan; Wehse, Katrin; Hübner, Nils-Olaf; Koburger, Torsten; Bagel, Simone; Jethon, Frank; Kramer, Axel

    2011-01-01

    Background: An in-vitro study was conducted investigating the antimicrobial efficacy of polihexanide and triclosan against clinical isolates and reference laboratory strains of Staphylococcus aureus and Escherichia coli. Methods: The minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC) were determined following DIN 58940-81 using a micro-dilution assay and a quantitative suspension test following EN 1040. Polihexanide was tested in polyethylene glycol 4000, triclosan in aqueous solutions. Results: Against all tested strains the MIC of polihexanide ranged between 1–2 µg/mL. For triclosan the MICs varied depending on strains ranging between 0.5 µg/mL for the reference strains and 64 µg/mL for two clinical isolates. A logRF >5 without and logRF >3 with 0.2% albumin burden was achieved at 0.6 µg/mL triclosan. One exception was S. aureus strain H-5-24, where a triclosan concentration of 0.6 µg/mL required 1 minute without and 10 minutes with albumin burden to achieve the same logRFs. Polihexanide achieved a logRF >5 without and logRF >3 with albumin burden at a concentration of 0.6 µg/mL within 30 sec. The exception was the North-German epidemic MRSA strain, were an application time of 5 minutes was required. Conclusion: The clinical isolates of E. coli generally showed higher MICs against triclosan, both in the micro-dilution assay as well in the quantitative suspension test than comparable reference laboratory strains. For polihexanide and triclosan strain dependant susceptibility was shown. However, both antimicrobial compounds are effective when used in concentrations common in practice. PMID:22242087

  19. [Activity of doripenem against anaerobic bacteria].

    PubMed

    Dubreuil, L; Neut, C; Mahieux, S; Muller-Serieys, C; Jean-Pierre, H; Marchandin, H; Soussy, C J; Miara, A

    2011-04-01

    This study examines the activity of doripenem, a new carbapenem compound compared with amoxicillin-clavulanic acid, piperacillin+tazobactam, imipenem, clindamycin and metronidazole against 316 anaerobes. Inoculum preparation and agar dilution method were performed according to the CLSI method for anaerobes (M11A7). At a concentration of 4μg/ml doripenem and imipenem (IMP) inhibited 122 (96 %) and 126 (99 %) strains of the Bacteroides fragilis group, respectively. In contrast, doripenem appeared more potent than IMP against Gram-positive anaerobes inhibiting at the same concentration of 4μg/ml 145/145 strains (100 %) versus 115/145 for IMP (79.3 %). Against 316 anaerobic strains, the carbapenem doripenem had an MIC(50) of 0.25μg/ml and an MIC(90) of 2μg/ml. Results were similar to those for imipenem (MIC(50) of 0.125μg/ml and MIC(90) of 4μg/ml). If we consider the resistant breakpoints of the two carbapenems as defined by EUCAST, the resistance rate for doripenem (MIC>4μg/ml) 1.6 % is similar to that of imipenem (MIC>8μg/ml) 1.3 %. Thus independently of the PK/PD parameters the two carbapenems demonstrated very close activity; doripenem was more potent on Gram-positive anaerobes and slightly less potent against Gram-negative anaerobes mainly the B. fragilis group. Further clinical studies are needed to assess its usefulness in patients. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  20. The Sensitivity of Endodontic Enterococcus spp. Strains to Geranium Essential Oil.

    PubMed

    Łysakowska, Monika E; Sienkiewicz, Monika; Banaszek, Katarzyna; Sokołowski, Jerzy

    2015-12-21

    Enterococci are able to survive endodontic procedures and contribute to the failure of endodontic therapy. Thus, it is essential to identify novel ways of eradicating them from infected root canals. One such approach may be the use of antimicrobials such as plant essential oils. Enterococcal strains were isolated from endodontically treated teeth by standard microbiological methods. Susceptibility to antibiotics was evaluated by the disc-diffusion method. The minimal inhibitory concentration (MIC) of geranium essential oil was investigated by microdilution in 96-well microplates in Mueller Hinton Broth II. Biofilm eradication concentrations were checked in dentin tests. Geranium essential oil inhibited enterococcal strains at concentrations ranging from 1.8-4.5 mg/mL. No correlation was shown between resistance to antibiotics and the MICs of the test antimicrobials. The MICs of the test oil were lower than those found to show cytotoxic effects on the HMEC-1 cell line. Geranium essential oil eradicated enterococcal biofilm at concentrations of 150 mg/mL. Geranium essential oil inhibits the growth of endodontic enterococcal species at lower concentrations than those required to reach IC50 against the HMEC-1 cell line, and is effective against bacteria protected in biofilm at higher concentrations. In addition, bacteria do not develop resistance to essential oils. Hence, geranium essential oil represents a possible alternative to other antimicrobials during endodontic procedures.

  1. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test to evaluate performance of concrete specimens under conditions designed to accelerate MIC. Concrete specimens representing 12 mixture designs were inoculated with 5 species of Thiobacillus bacteria and placed in a biological growth chamber designed to encourage bacterial growth and sulfuric acid production by optimizing temperature, delivering necessary nutrients, and providing hydrogen sulfide gas. Results indicate that using supplementary cementitious materials, limestone aggregates, and sulfate resistant cement can improve resistance to MIC. It is interesting to note that this study showed that unlike many other durability problems the role of water to cement ratio was unclear. The second method presented is a sulfuric acid immersion study designed to evaluate the resistance of 12 concrete mixture designs to 5 concentrations of sulfuric acid. Experimental protocols (like those in ASTM) previously considered trivial were found to have a dramatic effect on experimental results. It was found that using supplementary cementitious materials, limestone coarse aggregate, and sulfate resistant cement can increase concrete resistance to moderate sulfuric acid concentrations. The primary damage mechanism was observed to change depending on sulfuric acid concentration. Rapid deterioration of specimens exposed to aggressive sulfuric acid solutions indicates that degradation of concrete under the most severe MIC conditions (i.e., a pH < 1.0) cannot be prevented by strictly manipulating concrete mixture proportions. A holistic approach is needed for these situations that considers environmental conditions as well.

  2. Head-to-Head Comparison of Inhibitory and Fungicidal Activities of Fluconazole, Itraconazole, Voriconazole, Posaconazole, and Isavuconazole against Clinical Isolates of Trichosporon asahii

    PubMed Central

    Hazirolan, Gulsen; Canton, Emilia; Sahin, Selma

    2013-01-01

    Treatment of disseminated Trichosporon infections still remains difficult. Amphotericin B frequently displays inadequate fungicidal activity and echinocandins have no meaningful antifungal effect against this genus. Triazoles are currently the drugs of choice for the treatment of Trichosporon infections. This study evaluates the inhibitory and fungicidal activities of five triazoles against 90 clinical isolates of Trichosporon asahii. MICs (μg/ml) were determined according to Clinical and Laboratory Standards Institute microdilution method M27-A3 at 24 and 48 h using two endpoints, MIC-2 and MIC-0 (the lowest concentrations that inhibited ∼50 and 100% of growth, respectively). Minimum fungicidal concentrations (MFCs; μg/ml) were determined by seeding 100 μl of all clear MIC wells (using an inoculum of 104 CFU/ml) onto Sabouraud dextrose agar. Time-kill curves were assayed against four clinical T. asahii isolates and the T. asahii ATCC 201110 strain. The MIC-2 (∼50% reduction in turbidity compared to the growth control well)/MIC-0 (complete inhibition of growth)/MFC values that inhibited 90% of isolates at 48 h were, respectively, 8/32/64 μg/ml for fluconazole, 1/2/8 μg/ml for itraconazole, 0.12/0.5/2 μg/ml for voriconazole, 0.5/2/4 μg/ml for posaconazole, and 0.25/1/4 μg/ml for isavuconazole. The MIC-0 endpoints yielded more consistent MIC results, which remained mostly unchanged when extending the incubation to 48 h (98 to 100% agreement with 24-h values) and are easier to interpret. Based on the time-kill experiments, none of the drugs reached the fungicidal endpoint (99.9% killing), killing activity being shown but at concentrations not reached in serum. Statistical analysis revealed that killing rates are dose and antifungal dependent. The lowest concentration at which killing activity begins was for voriconazole, and the highest was for fluconazole. These results suggest that azoles display fungistatic activity and lack fungicidal effect against T. asahii. By rank order, the most active triazole is voriconazole, followed by itraconazole ∼ posaconazole ∼ isavuconazole > fluconazole. PMID:23877683

  3. Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis

    PubMed Central

    Betanzos-Cabrera, Gabriel; Montes-Rubio, Perla Y.; Fabela-Illescas, Héctor E.; Belefant-Miller, Helen; Cancino-Diaz, Juan C.

    2015-01-01

    Background Polyphenols have received a great deal of attention due to their biological functions. Pomegranate (Punica granatum L.) is a polyphenol-rich fruit. In the past decade, studies testing the antimicrobial activity of pomegranates almost exclusively used solvent extracts instead of fresh pomegranate juice (FPJ). The use of FPJ instead of solvent extracts would reduce toxicity issues while increasing patient acceptance. We established a model to test FPJ as a natural antimicrobial agent. Objective To evaluate the antimicrobial activity of FPJ on clinical isolates of multidrug-resistant Staphylococcus epidermidis strains. Design Sixty strains of S. epidermidis isolated from ocular infections were grown in the presence of FPJ, and minimum inhibitory concentration (MIC) was determined by broth and agar dilution methods. Results FPJ at 20% had a MIC equal to 100% (MIC100%) on all 60 strains tested. This inhibition of FPJ was confirmed by the growth kinetics of a multidrug-resistant strain exposed to different concentrations of FPJ. Additionally, the antimicrobial activity of FPJ was compared against commercial beverages containing pomegranate: Ocean Spray® had a MIC100% at 20%, followed by Del Valle® with a MIC15% at 20% concentration only. The beverages Jumex® and Sonrisa® did not have any antimicrobial activity. FPJ had the highest polyphenol content and antioxidant capacity. Conclusions Overall, FPJ had antimicrobial activity, which might be attributed to its high polyphenol content and antioxidant capacity. PMID:25999265

  4. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration.

    PubMed

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N; Liu, Yongge; Matsumoto, Makoto; Geiter, Lawrence

    2016-06-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents.

    PubMed

    Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra

    2005-05-01

    Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).

  6. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey. PMID:23758747

  7. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh.

    PubMed

    Dutta, Subarna; Haq, Sabah; Hasan, Mohammad Rokibul; Haq, Jalaluddin Ashraful

    2017-07-20

    Melioidosis an infectious disease, caused by a Gram negative bacterium called Burkholderia pseudomallei, is endemic in Bangladesh. This organism is sensitive to limited number of antimicrobial agents and need prolonged treatment. There is no comprehensive data on the antimicrobial susceptibility profile of B. pseudomallei isolated in Bangladesh over last several years. The present study aimed to determine the antimicrobial susceptibility pattern of B. pseudomallei isolated in a tertiary care hospital of Dhaka city from 2009 to 2015. All B. pseudomallei isolated from melioidosis patients over a period of 7 years (2009-2015) in the Department of Microbiology of a 725-bed tertiary care referral hospital in Dhaka city, Bangladesh were included in the study. B. pseudomallei was identified by Gram stain, culture, specific biochemical tests, serology and PCR using specific primers constructed from 16s rRNA region of B. pseudomallei. Antimicrobial susceptibility to specific agents was determined by disk diffusion and minimum inhibitory concentration methods. A total of 20 isolates of B. pseudomallei which were isolated from patients coming from different geographic locations of Bangladesh were included in the study. All the isolates were uniformly sensitive (100%) to ceftazidime, imipenem, piperacillin-tazobactam, amoxicillin-clavulanic acid and tetracycline by both disk diffusion and MIC methods. Two strains were resistant to trimethoprim-sulfamethoxazole by disk diffusion method but were sensitive by MIC method. The MIC 50 and MIC 90 values of the above antimicrobial agents were almost similar. All the isolates were resistant to amikacin by both MIC and disk diffusion methods. The results of the study suggest that B. pseudomallei prevalent in Bangladesh were still susceptible to all recommended antimicrobial agents used for the treatment of melioidosis. However, regular monitoring is needed to detect any emergence of resistance and shifting of MIC 50 and MIC 90 values.

  8. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

    PubMed Central

    Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur

    2009-01-01

    Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926

  9. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    PubMed

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.

  10. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects.

    PubMed

    Conte, John E; Golden, Jeffrey A; McIver, Marina; Zurlinden, Elisabeth

    2006-08-01

    The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.

  11. Monomeric and gemini surfactants as antimicrobial agents - influence on environmental and reference strains.

    PubMed

    Koziróg, Anna; Brycki, Bogumił

    2015-01-01

    Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms.

  12. In vitro susceptibility of rabbit strains of Clostridium spiroforme to antimicrobial agents.

    PubMed

    Carman, R J; Wilkins, T D

    1991-08-30

    Using an agar dilution method we measured the minimum inhibitory concentration (MIC) of 12 antimicrobial agents against 11 strains of iota-toxigenic strains of Clostridium spiroforme. Each strain was isolated from a separate outbreak of toxic diarrhoea of rabbits. Vancomycin and bacitracin, both agents used to treat intestinal clostridioses of humans and other animals, had a relatively high MIC (8 micrograms/ml or more). Metronidazole was uniformly active against C. spiroforme. With MIC of 8 micrograms/ml or more, both lincomycin (11 strains) and erythromycin (9 strains) were relatively inactive against C. spiroforme, conversely, penicillin G was active (MIC for 8 strains was 0.5 micrograms/ml or less). Exposure to any one of these drugs has been implicated as a predisposing factor for C. spiroforme mediated diarrhoea of rabbits. The greatest variation in MIC was seen for erythromycin (8-fold), penicillin G (8-fold) and tetracycline (16-fold).

  13. Pharmacodynamics of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2012-09-15

    The pharmacodynamics (PD) of oxytetracycline was investigated against a strain of Mannheimia haemolytica. In vitro measurements, comprising minimum inhibitory concentration (MIC), minimum bactericidal concentration and time-kill curves, were conducted in five matrices; Mueller Hinton Broth (MHB), cation-adjusted MHB (CAMHB) and calf serum, exudate and transudate. MICs were much higher in the biological fluids than in MHB and CAMHB. Ratios of MIC were, serum: CAMHB 19 : 1; exudate:CAMHB 16.1; transudate:CAMHB 14 : 1. Ex vivo data, generated in the tissue cage model of inflammation, demonstrated that oxytetracycline, administered to calves intramuscularly at a dose rate of 20 mg/kg, did not inhibit the growth of M haemolytica in serum, exudate and transudate, even at peak concentration. However, using in vitro susceptibility in CAMHB and in vivo-determined pharmacokinetic (PK) variables, average and minimum oxytetracycline concentrations relative to MIC (C(av)/MIC and C(min)/MIC) predicted achievement of efficacy for approximately 48 hours after dosing. Similar C(av)/MIC and C(min)/MIC data were obtained when oxytetracycline was administered in the presence of carprofen. PK-PD integration of data for oxytetracycline, based on MICs determined in the three biological fluids, suggests that it possesses, at most, limited direct killing activity against M haemolytica. These data raise questions concerning the mechanism(s) of action of oxytetracycline, when administered at clinically recommended dose rates.

  14. Is vancomycin MIC creep a worldwide phenomenon? Assessment of S. aureus vancomycin MIC in a tertiary university hospital

    PubMed Central

    2013-01-01

    Background Vancomycin is the primary treatment for infections caused by methicilin-resistant Staphylococcus aureus (MRSA). The association of vancomycin treatment failures with increased vancomycin minimum inhibitory concentration (MIC) is a well-recognized problem. A number of single-centre studies have identified progressive increases in glycopeptide MICs for S. aureus strains over recent years – a phenomenon known as vancomycin MIC creep. It is unknown if this is a worldwide phenomenon or if it is localized to specific centers. Methods The aim of this study was to evaluate the trend of vancomycin MIC for isolates of MRSA over a 3-year period in a tertiary university hospital in Portugal. MRSA isolates from samples of patients admitted from January 2007 to December 2009 were assessed. Etest method was used to determine the respective vancomycin MIC. Only one isolate per patient was included in the final analysis. Results A total of 93 MRSA isolates were studied. The vancomycin MICs were 0.75, 1, 1.5 and 2 mg/L for 1 (1.1%), 19 (20.4%), 38 (40.9%), 35 (37.6%) isolates, respectively. During the 3 year period, we observed a significant fluctuation in the rate of MRSA with a vancomycin MIC > 1 mg/L (2007: 86.2%; 2008: 93.3%; 2009: 58.8%, p = 0.002). No MRSA isolate presented a MIC > 2 mg/L. Conclusions We were unable to find in our institution data compatible to the presence of vancomycin MIC creep during the study period. This phenomenon seems not to be generalized; as a result each institution should systematically monitor MRSA vancomycin MIC over time. PMID:23422012

  15. Evaluation of the in vitro antimicrobial activity of an ethanol extract of Brazilian classified propolis on strains of Staphylococcus aureus

    PubMed Central

    Pamplona-Zomenhan, Lucila Coelho; Pamplona, Beatriz Coelho; da Silva, Cely Barreto; Marcucci, Maria Cristina; Mimica, Lycia Mara Jenné

    2011-01-01

    Staphylococcus aureus (S. aureus) is one of the most frequent causes of hospital acquired infections. With the increase in multiple drug resistant strains, natural products such as propolis are a stratagem for new product discovery. The aims of this study were: to determine the in vitro antimicrobial activity of an ethanol extract of propolis; to define the MIC50 and MIC90 (Minimal Inhibitory Concentration – MIC) against 210 strains of S. aureus; to characterize a crude sample of propolis and the respective ethanol extract as to the presence of predetermined chemical markers. The agar dilution method was used to define the MIC and the high performance liquid chromatography (HPLC) method was used to characterize the samples of propolis. MIC results ranged from 710 to 2,850 µg/mL. The MIC50 and MIC90 for the 210 strains as well as the individual analysis of American Type Culture Collection (ATCC) strains of Methicillin-susceptible Staphylococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA) were both 1,420 µg/mL. Based on the chromatographic analysis of the crude sample and ethanol extracted propolis, it was concluded that propolis was a mixture of the BRP (SP/MG) and BRP (PR) types. The results obtained confirm an antimicrobial activity in relation to the strains of the S. aureus tested. PMID:24031749

  16. In Vitro Pharmacodynamic Activities of ABT-492, a Novel Quinolone, Compared to Those of Levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

    PubMed Central

    Gunderson, Shana M.; Hayes, Robert A.; Quinn, John P.; Danziger, Larry H.

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 μg/ml); β-lactamase-positive and β-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 μg/ml); and β-lactamase-positive and β-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 μg/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin. PMID:14693540

  17. In vitro pharmacodynamic activities of ABT-492, a novel quinolone, compared to those of levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.

    PubMed

    Gunderson, Shana M; Hayes, Robert A; Quinn, John P; Danziger, Larry H

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 micro g/ml); beta-lactamase-positive and beta-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 micro g/ml); and beta-lactamase-positive and beta-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 micro g/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin.

  18. In vitro activity of the siderophore monosulfactam BAL30072 against contemporary Gram-negative pathogens from New York City, including multidrug-resistant isolates.

    PubMed

    Landman, David; Singh, Manisha; El-Imad, Badiaa; Miller, Ezra; Win, Thida; Quale, John

    2014-06-01

    The in vitro activity of BAL30072 was assessed against clinical isolates from NYC hospitals, including isolates from a citywide surveillance study and a collection of isolates with well-characterised resistance mechanisms. BAL30072 was the most active β-lactam against Pseudomonas aeruginosa (MIC50/90, 0.25/1 μg/mL), Acinetobacter baumannii (MIC50/90, 4/>64 μg/mL) and KPC-possessing Klebsiella pneumoniae (MIC50/90, 4/>64 μg/mL). Combining BAL30072 with meropenem resulted in a ≥ 4-fold decrease in the BAL30072 MIC90 both for A. baumannii and K. pneumoniae. For isolates with a BAL30072 MIC>4 μg/mL, addition of a sub-MIC concentration of colistin resulted in a four-fold decrease in the BAL30072 MIC in 44% of P. aeruginosa, 82% of A. baumannii and 23% of K. pneumoniae. Using sub-MIC concentrations, BAL30072 plus colistin was bactericidal against 4 of 11 isolates in time-kill studies. BAL30072 MICs were frequently lower for P. aeruginosa and K. pneumoniae when tested using Mueller-Hinton agar versus Iso-Sensitest agar or Mueller-Hinton broth. Against the well-characterised isolates, reduced susceptibility to BAL30072 correlated with mexA and mexX expression (P. aeruginosa), adeB expression (A. baumannii) and presence of SHV-type ESBLs (A. baumannii and K. pneumoniae). BAL30072 shows promising activity against contemporary Gram-negatives, including MDR P. aeruginosa, A. baumannii and K. pneumoniae. Enhanced activity was often present when BAL30072 was combined with meropenem or colistin. BAL30072 MICs were influenced by the testing method, particularly for P. aeruginosa and K. pneumoniae. Further in vivo studies are warranted to determine the potential clinical utility of BAL30072 alone and combined with other agents. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Isolated cell behavior drives the evolution of antibiotic resistance

    PubMed Central

    Artemova, Tatiana; Gerardin, Ylaine; Dudley, Carmel; Vega, Nicole M; Gore, Jeff

    2015-01-01

    Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single-cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance. PMID:26227664

  20. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  1. [Clinical pharmacokinetics/pharmacodynamics study on pazufloxacin methanesulphonate injection].

    PubMed

    Wang, Xian-Gang; Miao, Jia; Liang, De-Rong; Yu, Qin; Liang, Mao-Zhi; Zhang, Shu-Hua

    2009-07-01

    To identify rational dosage regimen for pazufloxacin methanesulphonate injection through a pharmacokinetics/pharmacodynamics (PK/PD) study. Pazufloxacin methanesulphonate at the doses of 300 mg and 500 mg were injected to 24 healthy volunteers. The plasma concentrations of pazufloxacin were measured by RPHPLC-UV. The MICs of pazufloxacin against 130 strains of 7 species of bacterias, as well as the MPCs of pazufloxacin against 5 species of bacterias were measured by double broth dilution method. The AUC0-24/MIC50 of pazufloxacin methanesulphonate at a stabilized concentration state against methicillin-sensitive Staphylococcus aureus (MSSA) and S. pneumoniae were 215.36 and 107.68 at the dose of 300 mg, and 309.60 and 154.80 at the dose of 500 mg, respectively. The Cmax/MIC50 were 57.52 and 28.76 at the dose of 300 mg, and 81.28 and 40.64 at the dose of 500 mg, respectively. However, the AUC0-24/MIC of pazufloxacin methanesulphonate against methicillin-resistant staphylococcus aureus (MRSA) were far less than 40. Both the AUC0-24/MIC50 and the Cmax/MIC50 of pazufloxacin against P. aeruginosa at the doses of 300 mg and 500 mg exceeded the defined criteria 100 and 10. Whereas the AUC0-24/MIC and Cmax/MIC of pazufloxacin against E. coli, K. pneumoniae and A. baumanii were much less than 100 and 10. The capability of pazufloxacin methanesulphonate to prevent mutations of MSSA was strong at the dose of 500 mg, but not for other pathogenic bacteria either at 300 mg or 500 mg. Pazufloxacin methanesulphonate at the dose of 300 mg and 500 mg have similar efficacy in treating acute bacterial infections. The dosage regimen of 300 mg Q12h intravenous infusion is recommended.

  2. Tetracycline improved the efficiency of other antimicrobials against Gram-negative multidrug-resistant bacteria.

    PubMed

    Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor

    2015-01-01

    Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  3. Pharmacokinetics of meropenem after intravenous, intramuscular and subcutaneous administration to cats.

    PubMed

    Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F

    2016-12-01

    The aim of the study was to describe the pharmacokinetics and predicted efficacy of meropenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to cats at a single dose of 10 mg/kg. Five adult healthy cats were used. Blood samples were withdrawn at predetermined times over a 12 h period. Meropenem concentrations were determined by microbiological assay. Pharmacokinetic analyses were performed with computer software. Initial estimates were determined using the residual method and refitted by non-linear regression. The time that plasma concentrations were greater than the minimum inhibitory concentration (T >MIC) was estimated by applying bibliographic MIC values and meropenem MIC breakpoint. Maximum plasma concentrations of meropenem were 101.02 µg/ml (C p(0) , IV), 27.21 µg/ml (C max , IM) and 15.57 µg/ml (C max , SC). Bioavailability was 99.69% (IM) and 96.52 % (SC). Elimination half-lives for the IV, IM and SC administration were 1.35, 2.10 and 2.26 h, respectively. Meropenem, when administered to cats at a dose of 10 mg/kg q12h,, is effective against bacteria with MIC values of 6 μg/ml, 7 μg/ml and 10 μg/ml for IV, IM and SC administration, respectively. However, clinical trials are necessary to confirm clinical efficacy of the proposed dosage regimen. © The Author(s) 2015.

  4. In Vitro Drug Interaction Modeling of Combinations of Azoles with Terbinafine against Clinical Scedosporium prolificans Isolates

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Verweij, Paul E.

    2003-01-01

    The in vitro interaction between terbinafine and the azoles voriconazole, miconazole, and itraconazole against five clinical Scedosporium prolificans isolates after 48 and 72 h of incubation was tested by a microdilution checkerboard (eight-by-twelve) technique. The antifungal effects of the drugs alone and in combination on the fungal biomass as well as on the metabolic activity of fungi were measured using a spectrophotometric method and two colorimetric methods, based on the lowest drug concentrations showed 75 and 50% growth inhibition (MIC-1 and MIC-2, respectively). The nature and the intensity of the interactions were assessed using a nonparametric approach (fractional inhibitory concentration [FIC] index model) and a fully parametric response surface approach (Greco model) of the Loewe additivity (LA) no-interaction theory as well as a nonparametric (Prichard model) and a semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found between each of the three azoles and terbinafine in all cases, although with different intensities. A 27- to 64-fold and 16- to 90-fold reduction of the geometric mean of the azole and terbinafine MICs, respectively, was observed when they were combined, resulting in FIC indices of <1 to 0.02. Using the MIC-1 higher levels of synergy were obtained, , which were more consistent between the two incubation periods than using the MIC-2. The strongest synergy among the azoles was found with miconazole using the BI-based models and with voriconazole using the LA-based models. The synergistic effects both on fungal growth and metabolic activity were more potent after 72 h of incubation. Fully parametric approaches in combination with the modified colorimetric method might prove useful for testing the in vitro interaction of antifungal drugs against filamentous fungi. PMID:12499177

  5. Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis.

    PubMed

    Charlton, Alex; Sakrabani, Ruben; Tyrrel, Sean; Rivas Casado, Monica; McGrath, Steve P; Crooks, Bill; Cooper, Pat; Campbell, Colin D

    2016-12-01

    The Long-Term Sludge Experiments (LTSE) began in 1994 as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on soil microbial biomass carbon (C mic ) were monitored for 8 years (1997-2005) in sludge amended soils at nine UK field sites. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations the experimental data has been reviewed using the statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e. the practical significance, rather than its statistical significance. The results presented here show that significant decreases in C mic have occurred in soils where the total concentrations of Zn and Cu fall below the current UK statutory limits. For soils receiving sewage sludge predominantly contaminated with Zn, decreases of approximately 7-11% were observed at concentrations below the UK statutory limit. The effect of Zn appeared to increase over time, with increasingly greater decreases in C mic observed over a period of 8 years. This may be due to an interactive effect between Zn and confounding Cu contamination which has augmented the bioavailability of these metals over time. Similar decreases (7-12%) in C mic were observed in soils receiving sewage sludge predominantly contaminated with Cu; however, C mic appeared to show signs of recovery after a period of 6 years. Application of sewage sludge predominantly contaminated with Cd appeared to have no effect on C mic at concentrations below the current UK statutory limit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species

    PubMed Central

    2013-01-01

    Background The present study was designed to investigate the antibacterial activities of the methanol extracts of four Cameroonian edible plants, locally used to treat microbial infections, and their synergistic effects with antibiotics against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes expressing active efflux pumps. Methods The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of the extracts [alone and in the presence of the efflux pumps inhibitor (EPI) Phenylalanine-Arginine β-Naphtylamide (PAβN)], and those of antibiotics in association with the two of the most active ones, Piper nigrum and Telfairia occidentalis. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results Phytochemical analysis showed the presence of alkaloids and flavonoids in all studied extracts. Other chemical classes of secondary metabolites were selectively present in the extracts. The results of the MIC determination indicated that the crude extracts from P. nigrum and V. amygdalina were able to inhibit the growth of all the twenty nine studied bacteria within a concentration range of 32 to 1024 μg/mL. At a similar concentration range (32 to 1024 μg/mL) the extract from T. occidentalis inhibited the growth of 93.1% of the tested microorganisms. At MIC/2 and MIC/5, synergistic effects were noted between the extracts from P. nigrum and T. occidentalis and seven of the tested antibiotics on more than 70% of the tested bacteria. Conclusion The overall results of the present study provide information for the possible use of the studied edible plants extracts in the control of bacterial infections including MDR phenotypes. PMID:23885762

  7. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.

    PubMed

    Sakunphueak, Athip; Panichayupakaranant, Pharkphoom

    2012-01-01

    Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).

  8. In vitro effect of branch extracts of Juniperus species from Turkey on Staphylococcus aureus biofilm.

    PubMed

    Marino, Andreana; Bellinghieri, Valentina; Nostro, Antonia; Miceli, Natalizia; Taviano, Maria Fernanda; Güvenç, Ayşegül; Bisignano, Giuseppe

    2010-08-01

    Methanol and aqueous branch extracts of five Juniperus species were examined for their effects on Staphylococcus aureus ATCC 6538P and S. aureus 810 biofilm. The Turkish plant material was Juniperus communis L. var. communis, J. communis L. var. saxatilis Pall., Juniperus drupacea Labill., Juniperus oxycedrus L. ssp. oxycedrus, J. oxycedrus L. ssp. macrocarpa (Sibth. & Sm.) Ball. The Juniperus extracts were subjected to preliminary phytochemical analysis by thin-layer chromatography. The antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The effects of the extracts on biofilm formation and preformed biofilm were quantified by both biomass OD and the CFU counting method. The phytochemical screening revealed the presence of polyphenols, coumarins, lignans, steroids, alkaloids and terpenes. For both strains, the MICs of all extracts were in the range of 4.88-78.12 microg mL(-1). On S. aureus ATCC 6538P, the effects of subinhibitory concentration (0.5 MIC) of the extracts were minimal on planktonic growth and on adhering cells, whereas they were greater on biofilm formation. Differently, on S. aureus 810, they showed only a rather low efficacy on biofilm formation. The extracts at 2 MIC demonstrated a good activity on a preformed biofilm of S. aureus ATCC 6538P.

  9. Pharmacokinetic-Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers.

    PubMed

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2015-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (C max), the time when the maximum concentration reached (T max), and the area under the concentration-time curve (AUC) were 21.69-31.69 μg/mL, 1.13-1.23 h, and 228.97-444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller-Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid E max (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0-24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance.

  10. Susceptibility Profiles of Amphotericin B and Posaconazole against Clinically Relevant Mucorales Species under Hypoxic Conditions

    PubMed Central

    Maurer, Elisabeth; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2014-01-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. PMID:25451049

  11. Potential Information Loss Due to Categorization of Minimum Inhibitory Concentration Frequency Distributions.

    PubMed

    Mazloom, Reza; Jaberi-Douraki, Majid; Comer, Jeffrey R; Volkova, Victoriya

    2018-01-01

    A bacterial isolate's susceptibility to antimicrobial is expressed as the lowest drug concentration inhibiting its visible growth, termed minimum inhibitory concentration (MIC). The susceptibilities of isolates from a host population at a particular time vary, with isolates with specific MICs present at different frequencies. Currently, for either clinical or monitoring purposes, an isolate is most often categorized as Susceptible, Intermediate, or Resistant to the antimicrobial by comparing its MIC to a breakpoint value. Such data categorizations are known in statistics to cause information loss compared to analyzing the underlying frequency distributions. The U.S. National Antimicrobial Resistance Monitoring System (NARMS) includes foodborne bacteria at the food animal processing and retail product points. The breakpoints used to interpret the MIC values for foodborne bacteria are those relevant to clinical treatments by the antimicrobials in humans in whom the isolates were to cause infection. However, conceptually different objectives arise when inference is sought concerning changes in susceptibility/resistance across isolates of a bacterial species in host populations among different sampling points or times. For the NARMS 1996-2013 data for animal processing and retail, we determined the fraction of comparisons of susceptibility/resistance to 44 antimicrobial drugs of twelve classes of a bacterial species in a given animal host or product population where there was a significant change in the MIC frequency distributions between consecutive years or the two sampling points, while the categorization-based analyses concluded no change. The categorization-based analyses missed significant changes in 54% of the year-to-year comparisons and in 71% of the slaughter-to-retail within-year comparisons. Hence, analyses using the breakpoint-based categorizations of the MIC data may miss significant developments in the resistance distributions between the sampling points or times. Methods considering the MIC frequency distributions in their entirety may be superior for epidemiological analyses of resistance dynamics in populations.

  12. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL -1 NH 4 OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg -1 , respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg -1 ) was higher than I (0.150-2.28μgg -1 ) for all the evaluated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Relationship Between Vancomycin Trough Concentrations and AUC/MIC Ratios in Pediatric Patients: A Qualitative Systematic Review.

    PubMed

    Tkachuk, Stacey; Collins, Kyle; Ensom, Mary H H

    2018-04-01

    In adults, the area under the concentration-time curve (AUC) divided by the minimum inhibitory concentration (MIC) is associated with better clinical and bacteriological response to vancomycin in patients with methicillin-resistant Staphylococcus aureus who achieve target AUC/MIC ≥ 400. This target is often extrapolated to pediatric patients despite the lack of similar evidence. The impracticalities of calculating the AUC in practice means vancomycin trough concentrations are used to predict the AUC/MIC. This review aimed to determine the relationship between vancomycin trough concentrations and AUC/MIC in pediatric patients. We searched the MEDLINE and Embase databases, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials using the medical subject heading (MeSH) terms vancomycin and AUC and pediatric* or paediatric*. Articles were included if they were published in English and reported a relationship between vancomycin trough concentrations and AUC/MIC. Of 122 articles retrieved, 11 met the inclusion criteria. One trial reported a relationship between vancomycin trough concentrations, AUC/MIC, and clinical outcomes but was likely underpowered. Five studies found troughs 6-10 mg/l were sufficient to attain an AUC/MIC > 400 in most general hospitalized pediatric patients. One study in patients undergoing cardiothoracic surgery found a trough of 18.4 mg/l achieved an AUC/MIC > 400. Two oncology studies reported troughs ≥ 15 mg/l likely attained an AUC/MIC ≥ 400. In critical care patients: one study found a trough of 9 mg/l did not attain the AUC/MIC target; another found 7 mg/l corresponded to an AUC/MIC of 400. Potential vancomycin targets varied based on the population studied but, for general hospitalized pediatric patients, troughs of 6-10 mg/l are likely sufficient to achieve AUC/MIC ≥ 400. For MIC ≥ 2 mg/l, higher troughs are likely necessary to achieve an AUC/MIC ≥ 400. More research is needed to determine the relationships between vancomycin trough concentrations, AUC/MIC, and clinical outcomes.

  14. [Heterogeneity of Brain Heart Infusion agar media (BHI): effects on the determination of the vancomycin and the teicoplanin minimal inhibitory concentrations (MIC) of Staphylococcus aureus strains].

    PubMed

    Martin, C

    2004-10-01

    The influence of BHI media commercially available on the results of glycopeptides MIC measured by E-test method was studied on 36 S. aureus isolates (21 MRSA and 15 MSSA). The MIC obtained with the vancomycin and the teicoplanin determined by the E-test method, on the ready prepared BHI plates (AES) and the plate prepared at the laboratory among the four dehydrated bases (AES, Biorad, Oxoid, and Becton Dickinson), were compared. The mean of the MIC showed variations from 3.14 (Biorad) to 5.25 mg/L (Oxoid) and from 3.33 (Biorad) to 9.75 mg/L (ready prepared AES) respectively for the vancomycin and for the teicoplanin. A variance analysis (Test de Friedman) showed a significant difference between the five media (p <0.001) with the two antibiotics. The comparison of media 2 by 2 allowed that all combinations excepted one (Biorad vs Becton with the vancomycin) were statistically different (p <0.001). The variation of the MIC observed in relation to the origin of the product of BHI media requires the inclusion of glycopeptide-intermediate S. aureus reference strains to control the prepared culture media.

  15. Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model.

    PubMed

    Odenholt, Inga; Cars, Otto

    2006-11-01

    To compare in an in vitro kinetic model the pharmacodynamics of moxifloxacin and levofloxacin with a concentration-time profile simulating the human free non-protein bound concentrations of 400 mg moxifloxacin intravenous (iv) once daily, 500 mg levofloxacin iv once daily and 750 mg levofloxacin iv once daily against strains of Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli with variable susceptibility to fluoroquinolones. The strains used in the study included S. pneumoniae ATCC 6306 (native strain), S. pneumoniae 19397 (double mutation; gyrA and parC), S. pneumoniae 4241 (single mutation; parC), S. aureus ATCC 13709 (native strain), S. aureus MB5 (single mutation; gyrA), E. coli M12 (single mutation; gyrA), E. coli ATCC 25922 (native strain) and K. pneumoniae ATCC 29655 (native strain). The strains were exposed to moxifloxacin and levofloxacin in an in vitro kinetic model simulating the free human serum concentration-time profile of moxifloxacin 400 mg once daily, levofloxacin 500 mg once daily and 750 mg once daily. Repeated samples were taken regularly during 24 h and viable counts were carried out. A correlation was seen between both the area under the serum concentration curve and MIC (AUC/MIC) and the peak concentration/MIC (Cmax/MIC) versus area under the bactericidal killing curve (AUBKC) or Deltalog0-24 cfu/mL. Compiling all data, an AUC/MIC of approximately 100 and a Cmax/MIC of 10 gave a maximal bactericidal effect for both levofloxacin and moxifloxacin. In accordance with the results from others, our study indicated that a lower AUC/MIC was needed for S. pneumoniae in comparison with the Gram-negative bacteria studied. Moxifloxacin yielded higher AUC/MIC and Cmax/MIC against the investigated Gram-positive bacteria in comparison with levofloxacin 500 mg once daily and 750 mg once daily.

  16. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan.

    PubMed

    Miyashita, Naoyuki; Kobayashi, Intetsu; Higa, Futoshi; Aoki, Yosuke; Kikuchi, Toshiaki; Seki, Masafumi; Tateda, Kazuhiro; Maki, Nobuko; Uchino, Kazuhiro; Ogasawara, Kazuhiko; Kurachi, Satoe; Ishikawa, Tatsuya; Ishimura, Yoshito; Kanesaka, Izumo; Kiyota, Hiroshi; Watanabe, Akira

    2018-05-01

    The activities of various antibiotics against 58 clinical isolates of Legionella species were evaluated using two methods, extracellular activity (minimum inhibitory concentration [MIC]) and intracellular activity. Susceptibility testing was performed using BSYEα agar. The minimum extracellular concentration inhibiting intracellular multiplication (MIEC) was determined using a human monocyte-derived cell line, THP-1. The most potent drugs in terms of MICs against clinical isolates were levofloxacin, garenoxacin, and rifampicin with MIC 90 values of 0.015 μg/ml. The activities of ciprofloxacin, pazufloxacin, moxifloxacin, clarithromycin, and azithromycin were slightly higher than those of levofloxacin, garenoxacin, and rifampicin with an MIC 90 of 0.03-0.06 μg/ml. Minocycline showed the highest activity, with an MIC 90 of 1 μg/ml. No resistance against the antibiotics tested was detected. No difference was detected in the MIC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The MIECs of ciprofloxacin, pazufloxacin, levofloxacin, moxifloxacin, garenoxacin, clarithromycin, and azithromycin were almost the same as their MICs, with MIEC 90 values of 0.015-0.06 μg/ml, although the MIEC of minocycline was relatively lower and that of rifampicin was higher than their respective MICs. No difference was detected in the MIEC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The ratios of MIEC:MIC for rifampicin (8) and pazufloxacin (2) were higher than those for levofloxacin (1), ciprofloxacin (1), moxifloxacin (1), garenoxacin (1), clarithromycin (1), and azithromycin (1). Our study showed that quinolones and macrolides had potent antimicrobial activity against both extracellular and intracellular Legionella species. The present data suggested the possible efficacy of these drugs in treatment of Legionella infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Influence of vancomycin minimum inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus left-sided infective endocarditis treated with antistaphylococcal β-lactam antibiotics: a prospective cohort study by the International Collaboration on Endocarditis⋆

    PubMed Central

    Pericàs, J.M.; Messina, J.A.; Garcia-de-la-Mària, C.; Park, L.; Sharma-Kuinkel, B.K.; Marco, F.; Wray, D.; Kanafani, Z.A.; Carugati, M.; Durante-Mangoni, E.; Tattevin, P.; Chu, V.H.; Moreno, A.; Fowler, V.G.; Miró, J.M.

    2018-01-01

    Objectives Left-sided methicillin-susceptible Staphylococcus aureus (MSSA) endocarditis treated with cloxacillin has a poorer prognosis when the vancomycin minimum inhibitory concentration (MIC) is ≥1.5 mg/L. We aimed to validate this using the International Collaboration on Endocarditis cohort and to analyse whether specific genetic characteristics were associated with a high vancomycin MIC (≥1.5 mg/L) phenotype. Methods All patients with left-sided MSSA infective endocarditis treated with antistaphylococcal β-lactam antibiotics between 2000 and 2006 with available isolates were included. Vancomycin MIC was determined by Etest as either high (≥1.5 mg/L) or low (<1.5 mg/L). Isolates underwent spa typing to infer clonal complexes and multiplex PCR for identifying virulence genes. Univariate analysis was performed to evaluate the association between in-hospital and 1-year mortality, and vancomycin MIC phenotype. Results Sixty-two cases met the inclusion criteria. Vancomycin MIC was low in 28 cases (45%) and high in 34 cases (55%). No significant differences in patient demographic data or characteristics of infection were observed between patients with infective endocarditis due to high and low vancomycin MIC isolates. Isolates with high and low vancomycin MIC had similar distributions of virulence genes and clonal lineages. In-hospital and 1-year mortality did not differ significantly between the two groups (32% (9/28) vs. 27% (9/34), p 0.780; and 43% (12/28) vs. 29% (10/34), p 0.298, for low and high vancomycin MIC respectively). Conclusions In this international cohort of patients with left-sided MSSA endocarditis treated with antistaphylococcal β-lactams, vancomycin MIC phenotype was not associated with patient demographics, clinical outcome or virulence gene repertoire. PMID:28159672

  18. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  19. In vitro antimicrobial activity of benzoyl peroxide against Propionibacterium acnes assessed by a novel susceptibility testing method.

    PubMed

    Okamoto, Kazuaki; Ikeda, Fumiaki; Kanayama, Shoji; Nakajima, Akiko; Matsumoto, Tatsumi; Ishii, Ritsuko; Umehara, Masatoshi; Gotoh, Naomasa; Hayashi, Naoki; Iyoda, Takako; Matsuzaki, Kaoru; Matsumoto, Satoru; Kawashima, Makoto

    2016-06-01

    Benzoyl peroxide (BPO), a therapeutic agent for acne vulgaris, was assessed for in vitro antimicrobial activity against Propionibacterium acnes using a novel broth microdilution testing that improved BPO solubility. We searched for a suitable culture medium to measure the minimum inhibitory concentration (MIC) of BPO against P. acnes and finally found the Gifu anaerobic medium (GAM) broth supplemented with 0.1(v/v)% glycerol and 2(v/v)% Tween 80, in which BPO dissolved up to 1250 μg/mL and P. acnes grew well. The MICs and minimum bactericidal concentrations (MBCs) of BPO against 44 clinical isolates of P. acnes collected from Japanese patients with acne vulgaris were determined by our testing method using the supplemented GAM broth. The MICs of BPO were 128 or 256 μg/mL against all isolates of P. acnes regardless of susceptibility to nadifloxacin or clindamycin. The MBCs of BPO were also 128 or 256 μg/mL against the same isolates. Moreover, BPO at the MIC showed a rapid bactericidal activity against P. acnes ATCC11827 in time-kill assay. In conclusion, we could develop a novel assay for the MIC and MBC determinations of BPO against P. acnes, which is reliable and reproducible as a broth microdilution testing and the present results suggest that BPO has a potent bactericidal activity against P. acnes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Farrell, D. J.; Rhomberg, P. R.; Scangarella-Oman, N. E.; Sader, H. S.

    2017-01-01

    ABSTRACT Gepotidacin is a first-in-class, novel triazaacenaphthylene antibiotic that inhibits bacterial DNA replication and has in vitro activity against susceptible and drug-resistant pathogens. Reference in vitro methods were used to investigate the MICs and minimum bactericidal concentrations (MBCs) of gepotidacin and comparator agents for Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. Gepotidacin in vitro activity was also evaluated by using time-kill kinetics and broth microdilution checkerboard methods for synergy testing and for postantibiotic and subinhibitory effects. The MIC90 of gepotidacin for 50 S. aureus (including methicillin-resistant S. aureus [MRSA]) and 50 S. pneumoniae (including penicillin-nonsusceptible) isolates was 0.5 μg/ml, and for E. coli (n = 25 isolates), it was 4 μg/ml. Gepotidacin was bactericidal against S. aureus, S. pneumoniae, and E. coli, with MBC/MIC ratios of ≤4 against 98, 98, and 88% of the isolates tested, respectively. Time-kill curves indicated that the bactericidal activity of gepotidacin was observed at 4× or 10× MIC at 24 h for all of the isolates. S. aureus regrowth was observed in the presence of gepotidacin, and the resulting gepotidacin MICs were 2- to 128-fold higher than the baseline gepotidacin MICs. Checkerboard analysis of gepotidacin combined with other antimicrobials demonstrated no occurrences of antagonism with agents from multiple antimicrobial classes. The most common interaction when testing gepotidacin was indifference (fractional inhibitory concentration index of >0.5 to ≤4; 82.7% for Gram-positive isolates and 82.6% for Gram-negative isolates). The postantibiotic effect (PAE) of gepotidacin was short when it was tested against S. aureus (≤0.6 h against MRSA and MSSA), and the PAE–sub-MIC effect (SME) was extended (>8 h; three isolates at 0.5× MIC). The PAE of levofloxacin was modest (0.0 to 2.4 h), and the PAE-SME observed varied from 1.2 to >9 h at 0.5× MIC. These in vitro data indicate that gepotidacin is a bactericidal agent that exhibits a modest PAE and an extended PAE-SME against Gram-positive and -negative bacteria and merits further study for potential use in treating infections caused by these pathogens. PMID:28483959

  1. Comparison between the Standardized Clinical and Laboratory Standards Institute M38-A2 Method and a 2,3-Bis(2-Methoxy-4-Nitro-5-[(Sulphenylamino)Carbonyl]-2H-Tetrazolium Hydroxide- Based Method for Testing Antifungal Susceptibility of Dermatophytes ▿

    PubMed Central

    Shehata, Atef S.; Mukherjee, Pranab K.; Ghannoum, Mahmoud A.

    2008-01-01

    In this study, we determined the utility of a 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based assay for determining antifungal susceptibilities of dermatophytes to terbinafine, ciclopirox, and voriconazole in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. Forty-eight dermatophyte isolates, including Trichophyton rubrum (n = 15), Trichophyton mentagrophytes (n = 7), Trichophyton tonsurans (n = 11), and Epidermophyton floccosum (n = 13), and two quality control strains, were tested. In the XTT-based method, MICs were determined spectrophotometrically at 490 nm after addition of XTT and menadione. For the CLSI method, the MICs were determined visually. With T. rubrum, the XTT assay revealed MIC ranges of 0.004 to >64 μg/ml, 0.125 to 0.25 μg/ml, and 0.008 to 0.025 μg/ml for terbinafine, ciclopirox, and voriconazole, respectively. Similar MIC ranges were obtained against T. rubrum by using the CLSI method. Additionally, when tested with T. mentagrophytes, T. tonsurans, and E. floccosum isolates, the XTT and CLSI methods resulted in comparable MIC ranges. Both methods revealed similar lowest drug concentrations that inhibited 90% of the isolates for the majority of tested drug-dermatophyte combinations. The levels of agreement within 1 dilution between both methods were as follows: 100% with terbinafine, 97.8% with ciclopirox, and 89.1% with voriconazole. However, the agreement within 2 dilutions between these two methods was 100% for all tested drugs. Our results revealed that the XTT assay can be a useful tool for antifungal susceptibility testing of dermatophytes. PMID:18832129

  2. Growth Inhibition and Morphological Alterations of Trichophyton Rubrum Induced by Essential oil from Cymbopogon Winterianus Jowitt Ex Bor

    PubMed Central

    de Oliveira Pereira, Fillipe; Alves Wanderley, Paulo; Cavalcanti Viana, Fernando Antônio; Baltazar de Lima, Rita; Barbosa de Sousa, Frederico; de Oliveira Lima, Edeltrudes

    2011-01-01

    Trichophyton rubrum is one of the most common fungi causer of dermatophytosis, mycosis that affect humans and animals around the world. Researches aiming new products with antifungal activity become necessary to overcome difficulties on treatment of these infections. Accordingly, this study aimed to investigate the antifungal activity of essential oil from Cymbopogon winterianus against the dermatophyte T. rubrum. The antifungal screening was performed by solid medium diffusion method with 16 T. rubrum strains, minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined using the microdilution method. The effects on mycelial dry weight and morphology were also observed. Screening showed essential oil in natura inhibited all the tested strains, with inhibition zones between 24-28 mm diameter. MIC50 and MIC90 values of the essential oil were 312 μg/mL for nearly all the essayed strains (93.75 %) while the MFC50 and MFC90 values were about eight times higher than MIC for all tested strains. All tested essential oil concentrations managed to inhibit strongly the mycelium development. Main morphological changes on the fungal strains observed under light microscopy, which were provided by the essential oil include loss of conidiation, alterations concerning form and pigmentation of hyphae. In the oil presence, colonies showed folds, cream color and slightly darker than the control, pigment production was absent on the reverse and with evident folds. It is concluded that C. winterianus essential oil showed activity against T. rubrum. Therefore, it could be known as potential antifungal compound especially for protection against dermatophytosis. PMID:24031626

  3. Activity of semisynthetic penicillins and synergism with mecillinam against Bacteroides species.

    PubMed Central

    Trestman, I; Kaye, D; Levison, M E

    1979-01-01

    The minimal inhibitory concentrations (MIC) of six penicillins (ampicillin, carbenicillin, ticarcillin, piperacillin, mezlocillin, and Bay k 4999) against 29 clinical isolates of Bacteriodes spp. (including Bacteroides fragilis, Bacteroides thetaiotaomicron, and Bacteroides vulgatus) were determined by an agar dilution method. Bay k 4999 was most active, followed in descending order by ampicillin, piperacillin, mezlocillin, ticarcillin, and carbenicillin. Mecillinam, a 6 beta-amidino-penicillanic acid, inhibited no strains at 50 micrograms/ml, but when compared with ampicillin, a fourfold or greater increase in MIC for ampicillin (antagonism) was noted in 3 of 29 strains, with no effect on MIC for 26 strains, whereas when combined with carbenicillin, a fourfold or greater decrease in MIC for both antibiotics (synergism) was noted in 12 strains, 4 of which had an MIC of greater than or equal to 250 micrograms/ml for carbenicillin alone. These studies demonstrate the increased activity of some newer semisynthetic penicillins and the potential synergy obtained with mecillinam and carbenicillin against Bacteroides sp. PMID:228593

  4. Comparison of Neisseria gonorrhoeae MICs obtained by Etest and agar dilution for ceftriaxone, cefpodoxime, cefixime and azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-12-01

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.

  5. [Activity of macrolides and fluoroquinolones against intracellular Legionella pneumophila].

    PubMed

    Yu, Ling-ling; Hu, Bi-jie; Huang, Sheng-lei; Zhou, Zhao-yan; Tao, Li-li

    2011-06-01

    To evaluate the activity of macrolides and fluoroquinolones against Legionella pneumophila by intracellular susceptibility testing. Minimum inhibitory concentration (MIC) was determined by standard agar dilution test according to the CLSI. For intracellular assays, legionella pneumonia was used to infect human monocytic cell line THP-1. Erythromycin, azithromycin, levofloxacin and moxifloxacin at 1 × MIC, 4 × MIC, 8 × MIC were added following phagocytosis. Number of viable bacteria was enumerated at 24 h on BCYE (buffered charcoal yeast extract) agar in duplicates using standard plate count method. The result was expressed as percentage inhibition. Mann-Whitney U test was used to determine the significant differences in mean percentage inhibition between agents. Percentage inhibition at 24 h were as follows: Erythromycin 1 × MIC (50.18 ± 27.29)%, 4 × MIC (79.48 ± 20.08)%, 8 × MIC (91.46 ± 8.70)%; Azithromycin 1 × MIC (66.77 ± 26.18)%, 4 × MIC (91.73 ± 8.72)%, 8 × MIC (97.10 ± 3.37)%; Levofloxacin 1 × MIC (99.84 ± 0.25)%, 4 × MIC (99.99 ± 0.02)%, 8 × MIC (99.99 ± 0.01)%; Moxifloxacin 1 × MIC (99.90 ± 0.10)%, 4 × MIC (99.99 ± 0.03)%, 8 × MIC (99.99 ± 0.03)%. The fluoroquinolones showed greater inhibitory activity than macrolides against legionella pneumophila(u = 1.0, 2.0, 5.0, P < 0.05). Levofloxacin and moxifloxacin had the same intracellular activity against legionella pneumophila (u = 190, 183, 217, P > 0.05). Azithromycin was more effective than erythromycin in inhibiting intracellular legionella pneumophila (u = 132, 125, 128, P < 0.05). The fluoroquinolones were more active than macrolides against legionella pneumophila. The intracellular activity of levofloxacin against legionella pneumophila appeared to be similar to moxifloxacin. Azithromycin was demonstrated to have superior activity against legionella pneumophila compared with erythromycin.

  6. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.

    PubMed

    Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj

    2016-01-01

    Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).

  7. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    PubMed

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  8. [Pharmacokinetic effects of antibiotics on the development of bacterial resistance particularly in reference to azithromycin].

    PubMed

    Wenisch, C

    2000-01-01

    Antibiotics reduce the mortality from infectious diseases but not the prevalence of these diseases. Use, and often abuse, of antimicrobial agents encourages the evolution of bacteria toward resistance, often resulting in therapeutic failure. There are two factors which influence potential utility of a drug in a specific clinical situation. The first is the measure of potency of the antibiotic for the pathogen in question (minimal inhibitory concentration [MIC], minimal bactericidal concentration [MBC]). The second is whichever relationship between the concentration-time profile and potency of the antibiotic linked most robustly to clinical outcome (time above MIC or MBC [T > MIC or T > MBC]; Peak/MIC or MBC; area under the curve [AUC]/MIC or AUC/MBC). Herein the effects of pharmacokinetics of antimicrobials on the evolution of antimicrobial resistance with particular reference to azithromycin are considered.

  9. Isojacareubin from the Chinese Herb Hypericum japonicum: Potent Antibacterial and Synergistic Effects on Clinical Methicillin-Resistant Staphylococcus aureus (MRSA)

    PubMed Central

    Zuo, Guo-Ying; An, Jing; Han, Jun; Zhang, Yun-Ling; Wang, Gen-Chun; Hao, Xiao-Yan; Bian, Zhong-Qi

    2012-01-01

    Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA. PMID:22942699

  10. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts Against Pathogenic Oral Microorganisms--An In Vitro Comparative Study.

    PubMed

    Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri

    2015-01-01

    To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  11. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies.

    PubMed

    Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M

    2010-10-28

    The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of <4 mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. An investigation of vancomycin minimum inhibitory concentration creep among methicillin-resistant Staphylococcus aureus strains isolated from pediatric patients and healthy children in Northern Taiwan.

    PubMed

    Chang, Chia-Ning; Lo, Wen-Tsung; Chan, Ming-Chin; Yu, Ching-Mei; Wang, Chih-Chien

    2017-06-01

    The phenomenon of vancomycin minimum inhibitory concentration (MIC) creep is an increasingly serious problem in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. In this study, we investigated the vancomycin and daptomycin MIC values of MRSA strains isolated from pediatric patients and MRSA colonized healthy children. Then, we assessed whether there was evidence of clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. We collected clinical MRSA isolates from pediatric patients and from healthy children colonized with MRSA during 2008-2012 at a tertiary medical center in northern Taiwan and obtained vancomycin and daptomycin MIC values using the Etest method. Pulse-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome (SCCmec) typing were used to assess clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. A total 195 MRSA strains were included in this study; 87 were isolated patients with a clinical MRSA infection, and the other 108 strains from nasally colonized healthy children. Vancomycin MIC≥1.5 μg/mL was seen in more clinical isolates (60/87, 69%) than colonized isolates (32/108, 29.6%), p < 0.001. The PFGE typing of both strains revealed multiple pulsotypes. Vancomycin MIC creeps existed in both clinical MRSA isolates and colonized MRSA strains. Great diversity of PFGE typing was in both strains collected. There was no association between the clinical and colonized MRSA isolates with vancomycin MIC creep. Copyright © 2016. Published by Elsevier B.V.

  13. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  14. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Fazly Bazzaz, Bibi Sedigheh; Sarabandi, Sahar; Khameneh, Bahman; Hosseinzadeh, Hossein

    2016-01-01

    Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance. PMID:28097041

  15. Short communication: In vitro antimicrobial susceptibility of Mycoplasma agalactiae strains isolated from dairy goats.

    PubMed

    Paterna, A; Sánchez, A; Gómez-Martín, A; Corrales, J C; De la Fe, C; Contreras, A; Amores, J

    2013-01-01

    This study examined the susceptibility to several antimicrobials of 28 isolates of Mycoplasma agalactiae obtained from goats in a region (southeastern Spain) where contagious agalactia is endemic. For each isolate, the minimum inhibitory concentration (MIC) against 12 antimicrobials of the quinolone, macrolide, aminoglycoside, and tetracycline families was determined. The antimicrobials with the lowest MIC were enrofloxacin, ciprofloxacin, tylosin, and doxycycline, all with MIC90 (concentration at which growth of 90% of the isolates is inhibited) <1 µg/mL. Norfloxacin (a quinolone) showed a wide MIC range (0.1-12.8 µg/mL), suggesting a resistance mechanism toward this antimicrobial that was not elicited by enrofloxacin or ciprofloxacin (the other quinolones tested). Erythromycin showed the highest MIC90 such that its use against Mycoplasma agalactiae is not recommended. Finally, Mycoplasma agalactiae isolates obtained from goat herds with clinical symptoms of contagious agalactia featured higher MIC90 and MIC50 (concentration at which growth of 50% of the isolates is inhibited) values for many of the antimicrobials compared with isolates from asymptomatic animals. The relationship between the extensive use of antimicrobials in herds with clinical contagious agalactia and variations in MIC requires further study. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. What Is the 'Minimum Inhibitory Concentration' (MIC) of Pexiganan Acting on Escherichia coli?-A Cautionary Case Study.

    PubMed

    Jepson, Alys K; Schwarz-Linek, Jana; Ryan, Lloyd; Ryadnov, Maxim G; Poon, Wilson C K

    2016-01-01

    We measured the minimum inhibitory concentration (MIC) of the antimicrobial peptide pexiganan acting on Escherichia coli , and found an intrinsic variability in such measurements. These results led to a detailed study of the effect of pexiganan on the growth curve of E. coli, using a plate reader and manual plating (i.e. time-kill curves). The measured growth curves, together with single-cell observations and peptide depletion assays, suggested that addition of a sub-MIC concentration of pexiganan to a population of this bacterium killed a fraction of the cells, reducing peptide activity during the process, while leaving the remaining cells unaffected. This pharmacodynamic hypothesis suggests a considerable inoculum effect, which we quantified. Our results cast doubt on the use of the MIC as 'a measure of the concentration needed for peptide action' and show how 'coarse-grained' studies at the population level give vital information for the correct planning and interpretation of MIC measurements.

  17. Meta-Analysis

    PubMed Central

    Kale-Pradhan, Pramodini B.; Mariani, Nicholas P.; Wilhelm, Sheila M.; Johnson, Leonard B.

    2015-01-01

    Background: Vancomycin is used to treat serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA). It is unclear whether MRSA isolates with minimum inhibitory concentration (MIC) 1.5 to 2 µg/mL are successfully treated with vancomycin. Objective: Evaluate vancomycin failure rates in MRSA bacteremia with an MIC <1.5 versus ≥1.5 µg/mL, and MIC ≤1 versus ≥2 µg/mL. Methods: A literature search was conducted using MESH terms vancomycin, MRSA, bacteremia, MIC, treatment and vancomycin failure to identify human studies published in English. All studies of patients with MRSA bacteremia treated with vancomycin were included if they evaluated vancomycin failures, defined as mortality, and reported associated MICs determined by E-test. Study sample size, vancomycin failure rates, and corresponding MIC values were extracted and analyzed using RevMan 5.2.5. Results: Thirteen studies including 2955 patients met all criteria. Twelve studies including 2861 patients evaluated outcomes using an MIC cutoff of 1.5 µg/mL. A total of 413 of 1186 (34.8%) patients with an MIC <1.5 and 531 of 1675 (31.7%) patients with an MIC of ≥1.5 µg/mL experienced treatment failure (odds ratio = 0.72, 95% confidence interval = 0.49-1.04, P = .08). Six studies evaluated 728 patients using the cutoffs of ≤1 and ≥2 µg/mL. A total of 384 patients had isolates with MIC ≤1 µg/mL, 344 had an MIC ≥2 µg/mL. Therapeutic failure occurred in 87 and 102 patients, respectively (odds ratio = 0.61, 95% confidence interval = 0.34-1.10, P = .10). As heterogeneity between the studies was high, a random-effects model was used. Conclusion: Vancomycin MIC may not be an optimal sole indicator of vancomycin treatment failure in MRSA bacteremia.

  18. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms.

    PubMed

    Kim, Yeon-Hee; Kim, Jeong Hwan; Jin, Hyung-Joo; Lee, Si Young

    2013-06-01

    Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 μg/ml and the MBCs were 125-1000 μg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 μg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 μg/ml, respectively. The MICs were 250 and 62.5 μg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2013-06-01

    The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of oxytetracycline were investigated, when administered both alone and in the presence of carprofen, in healthy calves. The study comprised a four treatment, four sequences, and four period cross-over design and used a tissue cage model, which permitted the collection of serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). There were no clinically relevant differences in the PK profile of oxytetracycline when administered alone and when administered with carprofen. PK-PD integration was undertaken for a pathogenic strain of Mannheimia haemolytic (A1 76/1), by correlating in vitro minimum inhibitory concentration (MIC) and time-kill data with in vivo PK data obtained in the cross-over study. Based on in vitro susceptibility in cation adjusted Mueller Hinton Broth (CAMHB) and in vivo determined PK variables, ratios of maximum concentration (Cmax) and area under curve (AUC) to MIC and time for which concentration exceeded MIC (T>MIC) were determined. The CAMHB MIC data satisfied integrated PK/PD relationships predicted to achieve efficacy for approximately 48 h after dosing; mean values for serum were 5.13 (Cmax/MIC), 49.3 h (T>MIC) and 126.6 h (AUC(96h)/MIC). Similar findings were obtained when oxytetracycline was administered in the presence of carprofen, with PK-PD indices based on MIC determined in CAMHB. However, PK-PD integration of data, based on oxytetracycline MICs determined in the biological fluids, serum, exudate and transudate, suggest that it possesses, at most, limited direct killing activity against the M. haemolytica strain A1 76/1; mean values for serum were 0.277 (Cmax/MIC), 0 h (T>MIC) and 6.84 h (AUC(96h)/MIC). The data suggest that the beneficial therapeutic effects of oxytetracycline may depend, at least in part, on actions other than direct inhibition of bacterial growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Balancing vancomycin efficacy and nephrotoxicity: should we be aiming for trough or AUC/MIC?

    PubMed

    Patel, Karisma; Crumby, Ashley S; Maples, Holly D

    2015-04-01

    Sixty years later, the question that still remains is how to appropriately utilize vancomycin in the pediatric population. The Infectious Diseases Society of America published guidelines in 2011 that provide guidance for dosing and monitoring of vancomycin in adults and pediatrics. However, goal vancomycin trough concentrations of 15-20 μg/mL for invasive infections caused by methicillin-resistant Staphylococcus aureus were based primarily on adult pharmacokinetic and pharmacodynamic data that achieved an area under the curve to minimum inhibitory concentration ratio (AUC/MIC) of ≥400. Recent pediatric literature shows that vancomycin trough concentrations needed to achieve the target AUC/MIC are different than the adult goal troughs cited in the guidelines. This paper addresses several thoughts, including the role of vancomycin AUC/MIC in dosing strategies and safety monitoring, consistency in laboratory reporting, and future directions for calculating AUC/MIC in pediatrics.

  1. Susceptibility profiles of amphotericin B and posaconazole against clinically relevant mucorales species under hypoxic conditions.

    PubMed

    Maurer, Elisabeth; Binder, Ulrike; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2015-02-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation.

    PubMed

    Bengtsson-Palme, Johan; Larsson, D G Joakim

    2016-01-01

    There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Pharmacokinetic–Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers

    PubMed Central

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2016-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (Cmax), the time when the maximum concentration reached (Tmax), and the area under the concentration-time curve (AUC) were 21.69–31.69 μg/mL, 1.13–1.23 h, and 228.97–444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller–Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid Emax (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0–24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance. PMID:26779495

  4. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains.

    PubMed

    Hamza, Muhammad; Nadir, Maha; Mehmood, Nadir; Farooq, Adeel

    2016-01-01

    The aim of this study is to evaluate the effect of four triterpenoids such as oleanolic acid, ursolic acid, cycloastragenol, and beta-boswellic acid alone and in combination with antibiotics against Staphylococcus aureus strains. Sixteen clinical strains of S. aureus from infected wounds were isolated. Eight were methicillin-sensitive S. aureus (MSSA), and the other eight were methicillin-resistant S. aureus (MRSA). The activity was also seen in reference S. aureus American Type Culture Collection ™ strains. The activity of all the triterpenoids and antibiotics against S. aureus was evaluated by broth microdilution method. The effectiveness was judged by comparing the minimum inhibitory concentrations (MICs) of the compounds with antibiotics. The combination of antibiotics with compounds was evaluated by their fractional inhibitory concentrations (FIC). Against both clinical and reference MSSA strains, none of the compounds exhibited comparable activity to antibiotics vancomycin or cefradine except for ursolic acid (MIC 7.8 μg/ml). Against MRSA, all compounds (MIC 16-128 μg/ml) showed lesser activity than vancomycin (MIC 5.8 μg/ml). Among triterpenoid-antibiotic combinations, the most effective were ursolic acid and vancomycin against clinical strain MSSA (FIC S 0.17). However, overall, different combinations between triterpenoids and antibiotics showed 95%-46% ( P < 0.05) reduction in MICs of antibiotics compared to when antibiotics were used alone. Cefradine, a drug not suitable for treating MRSA (MIC = 45 μg/ml), showed a remarkable decrease in its MIC (87% P< 0.01) when it was used in combination with oleanolic acid or ursolic acid in both clinical and reference strains. The tested triterpenoids are relatively weaker than antibiotics. However, when used in combination with antibiotics, they showed remarkable synergistic effect and thus can help in prolonging the viability of these antibiotics against S. aureus infections. Furthermore, reduction in MIC of cefradine with oleanolic acid indicates their potential use against MRSA.

  5. In vitro activity of rifampicin alone and in combination with imipenem against multidrug-resistant Acinetobacter baumannii harboring the blaOXA-72 resistance gene.

    PubMed

    Majewski, Piotr; Wieczorek, Piotr; Ojdana, Dominika; Sacha, Paweł Tomasz; Wieczorek, Anna; Tryniszewska, Elżbieta Anna

    2014-04-01

    The growing incidence of multidrug resistance (MDR) in bacteria is an emerging challenge in the treatment of infections. Acinetobacter baumannii is an opportunistic pathogen prone to exhibit MDR that contributes significantly to nosocomial infections, particularly in severely ill patients. Thus, we performed research on rifampicin activity against selected MDR OXA-72 carbapenemase-producing A. baumannii strains. Since it is widely accepted that rifampicin should not be used as monotherapy in order to avoid the rapid development of rifampicin resistance, we evaluated the efficacy of combination therapy with imipenem. Minimal inhibitory concentrations (MICs) of both rifampicin and imipenem were determined by use of the broth microdilution method. Evaluations of the interactions between rifampicin and imipenem were performed by analysis of the fractional inhibitory concentration index (∑FIC), determined using the checkerboard titration method. All tested isolates showed full susceptibility to rifampicin. The checkerboard method revealed synergism in 5 isolates (29%) and an additive effect in another 5 isolates (29%); no difference was reported in the remaining 7 isolates (41%). Strains moderately resistant to imipenem (MIC ≤ 64 mg/l) tended to show synergy or additive interaction. We conclude that in vitro synergism or an additive interaction between rifampicin and imipenem most likely occurs in A. baumannii strains showing moderate resistance to imipenem (MIC ≤ 64 mg/l). Moreover, utilizing this combination in the therapy of infections caused by strains exhibiting higher levels of resistance (MIC > 64 mg/l) is not recommended since in this setting imipenem could not prevent the development of rifampicin resistance.

  6. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood

    PubMed Central

    Jiang, Jiyang; Thalamuthu, Anbupalam; Ho, Jennifer E.; Mahajan, Anubha; Ek, Weronica E.; Brown, David A.; Breit, Samuel N.; Wang, Thomas J.; Gyllensten, Ulf; Chen, Ming-Huei; Enroth, Stefan; Januzzi, James L.; Lind, Lars; Armstrong, Nicola J.; Kwok, John B.; Schofield, Peter R.; Wen, Wei; Trollor, Julian N.; Johansson, Åsa; Morris, Andrew P.; Vasan, Ramachandran S.; Sachdev, Perminder S.; Mather, Karen A.

    2018-01-01

    Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels. PMID:29628937

  7. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood.

    PubMed

    Jiang, Jiyang; Thalamuthu, Anbupalam; Ho, Jennifer E; Mahajan, Anubha; Ek, Weronica E; Brown, David A; Breit, Samuel N; Wang, Thomas J; Gyllensten, Ulf; Chen, Ming-Huei; Enroth, Stefan; Januzzi, James L; Lind, Lars; Armstrong, Nicola J; Kwok, John B; Schofield, Peter R; Wen, Wei; Trollor, Julian N; Johansson, Åsa; Morris, Andrew P; Vasan, Ramachandran S; Sachdev, Perminder S; Mather, Karen A

    2018-01-01

    Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10 -35 ), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the"COPI-mediated anterograde transport" gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction ( p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels.

  8. Clinical implications of reduced susceptibility to fluoroquinolones in paediatric Shigella sonnei and Shigella flexneri infections

    PubMed Central

    Thompson, Corinne N.; Thieu, Nga Tran Vu; Vinh, Phat Voong; Duc, Anh Nguyen; Wolbers, Marcel; Vinh, Ha; Campbell, James I.; Ngoc, Dung Tran Thi; Hoang, Nguyen Van Minh; Thanh, Tuyen Ha; The, Hao Chung; Nguyen, To Nguyen Thi; Lan, Nguyen Phu Huong; Parry, Christopher M.; Chau, Nguyen Van Vinh; Thwaites, Guy; Thanh, Duy Pham; Baker, Stephen

    2016-01-01

    Objectives We aimed to quantify the impact of fluoroquinolone resistance on the clinical outcome of paediatric shigellosis patients treated with fluoroquinolones in southern Vietnam. Such information is important to inform therapeutic management for infections caused by this increasingly drug-resistant pathogen, responsible for high morbidity and mortality in young children globally. Methods Clinical information and bacterial isolates were derived from a randomized controlled trial comparing gatifloxacin with ciprofloxacin for the treatment of paediatric shigellosis. Time–kill experiments were performed to evaluate the impact of MIC on the in vitro growth of Shigella and Cox regression modelling was used to compare clinical outcome between treatments and Shigella species. Results Shigella flexneri patients treated with gatifloxacin had significantly worse outcomes than those treated with ciprofloxacin. However, the MICs of fluoroquinolones were not significantly associated with poorer outcome. The presence of S83L and A87T mutations in the gyrA gene significantly increased MICs of fluoroquinolones. Finally, elevated MICs and the presence of the qnrS gene allowed Shigella to replicate efficiently in vitro in high concentrations of ciprofloxacin. Conclusions We found that below the CLSI breakpoint, there was no association between MIC and clinical outcome in paediatric shigellosis infections. However, S. flexneri patients had worse clinical outcomes when treated with gatifloxacin in this study regardless of MIC. Additionally, Shigella harbouring the qnrS gene are able to replicate efficiently in high concentrations of ciprofloxacin and we hypothesize that such strains possess a competitive advantage against fluoroquinolone-susceptible strains due to enhanced shedding and transmission. PMID:26679253

  9. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  10. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  11. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance?

    PubMed

    Udy, Andrew A; Lipman, Jeffrey; Jarrett, Paul; Klein, Kerenaftali; Wallis, Steven C; Patel, Kashyap; Kirkpatrick, Carl M J; Kruger, Peter S; Paterson, David L; Roberts, Michael S; Roberts, Jason A

    2015-01-30

    The aim of this study was to explore the impact of augmented creatinine clearance and differing minimum inhibitory concentrations (MIC) on piperacillin pharmacokinetic/pharmacodynamic (PK/PD) target attainment (time above MIC (fT>MIC)) in critically ill patients with sepsis receiving intermittent dosing. To be eligible for enrolment, critically ill patients with sepsis had to be receiving piperacillin-tazobactam 4.5 g intravenously (IV) by intermittent infusion every 6 hours for presumed or confirmed nosocomial infection without significant renal impairment (defined by a plasma creatinine concentration greater than 171 μmol/L or the need for renal replacement therapy). Over a single dosing interval, blood samples were drawn to determine unbound plasma piperacillin concentrations. Renal function was assessed by measuring creatinine clearance (CLCR). A population PK model was constructed, and the probability of target attainment (PTA) for 50% and 100% fT>MIC was calculated for varying MIC and CLCR values. In total, 48 patients provided data. Increasing CLCR values were associated with lower trough plasma piperacillin concentrations (P < 0.01), such that with an MIC of 16 mg/L, 100% fT>MIC would be achieved in only one-third (n = 16) of patients. Mean piperacillin clearance was approximately 1.5-fold higher than in healthy volunteers and correlated with CLCR (r = 0.58, P < 0.01). A reduced PTA for all MIC values, when targeting either 50% or 100% fT>MIC, was noted with increasing CLCR measures. Standard intermittent piperacillin-tazobactam dosing is unlikely to achieve optimal piperacillin exposures in a significant proportion of critically ill patients with sepsis, owing to elevated drug clearance. These data suggest that CLCR can be employed as a useful tool to determine whether piperacillin PK/PD target attainment is likely with a range of MIC values.

  12. Stratifying low level Isoniazid resistance using additional intermediate drug concentration.

    PubMed

    Lakshmi, Rajagopalan; Ramachandran, Ranjani; Sundar, A Syam; Rahman, Fathima; Kumar, Vanaja

    2014-06-01

    Isoniazid (INH) susceptibility testing for 100 Mycobacterium tuberculosis performed by conventional minimum inhibitory concentration (MIC) method was stratified using additional drug concentrations. Introduction of additional drug concentrations did not greatly improve the discriminatory capacity, but can be used in specialized studies pertaining to cross resistance between structural analogues of INH. Copyright © 2014 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  13. Drug Penetration Gradients Associated with Acquired Drug Resistance in Tuberculosis Patients.

    PubMed

    Dheda, Keertan; Lenders, Laura; Magombedze, Gesham; Srivastava, Shashikant; Raj, Prithvi; Arning, Erland; Ashcraft, Paula; Bottiglieri, Teodoro; Wainwright, Helen; Pennel, Timothy; Linegar, Anthony; Moodley, Loven; Pooran, Anil; Pasipanodya, Jotam G; Sirgel, Frederick A; van Helden, Paul D; Wakeland, Edward; Warren, Robin M; Gumbo, Tawanda

    2018-06-07

    Acquired resistance is an important driver of multidrug-resistant tuberculosis, even with good treatment adherence. However, exactly what initiates the resistance, and how it arises remains poorly understood. To identify the relationship between drug concentrations and drug susceptibility readouts (MICs) in the tuberculosis cavity. We recruited patients with medically incurable tuberculosis who were undergoing therapeutic lung resection whilst on treatment with the cocktail of second line anti-tuberculosis drugs. On the day of surgery antibiotic concentrations were measured in the blood and at seven pre-specified biopsy sites within each cavity. Mycobacterium tuberculosis was grown from each biopsy site, MICs of each drug identified, and whole genome sequencing performed. Spearman correlation coefficients between drug concentration and MIC were calculated. Fourteen patients treated for a median of 13 (range: 5-31) months were recruited. MICs and drug resistance-associated single nucleotide variants differed between the different geospatial locations within each cavity, and with pretreatment and serial sputum isolates, consistent with ongoing acquisition of resistance. However, pre-treatment sputum MIC had an accuracy of only 49.48% in predicting cavitary MICs. There were large concentration-distance gradients for each antibiotic. The location-specific concentrations inversely correlated with MICs (p<0.05), and therefore acquired resistance. Moreover, pharmacokinetic/pharmacodynamic exposures known to amplify drug-resistant subpopulations were encountered in all positions. These data inform interventional strategies relevant to drug delivery, dosing, and diagnostics to prevent the development of acquired resistance. The role of high intracavitary penetration as a biomarker of antibiotic efficacy, when assessing new regimens, requires clarification.

  14. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena.

    PubMed

    Li, Dan; Zeng, Siyu; He, Miao; Gu, April Z

    2016-03-15

    The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment.

  15. Factors influencing the potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    For the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, Minimum Inhibitory Concentration (MIC) of marbofloxacin was determined in recommended broths and pig serum at three inoculum strengths. MICs in both growth matrices increased progressively from low, through medium to high starting inoculum counts, 10 4 , 10 6 and 10 8 CFU/mL, respectively. P. multocida MIC ratios for high:low inocula were 14:4:1 for broth and 28.2:1 for serum. Corresponding MIC ratios for A. pleuropneumoniae were lower, 4.1:1 (broth) and 9.2:1 (serum). MIC high:low ratios were therefore both growth matrix and bacterial species dependent. The effect of alterations to the chemical composition of broths and serum on MIC were also investigated. Neither adjusting broth or serum pH in six increments over the range 7.0 to 8.0 nor increasing calcium and magnesium concentrations of broth in seven incremental steps significantly affected MICs for either organism. In time-kill studies, the killing action of marbofloxacin had the characteristics of concentration dependency against both organisms in both growth matrices. It is concluded that MIC and time-kill data for marbofloxacin, generated in serum, might be preferable to broth data, for predicting dosages of marbofloxacin for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of Neisseria gonorrhoeae MICs Obtained by Etest and Agar Dilution for Ceftriaxone, Cefpodoxime, Cefixime and Azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-10-24

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Susceptibility patterns for amoxicillin/clavulanate tests mimicking the licensed formulations and pharmacokinetic relationships: do the MIC obtained with 2:1 ratio testing accurately reflect activity against beta-lactamase-producing strains of Haemophilus influenzae and Moraxella catarrhalis?

    PubMed

    Pottumarthy, Sudha; Sader, Helio S; Fritsche, Thomas R; Jones, Ronald N

    2005-11-01

    Amoxicillin/clavulanate has recently undergone formulation changes (XR and ES-600) that represent 14:1 and 16:1 ratios of amoxicillin/clavulanate. These ratios greatly differ from the 2:1 ratio used in initial formulations and in vitro susceptibility testing. The objective of this study was to determine if the reference method using a 2:1 ratio accurately reflects the susceptibility to the various clinically used amoxicillin/clavulanate formulations and their respective serum concentration ratios. A collection of 330 Haemophilus influenzae strains (300 beta-lactamase-positive and 30 beta-lactamase-negative) and 40 Moraxella catarrhalis strains (30 beta-lactamase-positive and 10 beta-lactamase-negative) were tested by the broth microdilution method against eight amoxicillin/clavulanate combinations (4:1, 5:1, 7:1, 9:1, 14:1, and 16:1 ratios; 0.5 and 2 microg/mL fixed clavulanate concentrations) and the minimum inhibitory concentration (MIC) results were compared with those obtained with the reference 2:1 ratio testing. For the beta-lactamase-negative strains of both genera, there was no demonstrable change in the MIC values obtained for all ratios analyzed (2:1 to 16:1). For the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, at ratios >or=4:1 there was a shift in the central tendency of the MIC scatterplot compared with the results of testing 2:1 ratio. As a result, there was a 2-fold dilution increase in the MIC(50) and MIC(90) values, most evident for H. influenzae and BRO-1-producing M. catarrhalis strains. For beta-lactamase-positive strains of H. influenzae, the shift resulted in a change in the interpretive result for 3 isolates (1.0%) from susceptible using the reference method (2:1 ratio) to resistant (8/4 microg/mL; very major error) at the 16:1 ratio. In addition, the number of isolates with MIC values at or 1 dilution lower than the breakpoint (4/2 microg/mL) increased from 5% at 2:1 ratio to 32-33% for ratios 14:1 and 16:1. Our results indicate that, for the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, the results of the amoxicillin/clavulanate reference 2:1 ratio testing do not accurately represent all the currently licensed formulations. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment might be compromised when higher amoxicillin/clavulanate ratios are used clinically. With a better understanding of PK/PD parameters, reevaluation of the amoxicillin/clavulanate in vitro susceptibility testing should be considered by the standardizing authorities to reflect the licensed formulations and accurately predict clinical outcomes.

  18. Pharmacokinetic Modeling and Limited Sampling Strategies Based on Healthy Volunteers for Monitoring of Ertapenem in Patients with Multidrug-Resistant Tuberculosis.

    PubMed

    van Rijn, S P; Zuur, M A; van Altena, R; Akkerman, O W; Proost, J H; de Lange, W C M; Kerstjens, H A M; Touw, D J; van der Werf, T S; Kosterink, J G W; Alffenaar, J W C

    2017-04-01

    Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% T MIC ). To assess the 40% T MIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC 0-24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation ( n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% T MIC with the free fraction ( f 40% T MIC ) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC 0-24 ) in MDR-TB patients by 6.8% (range, -17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h ( r 2 = 0.78, mean prediction error = -0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, -15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% T MIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients. Copyright © 2017 American Society for Microbiology.

  19. Frequency of colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi.

    PubMed

    Qamar, Salima; Shaheen, Najma; Shakoor, Sadia; Farooqi, Joveria; Jabeen, Kauser; Hasan, Rumina

    2017-01-01

    Management of infections with carbapenem-resistant Enterobacteriaceae (CRE) is challenging. In recent times, agents such as colistin and fosfomycin have been used in combination with other antibiotics to treat such infections. In this study, we aim to seek frequency of colistin and fosfomycin resistance in CRE from Pakistan. This study was conducted at clinical laboratories, Aga Khan University Hospital. In total, 251 CRE were included in the study. Colistin minimum inhibitory concentrations (MICs) were performed using broth microdilution (BMD) method and VITEK ® 2 system, whereas fosfomycin susceptibility was performed using Kirby-Bauer method. MIC 50 and MIC 90 were calculated for colistin and agreement between VITEK and BMD was also calculated. Out of 251 strains colistin MIC of ≥4 µg/mL was seen in 40 (15.9%). Of these strains 20 (50%) were Klebsiella pneumoniae . Colistin MIC 50 and MIC 90 were found to be 0.5 and 16 µg/mL, respectively. BMD and VITEK 2 showed 100% categorical agreement. Essential agreement was 88.5% with kappa score 0.733 indicating strong agreement between VITEK and BMD. 31 out of 251 (12.3%) CREs were resistant to fosfomycin. Study shows frequency of colistin and fosfomycin resistance to be 15.9% and 12.3%, respectively. In countries where rate of CREs is high, emerging resistance against these last resort antibiotics is alarming as it leaves clinicians with almost no options to manage such multidrug resistant and extensively drug resistant infections.

  20. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria

    PubMed Central

    GRAZIANO, Talita Signoreti; CALIL, Caroline Morini; SARTORATTO, Adilson; FRANCO, Gilson César Nobre; GROPPO, Francisco Carlos; COGO-MÜLLER, Karina

    2016-01-01

    ABSTRACT Objective Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. Material and Methods The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. Results The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). Conclusion M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine. PMID:28076463

  1. Antimicrobial susceptibility of Brachyspira hyodysenteriae isolated from 21 Polish farms.

    PubMed

    Zmudzki, J; Szczotka, A; Nowak, A; Strzelecka, H; Grzesiak, A; Pejsak, Z

    2012-01-01

    Swine dysentery (SD) is a common disease among pigs worldwide, which contributes to major production losses. Antimicrobial susceptibility testing of B. hyodysenteriae, the etiological agent of SD, is mainly performed by the agar dilution method. This method has certain limitations due to difficulties in interpretation of results. The aim of this study was the analysis of antimicrobial susceptibility of Brachyspira hyodysenteriae (B. hyodysenteriae) Polish field isolates by broth microdilution procedure. The study was performed on 21 isolates of B. hyodysenteriae, collected between January 2006 to December 2010 from cases of swine dysentery. VetMIC Brachyspira panels with antimicrobial agents (tiamulin, valnemulin, doxycycline, lincomycin, tylosin and ampicillin) were used for susceptibility testing of B. hyodysenteriae. The minimal inhibitory concentration (MIC) was determined by the broth dilution procedure. The lowest antimicrobial activity was demonstrated for tylosin and lincomycin, with inhibition of bacterial growth using concentrations > 128 microg/ml and 32 microg/ml, respectively. In the case of doxycycline, the MIC values were < or = 2.0 microg/ml. No decreased susceptibility to tiamulin was found among the Polish isolates and MIC values for this antibiotic did not exceed 1.0 microg/ml. The results of the present study confirmed that Polish B. hyodysenteriae isolates were susceptible to the main antibiotics (tiamulin and valnemulin) used in treatment of swine dysentery. Further studies are necessary to evaluate a possible slow decrease in susceptibility to tiamulin and valnemulin of B. hyodysenteriae strains in Poland.

  2. In Vitro Activities of Gemifloxacin versus Five Quinolones and Two Macrolides against 271 Spanish Isolates of Legionella pneumophila: Influence of Charcoal on Susceptibility Test Results

    PubMed Central

    García, M. T.; Pelaz, C.; Giménez, M. J.; Aguilar, L.

    2000-01-01

    The MICs at which 90% of isolates are inhibited for gemifloxacin, trovafloxacin, and grepafloxacin were low (≤0.01 μg/ml) for 271 Legionella isolates when they were determined by the broth microdilution method but increased (≥6 dilutions) when they were determined by the agar dilution method. This was due to the charcoal in the agar dilution medium, as shown by the progressive decrease in the MICs when the charcoal concentrations decreased. As free drug is the active fraction, charcoal binding should be considered. PMID:10898695

  3. In vitro susceptibility testing of Malassezia pachydermatis to gentamicin.

    PubMed

    Silva, Freddy A; Ferrer, Otilia; Déniz, Soraya; Rosario, Inmaculada; Conde-Felipe, Magnolia; Díaz, Esther L; Acosta-Hernández, Begoña

    2017-08-01

    Two studies have observed that growth media containing gentamicin can inhibit the growth of the yeast organism Malassezia pachydermatis. The minimum inhibitory concentration (MIC) of this bactericidal antibiotic for this organism has not been previously determined. To evaluate the susceptibility of M. pachydermatis isolates to gentamicin. The MIC of gentamicin was determined using a modified version of the M27-A3 microdilution method following the guidelines of the Clinical and Laboratory Standards Institute. A modified Christensen's urea broth was used to enhance the growth of the M. pachydermatis isolates. Visual and spectrophotometric end-point readings were performed to detect the presence or absence of yeast growth. The MIC50 and MIC90 of gentamicin were 8.12 μg/mL and 32.5 μg/mL, respectively; M. pachydermatis strains were classified as susceptible (S), intermediate (I) and resistant (R). The susceptibility of these isolates to gentamicin in vitro, by visual and spectrophotometric end-point reading, was: S, 54-56%; I, 40-41%; and R, 3-6%. Prospective MICs for M. pachydermatis have been established for gentamicin. © 2017 ESVD and ACVD.

  4. A survey of Clostridium spiroforme antimicrobial susceptibility in rabbit breeding.

    PubMed

    Agnoletti, Fabrizio; Ferro, Tiziana; Guolo, Angela; Marcon, Barbara; Cocchi, Monia; Drigo, Ilenia; Mazzolini, Elena; Bano, Luca

    2009-04-14

    Rabbit meat breeding may be heavily affected by enterotoxaemia due to Clostridium spiroforme. Data on its antimicrobial susceptibility are insufficient, presumably because of difficulties in cultivating and identifying the pathogen. Our aim is therefore to provide this information to veterinary practitioners by focusing on a panel of therapeutics used in intensive rabbit units. Lincomycin was also checked in order to investigate the origin of resistance to macrolides. Minimal inhibitory concentrations (MICs) were determined with the agar dilution method according to the CLSI M11-A7 protocol (2007). MIC(50) and MIC(90) were, respectively, 64 and 64microg/ml for tiamulin, 32 and 32microg/ml for norfloxacin, 0.063 and 0.125microg/ml for amoxicillin, and 8 and 16microg/ml for doxycycline. MIC(50) and MIC(90) were 256microg/ml for sulphadimethoxine, spiramycin and lincomycin. Our results have shown that intrinsic or acquired antimicrobial resistances are diffuse in the C. spiroforme population and suggest focusing on prevention rather than on treatment of clostridial overgrowth, by reducing risk factors and using antimicrobials prudently.

  5. The effects of subinhibitory concentrations of costus oil on virulence factor production in Staphylococcus aureus.

    PubMed

    Qiu, J; Wang, J; Luo, H; Du, X; Li, H; Luo, M; Dong, J; Chen, Z; Deng, X

    2011-01-01

    To determine the antimicrobial activity of costus (Saussurea lappa) oil against Staphylococcus aureus, and to evaluate the influence of subinhibitory concentrations of costus oil on virulence-related exoprotein production in staph. aureus. Minimal inhibitory concentrations (MICs) were determined using a broth microdilution method, and the MICs of costus oil against 32 Staph. aureus strains ranged from 0.15 to 0.6 μl ml(-1) . The MIC(50) and MIC(90) were 0.3 and 0.6 μl ml(-1) , respectively. Western blot, haemolytic, tumour necrosis factor (TNF) release and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of costus oil on virulence-associated exoprotein production in Staph. aureus. The data presented here show that costus oil dose dependently decreased the production of α-toxin, toxic shock syndrome toxin 1 (TSST-1) and enterotoxins A and B in both methicillin-sensitive Staph. aureus (MSSA) and methicillin-resistant Staph. aureus (MRSA). Costus oil has potent antimicrobial activity against Staph. aureus, and the production of α-toxin, TSST-1 and enterotoxins A and B in Staph. aureus was decreased by costus oil. The data suggest that costus oil may deserve further investigation for its potential therapeutic value in treating Staph. aureus infections. Furthermore, costus oil could be rationally applied in food products as a novel food preservative both to inhibit the growth of Staph. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  6. Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris.

    PubMed

    Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A

    2013-11-01

    Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage. © 2013 Institute of Food Technologists®

  7. Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma

    PubMed Central

    Niedźwiecka, Katarzyna; Augustyniak, Daria; Majkowska-Skrobek, Grażyna; Cal-Bąkowska, Magdalena; Ko, Young H.; Pedersen, Peter L.; Goffeau, Andre

    2016-01-01

    In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC). Finally, at different concentrations of 3BP (equal to the half-MIC, MIC and double-MIC in a case of fungi, 1 mM and 2.5 mM for microalgae and 25, 50, 100 μM for human multiple myeloma (MM) cells), a significant decrease in GSH concentration is observed inside microorganisms as well as tumor cells. In contrast to the GSH concentration decrease, the presence of 3BP at concentrations corresponding to sub-MIC values or half maximal inhibitory concentration (IC50) clearly results in increasing the expression of genes encoding enzymes involved in the synthesis of GSH in Cryptococcus neoformans and MM cells. Moreover, as shown for the first time in the MM cell model, the drastic decrease in the ATP level and GSH concentration and the increase in the amount of ROS caused by 3BP ultimately results in cell death. PMID:27582536

  8. Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma.

    PubMed

    Niedźwiecka, Katarzyna; Dyląg, Mariusz; Augustyniak, Daria; Majkowska-Skrobek, Grażyna; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-10-04

    In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC). Finally, at different concentrations of 3BP (equal to the half-MIC, MIC and double-MIC in a case of fungi, 1 mM and 2.5 mM for microalgae and 25, 50, 100 μM for human multiple myeloma (MM) cells), a significant decrease in GSH concentration is observed inside microorganisms as well as tumor cells. In contrast to the GSH concentration decrease, the presence of 3BP at concentrations corresponding to sub-MIC values or half maximal inhibitory concentration (IC50) clearly results in increasing the expression of genes encoding enzymes involved in the synthesis of GSH in Cryptococcus neoformans and MM cells. Moreover, as shown for the first time in the MM cell model, the drastic decrease in the ATP level and GSH concentration and the increase in the amount of ROS caused by 3BP ultimately results in cell death.

  9. Chemical Characterization and Cytoprotective Effect of the Hydroethanol Extract from Annona coriacea Mart. (Araticum)

    PubMed Central

    Júnior, José G. A. S.; Coutinho, Henrique D. M.; Boris, Ticiana C. C.; Cristo, Janyketchuly S.; Pereira, Nara L. F.; Figueiredo, Fernando G.; Cunha, Francisco A. B.; Aquino, Pedro E. A.; Nascimento, Polyana A. C.; Mesquita, Francisco J. C.; Moreira, Paulo H. F.; Coutinho, Sáskia T. B.; Souza, Ivon T.; Teixeira, Gabriela C.; Ferreira, Najla M. N.; Farina, Eleonora O.; Torres, Cícero M. G.; Holanda, Vanderlan N.; Pereira, Vandbergue S.; Guedes, Maria I. F.

    2016-01-01

    Introduction: Annona coriacea Mart. (araticum) is a widely distributed tree in the cerrado. Its value is attributed principally to the consumption of its fruit which possesses a large nutritive potential. The objective was to identify the chemical profile and evaluate the antimicrobial and cytoprotective activity of the hydroethanol extract of A. coriacea Mart. (HEAC) leaves against the toxicity of mercury chloride. Materials and Methods: The characterization of components was carried out using high-performance liquid chromatography (HPLC). The minimum inhibitory concentration (MIC) was determined by microdilution method in broth with strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. For evaluation of the modulatory and cytoprotective activity of aminoglycoside antibiotics (gentamicin and amikacin) and mercury chloride (HgCl2), the substances were associated with the HEAC at subinhibitory concentrations (MIC/8). Results and Discussion: The HPLC analysis revealed the presence of flavonoids such as Luteolin (1.84%) and Quercetin (1.19%) in elevated concentrations. The HEAC presented an MIC ≥512 μg/mL and significant antagonistic action in aminoglycosides modulation, and it also showed cytoprotective activity to S. aureus (significance P < 0.0001) and E. coli (significance P < 0.05) bacteria against the mercury chloride heavy metal with significance, this action being attributed to the chelating properties of the flavonoids found in the chemical identification. Conclusions: The results acquired in this study show that the HEAC presents cytoprotective activity over the tested strains in vitro and can also present antagonistic effect when associated with aminoglycosides, reinforcing the necessity of taking caution when combining natural and pharmaceutical products. SUMMARY The hydroalcoholic extract of A. coriacea Mart. presents in vitro cytoprotective activity against the toxic effect of Hg. Abbreviations Used: HPLC-DAD: High-performance liquid chromatography with a diode array detector; MIC: Minimum inhibitory concentration; DMSO: Dimethyl sulfoxide PMID:27695264

  10. Isolation method (direct plating or enrichment) does not affect antimicrobial susceptibility of Campylobacter from chicken carcasses

    USDA-ARS?s Scientific Manuscript database

    To determine if Campylobacter isolation method influenced antimicrobial susceptibility results, the minimum inhibitory concentrations (MIC) of nine antimicrobials were compared for 291 pairs of Campylobacter isolates recovered from chicken carcass rinse samples using direct plating and an enrichment...

  11. In vitro susceptibility of Borrelia burgdorferi isolates to three antibiotics commonly used for treating equine Lyme disease.

    PubMed

    Caol, Sanjie; Divers, Thomas; Crisman, Mark; Chang, Yung-Fu

    2017-09-29

    Lyme disease in humans is predominantly treated with tetracycline, macrolides or beta lactam antibiotics that have low minimum inhibitory concentrations (MIC) against Borrelia burgdorferi. Horses with Lyme disease may require long-term treatment making frequent intravenous or intramuscular treatment difficult and when administered orally those drugs may have either a high incidence of side effects or have poor bioavailability. The aim of the present study was to determine the in vitro susceptibility of three B. burgdorferi isolates to three antibiotics of different classes that are commonly used in practice for treating Borrelia infections in horses. Broth microdilution assays were used to determine minimum inhibitory concentration of three antibiotics (ceftiofur sodium, minocycline and metronidazole), for three Borrelia burgdorferi isolates. Barbour-Stoner-Kelly (BSK K + R) medium with a final inoculum of 10 6 Borrelia cells/mL and incubation periods of 72 h were used in the determination of MICs. Observed MICs indicated that all isolates had similar susceptibility to each drug but susceptibility to the tested antimicrobial agents varied; ceftiofur sodium (MIC = 0.08 μg/ml), minocycline hydrochloride (MIC = 0.8 μg/ml) and metronidazole (MIC = 50 μg/ml). The MIC against B. burgorferi varied among the three antibiotics with ceftiofur having the lowest MIC and metronidazole the highest MIC. The MIC values observed for ceftiofur in the study fall within the range of reported serum and tissue concentrations for the drug metabolite following ceftiofur sodium administration as crystalline-free acid. Minocycline and metronidazole treatments, as currently used in equine practice, could fall short of attaining MIC concentrations for B. burgdorferi.

  12. Postantibiotic effect of various antibiotics on Legionella pneumophila strains isolated from water systems.

    PubMed

    Birteksöz-Tan, Ayşe Seher; Zeybek, Zuhal

    2012-11-01

    The postantibiotic effects (PAE) of azithromycin, clarithromycin, ciprofloxacin, and levofloxacin were investigated against Legionella pneumophila (L. pneumophila) strains isolated from several hot water systems of different buildings in Istanbul. Each strain in logarithmic phase of growth was exposed to concentrations of antibiotics equal to minimum inhibitory concentration (MIC) and 4× MIC for 1 h. Recovery periods of test cultures were evaluated after centrifugation using the viable counting method. The mean values of PAEs for the strains of L. pneumophila, azithromycin at a concentration equal to and 4 times of MIC values were found 1.75 ± 0.28 h and 4.06 ± 0.44 h, for clarithromycin 2.98 ± 0.70 h and 4.18 ± 0.95 h, for ciprofloxacin 2.97 ± 0.63 h and 4.70 ± 0.63 h, for levofloxacin 2.05 ± 0.33 h and 3.78 ± 0.46 h, respectively. All of the antibiotics showed increased PAE values in a concentration-dependent manner. The findings of our study may play useful role in selecting the appropriate timing of doses during therapy with antimicrobials to treat patients infected with L. pneumophila.

  13. The Effect of Polyherbal Medicines Used for the Treatment of Tuberculosis on Other Opportunistic Organisms of Humans Infected with Tuberculosis.

    PubMed

    Famewo, Elizabeth Bosede; Clarke, Anna Maria; Afolayan, Anthony Jide

    2017-10-01

    In many immunocompromised patients, opportunistic bacterial and fungal infections are common. Polyherbal medicines examined in this study are used by the indigenous people of South Africa for the treatment of tuberculosis (TB) and other opportunistic infections associated with TB. To evaluate the antibacterial and antifungal activity of nine polyherbal remedies against four Gram-positive and Gram-negative bacteria respectively and three fungi. Agar dilution method was used to determine the minimum inhibitory concentration (MIC) of the remedies against the organisms. The inhibitory activity of the polyherbal medicines based on the overall MIC revealed that HBfs and FB remedies were the most active remedies against the bacterial isolates at the concentration of 2.5 mg/mL, followed by HBts remedy at 5.0 mg/mL. However, the MIC valves of KWTa, KWTb, KWTc, HBss, EL and AL remedies were higher than 5.0 mg/mL which was the highest concentration used. Only KWTa remedy showed activity against Aspergillus niger and Aspergillus fumigatus with the MIC value of 2.5 mg/mL. While KWTc and HBts had the highest activity at 1.25 mg/mL against Candida albicans , the remaining remedies were active at 2.5 mg/mL. This study revealed that some of these polyherbal formulations have activities against some of the opportunistic bacterial and fungal isolates associated with TB patients. The capability of these remedies to inhibit the organisms is an indication that they are a potential broad-spectrum antimicrobial agent. However, the remedies that are inactive might contain stimulant effects on the immune system. In the Eastern Cape Province of South Africa, no study has been reported on the effect of polyherbal remedies used for the treatment of TB on the opportunistic pathogen. This study therefore revealed that some of the polyherbal medicines possess activity against bacterial and fungal pathogens. Abbreviations used: TB: Tuberculosis; MIC: Minimum Inhibitory Concentration; CFU/ML: Colony Forming Unit Per Mill.

  14. The activity of silver nanoparticles against microalgae of the Prototheca genus.

    PubMed

    Jagielski, Tomasz; Bakuła, Zofia; Pleń, Małgorzata; Kamiński, Michał; Nowakowska, Julita; Bielecki, Jacek; Wolska, Krystyna I; Grudniak, Anna M

    2018-05-01

    To investigate the in vitro activity of silver NPs (AgNPs) against pathogenic microalgae of the Prototheca genus. The antialgal potential of AgNPs against Prototheca species of both clinical and environmental origin was assessed from minimum inhibitory (algistatic) and algicidal concentrations. The in vitro cytotoxicity of AgNPs against bovine mammary epithelial cell line was evaluated by means of the standard MTT assay. AgNPs showed a strong killing activity toward Prototheca algae, as the minimal algicidal concentration (MAC) values matched perfectly the corresponding minimum inhibitory concentration (MIC) values for all species (MAC = MIC, 1-4 mg/l), except P. stagnora (MIC > 8 mg/l). The concentrations inhibitory to pathogenic Prototheca spp. (MIC, 1-4 mg/l) were below the concentrations at which any toxicity in epithelial cells could be observed (CC 20 > 6 mg/l). The study emphasizes the potential of AgNPs as a new therapeutic tool for the management of Prototheca infections.

  15. Evaluating the Relationship between Vancomycin Trough Concentration and 24-Hour Area under the Concentration-Time Curve in Neonates.

    PubMed

    Tseng, Sheng-Hsuan; Lim, Chuan Poh; Chen, Qi; Tang, Cheng Cai; Kong, Sing Teang; Ho, Paul Chi-Lui

    2018-04-01

    Bacterial sepsis is a major cause of morbidity and mortality in neonates, especially those involving methicillin-resistant Staphylococcus aureus (MRSA). Guidelines by the Infectious Diseases Society of America recommend the vancomycin 24-h area under the concentration-time curve to MIC ratio (AUC 24 /MIC) of >400 as the best predictor of successful treatment against MRSA infections when the MIC is ≤1 mg/liter. The relationship between steady-state vancomycin trough concentrations and AUC 24 values (mg·h/liter) has not been studied in an Asian neonatal population. We conducted a retrospective chart review in Singapore hospitals and collected patient characteristics and therapeutic drug monitoring data from neonates on vancomycin therapy over a 5-year period. A one-compartment population pharmacokinetic model was built from the collected data, internally validated, and then used to assess the relationship between steady-state trough concentrations and AUC 24 A Monte Carlo simulation sensitivity analysis was also conducted. A total of 76 neonates with 429 vancomycin concentrations were included for analysis. Median (interquartile range) was 30 weeks (28 to 36 weeks) for postmenstrual age (PMA) and 1,043 g (811 to 1,919 g) for weight at the initiation of treatment. Vancomycin clearance was predicted by weight, PMA, and serum creatinine. For MRSA isolates with a vancomycin MIC of ≤1, our major finding was that the minimum steady-state trough concentration range predictive of achieving an AUC 24 /MIC of >400 was 8 to 8.9 mg/liter. Steady-state troughs within 15 to 20 mg/liter are unlikely to be necessary to achieve an AUC 24 /MIC of >400, whereas troughs within 10 to 14.9 mg/liter may be more appropriate. Copyright © 2018 American Society for Microbiology.

  16. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: a comparison of 0.5-h and 3-h infusions.

    PubMed

    Lipš, Michal; Siller, Michal; Strojil, Jan; Urbánek, Karel; Balík, Martin; Suchánková, Hana

    2014-10-01

    In critically ill patients, pathophysiological changes alter the pharmacokinetics of antibiotics. Imipenem exhibits primarily time-dependent killing. Its administration by prolonged infusion may increase the time for which its plasma concentration exceeds the minimum inhibitory concentrations (MICs) of suspected pathogens. The objectives of this study were to compare the pharmacokinetic parameters of imipenem administered by standard short infusion (1g imipenem/1g cilastatin over 30min three times daily) and by extended infusion with a reduced total dose (0.5g imipenem/0.5g cilastatin over 3h four times daily) and to compare the target pharmacokinetic/pharmacodynamic indices, namely percentage of the dosing interval for which the free plasma concentration of imipenem exceeds the MIC and 4× MIC (%fT>MIC and %fT>4×MIC) of 0.5, 1, 2 and 4mg/L, for these two regimens in critically ill adult patients with nosocomial pneumonia on Day 2 of empirical antibiotic therapy. The study included 22 patients. Whilst no significant differences were found between both groups for %fT>MIC, %fT>4×MIC was 87.4±12.19%, 68.6±15.08%, 47.31±6.64% and 27.81±9.52% of the 8-h interval in the short infusion group for MICs of 0.5, 1, 2 and 4mg/L, respectively, and 85.15±17.57%, 53.14±27.27%, 13.55±24.47% and 0±0% of the 6-h interval for the extended infusion group. In conclusion, administration of 0.5g of imipenem by a 3-h infusion every 6h does not provide sufficient drug concentrations to treat infections caused by pathogens with a MIC of ≥2mg/L. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study.

    PubMed

    de Castro, Ricardo Dias; de Souza, Trícia Murielly Pereira Andrade; Bezerra, Louise Morais Dornelas; Ferreira, Gabriela Lacet Silva; Costa, Edja Maria Melo de Brito; Cavalcanti, Alessandro Leite

    2015-11-24

    Limitations of antifungal agents used in the treatment of oral candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to evaluate the antifungal activity of thymol against Candida albicans, Candida tropicalis and Candida krusei strains and to determine its mode of action and synergistic effect when combined with the synthetic antifungal nystatin. The minimum inhibitory concentration (MIC) was determined using a microdilution technique, and the minimum fungicidal concentration (MFC) was determined via subculture sowing. The mode of action of thymol was established by verifying fungal growth in the presence of sorbitol or ergosterol. The fractional inhibitory concentration index (FIC) was determined using the checkerboard method. Thymol presented an antifungal effect, with MICs of 39 μg/mL for C. albicans and C. krusei and 78 μg/mL for C. tropicalis. The results of the antifungal test remained unchanged in the presence of sorbitol; however, the MIC value of thymol against C. albicans increased eight times (from 39.0 to 312.5 μg/mL) in presence of exogenous ergosterol. The combination of thymol and nystatin reduced the MIC values of both products by 87.4%, generating an FIC index of 0.25. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with nystatin.

  18. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations.

    PubMed

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-05-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38-A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC(50) values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted.

  19. The Prevalence of Vancomycin-Intermediate Staphylococcus aureus and Heterogeneous VISA Among Methicillin-Resistant Strains Isolated from Pediatric Population in a Turkish University Hospital.

    PubMed

    Mirza, Hasan Cenk; Sancak, Banu; Gür, Deniz

    2015-10-01

    There are limited data regarding the prevalence of vancomycin-intermediate Staphylococcus aureus (VISA)/heterogeneous VISA (hVISA) among pediatric population. Our objective was to determine the distribution of vancomycin and daptomycin minimum inhibitory concentrations (MICs) and explore the phenomenon of vancomycin MIC creep and the VISA/hVISA prevalence among the methicillin-resistant Staphylococcus aureus (MRSA) strains belonging to pediatric population by population analysis profile-area under the curve (PAP-AUC) and Etest macromethod. Vancomycin and daptomycin susceptibilities of 94 pediatric isolates of MRSA were tested by broth microdilution (BMD) and Etest methods. To determine the prevalence of VISA/hVISA, Etest macromethod and PAP-AUC was performed on all isolates. All isolates were susceptible to vancomycin and daptomycin by both BMD and Etest methods. Twenty-eight (29.8%) isolates had vancomycin MICs of 2 μg/ml by BMD. No increase in vancomycin MICs was observed over time. There were no VISA among 94 MRSA tested but 20 (21.3%) hVISA isolates were identified by PAP-AUC. Results of Etest macromethod were compared to PAP-AUC. Etest macromethod was 60.0% sensitive and 90.5% specific. The hVISA isolates represented 53.6% of isolates with vancomycin MICs of 2 μg/ml. Also, 75% of hVISA isolates had vancomycin MICs of 2 μg/ml. To our knowledge, this is the first study investigating the prevalence of VISA/hVISA among MRSA isolated from pediatric patients by PAP-AUC method. Based on our findings, MRSA isolates, which have vancomycin MIC of 2 μg/ml can be investigated for the presence of hVISA. In this study, daptomycin showed potent activity against all isolates and may represent a therapeutic option for MRSA infections.

  20. The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2017-03-01

    The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L -1 , which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.

  1. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves

    PubMed Central

    Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.

    2012-01-01

    Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954

  2. Antifungal Activity of Essential Oils against Candida albicans Strains Isolated from Users of Dental Prostheses

    PubMed Central

    Júnior, José Klidenberg de Oliveira; Silva, Daniele de Figueredo; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; de Oliveira Lima, Edeltrudes

    2017-01-01

    Objective The objective of this study was to analyze the antifungal activity of citral, selected by screening natural products, against Candida albicans isolates from subjects who use dental prostheses. Methodology Screening of essential oils, including those from Mentha piperita L. (Briq), Origanum vulgare, and Zingiber officinale L., and the phytoconstituents citral and limonene, to select an appropriate natural product. Citral, which mediated the best antifungal response, was selected for biological assays. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) for citral and nystatin were determined by the microdilution method. Micromorphological analyses, time-kill curve, and modulation tests were performed. Results The MIC and MFC of citral were established as 32 μg/mL, consistent with fungicidal activity. The clinical strains were resistant to nystatin. Citral caused micromorphological alteration in the strains. In the time-kill curve, the growth of the clinical strain was reduction in growth equal to 3 log10 colony-forming units per milliliter after exposure to the MIC and MIC × 2 of citral for 2 h. Citral did not modulate the resistance of the studied strains to nystatin. Conclusion This study revealed the potential of citral as a fungicidal agent and highlighted the resistance of clinical strains of C. albicans to nystatin. PMID:29234423

  3. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution.

    PubMed

    Cairns, Johannes; Becks, Lutz; Jalasvuori, Matti; Hiltunen, Teppo

    2017-01-19

    Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  4. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution

    PubMed Central

    2017-01-01

    Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria–phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920385

  5. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface

    PubMed Central

    Madeira, Petrus L. B.; Carvalho, Letícia T.; Paschoal, Marco A. B.; de Sousa, Eduardo M.; Moffa, Eduardo B.; da Silva, Marcos A. dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M.

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  6. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface.

    PubMed

    Madeira, Petrus L B; Carvalho, Letícia T; Paschoal, Marco A B; de Sousa, Eduardo M; Moffa, Eduardo B; da Silva, Marcos A Dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use.

  7. Antibacterial screening of some Peruvian medicinal plants used in Callería District.

    PubMed

    Kloucek, P; Polesny, Z; Svobodova, B; Vlkova, E; Kokoska, L

    2005-06-03

    Nine ethanol extracts of Brunfelsia grandiflora (Solanaceae), Caesalpinia spinosa (Caesalpiniaceae), Dracontium loretense (Araceae), Equisetum giganteum (Equisetaceae), Maytenus macrocarpa (Celastraceae), Phyllanthus amarus (Euphorbiaceae), Piper aduncum (Piperaceae), Terminalia catappa (Combretaceae), and Uncaria tomentosa (Rubiaceae), medicinal plants traditionally used in Calleria District for treating conditions likely to be associated with microorganisms, were screened for antimicrobial activity against nine bacterial strains using the broth microdilution method. Among the plants tested, Phyllanthus amarus and Terminalia catappa showed the most promising antibacterial properties, inhibiting all of the strains tested with minimum inhibitory concentrations (MICs) ranging from 0.25 to 16 mg/ml. The extract from aerial part of Piper aduncum was significantly more active against Gram-positive (MICs ranging from 1 to 2 mg/ml) than against Gram-negative bacteria (MICs > 16 mg/ml).

  8. Antibacterial activity of endemic Satureja Khuzistanica Jamzad essential oil against oral pathogens

    PubMed Central

    Seghatoleslami, Sogol; Samadi, Nasrin; Salehnia, Ali; Azimi, Shahram

    2009-01-01

    INTRODUCTION: To assess the antibacterial effects of an Iranian endemic essential oil, Satureja Khuzistanica Jamzad (SKJ) when used as an intracanal antiseptic and interappointment medicament. MATERIALS AND METHODS: Antimicrobial activity and minimum inhibition concentrations (MICs) of SKJ essential oil with and without calcium hydroxide (CH) against eleven aerobic, microaerophilic and anaerobic bacteria were assessed. The evaluation was carried out by agar dilution and well diffusion methods. The results were measured and recorded by an independent observer. Data were analyzed statistically using student t-test. RESULTS: The MIC for eight species was recorded in 0.31 mg/mL of essential oil. Pseudomonas aeruginosa with a MIC value of 1.25 mg/mL appeared to be the most resistant bacterium; while only 0.16 mg/mL of essential oil was sufficient to inhibit the growth of Bacillus subtilis and Staphylococcus aureus. The inhibition zone of the antiseptic oil (at 0.31 mg/mL) with E. faecalis in the well diffusion method was 13 mm; this was comparable with 12.5 mm inhibition zone value of the tetracycline disc (30 µg). No synergistic effect was found in combination of essential oil and CH powder. CONCLUSION: SKJ essential oil with the concentration of 0.31 mg/mL is effective against most of oral pathogens including E. faecalis. PMID:23864870

  9. Wild-type MIC distributions of four fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical concentrations and available pharmacokinetic and pharmacodynamic data.

    PubMed

    Angeby, K A; Jureen, P; Giske, C G; Chryssanthou, E; Sturegård, E; Nordvall, M; Johansson, A G; Werngren, J; Kahlmeter, G; Hoffner, S E; Schön, T

    2010-05-01

    To describe wild-type distributions of the MIC of fluoroquinolones for Mycobacterium tuberculosis in relation to current critical concentrations used for drug susceptibility testing and pharmacokinetic/pharmacodynamic (PK/PD) data. A 96-stick replicator on Middlebrook 7H10 medium was used to define the MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin for 90 consecutive clinical strains and 24 drug-resistant strains. The MICs were compared with routine BACTEC 460 susceptibility results and with MIC determinations in the BACTEC MGIT 960 system in a subset of strains using ofloxacin as a class representative. PK/PD data for each drug were reviewed in relation to the wild-type MIC distribution. The wild-type MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin were distributed from 0.125 to 1, 0.25 to 1, 0.032 to 0.5 and 0.125 to 0.5 mg/L, respectively. The MIC data correlated well with the BACTEC 960 MGIT and BACTEC 460 results. PD indices were the most favourable for levofloxacin, followed by moxifloxacin, ofloxacin and ciprofloxacin. We propose S (susceptible)

  10. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  11. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat

    PubMed Central

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

    2009-01-01

    Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  12. Comparison of Spectrophotometric and Visual Readings of NCCLS Method and Evaluation of a Colorimetric Method Based on Reduction of a Soluble Tetrazolium Salt, 2,3-Bis {2-Methoxy-4-Nitro-5-[(Sulfenylamino) Carbonyl]-2H- Tetrazolium-Hydroxide}, for Antifungal Susceptibility Testing of Aspergillus Species

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Bouman, Bianca A.; Donnelly, Peter J.; Verweij, Paul E.

    2001-01-01

    The susceptibilities of 25 clinical isolates of various Aspergillus species (Aspergillus fumigatus, A. flavus, A. terreus, A. ustus, and A. nidulans) to itraconazole (ITC) and amphotericin B (AMB) were determined using the standard proposed by NCCLS for antifungal susceptibility testing of filamentous fungi, a modification of this method using spectrophotometric readings, and a colorimetric method using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT). Five MIC end points for ITC (MIC-0, no visible growth or ≤5% the growth control value [GC]; MIC-1, slight growth or 6 to 25% the GC; MIC-2, prominent reduction in growth or 26 to 50% the GC; MIC-3, slight reduction in growth or 51 to 75% the GC; and MIC-4, no reduction in growth or 76 to 100% the GC) and one for AMB (MIC-0) were determined visually by four observers and spectrophotometrically. The intraexperimental (between the observers) and interexperimental (between the experiments) levels of agreement of the NCCLS and XTT methods exceeded 95% for MIC-0 of AMB and MIC-0 and MIC-1 of ITC. The MIC-2 of ITC showed lower reproducibility, although spectrophotometric reading and/or incubation for 48 h increased the interexperimental reproducibility from 85 to >93%. Between visual and spectrophotometric readings, high levels of agreement were found for AMB (≈97%) and MIC-1 (≈92%) and MIC-2 (≈88%) of ITC. Poor agreement was found for MIC-0 of ITC (51% after 24 h), since the spectrophotometric readings resulted in higher MIC-0 values than the visual readings. The agreement was increased to 98% by shifting the threshold level of MIC-0 from 5 to 10% relative optical density and by establishing an optical density of greater than 0.1 for the GC as the validation criterion. No statistically significant differences were found between the NCCLS method and the XTT method, with the levels of agreement exceeding 97% for MIC-0 of AMB and 83% for MIC-0, MIC-1, and MIC-2 of ITC. The XTT method and spectrophotometric readings can increase the sensitivity and the precision, respectively, of in vitro susceptibility testing of Aspergillus species. PMID:11724829

  13. Aqueous Humor Penetration and Biological Activity of Moxifloxacin 0.5% Ophthalmic Solution Alone or with Dexamethasone 0.1.

    PubMed

    Gomes, Rachel L R; Viana, Rodrigo Galvão; Melo, Luiz Alberto S; Cruz, Alessandro Carvalho; Suenaga, Eunice Mayumi; Kenyon, Kenneth R; Campos, Mauro

    2017-03-01

    To compare aqueous humor concentrations of topically applied moxifloxacin 0.5% ophthalmic solution alone or in combination with dexamethasone 0.1% and to correlate these concentrations with the minimum inhibitory concentrations (MICs) for common endophthalmitis-causing organisms. Sixty-eight patients undergoing routine phacoemulsification with intraocular lens implantation received either moxifloxacin 0.5% alone or moxifloxacin 0.5% combined with dexamethasone. For both groups, 1 drop of the test solution was instilled 4 times daily 1 day preoperatively and 1 drop 1 h preoperatively. An aqueous humor sample obtained immediately before paracentesis was submitted to high-performance liquid chromatography-tandem mass spectrometry to determine the moxifloxacin concentration. The mean concentrations of moxifloxacin were 986.6 ng/mL in the moxifloxacin with dexamethasone group and 741.3 ng/mL in the moxifloxacin group (P = 0.13). Moxifloxacin concentrations of all samples exceeded the MICs for Staphylococcus epidermidis, S. aureus, and Streptococcus pneumoniae. All samples in the moxifloxacin with dexamethasone group and 94% in the moxifloxacin group achieved the MIC for Enterococcus species. For quinolone-resistant S. aureus, the MIC was achieved in 29% in the moxifloxacin with dexamethasone group and 9% in the moxifloxacin group (P = 0.06). Aqueous humor moxifloxacin concentrations were higher when topically administrated in combination with dexamethasone compared to the moxifloxacin alone. However, this difference was not statistically significant. Nevertheless, the MICs of the most common pathogens associated with endophthalmitis were exceeded in both study groups.

  14. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A.

    PubMed

    Kannappan, Arunachalam; Sivaranjani, Murugesan; Srinivasan, Ramanathan; Rathna, Janarthanam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2017-10-01

    The current study has been designed to delineate the efficacy of geraniol (GE) on biofilm formation in Staphylococcus epidermidis as well as the effect of subinhibitory concentrations of GE on the development of adaptive resistance. Biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of GE against S. epidermidis. Microscopic observation of biofilms and extracellular polymeric substance (EPS), slime and cell surface hydrophobicity (CSH) production were also studied to support the antibiofilm potential of GE. In addition, S. epidermidis was examined for its adaptive resistance development upon continuous exposure of GE at its subinhibitory concentrations.Results/Key findings. The MIC of GE against S. epidermidis was 512 µg ml -1 . Without hampering the growth of the pathogen, GE at its sub-MICs (50, 100, 150 and 200 µg ml -1 ) exhibited a dose-dependent increase in antibiofilm activity. The minimal biofilm inhibitory concentration (MBIC) of GE was found to be 200 µg ml -1 with a maximum biofilm inhibition of 85 %. Disintegrated biofilm architecture, reduced EPS, slime and CSH production validated the antibiofilm efficacy of GE. Although the action of GE on preformed biofilm is limited, a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and live/dead cell staining method revealed reduction in the viability (47 %) of biofilm inhabitants at 2×MIC concentration. Sequential exposure of S. epidermidis to the sub-MICs of GE resulted in poor development of adaptive resistance with diminished biofilm formation. The present study highlights the potential of GE as a suitable candidate for the control of biofilm-mediated S. epidermidis infections.

  15. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor.

    PubMed

    Park, Hee Soo; Yoon, Yu Min; Jung, Sung Ji; Kim, Cheol Min; Kim, Jeong Mi; Kwak, Jin-Hwan

    2007-09-01

    This study was performed to analyse in vitro and in vivo activities of CG400549, a new FabI inhibitor, against clinical isolates of staphylococci. The mode of action of CG400549 and resistance mechanism of Staphylococcus aureus against CG400549 were also investigated by genetic approaches. In vitro activity of CG400549 was evaluated by the 2-fold agar sdilution method as described by the CLSI, and compared with those of oxacillin, erythromycin, ciprofloxacin, sparfloxacin, moxifloxacin, gemifloxacin, vancomycin, linezolid and quinupristin-dalfopristin. In vivo activity of CG400549 was determined against systemic infections in mice. Time-kill curves of CG400549 were analysed at concentrations of 1 x , 2 x and 4 x MIC against S. aureus strains. CG400549 had the lowest MICs among the test compounds against 238 clinical isolates of S. aureus (MIC90, 0.25 mg/L) and 51 clinical isolates of coagulase-negative staphylococci (MIC90, 1 mg/L). The activity of CG400549 was irrespective of whether the strains were methicillin-susceptible or -resistant. Furthermore, CG400549 was effective by oral or subcutaneous administration against systemic infections in mice. In a time-kill study, CG400549 at concentrations of 1 x MIC, 2 x MIC and 4 x MIC had a bacteriostatic activity during 24 h. A FabI-overexpressing S. aureus strain gave rise to an increase in the MIC of CG400549 compared with the parental strain, while the susceptibilities of the FabI-overexpressing S. aureus strain to the other antibacterial agents such as oxacillin, erythromycin and ciprofloxacin were not affected. This result showed that the mode of action of CG400549 was via inhibition of FabI, which is involved in biosynthesis of fatty acids in bacteria. Study of the resistance mechanism of S. aureus showed that CG400549-resistant mutants of S. aureus had an alteration in FabI at Phe-204 to Leu. CG400549 had potent in vitro and in vivo activity against staphylococci, including methicillin-, ciprofloxacin- and multidrug-resistant staphylococci strains. This compound could be a good candidate for clinical development as a novel anti-MRSA drug.

  16. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2016-01-01

    Antibacterial resistance has dramatically increased and resulted in serious health problems worldwide. One appealing strategy to overcome this resistance problem is the use of combinations of antibacterial compounds to increase their potency. The objective of this study is to determine the synergistic effects of artocarpin for ampicillin, norfloxacin, and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA) as well as the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. A broth microdilution method (1.95-250 µg/mL) was used to determine the minimum inhibitory concentration (MIC) of artocarpin and the antibiotics. Any synergistic effects were evaluated at their own MIC using the checkerboard method and a time-kill assay at 37 °C for 24 h. Artocarpin showed antibacterial activity against MRSA and E. coli with an MIC value of 62.5 µg/mL, and against P. aeruginosa with an MIC value of 250 µg/mL. The interaction of artocarpin with all tested antibiotics produced synergistic effects against MRSA with a fractional inhibitory concentration index (FICI) of 0.15-0.37. In addition, a combination of artocarpin and norfloxacin showed a synergistic effect against E. coli with an FICI value of 0.37, while the combinations of artocarpin and tetracycline as well as artocarpin and norfloxacin exhibited synergy interactions against P. aeruginosa with FICI values of 0.24 and 0.37, respectively. Time-kill assays indicated that artocarpin enhanced the antimicrobial activities of tetracycline, ampicillin, and norfloxacin against MRSA as well as Gram-negative bacteria.

  17. Resistance of Trichomonas vaginalis to Metronidazole: Report of the First Three Cases from Finland and Optimization of In Vitro Susceptibility Testing under Various Oxygen Concentrations

    PubMed Central

    Meri, Taru; Jokiranta, T. Sakari; Suhonen, Lauri; Meri, Seppo

    2000-01-01

    Trichomonas vaginalis is a globally common sexually transmitted human parasite. Many strains of T. vaginalis from around the world have been described to be resistant to the current drug of choice, metronidazole. However, only a few cases of metronidazole resistance have been reported from Europe. The resistant strains cause prolonged infections which are difficult to treat. T. vaginalis infection also increases the risk for human immunodeficiency virus transmission. We present a practical method for determining the resistance of T. vaginalis to 5-nitroimidazoles. The suggested method was developed by determining the MICs and minimal lethal concentrations (MLCs) of metronidazole and ornidazole for T. vaginalis under various aerobic and anaerobic conditions. Using this assay we have found the first three metronidazole-resistant strains from Finland, although the origin of at least one of the strains seems to be Russia. Analysis of the patient-derived and previously characterized isolates showed that metronidazole-resistant strains were also resistant to ornidazole, and MLCs for all strains tested correlated well with the MICs. The suggested MICs of metronidazole for differentiation of sensitive and resistant isolates are >75 μg/ml in an aerobic 24-h assay and >15 μg/ml in an anaerobic 48-h assay. PMID:10655382

  18. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.

  19. Determination of minimum inhibitory concentrations of itraconazole, terbinafine and ketoconazole against dermatophyte species by broth microdilution method.

    PubMed

    Bhatia, V K; Sharma, P C

    2015-01-01

    Various antifungal agents both topical and systemic have been introduced into clinical practice for effectively treating dermatophytic conditions. Dermatophytosis is the infection of keratinised tissues caused by fungal species of genera Trichophyton, Epidermophyton and Microsporum, commonly known as dermatophytes affecting 20-25% of the world's population. The present study aims at determining the susceptibility patterns of dermatophyte species recovered from superficial mycoses of human patients in Himachal Pradesh to antifungal agents; itraconazole, terbinafine and ketoconazole. The study also aims at determining the minimum inhibitory concentrations (MICs) of these agents following the recommended protocol of Clinical and Laboratory Standards Institute (CLSI) (M38-A2). A total of 53 isolates of dermatophytes (T. mentagrophyte-34 in no., T. rubrum-18 and M. gypseum-1) recovered from the superficial mycoses were examined. Broth microdilution method M38-A2 approved protocol of CLSI (2008) for filamentous fungi was followed for determining the susceptibility of dermatophyte species. T. mentagrophyte isolates were found more susceptible to both itraconazole and ketoconazole as compared to terbinafine (MIC50: 0.125 µg/ml for itraconazole, 0.0625 µg/ml for ketoconazole and 0.5 µg/ml for terbinafine). Three isolates of T. mentagrophytes (VBS-5, VBSo-3 and VBSo-73) and one isolate of T. rubrum (VBPo-9) had higher MIC values of itraconazole (1 µg/ml). Similarly, the higher MIC values of ketoconazole were observed in case of only three isolates of T. mentagrophyte (VBSo-30 = 2 µg/ml; VBSo-44, VBM-2 = 1 µg/ml). The comparative analysis of the three antifungal drugs based on t-test revealed that 'itraconazole and terbinafine' and 'terbinafine and ketoconazole' were found independent based on the P < 0.005 in case of T. mentagrophyte isolates. In case of T. rubrum, the similarity existed between MIC values of 'itraconazole and ketoconazole' and 'terbinafine and ketoconazole'. The MIC values observed in the present study based on standard protocol M38-A2 of CLSI 2008 might serve as reference for further studies covering large number of isolates from different geographic regions of the state. Such studies might reflect on the acquisition of drug resistance among isolates of dermatophyte species based on MIC values.

  20. Semisynthetic Phenol Derivatives Obtained from Natural Phenols: Antimicrobial Activity and Molecular Properties.

    PubMed

    Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano

    2018-01-10

    Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.

  1. Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis

    PubMed Central

    Lourenço, Talita Gomes Baêta; Heller, Débora; do Souto, Renata Martins; Silva-Senem, Mayra Xavier e; Varela, Victor Macedo; Torres, Maria Cynesia Barros; Feres-Filho, Eduardo Jorge; Colombo, Ana Paula Vieira

    2015-01-01

    This study evaluates the antimicrobial susceptibility and composition of subgingival biofilms in generalized aggressive periodontitis (GAP) patients treated using mechanical/antimicrobial therapies, including chlorhexidine (CHX), amoxicillin (AMX) and metronidazole (MET). GAP patients allocated to the placebo (C, n = 15) or test group (T, n = 16) received full-mouth disinfection with CHX, scaling and root planning, and systemic AMX (500 mg)/MET (250 mg) or placebos. Subgingival plaque samples were obtained at baseline, 3, 6, 9 and 12 months post-therapy from 3–4 periodontal pockets, and the samples were pooled and cultivated under anaerobic conditions. The minimum inhibitory concentrations (MICs) of AMX, MET and CHX were assessed using the microdilution method. Bacterial species present in the cultivated biofilm were identified by checkerboard DNA-DNA hybridization. At baseline, no differences in the MICs between groups were observed for the 3 antimicrobials. In the T group, significant increases in the MICs of CHX (p < 0.05) and AMX (p < 0.01) were detected during the first 3 months; however, the MIC of MET decreased at 12 months (p < 0.05). For several species, the MICs significantly changed over time in both groups, i.e., Streptococci MICs tended to increase, while for several periodontal pathogens, the MICs diminished. A transitory increase in the MIC of the subgingival biofilm to AMX and CHX was observed in GAP patients treated using enhanced mechanical therapy with topical CHX and systemic AMX/MET. Both protocols presented limited effects on the cultivable subgingival microbiota. PMID:26273264

  2. Comparison of standardised versus non-standardised methods for testing the in vitro potency of oxytetracycline against Mannheimia haemolytica and Pasteurella multocida.

    PubMed

    Lees, P; Illambas, J; Pelligand, L; Toutain, P-L

    2016-12-01

    The in vitro pharmacodynamics of oxytetracycline was established for six isolates of each of the calf pneumonia pathogens Mannheimia haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and bacterial time-kill curves were determined in two matrices, Mueller Hinton broth (MHB) and calf serum. Geometric mean MIC ratios, serum:MHB, were 25.2:1 (M. haemolytica) and 27.4:1 (P. multocida). The degree of binding of oxytetracycline to serum protein was 52.4%. Differences between serum and broth MICs could not be accounted for by oxytetracycline binding to serum protein. In vitro time-kill data suggested a co-dependent killing action of oxytetracycline. The in vitro data indicate inhibition of the killing action of oxytetracycline by serum factor(s). The nature of the inhibition requires further study. The outcome of treatment with oxytetracycline of respiratory tract infections in calves caused by M. haemolytica and P. multocida may not be related solely to a direct killing action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inhibitory activity of Syzygium aromaticum and Cymbopogon citratus (DC.) Stapf. essential oils against Listeria monocytogenes inoculated in bovine ground meat

    PubMed Central

    de Oliveira, Thales Leandro Coutinho; das Graças Cardoso, Maria; de Araújo Soares, Rodrigo; Ramos, Eduardo Mendes; Piccoli, Roberta Hilsdorf; Tebaldi, Victor Maximiliano Reis

    2013-01-01

    This research evaluated the antimicrobial effect of the clove (Syzygium aromaticum) and lemongrass (Cymbopogon citratus (DC.) Stapf.) essential oils (EOs) against Listeria monocytogenes ATCC 19117 growth added to bovine ground meat stored under refrigeration (5 ± 2 °C) for three days. The EOs, extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), were tested in vitro using an agar well diffusion methodology for determination of Minimum Inhibitory Concentration (MIC). The MIC concentrations for both essential oils on culture tested of L. monocytogenes were 1.56%. The EOs concentrations applied in contaminated ground beef were 1.56, 3.125 and 6.25% (w/v) based on MIC levels and possible activity reductions by food constituents. The bacteria populations were significantly reduced (p ≤ 0.05) after one day of storage in ground meat samples treated with clove and lemongrass EOs at concentrations of 1.56%. There were no significant counts of L. monocytogenes in samples at the other concentrations of the two oils applied after the second day of storage. The sensory acceptability evaluation of the bovine ground meat samples treated with EOs showed that the addition at concentrations higher than 1.56% promote undesirable alterations of taste, odor and characteristic color. The application of EOs at low concentrations in food products can be used in combination with other preservation methods, such as refrigeration, to control pathogens and spoilage bacteria during shelf-life; which goes according to current market trends, where consumers are requesting natural products. PMID:24294222

  4. Inhibitory activity of Syzygium aromaticum and Cymbopogon citratus (DC.) Stapf. essential oils against Listeria monocytogenes inoculated in bovine ground meat.

    PubMed

    de Oliveira, Thales Leandro Coutinho; das Graças Cardoso, Maria; de Araújo Soares, Rodrigo; Ramos, Eduardo Mendes; Piccoli, Roberta Hilsdorf; Tebaldi, Victor Maximiliano Reis

    2013-01-01

    This research evaluated the antimicrobial effect of the clove (Syzygium aromaticum) and lemongrass (Cymbopogon citratus (DC.) Stapf.) essential oils (EOs) against Listeria monocytogenes ATCC 19117 growth added to bovine ground meat stored under refrigeration (5 ± 2 °C) for three days. The EOs, extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), were tested in vitro using an agar well diffusion methodology for determination of Minimum Inhibitory Concentration (MIC). The MIC concentrations for both essential oils on culture tested of L. monocytogenes were 1.56%. The EOs concentrations applied in contaminated ground beef were 1.56, 3.125 and 6.25% (w/v) based on MIC levels and possible activity reductions by food constituents. The bacteria populations were significantly reduced (p ≤ 0.05) after one day of storage in ground meat samples treated with clove and lemongrass EOs at concentrations of 1.56%. There were no significant counts of L. monocytogenes in samples at the other concentrations of the two oils applied after the second day of storage. The sensory acceptability evaluation of the bovine ground meat samples treated with EOs showed that the addition at concentrations higher than 1.56% promote undesirable alterations of taste, odor and characteristic color. The application of EOs at low concentrations in food products can be used in combination with other preservation methods, such as refrigeration, to control pathogens and spoilage bacteria during shelf-life; which goes according to current market trends, where consumers are requesting natural products.

  5. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    PubMed Central

    Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite

    2015-01-01

    Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation. PMID:26413067

  6. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  7. Interferometry as a tool for evaluating effects of antimicrobial doses on Mycobacterium bovis growth.

    PubMed

    Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C

    2015-12-01

    Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study

    PubMed Central

    Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash

    2015-01-01

    Objective: In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Materials and methods: Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Results: Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. Conclusion: This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts. PMID:26101754

  9. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study.

    PubMed

    Ehmann, Lisa; Zoller, Michael; Minichmayr, Iris K; Scharf, Christina; Maier, Barbara; Schmitt, Maximilian V; Hartung, Niklas; Huisinga, Wilhelm; Vogeser, Michael; Frey, Lorenz; Zander, Johannes; Kloft, Charlotte

    2017-10-21

    Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCR CG ). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100%T >MIC , 50%T >4×MIC ) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCR CG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Large inter- and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100%T >MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50%T >4×MIC . A hyperbolic relationship between CLCR CG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C 8h ) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy- and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed. Clinicaltrials.gov, NCT01793012 . Registered on 24 January 2013.

  10. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    PubMed

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents.

    PubMed

    Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P; Yang, Hanjing; Hoffman, Robert M; Salih, Anya; Miller, Jeffrey H

    2011-03-01

    Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.

  12. In vitro susceptibility of Prototheca spp. to gentamicin.

    PubMed Central

    Shahan, T A; Pore, R S

    1991-01-01

    One hundred strains of Prototheca zopfii, Prototheca wickerhamii, Prototheca moriformis, Prototheca stagnora, and Prototheca ulmnea; five strains of Chlorella protothecoides; and two strains of Candida albicans were obtained from a number of different clinical and environmental sources and were tested for their in vitro susceptibility to the antibacterial agent gentamicin. All Prototheca strains were susceptible to gentamicin at concentrations between 0.3 and 0.9 micrograms/ml. A modified macrobroth dilution MIC assay with a colorimeter and a microbroth dilution assay with a 96-well plate reader were the two methods used to determine the MICs. PMID:1804021

  13. Antibiotic susceptibility of Legionella strains isolated from public water sources in Macau and Guangzhou.

    PubMed

    Xiong, Lina; Yan, He; Shi, Lei; Mo, Ziyao

    2016-12-01

    The purpose of this study was to investigate the susceptibility of waterborne strains of Legionella to eight antimicrobials commonly used in legionellosis therapy. The minimum inhibitory concentrations (MICs) of 66 environmental Legionella strains, isolated from fountains and cooling towers of public facilities (hotels, schools, and shopping malls) in Macau and Guangzhou, were tested using the microdilution method in buffered yeast extract broth. The MIC 50 /MIC 90 values for erythromycin, cefotaxime (CTX), doxycycline (DOC), minocycline (MIN), azithromycin, ciprofloxacin, levofloxacin (LEV), and moxifloxacin were 0.125/0.5 mg/L, 4/8 mg/L, 8/16 mg/L, 4/8 mg/L, 0.125/0.5 mg/L, 0.031/0.031 mg/L, 0.031/0.031 mg/L, and 0.031/0.062 mg/L, respectively. Legionella isolates were inhibited by either low concentrations of macrolides and fluoroquinolones, or high concentrations of CTX and tetracycline drugs. LEV was the most effective drug against different Legionella species and serogroups of L. pneumophila isolates. The latter were inhibited in decreasing order by MIN > CTX >DOC, while non-L. pneumophila isolates were inhibited by CTX> MIN >DOC. In this study, we evaluated drug resistance of pathogenic bacteria from the environment. This may help predict the emergence of drug resistance, improve patient outcomes, and reduce hospitalization costs.

  14. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    PubMed

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  15. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.

  16. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  17. [Activity of butenafine against ocular pathogenic filamentous fungi in vitro].

    PubMed

    Xu, Yan; Pang, Guang-ren; Zhao, Dong-qing; Gao, Chuan-wen; Zhou, Lu-tan; Sun, Sheng-tao; Wang, Bing-liang; Chen, Zu-ji

    2010-01-01

    To investigate antifungal activity of butenafine in comparison with that of natamycin, amphotericin B and fluconazole against ocular pathogenic filamentous fungi in vitro. It was an experimental study. Susceptibility tests were performed against 260 isolates of ocular pathogenic filamentous fungi by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute (CLSI) M38-A document. The isolates included Fusarium spp. (136), Aspergillus spp. (98), Alternaria alternata (9), Curvularia lunata (3), and unusual ocular pathogens (14). Final concentration ranged from 0.008 to 16.000 mg/L for butenafine, from 0.031 to 16.000 mg/L for amphotericin B and natamycin, and from 0.5 to 256.0 mg/L for fluconazole. Following incubation at 35 degrees C for 48 h, minimal inhibitory concentration (MIC) was determined according to the CLSI M38-A document. For amphotericin B and natamycin, the MIC was defined as the lowest drug concentration that prevented any discernible growth. For butenafine and fluconazole, the MIC was defined as the lowest concentration in which an approximately 75% reduction compared to the growth of the control was observed. Candida parapsilosis ATCC22019 was used as quality control strains to validated the results. Mean MIC and MIC range, the MIC at which 50% of the isolates tested were inhibited (MIC(50)) and the MIC at which 90% of the isolates tested were inhibited (MIC(90)), were provided for all the isolates tested by using descriptive statistical analysis with the statistical SPSS package (version 13.0). MIC(90) of butenafine, natamycin, amphotericin B and fluconazole were 4, 8, 2 and 512 mg/L for Fusarium spp., respectively; 0.063, 32.000, 2.000 and 256.000 mg/L for Aspergillus spp., respectively; 0.5, 8.0, 2.0 and 128.0 mg/L for Alternaria alternate, respectively; 0.125, 2.000, 0.500 and 4.000 mg/L for Curvularia lunata, respectively; and 1, 4, 1 and 256 mg/L for unusual ocular pathogens, respectively. Butenafine exhibits potent antifungal activity against a wide variety of ocular pathogenic fungi, especially for Aspergillus spp., Alternaria alternata, Curvularia lunata, and some unusual ocular pathogens and may have a role in future studies of antifungal eye drops and treating fungal keratitis.

  18. Efficacy of simulated cefditoren versus amoxicillin-clavulanate free concentrations in countering intrastrain ftsI gene diffusion in Haemophilus influenzae.

    PubMed

    González, Natalia; Aguilar, Lorenzo; Sevillano, David; Giménez, Maria-Jose; Alou, Luis; Cafini, Fabio; Torrico, Martha; López, Ana-Maria; Coronel, Pilar; Prieto, Jose

    2011-06-01

    This study explores the effects of cefditoren (CDN) versus amoxicillin-clavulanic acid (AMC) on the evolution (within a single strain) of total and recombined populations derived from intrastrain ftsI gene diffusion in β-lactamase-positive (BL⁺) and β-lactamase-negative (BL⁻) Haemophilus influenzae. DNA from β-lactamase-negative, ampicillin-resistant (BLNAR) isolates (DNA(BLNAR)) and from β-lactamase-positive, amoxicillin-clavulanate-resistant (BLPACR) (DNA(BLPACR)) isolates was extracted and added to a 10⁷-CFU/ml suspension of one BL⁺ strain (CDN MIC, 0.007 μg/ml; AMC MIC, 1 μg/ml) or one BL⁻ strain (CDN MIC, 0.015 μg/ml; AMC MIC, 0.5 μg/ml) in Haemophilus Test Medium (HTM). The mixture was incubated for 3 h and was then inoculated into a two-compartment computerized device simulating free concentrations of CDN (400 mg twice a day [b.i.d.]) or AMC (875 and 125 mg three times a day [t.i.d.]) in serum over 24 h. Controls were antibiotic-free simulations. Colony counts were performed; the total population and the recombined population were differentiated; and postsimulation MICs were determined. At time zero, the recombined population was 0.00095% of the total population. In controls, the BL⁻ and BL⁺ total populations and the BL⁻ recombined population increased (from ≈3 log₁₀ to 4.5 to 5 log₁₀), while the BL⁺ recombined population was maintained in simulations with DNA(BLPACR) and was decreased by ≈2 log₁₀ with DNA(BLNAR). CDN was bactericidal (percentage of the dosing interval for which experimental antibiotic concentrations exceeded the MIC [ft>MIC], >88%), and no recombined populations were detected from 4 h on. AMC was bactericidal against BL⁻ strains (ft>MIC, 74.0%) in DNA(BLNAR) and DNA(BLPACR) simulations, with a small final recombined population (MIC, 4 μg/ml; ft>MIC, 30.7%) in DNA(BLPACR) simulations. When AMC was used against the BL⁺ strain (in DNA(BLNAR) or DNA(BLPACR) simulations), the bacterial load was reduced ≈2 log₁₀ (ft>MIC, 44.3%), but 6.3% and 32% of the total population corresponded to a recombined population (MIC, 16 μg/ml; ft>MIC, 0%) in DNA(BLNAR) and DNA(BLPACR) simulations, respectively. AMC, but not CDN, unmasked BL⁺ recombined populations obtained by transformation. ft>MIC values higher than those classically considered for bacteriological response are needed to counter intrastrain ftsI gene diffusion by covering recombined populations.

  19. Pharmacokinetic Monitoring Of Vancomycin In Cystic Fibrosis: Is It Time To Move Past Trough Concentrations?

    PubMed

    Fusco, Nicholas M; Prescott, William A; Meaney, Calvin J

    2018-05-04

    A correlation between vancomycin trough concentrations (VTC) and area under the curve (AUC) to minimum inhibitory concentration (MIC) ratio (AUC/MIC) has not been established in children/adolescents with cystic fibrosis (CF). The primary objective of this study was to determine the correlation between measured VTCs and AUC/MIC using population-based pharmacokinetics. A retrospective cohort study of children/adolescents diagnosed with CF, age 6 to < 18 years, treated with vancomycin (VAN) for methicillin-resistant Staphylococcus aureus (MRSA) infection was conducted. The relationship between final VTCs and calculated AUC/MIC, using models established by Le et al and Stockmann et al, was assessed using Pearson and Spearman correlations. All tests were two-tailed with alpha set at 0.05. Thirty children/adolescents, age 7 to 17 years (median age 15 [IQR 9-17] years), were included. The mean final VAN dose was 58.03±18.58 mg/kg/day and the median final VTC was 12.6 (11-13.6) mg/L. The mean AUC/MIC was 355.34±138.46 (Le model) versus 426.79±178.92 (Stockmann model) (p=0.089). No correlation existed between VTCs and AUC/MIC using either the model by Le (r=0.140, p=0.461) or Stockmann (r=0.115; p=0.564). Using the Stockmann model: VAN dose (mg/kg/dose) was found to have a strong positive correlation with AUC (r=0.8874, p<0.0001) and AUC/MIC (r=0.7877, p<0.0001). VTCs did not correlate with AUC or AUC/MIC. Further research is needed to determine which estimate of VAN treatment efficacy is most appropriate for children and adolescents with CF infected with MRSA.

  20. Are Vancomycin Trough Concentrations of 15 to 20 mg/L Associated With Increased Attainment of an AUC/MIC ≥ 400 in Patients With Presumed MRSA Infection?

    PubMed

    Hale, Cory M; Seabury, Robert W; Steele, Jeffrey M; Darko, William; Miller, Christopher D

    2017-06-01

    To determine whether there is an association between higher vancomycin trough concentrations and attainment of a calculated area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ≥400. A retrospective analysis was conducted among vancomycin-treated adult patients with a positive methicillin-resistant Staphylococcus aureus (MRSA) culture. Attainment of a calculated AUC/MIC ≥400 was compared between patients with troughs in the reference range of 15 to 20 mg/L and those with troughs in the following ranges: <10, 10 to 14.9, and >20 mg/L. Nephrotoxicity was assessed as a secondary outcome based on corrected average vancomycin troughs over 10 days of treatment. Overall, 226 patients were reviewed and 100 included. Relative to troughs ≥10, patients with vancomycin troughs <10 mg/L were 73% less likely to attain an AUC/MIC ≥400 (odds ratio [OR] 0.27, 95% confidence interval [CI]: 0.01-0.75). No difference was found in the attainment of an AUC/MIC ≥400 in patients with troughs of 10 to 14.9 mg/L and >20 mg/L when compared to patients with troughs of 15 to 20 mg/L. The mean corrected average vancomycin trough was higher in patients developing nephrotoxicity compared to those who did not (19.5 vs 14.5 mg/L, P < .001). Achieving vancomycin serum trough concentrations of 15 to 20 mg/L did not result in an increased attainment of the AUC/MIC target relative to troughs of 10 to 14.9 mg/L but may increase nephrotoxicity risk.

  1. In vitro antimicrobial susceptibility of Mycoplasma bovis isolated in Israel from local and imported cattle.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Lysnyansky, Inna

    2009-06-12

    Monitoring of susceptibility to antibiotics in field isolates of pathogenic bovine mycoplasmas is important for appropriate choice of treatment. Our study compared in vitro susceptibility profiles of Mycoplasma bovis clinical strains, isolated during 2005-2007 from Israeli and imported calves. Minimal inhibitory concentration (MIC) values were determined for macrolides by the microbroth dilution test, for aminoglycosides by commercial Etest, and for fluoroquinolones and tetracyclines by both methods. Notably, although correlation between the methods was generally good, it was not possible to determine the MIC endpoint for enrofloxacin-resistant strains (MIC > or =2.5 microg/ml in the microtest) by Etest. Comparison of antibiotic susceptibility profiles between local and imported M. bovis strains revealed that local strains were significantly more resistant to macrolides than most isolates from imported animals, with MIC(50) of 128 microg/ml vs. 2 microg/ml for tilmicosin and 8 microg/ml vs. 1 microg/ml for tylosin, respectively. However, local strains were more susceptible than most imported strains to fluoroquinolones and spectinomycin. Difference in susceptibility to tetracycline, doxycycline and oxytetracycline between local and imported strains was expressed in MIC(90) values for imported strains in the susceptible range compared to intermediate susceptibility for local strains. The marked difference in susceptibility profiles of M. bovis strains isolated from different geographical regions seen in this study emphasizes the necessity for performing of the antimicrobial susceptibility testing periodically and on a regional basis.

  2. In vitro activity of echinocandins against 562 clinical yeast isolates from a Romanian multicentre study.

    PubMed

    Mares, Mihai; Minea, Bogdan; Nastasa, Valentin; Rosca, Irina; Bostanaru, Andra-Cristina; Marincu, Iosif; Toma, Vasilica; Cristea, Violeta Corina; Murariu, Carmen; Pinteala, Mariana

    2018-06-01

    The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.

  3. Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation.

    PubMed

    Sevillano, David; Calvo, Almudena; Giménez, María-José; Alou, Luis; Aguilar, Lorenzo; Valero, Eva; Carcas, Antonio; Prieto, José

    2004-12-01

    To investigate the bactericidal activity against Streptococcus pneumoniae of simulated amoxicillin serum concentrations obtained in humans after 2000/125 mg sustained-release (SR) and 875/125 mg co-amoxiclav administered twice and three times a day, respectively. An in vitro computerized pharmacodynamic simulation was carried out and colony counts were determined over 24 h. Ten strains non-susceptible to amoxicillin (four of them exhibiting an MIC of 4 mg/L, five strains with an MIC of 8 mg/L and one strain with an MIC of 16 mg/L) were used. With amoxicillin 2000 mg, an initial inoculum reduction >99.99% was obtained for strains with an MIC of 4 mg/L, > or =99% for strains with an MIC of 8 mg/L and 70.6% for the strain with an MIC of 16 mg/L at 24 h sampling time. At this sampling time, no reduction of initial inocula was obtained with amoxicillin 875 mg/8 h for two of the four strains with an MIC of 4 mg/L, three of the five strains with an MIC of 8 mg/L or for the strain with an MIC of 16 mg/L. The new co-amoxiclav 2000/125 mg SR formulation appears to offer advantages versus previous formulations with respect to bactericidal activity against current amoxicillin non-susceptible strains.

  4. Comparative Pharmacodynamics and Antimutant Potentials of Doripenem and Imipenem with Ciprofloxacin-Resistant Pseudomonas aeruginosa in an In Vitro Model

    PubMed Central

    Gilbert, Deborah; Greer, Kenneth; Portnoy, Yury A.; Zinner, Stephen H.

    2012-01-01

    To compare the antipseudomonal efficacy of doripenem and imipenem as well as their abilities to restrict the enrichment of resistant Pseudomonas aeruginosa, multiple-dosing regimens of each drug were simulated at comparable values of the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (T>MIC) and ratios of the 24-hour area under the curve (AUC24) to the MIC. Three clinical isolates of ciprofloxacin-resistant P. aeruginosa (MIC of doripenem, 1 μg/ml; MICs of imipenem, 1, 2, and 2 μg/ml) were exposed to thrice-daily doripenem or imipenem for 3 days at AUC24/MIC ratios of from 50 to 170 h (doripenem) and from 30 to 140 h (imipenem). The antimicrobial effects for susceptible and resistant subpopulations of bacteria were expressed by the areas between control growth and time-kill curves (IEs) and areas under the bacterial mutant concentration curves (AUBCMs), respectively. With each antibiotic, the IE and AUBCM versus log AUC24/MIC relationships were bacterial strain independent. At similar AUC24/MIC ratios, doripenem was slightly less efficient than imipenem against susceptible and resistant subpopulations of bacteria. However, doripenem appeared to be somewhat more efficient than imipenem at clinically achievable AUC24s related to the means of the MICs for the three studied strains and had higher antimutant potentials for two of the three strains. PMID:22203591

  5. Systematic screening of plant extracts from the Brazilian Pantanal with antimicrobial activity against bacteria with cariogenic relevance.

    PubMed

    Brighenti, F L; Salvador, M J; Delbem, Alberto Carlos Botazzo; Delbem, Ádina Cleia Bottazzo; Oliveira, M A C; Soares, C P; Freitas, L S F; Koga-Ito, C Y

    2014-01-01

    This study proposes a bioprospection methodology regarding the antimicrobial potential of plant extracts against bacteria with cariogenic relevance. Sixty extracts were obtained from ten plants--(1) Jatropha weddelliana, (2) Attalea phalerata, (3) Buchenavia tomentosa, (4) Croton doctoris, (5) Mouriri elliptica, (6) Mascagnia benthamiana, (7) Senna aculeata, (8) Unonopsis guatterioides, (9) Allagoptera leucocalyx and (10) Bactris glaucescens--using different extraction methods - (A) 70° ethanol 72 h/25°C, (B) water 5 min/100°C, (C) water 1 h/55°C, (D) water 72 h/25°C, (E) hexane 72 h/25°C and (F) 90° ethanol 72 h/25°C. The plants were screened for antibacterial activity at 50 mg/ml using the agar well diffusion test against Actinomyces naeslundii ATCC 19039, Lactobacillus acidophilus ATCC 4356, Streptococcus gordonii ATCC 10558, Streptococcus mutans ATCC 35688, Streptococcus sanguinis ATCC 10556, Streptococcus sobrinus ATCC 33478 and Streptococcus mitis ATCC 9811. The active extracts were tested to determine their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity and chemical characterization. Forty-seven extracts (78%) were active against at least one microorganism. Extract 4A demonstrated the lowest MIC and MBC for all microorganisms except S. gordonii and the extract at MIC concentration was non-cytotoxic. The concentrated extracts were slightly cytotoxic. Electrospray ionization with tandem mass spectrometry analyses demonstrated that the extract constituents coincided with the mass of the terpenoids and phenolics. Overall, the best results were obtained for extraction methods A, B and C. The present work proved the antimicrobial activity of several plants. Particularly, extracts from C. doctoris were the most active against bacteria involved in dental caries disease. © 2014 S. Karger AG, Basel.

  6. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity

    PubMed Central

    Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi

    2017-01-01

    Background: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. Objective: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. Material and Methods: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Results: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36–72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Conclusion: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. SUMMARY The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error. PMID:28808376

  7. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens

    PubMed Central

    Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.

    2014-01-01

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676

  8. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens.

    PubMed

    Vučić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2014-11-15

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract.

  9. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  10. Relationship of In Vitro Susceptibility to Moxifloxacin and In Vivo Clinical Outcome in Bacterial Keratitis

    PubMed Central

    Lalitha, Prajna; Srinivasan, Muthiah; Manikandan, P.; Bharathi, M. Jayahar; Rajaraman, Revathi; Ravindran, Meenakshi; Cevallos, Vicky; Oldenburg, Catherine E.; Ray, Kathryn J.; Toutain-Kidd, Christine M.; Glidden, David V.; Zegans, Michael E.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2012-01-01

    Background. For bacterial infections, the susceptibility to antibiotics in vitro has been associated with clinical outcomes in vivo, although the importance of minimum inhibitory concentration (MIC) has been debated. In this study, we analyzed the association of MIC on clinical outcomes in bacterial corneal ulcers, while controlling for organism and severity of disease at presentation. Methods. Data were collected as part of a National Eye Institute–funded, randomized, controlled trial (the Steroids for Corneal Ulcers Trial [SCUT]). All cases enrolled in SCUT had a culture-positive bacterial corneal ulcer and received moxifloxacin. The MIC to moxifloxacin was measured by E test. Outcomes included best spectacle-corrected visual acuity, infiltrate/scar size, time to re-epithelialization, and corneal perforation. Results. Five hundred patients with corneal ulcers were enrolled in the trial, and 480 were included in this analysis. The most commonly isolated organisms were Streptococcus pneumoniae and Pseudomonas aeruginosa. A 2-fold increase in MIC was associated with an approximately 0.02 logMAR decrease in visual acuity at 3 weeks, approximately 1 letter of vision loss on a Snellen chart (0.019 logMAR; 95% confidence interval [CI], .0040–.033; P = .01). A 2-fold increase in MIC was associated with an approximately 0.04-mm larger infiltrate/scar size at 3 weeks (0.036 mm; 95% CI, .010–.061; P = .006). After controlling for organism, a higher MIC was associated with slower time to re-epithelialization (hazards ratio, 0.92; 95% CI, .86–.97; P = .005). Conclusions. In bacterial keratitis, a higher MIC to the treating antibiotic is significantly associated with worse clinical outcomes, with approximately 1 line of vision loss per 32-fold increase in MIC. Clinical Trials Registration: NCT00324168. PMID:22447793

  11. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil.

    PubMed

    Ceylan, Ozgur; Ugur, Aysel

    2015-06-01

    In this study, antimicrobial and antibiofilm activities and the chemical composition of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil was evaluated. The essential oil was obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry. Fourteen compounds were characterized, having as major components thymol (38.31%) and carvacrol (37.95%). Minimum inhibitory concentrations (MICs) of oil and the major components were calculated by serial dilution method, and anti-biofilm effects by microplate biofilm assay against five Gram positive (Staphylococcus aureus MU 38, MU 40, MU 46, MU 47, Stahylococcus epidermidis MU 30) and five Gram negative (Pseudomonas aeruginosa MU 187, MU 188, MU 189, Pseudomonas fluorescens MU 180, MU 181) bacteria. It was found that MICs for essential oil, thymol and carvacrol were between 5 and 50 µl/ml, 0.125-0.5 µg/ml and 0.125-05 µl/ml, respectively. The results showed that doses of MIC produced a greater anti-biofilm influence than 0.5, 0.25 and 0.125 MIC. In the presence of essential oil (MIC), the mean biofilm formation value was equal to 67 ± 5.5% for P. aeruginosa MU 188, and essential oil (MIC) inhibition exceeds 60% for P. aeruginosa biofilms. The results also showed that carvacrol (MIC) was able to induce an inhibition 72.9 ± 4.1% for S.aureus (MU 40) biofilm. In addition, thymol (MIC) showed 68.6 ± 5.3% reduction in biofilm formation of P. fluorescens MU 181. This study demonstrated the antimicrobial and antibiofilm activity of T. sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil and points out the exceptional efficiency of thymol and carvacrol, which could represent candidates in the treatment of Pseudomonas and Staphylococcus biofilms.

  12. Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function.

    PubMed

    Sharma, Y; Khan, L A; Manzoor, N

    2016-09-01

    Candidiasis is a major problem in immunocompromised patients. Candida, an opportunistic fungal pathogen, is a major health concern today as conventional drugs are highly toxic with undesirable side effects. Their fungistatic nature is responsible for drug resistance in continuously evolving strains. Geraniol, an acyclic monoterpene alcohol, is a component of several plant essential oils. In the present study, an attempt has been made to understand the antifungal activity of geraniol at the cell membrane level in three Candida species. With an MIC of 30-130μg/mL, this natural compound was fungicidal at concentrations 2×MIC. There was complete suppression of fungal growth at MIC values (growth curves) and encouragingly geraniol is non-toxic even at the concentrations approaching 5×MIC (hemolysis assay). Exposed cells showed altered morphology, wherein the cells appeared either broken or shrivelled up (SEM studies). Significant reduction was seen in ergosterol levels at sub-MIC and glucose-induced H(+) efflux at concentrations>MIC values. Our results suggest that geraniol disrupts cell membrane integrity by interfering with ergosterol biosynthesis and inhibiting the very crucial PM-ATPase. It may hence be used in the management and treatment of both superficial and invasive candidiasis but further studies are required to elaborate its mode of action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates.

    PubMed

    Bogdan, Maja; Drenjancevic, Domagoj; Harsanji Drenjancevic, Ivana; Bedenic, Branka; Zujic Atalic, Vlasta; Talapko, Jasminka; Vukovic, Dubravka

    2018-02-01

    The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.

  14. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study.

    PubMed

    Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash

    2015-01-01

    In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts.

  15. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq.

    PubMed

    Al-Bayati, Firas A

    2009-06-12

    Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6-125.0 microg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 microg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 microg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1-18.5 mm; MIC: 125.0). The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation.

  16. Extracellular DNA Impedes the Transport of Vancomycin in Staphylococcus epidermidis Biofilms Preexposed to Subinhibitory Concentrations of Vancomycin

    PubMed Central

    Tseng, Boo Shan; Howlin, Robert P.; Deacon, Jill; Wharton, Julian A.; Thurner, Philipp J.; Gilmore, Brendan F.; Parsek, Matthew R.; Stoodley, Paul

    2014-01-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. PMID:25267673

  17. Cefazolin potency against methicillin-resistant Staphylococcus aureus: a microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections.

    PubMed

    Nicolau, David P; Silberg, Barry N

    2017-01-01

    Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections.

  18. Comparison of direct sampling and brochoalveolar lavage for determining active drug concentrations in the pulmonary epithelial lining fluid of calves injected with enrofloxacin or tilmicosin.

    PubMed

    Foster, D M; Sylvester, H J; Papich, M G

    2017-12-01

    Antibiotic distribution to interstitial fluid (ISF) and pulmonary epithelial fluid (PELF) was measured and compared to plasma drug concentrations in eight healthy calves. Enrofloxacin (Baytril ® 100) was administered at a dose of 12.5 mg/kg subcutaneously (SC), and tilmicosin (Micotil ® 300) was administered at a dose of 20 mg/kg SC. PELF, sampled by two different methods-bronchoalveolar lavage (BAL) and direct sampling (DS)-plasma, and ISF were collected from each calf and measured for tilmicosin, enrofloxacin and its metabolite ciprofloxacin by HPLC. Pharmacokinetic analysis was performed on the concentrations in each fluid, for each drug. The enrofloxacin/ciprofloxacin concentration as measured by AUC in DS samples was 137 ± 72% higher than in plasma, but in BAL samples, this value was 535 ± 403% (p < .05). The concentrations of tilmicosin in DS and BAL samples exceeded plasma drug concentrations by 567 ± 189% and 776 ± 1138%, respectively. The enrofloxacin/ciprofloxacin concentrations collected by DS were significantly different than those collected by BAL, but the tilmicosin concentrations were not significantly different between the two methods. Concentrations of enrofloxacin/ciprofloxacin exceeded the MIC values for bovine respiratory disease pathogens but tilmicosin did not reach MIC levels for these pathogens in any fluids. © 2017 John Wiley & Sons Ltd.

  19. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection.

    PubMed

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller-Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration-time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin ( R 2 = 0.9711). The calculated AUC 12h /MIC ratios in serum required to produce the net bacterial stasis, 1-log 10 and 2-log 10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections.

  20. Effect of Polysorbate 80 on Oritavancin Binding to Plastic Surfaces: Implications for Susceptibility Testing▿

    PubMed Central

    Arhin, Francis F.; Sarmiento, Ingrid; Belley, Adam; McKay, Geoffrey A.; Draghi, Deborah C.; Grover, Parveen; Sahm, Daniel F.; Parr, Thomas R.; Moeck, Gregory

    2008-01-01

    Oritavancin, a semisynthetic lipoglycopeptide with activity against gram-positive bacteria, has multiple mechanisms of action, including the inhibition of cell wall synthesis and the perturbation of the membrane potential. Approved guidelines for broth microdilution MIC assays with dalbavancin, another lipoglycopeptide, require inclusion of 0.002% polysorbate 80. To investigate the potential impact of polysorbate 80 on oritavancin susceptibility assays, we quantified the recovery of [14C]oritavancin from susceptibility assay plates with and without polysorbate 80 and examined the effect of the presence of polysorbate 80 on the oritavancin MICs for 301 clinical isolates from the genera Staphylococcus, Enterococcus, and Streptococcus. In the absence of polysorbate 80, [14C]oritavancin was rapidly lost from solution in susceptibility assay test plates: 9% of the input drug was recovered in broth at 1 h when [14C]oritavancin was tested at 1 μg/ml. Furthermore, proportionately greater losses were observed at lower oritavancin concentrations, suggesting saturable binding of oritavancin to surfaces. The inclusion of 0.002% polysorbate 80 or 2% lysed horse blood permitted the recovery of 80 to 100% [14C]oritavancin at 24 h for all drug concentrations tested. Concordantly, oritavancin MIC90s for streptococcal isolates, as determined in medium containing 2% lysed horse blood, were identical with and without polysorbate 80. In stark contrast, polysorbate 80 reduced the oritavancin MIC90s by 16- to 32-fold for clinical isolates of enterococci and staphylococci, which are typically cultured without blood. The results presented here provide evidence that the MIC data for oritavancin in the current literature significantly underestimate the potency of oritavancin in vitro. Moreover, the combination of data from MIC and [14C]oritavancin recovery studies supports the revision of the oritavancin broth microdilution method to include polysorbate 80 throughout the assay. PMID:18299406

  1. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus.

    PubMed

    Meletiadis, J; Leth Mortensen, K; Verweij, P E; Mouton, J W; Arendrup, M C

    2017-02-01

    Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on visual reading. Spectrophotometric reading was not adopted because of concern that non-uniform filamentous growth might lead to unreliable and non-reproducible results. We therefore evaluated spectrophotometric reading for the determination of MICs of antifungal azoles against Aspergillus fumigatus. Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared with spectrophotometrically determined MICs and essential (±1 twofold dilution) and categorical (susceptible/intermediate/resistant or wild-type/non-wild-type) agreement was calculated. Spectrophotometric data were analysed with regression analysis using the E max model, and the effective concentration corresponding to 5% (EC 5 ) was estimated. Using the 5% cut-off, high essential (92%-97%) and categorical (93%-99%) agreement (<6% errors) was found between spectrophotometric and visual MICs. The EC 5 also correlated with the visually determined MICs with an essential agreement of 83%-96% and a categorical agreement of 90%-100% (<5% errors). Spectrophotometric determination of MICs of antifungal drugs may increase objectivity, and allow automation and high-throughput of EUCAST E.Def 9.3 antifungal susceptibility testing of Aspergillus species. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Compilation and analysis of global surface water concentrations for individual insecticide compounds.

    PubMed

    Stehle, Sebastian; Bub, Sascha; Schulz, Ralf

    2018-10-15

    The decades-long agricultural use of insecticides resulted in frequent contamination of surface waters globally regularly posing high risks for the aquatic biodiversity. However, the concentration levels of individual insecticide compounds have by now not been compiled and reported using global scale data, hampering our knowledge on the insecticide exposure of aquatic ecosystems. Here, we specify measured insecticide concentrations (MICs, comprising in total 11,300 water and sediment concentrations taken from a previous publication) for 28 important insecticide compounds covering four major insecticide classes. Results show that organochlorine and organophosphate insecticides, which dominated the global insecticide market for decades, have been detected most often and at highest concentration levels in surface waters globally. In comparison, MICs of the more recent pyrethroids and neonicotinoids were less often reported and generally at lower concentrations as a result of their later market introduction and lower application rates. An online insecticide classification calculator (ICC; available at: https://static.magic.eco/icc/v1) is provided in order to enable the comparison and classification of prospective MICs with available global insecticide concentrations. Spatial analyses of existing data show that most MICs were reported for surface waters in North America, Asia and Europe, whereas highest concentration levels were detected in Africa, Asia and South America. An evaluation of water and sediment MICs showed that theoretical organic carbon-water partition coefficients (K OC ) determined in the laboratory overestimated K OC values based on actual field concentrations by up to a factor of more than 20, with highest deviations found for highly sorptive pyrethroids. Overall, the comprehensive compilation of insecticide field concentrations presented here is a valuable tool for the classification of future surface water monitoring results and serves as important input data for more field relevant toxicity testing approaches and pesticide exposure and risk assessment schemes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium.

    PubMed

    Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian

    2017-01-01

    Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.

  4. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. In vitro susceptibility of contagious ovine digital dermatitis associated Treponema spp. isolates to antimicrobial agents in the UK.

    PubMed

    Angell, Joseph W; Clegg, Simon R; Sullivan, Leigh E; Duncan, Jennifer S; Grove-White, Dai H; Carter, Stuart D; Evans, Nicholas J

    2015-12-01

    Contagious ovine digital dermatitis (CODD) is an important cause of infectious lameness in sheep in the UK and Ireland and has a severe impact on the welfare of affected individuals. The three treponemal phylogroups Treponema medium/Treponema vincentii-like, Treponema phagedenis-like and Treponema pedis spirochaetes have been associated with clinical CODD lesions and are considered to be a necessary cause of disease. There are scant data on the antimicrobial susceptibility of the treponemes cultured from CODD lesions. The aim of this study was to determine in vitro the miniumum inhibitory concentration/ minimum bactericidal concentration (MIC/MBC) of antimicrobials used in the sheep industry for isolates of the three CODD associated treponeme phylogroups T. medium/T. vincentii-like, T. phagedenis-like and T. pedis. Twenty treponeme isolates; from 19 sheep with clinical CODD lesions. A microdilution method was used to determine in vitro the MIC/MBC of 10 antimicrobial agents for 20 treponeme isolates (five T. medium/T. vincentii-like, 10 T. phagedenis-like and five T. pedis). The antimicrobials tested were penicillin G, amoxicillin, oxytetracycline, tilmicosin, lincomycin, spectinomycin, tylosin, tildipirosin, tulathromycin and gamithromycin. The treponeme isolates tested showed low MICs and MBCs to all 10 antimicrobials tested. They were most susceptible to gamithromycin and tildipirosin (MIC90: 0.0469 mg/L), and were least susceptible to lincomycin, spectinomycin and oxytetracycline (MIC90: 48 mg/L, 24 mg/L and 3 mg/L, respectively). These data are comparable to in vitro antimicrobial susceptibility data for treponemes cultured from bovine digital dermatitis lesions. Dependent on local licensing, penicillin and tilmicosin appear to be the best candidates for future in vivo studies. © 2015 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  6. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans

    PubMed Central

    Break, Timothy J; Desai, Jigar V; Ferre, Elise M N; Henderson, Christina; Zelazny, Adrian M; Siebenlist, Ulrich; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P; Lionakis, Michail S

    2018-01-01

    Abstract Background Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. Objectives To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. Methods MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1−/− mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. Results Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1−/− mice. Conclusions VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains. PMID:29040636

  7. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Antimicrobial Susceptibility of Udder Pathogens Isolated from Dairy Herds in the West Littoral Region of Uruguay

    PubMed Central

    2002-01-01

    A total of 522 strains belonging to streptococci, enterococci and staphylococci isolated from sub-clinical and clinical cases of bovine mastitis from the west littoral region of Uruguay were analysed for their susceptibility to several antimicrobial agents. The susceptibility patterns were studied by agar disk diffusion methods (ADDM) and broth micro-dilution to determine the minimum inhibitory concentration (MIC). The concentration that inhibits 90% (MIC90) of the analysed strains reported in micrograms per millilitre, for Staphylococcus aureus were > 8, 8, ≤ 0.5, ≤ 4, ≤ 1, ≤ 0.5, > 64, ≤ 0.25, 0.5, ≤ 1 and ≤ 1 to penicillin, ampicillin, oxacillin, cephalotin, gentamicin, erythromycin, oxitetracycline, enrofloxacin, trimethoprim/sulfamethoxazole, neomycin, and clindamycin, respectively. Coagulase-negative staphylococci (CNS) had different values for penicillin (4) and ampicillin (2), while the other antimicrobial agents had the same MIC90 values as reported for S. aureus. The MIC90 values for streptococci were 0.12, 0.25, ≤ 4, 16, ≤ 0.25, 0.5, 0.25 for penicillin, ampicillin, cephalotin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, whereas MIC90 for enterococci were 4, 4, 4, ≤ 0.5, 2, > 8 for penicillin, ampicillin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, respectively. Of 336 strains of S. aureus, 160 (47.6%) were resistant to penicillin. For 41 CNS strains, 10 (27%) presented penicillin-resistance. All the streptococcal strains were susceptible to penicillin, while 3 (7%) of the 43 enteroccocal strains were resistant. Non significant statistical differences were found between the results obtained by ADDM and broth micro-dilution for classifying bacterial isolates as susceptible or resistant according to the National Committee of Clinical Laboratory Standards. PMID:12071114

  9. Modulation of the norfloxacin resistance in Staphylococcus aureus by Cordia verbenaceae DC

    PubMed Central

    Matias, Edinardo F.F.; Santos, Karla K. A.; Falcão-Silva, Vivyanne S.; Siqueira-Júnior, José P.; Costa, José G. M.; Coutinho, Henrique D.M.

    2013-01-01

    Background & objectives: Several chemical compounds isolated from natural sources have antibacterial activity and some enhance the antibacterial activity of antibiotics reversing the natural resistance of bacteria to certain antibiotics. In this study, the hexane and methanol extract of Cordia verbenaceae were assessed for antibacterial activity alone and combinated with norfloxacin against the Staphylococcus aureus strain SA1199B. Methods: The minimum inhibitory concentration (MIC) of extracts was assayed using microdilution assay and the modulatory activity was evaluated using plate diffusion assay. Results: The MIC observed varied between 256 to >1024 μg/ml. However, the antibiotic activity of norfloxacin was enhanced in the presence of subinhibitory concentrations of hexane extract of C. verbenaceae (HECV). Interpretations & conclusions: Our results indicate that Cordia verbenaceae DC. can be a source of plant derived products with antibiotic modifying activity. PMID:23481069

  10. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.

    PubMed

    Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C

    2001-03-01

    The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. Copyright 2001 John Wiley & Sons, Ltd.

  11. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  12. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  13. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  14. Mutant prevention concentrations of four carbapenems against gram-negative rods.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C

    2010-06-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ss-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to > or =16. The MPC/MIC ratios for beta-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 microg/ml) than those for ss-lactamase-negative strains.

  15. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq

    PubMed Central

    Al-Bayati, Firas A

    2009-01-01

    Background Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. Methods The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. Results A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6–125.0 μg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 μg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 μg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1–18.5 mm; MIC: 125.0). Conclusion The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation. PMID:19523224

  16. Chemical composition and evaluation of modulatory of the antibiotic activity from extract and essential oil of Myracrodruon urundeuva.

    PubMed

    Figueredo, Fernando G; Lucena, Bruno F F; Tintino, Saulo R; Matias, Edinardo F F; Leite, Nadghia F; Andrade, Jacqueline C; Nogueira, Lavouisier F B; Morais, Edson C; Costa, José G M; Coutinho, Henrique D M; Rodrigues, Fabiola F G

    2014-05-01

    The combination of antibiotics with natural products has demonstrated promising synergistic effects in several therapeutic studies. The aim of this study was to determine the effect of a combination of an ethanol extract of Myracrodruon urundeuva Fr. All. (Anacardiaceae) (aroeira plant) and its essential oil with six antimicrobial drugs against multiresistant strains of Staphylococcus aureus and Escherichia coli from clinical isolates. After identification of the chemical components by GC-MS, the antibacterial activity of the natural products and antibiotics was assessed by determining the minimal inhibitory concentration (MIC) using the microdilution method and concentrations ranging 8-512 μg/mL and 0.0012-2.5 mg/mL, respectively. Assays were performed to test for a possible synergistic action between the plant products and the antimicrobials, using the extract and the oil at a sub-inhibitory concentration (128 μg/mL) and antibiotic at concentrations varying between 8 and 512 μg/mL. The GC-MS analysis identified the main compound as δ-carene (80.41%). The MIC of the natural products was >1024 μg/mL, except against S. aureus ATCC25923. Only the combinations of the natural products with gentamicin, amikacin and clindamycin were effective against S. aureus 358, enhancing the antibiotic activity by reducing the MIC. The extract from aroeira showed a higher antibacterial activity and the oil was more effective in potentiating the activity of conventional antibiotics.

  17. Establishing quality control ranges for antimicrobial susceptibility testing of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus: a cornerstone to develop reference strains for Korean clinical microbiology laboratories.

    PubMed

    Hong, Sung Kuk; Choi, Seung Jun; Shin, Saeam; Lee, Wonmok; Pinto, Naina; Shin, Nari; Lee, Kwangjun; Hong, Seong Geun; Kim, Young Ah; Lee, Hyukmin; Kim, Heejung; Song, Wonkeun; Lee, Sun Hwa; Yong, Dongeun; Lee, Kyungwon; Chong, Yunsop

    2015-11-01

    Quality control (QC) processes are being performed in the majority of clinical microbiology laboratories to ensure the performance of microbial identification and antimicrobial susceptibility testing by using ATCC strains. To obtain these ATCC strains, some inconveniences are encountered concerning the purchase cost of the strains and the shipping time required. This study was focused on constructing a database of reference strains for QC processes using domestic bacterial strains, concentrating primarily on antimicrobial susceptibility testing. Three strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) that showed legible results in preliminary testing were selected. The minimal inhibitory concentrations (MICs) and zone diameters (ZDs) of eight antimicrobials for each strain were determined according to the CLSI M23. All resulting MIC and ZD ranges included at least 95% of the data. The ZD QC ranges obtained by using the CLSI method were less than 12 mm, and the MIC QC ranges extended no more than five dilutions. This study is a preliminary attempt to construct a bank of Korean QC strains. With further studies, a positive outcome toward cost and time reduction can be anticipated.

  18. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  19. Assessing the antibiotic potential of essential oils against Haemophilus ducreyi.

    PubMed

    Lindeman, Zachary; Waggoner, Molly; Batdorff, Audra; Humphreys, Tricia L

    2014-05-27

    Haemophilus ducreyi is the bacterium responsible for the genital ulcer disease chancroid, a cofactor for the transmission of HIV, and it is resistant to many antibiotics. With the goal of exploring possible alternative treatments, we tested essential oils (EOs) for their efficacy as antimicrobial agents against H. ducreyi. We determine the minimum inhibitory concentration (MIC) of Cinnamomum verum (cinnamon), Eugenia caryophyllus (clove) and Thymus satureioides (thyme) oil against 9 strains of H. ducreyi using the agar dilution method. We also determined the minimum lethal concentration for each oil by subculturing from the MIC plates onto fresh agar without essential oil. For both tests, we used a 2-way ANOVA to evaluate whether antibiotic-resistant strains had a different sensitivity to the oils relative to non-resistant strains. All 3 oils demonstrated excellent activity against H. ducreyi, with MICs of 0.05 to 0.52 mg/mL and MLCs of 0.1-0.5 mg/mL. Antibiotic-resistant strains of H. ducreyi were equally susceptible to these 3 essential oils relative to non-resistant strains (p=0.409). E. caryophyllus, C. verum and T. satureioides oils are promising alternatives to antibiotic treatment for chancroid.

  20. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. In Vitro Evaluation of the Type of Interaction Obtained by the Combination of Terbinafine and Itraconazole, Voriconazole, or Amphotericin B against Dematiaceous Molds▿

    PubMed Central

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Schreiber, Angélica Zaninelli

    2011-01-01

    In vitro associations using the checkerboard microdilution method indicated lower MIC ranges and MIC median values for each drug (terbinafine, itraconazole, voriconazole, and amphotericin B) in association than those obtained for each single drug. Fractional inhibitory concentration index (FIC) results showed 100% synergism in the association of terbinafine with voriconazole, 96.5% in the association of terbinafine with amphotericin B, and 75.9% in the association of terbinafine with itraconazole. Drug combinations may be useful for treatment of dematiaceous mold infections as an alternative treatment to enhance the effectiveness of each drug. PMID:21690288

  2. Does contemporary vancomycin dosing achieve therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI study

    PubMed Central

    2014-01-01

    Introduction The objective of this study was to describe the pharmacokinetics of vancomycin in ICU patients and to examine whether contemporary antibiotic dosing results in concentrations that have been associated with favourable response. Methods The Defining Antibiotic Levels in Intensive Care (DALI) study was a prospective, multicentre pharmacokinetic point-prevalence study. Antibiotic dosing was as per the treating clinician either by intermittent bolus or continuous infusion. Target trough concentration was defined as ≥15 mg/L and target pharmacodynamic index was defined as an area under the concentration-time curve over a 24-hour period divided by the minimum inhibitory concentration of the suspected bacteria (AUC0–24/MIC ratio) >400 (assuming MIC ≤1 mg/L). Results Data of 42 patients from 26 ICUs were eligible for analysis. A total of 24 patients received vancomycin by continuous infusion (57%). Daily dosage of vancomycin was 27 mg/kg (interquartile range (IQR) 18 to 32), and not different between patients receiving intermittent or continuous infusion. Trough concentrations were highly variable (median 27, IQR 8 to 23 mg/L). Target trough concentrations were achieved in 57% of patients, but more frequently in patients receiving continuous infusion (71% versus 39%; P = 0.038). Also the target AUC0–24/MIC ratio was reached more frequently in patients receiving continuous infusion (88% versus 50%; P = 0.008). Multivariable logistic regression analysis with adjustment by the propensity score could not confirm continuous infusion as an independent predictor of an AUC0–24/MIC >400 (odds ratio (OR) 1.65, 95% confidence interval (CI) 0.2 to 12.0) or a Cmin ≥15 mg/L (OR 1.8, 95% CI 0.4 to 8.5). Conclusions This study demonstrated large interindividual variability in vancomycin pharmacokinetic and pharmacodynamic target attainment in ICU patients. These data suggests that a re-evaluation of current vancomycin dosing recommendations in critically ill patients is needed to more rapidly and consistently achieve sufficient vancomycin exposure. PMID:24887569

  3. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp.

    PubMed

    Hammer, K A; Carson, C F; Riley, T V

    1998-11-01

    The in-vitro activity of a range of essential oils, including tea tree oil, against the yeast candida was examined. Of the 24 essential oils tested by the agar dilution method against Candida albicans ATCC 10231, three did not inhibit C. albicans at the highest concentration tested, which was 2.0% (v/v) oil. Sandalwood oil had the lowest MIC, inhibiting C. albicans at 0.06%. Melaleuca alternifolia (tea tree) oil was investigated for activity against 81 C. albicans isolates and 33 non-albicans Candida isolates. By the broth microdilution method, the minimum concentration of oil inhibiting 90% of isolates for both C. albicans and non-albicans Candida species was 0.25% (v/v). The minimum concentration of oil killing 90% of isolates was 0.25% for C. albicans and 0.5% for non-albicans Candida species. Fifty-seven Candida isolates were tested for sensitivity to tea tree oil by the agar dilution method; the minimum concentration of oil inhibiting 90% of isolates was 0.5%. Tests on three intra-vaginal tea tree oil products showed these products to have MICs and minimum fungicidal concentrations comparable to those of non-formulated tea tree oil, indicating that the tea tree oil contained in these products has retained its anticandidal activity. These data indicate that some essential oils are active against Candida spp., suggesting that they may be useful in the topical treatment of superficial candida infections.

  4. Antimicrobial Activity of Pomegranate and Green Tea Extract on Propionibacterium Acnes, Propionibacterium Granulosum, Staphylococcus Aureus and Staphylococcus Epidermidis.

    PubMed

    Li, Zhaoping; Summanen, Paula H; Downes, Julia; Corbett, Karen; Komoriya, Tomoe; Henning, Susanne M; Kim, Jenny; Finegold, Sydney M

    2015-06-01

    We used pomegranate extract (POMx), pomegranate juice (POM juice) and green tea extract (GT) to establish in vitro activities against bacteria implicated in the pathogenesis of acne. Minimum inhibitory concentrations (MIC) of 94 Propionibacterium acnes, Propionibacterium granulosum, Staphylococcus aureus, and Staphylococcus epidermidis strains were determined by Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the phytochemicals was determined using the Folin-Ciocalteu method and the polyphenol composition by HPLC. Bacteria were identified by 16S rRNA sequence analysis. GT MIC of 400 μg/ml or less was obtained for 98% of the strains tested. 64% of P. acnes strains had POMx MICs at 50 μg/ml whereas 36% had MIC >400 μg/ml. POMx, POM juice, and GT showed inhibitory activity against all the P. granulosum strains at ≤100 μg/ml. POMx and GT inhibited all the S. aureus strains at 400 μg/ml or below, and POM juice had an MIC of 200 μg/ml against 17 S. aureus strains. POMx inhibited S. epidermidis strains at 25 μg/ml, whereas POM juice MICs were ≥200 μg/ml. The antibacterial properties of POMx and GT on the most common bacteria associated with the development and progression of acne suggest that these extracts may offer a better preventative/therapeutic regimen with fewer side effects than those currently available.

  5. Activity of TDT 067 (Terbinafine in Transfersome) against Agents of Onychomycosis, as Determined by Minimum Inhibitory and Fungicidal Concentrations▿

    PubMed Central

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-01-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38–A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC50 values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted. PMID:21411586

  6. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA.

    PubMed

    Lai, Chih-Cheng; Chen, Chi-Chung; Chuang, Yin-Ching; Tang, Hung-Jen

    2017-01-31

    Eight heterogeneous vancomycin-intermediate S. aureus (h-VISA) and seven VISA clinical isolates confirmed by the population analysis profile/area under the curve ratio (PAP/AUC) were collected. We further performed the PAP/AUC, time-killing methods and MIC tests using vancomycin/teicoplanin alone or combination with susceptible breakpoint concentrations of cefazolin, cefmetazole, cefotaxime, and cefepime for these isolates. The PAP/AUC MIC curve shifted left after addition of cephalosporins with vancomycin or teicoplanin for both h-VISA and VISA isolates. With the combination of different cephalosporins with vancomycin or teicoplanin, the AUC/Mu3 AUC ratio decreased to <0.9 for the standard Mu3 isolate which are compatible with the definition of vancomycin susceptible S. aureus. These decreases ranged between 1.81-2.02 and 2.37-2.85-fold for h-VISA treated with cephalosporins and vancomycin or teicoplanin, and 2.05-4.59, and 2.93-4,89-fold for VISA treated with cephalosporins with vancomycin or teicoplanin. As measured by time-killing assays, the combinations of different cephalosporins with vancomycin concentrations at 1/2 and 1/4 MIC, exhibited a bactericidal and bacteriostatic effect in VISA. The mean fold of MIC decline for vancomycin base combinations ranged from 1.81-3.83 and 2.71-9.33 for h-VISA and VISA, respectively. Overall, this study demonstrated the enhanced antibacterial activity of vancomycin/teicoplanin after adding cephalosporins against clinical h-VISA/VISA isolates.

  7. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?

    PubMed

    Roberts, Jason A; Paul, Sanjoy K; Akova, Murat; Bassetti, Matteo; De Waele, Jan J; Dimopoulos, George; Kaukonen, Kirsi-Maija; Koulenti, Despoina; Martin, Claude; Montravers, Philippe; Rello, Jordi; Rhodes, Andrew; Starr, Therese; Wallis, Steven C; Lipman, Jeffrey

    2014-04-01

    Morbidity and mortality for critically ill patients with infections remains a global healthcare problem. We aimed to determine whether β-lactam antibiotic dosing in critically ill patients achieves concentrations associated with maximal activity and whether antibiotic concentrations affect patient outcome. This was a prospective, multinational pharmacokinetic point-prevalence study including 8 β-lactam antibiotics. Two blood samples were taken from each patient during a single dosing interval. The primary pharmacokinetic/pharmacodynamic targets were free antibiotic concentrations above the minimum inhibitory concentration (MIC) of the pathogen at both 50% (50% f T>MIC) and 100% (100% f T>MIC) of the dosing interval. We used skewed logistic regression to describe the effect of antibiotic exposure on patient outcome. We included 384 patients (361 evaluable patients) across 68 hospitals. The median age was 61 (interquartile range [IQR], 48-73) years, the median Acute Physiology and Chronic Health Evaluation II score was 18 (IQR, 14-24), and 65% of patients were male. Of the 248 patients treated for infection, 16% did not achieve 50% f T>MIC and these patients were 32% less likely to have a positive clinical outcome (odds ratio [OR], 0.68; P = .009). Positive clinical outcome was associated with increasing 50% f T>MIC and 100% f T>MIC ratios (OR, 1.02 and 1.56, respectively; P < .03), with significant interaction with sickness severity status. Infected critically ill patients may have adverse outcomes as a result of inadeqaute antibiotic exposure; a paradigm change to more personalized antibiotic dosing may be necessary to improve outcomes for these most seriously ill patients.

  8. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    PubMed

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  9. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model.

    PubMed

    Zhang, Bingxu; Gu, Xiaoyan; Li, Yafei; Li, Xiaohong; Gu, Mengxiao; Zhang, Nan; Shen, Xiangguang; Ding, Huanzhong

    2014-12-16

    The resistance of cephalosporins is significantly serious in veterinary clinic. In order to inhibit the bacterial resistance production, the mutant selection window (MSW) hypothesis with Escherichia coli (E. coli) ATCC 25922 exposed to cefquinome in an animal tissue-cage model was investigated. Localized infection with E. coli was established in piglets, and the infected animals were administrated intramuscularly with various doses and intervals of cefquinome to provide antibiotic concentrations below the MIC99, between the MIC99 and the mutant prevention concentration (MPC), and above the MPC. E. coli lost susceptibility when drug concentrations fluctuated between the lower and upper boundaries of the window, which defined in vitro as the MIC99 (0.06 μg/mL) and the MPC (0.16 μg/mL) respectively. For PK/PD parameters, there were no mutant selection enrichment when T>MIC99 was ≤ 25% or T>MPC was ≥ 50% of administration interval. When T>MIC99 was > 25% and T>MPC was <50% of administration interval, resistance selection was observed. When AUC24 h/MIC99 and AUC24 h/MPC were considered, the mutant selection window extended from 32.84 h to 125.64 h and from 12.83 h to 49.09 h, respectively. These findings demonstrate that the MSW exists in vivo for time-dependent antimicrobial agents, and its boundaries fit well with those determined in vitro. Maintenance of antimicrobial concentrations above the MPC for > 50% of administration interval is a straightforward way to restrict the acquisition of resistance in this tissue cage model. This situation was achieved with daily intramuscular doses of 1 mg cefquinome/kg body weight.

  10. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.

  11. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles.

    PubMed

    Iatta, Roberta; Puttilli, Maria Rita; Immediato, Davide; Otranto, Domenico; Cafarchia, Claudia

    2017-03-01

    This study aims to evaluate the effect of efflux pump modulators (EPMs) on the minimal inhibitory concentration (MIC) of fluconazole (FLZ) and voriconazole (VOR) in Malassezia furfur and Malassezia pachydermatis. The in vitro efficacy of azoles, in combination with EPMs (ie haloperidol-HAL, promethazine-PTZ and cyclosporine A-CYS), against 21 M. furfur from bloodstream infection patients and 14 M. pachydermatis from the skin of dogs with dermatitis, was assessed using a broth microdilution chequerboard analysis. Data were analysed using the model-fractional inhibitory concentration index (FICI) method. The MIC of FLZ and VOR of Malassezia spp. decreased in the presence of sub-inhibitory concentrations of HAL and/or PTZ. The synergic effect was observed only in strains with FLZ MIC≥128 μg/mL for M. furfur, FLZ MIC≥64 μg/mL for M. pachydermatis and VOR MIC≥4 μg/mL in both Malassezia spp. These results suggest that the drug efflux pumps are involved as defence mechanisms to azole drugs in Malassezia yeast. The synergism might be related to an increased expression of efflux pump genes, eventually resulting in azole resistance phenomena. Finally, the above FLZ and VOR MIC values might be considered the cut-off to discriminate susceptible and resistant strains. © 2016 Blackwell Verlag GmbH.

  12. EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.

    PubMed

    Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W

    2016-01-01

    The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The susceptibility (MIC) of anaerobes was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. Inoculum contained 10(5) CFU per spot was cultured with Steers replicator upon the surface of agar with various tea tree oil concentrations or without oil (anaerobes growth control). Incubation the plates was performed in anaerobic jars under anaerobic conditions at 37 degrees C for 48 h. MIC was defined as the lowest concentrations of the essential oil completely inhibiting growth of anaerobic bacteria. Test results indicate, that among Gram-negative bacteria the most sensitive to essential oil were strains of Veillonella and Porphyromonas species. Essential oil in low concentrations (MIC in the range of = 0.12 - 0.5 mg/mL) inhibited growth of accordingly 80% and 68% strains. The least sensitive were strains of the genus Tannerella, Parabacteroides and Dialister (MIC 1.0 - 2.0 mg/mL). In the case of Gram-positive anaerobic bacteria the tea tree oil was the most active to strains of cocci of the genus Anaerococcus and Ruminococcus (MIC in range = 0.12 - 0.5 mg/mL) or strains of rods of the genus Eubacterium and Eggerthella (MIC = 0.25 mg/mL). Among Gram-positive rods the least sensitive were the strains of the genus Bifidobacterium ( MIC = 2.0 mg/mL). The tea tree oil was more active to Gram-positive than to Gram-negative anaerobic bacteria.

  13. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    PubMed

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  14. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    PubMed Central

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  15. Minimum inhibitory concentration and killing properties of rifampicin against canine Staphylococcus pseudintermedius isolates from dogs in the southeast USA.

    PubMed

    Ho, Karen K; Conley, Austin C; Kennis, Robert A; Hathcock, Terri L; Boothe, Dawn M; White, Amelia G

    2018-05-29

    Meticillin-resistant (MR) staphylococcal pyoderma in dogs has led to increased use of alternate antibiotics such as rifampicin (RFP). However, little information exists regarding its pharmacodynamics in MR Staphylococcus pseudintermedius. To determine the minimum inhibitory concentration (MIC) and killing properties of RFP for canine Staphylococcus pseudintermedius isolates. The MIC of RFP was determined using the ETEST ® for 50 meticillin-susceptible (MS) and 50 MR S. pseudintermedius isolates collected from dogs. From these isolates, two MS isolates (RFP MIC of 0.003 and 0.008 μg/mL, respectively) and two MR isolates (RFP MIC of 0.003 and 0.012 μg/mL, respectively) were subjected to time-kill studies. Mueller-Hinton broth was supplemented with RFP at 0, 0.5, 1, 2, 4, 8, 16 and 32 times the MIC for 0, 2, 4, 10, 16 and 24 h. The number of viable colony forming units in each sample was determined using a commercial luciferase assay kit. The MIC 50 and MIC 90 were the same for MS and MR isolates, at 0.004 μg/mL and 0.008 μg/mL, respectively. Rifampicin kill curves were not indicative of concentration-dependency, suggesting time-dependent activity. Two isolates (MS 0.003 and 0.008 μg/mL) exhibited bacteriostatic activity, whereas two others (MR 0.003 and 0.012 μg/mL) exhibited bactericidal activity. This study demonstrated that MS and MR S. pseudintermedius isolates were equally susceptible to rifampicin and that dosing intervals should be designed for time-dependent efficacy. These data can support pharmacokinetic studies of RFP in dogs with susceptible infections caused by S. pseudintermedius. © 2018 ESVD and ACVD.

  16. Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans

    PubMed Central

    de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes

    2011-01-01

    Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651

  17. In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans

    PubMed Central

    Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven

    2012-01-01

    Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424

  18. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

    PubMed Central

    Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol

    2012-01-01

    In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341

  19. Antibacterial activity of selected Malaysian honey.

    PubMed

    Zainol, Mohd Izwan; Mohd Yusoff, Kamaruddin; Mohd Yusof, Mohd Yasim

    2013-06-10

    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.

  20. Bactericidal activity and post-antibiotic effect of ozenoxacin against Propionibacterium acnes.

    PubMed

    Kanayama, Shoji; Okamoto, Kazuaki; Ikeda, Fumiaki; Ishii, Ritsuko; Matsumoto, Tatsumi; Hayashi, Naoki; Gotoh, Naomasa

    2017-06-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, is used for the treatment of acne vulgaris in Japan. We investigated bactericidal activity and post-antibiotic effect (PAE) of ozenoxacin against Propionibacterium acnes, a major causative bacterium of acne vulgaris. The minimum inhibitory concentrations (MICs) of ozenoxacin against 3 levofloxacin-susceptible strains (MIC of levofloxacin; ≤4 μg/mL) and 3 levofloxacin-resistant strains (MIC of levofloxacin; ≥8 μg/mL) ranged from 0.03 to 0.06 μg/mL and from 0.25 to 0.5 μg/mL, respectively. These MICs of ozenoxacin were almost the same or lower than nadifloxacin and clindamycin. The minimum bactericidal concentrations (MBCs) of ozenoxacin against the levofloxacin-susceptible and -resistant strains were from 0.06 to 8 μg/mL and from 0.5 to 4 μg/mL, respectively. These MBCs were lower than those of nadifloxacin and clindamycin. In time-kill assay, ozenoxacin at 1/4, 1 and 4 times the respective MIC against both levofloxacin-susceptible and -resistant strains showed a concentration-dependent bactericidal activity. Ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains showed more potent and more rapid onset of bactericidal activity compared to nadifloxacin and clindamycin at 4 times the respective MICs. The PAEs of ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains were from 3.3 to 17.1 h, which were almost the same or longer than nadifloxacin and clindamycin. In contrast, the PAEs were hardly induced by any antimicrobial agents against the levofloxacin-resistant strains. The present findings suggest that ozenoxacin has a potent bactericidal activity against both levofloxacin-susceptible and -resistant P. acnes, and a long-lasting PAE against levofloxacin-susceptible P. acnes. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin.

    PubMed

    Doroshenko, Natalya; Tseng, Boo Shan; Howlin, Robert P; Deacon, Jill; Wharton, Julian A; Thurner, Philipp J; Gilmore, Brendan F; Parsek, Matthew R; Stoodley, Paul

    2014-12-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Efficacy of taurolidine against periodontopathic species--an in vitro study.

    PubMed

    Eick, Sigrun; Radakovic, Sabrina; Pfister, Wolfgang; Nietzsche, Sandor; Sculean, Anton

    2012-06-01

    The antimicrobial effect of taurolidine was tested against periodontopathic species in comparison to chlorhexidine digluconate in the presence or absence of serum. Minimal inhibitory concentrations (MIC), microbiocidal concentrations (MBC), as well as killing were determined against 32 different microbial strains including 3 Porphyromonas gingivalis, 3 Aggregatibacter actinomycetemcomitans, and 15 potentially superinfecting species with and without 25% v/v human serum. The MIC(50) of taurolidine against the tested microbial strains was 0.025% and the MIC(90) 0.05%. The respective values for the MBCs were 0.05% and 0.1%. Addition of 25% serum (heat-inactivated) did not change the MIC and MBC values of taurolidine. In contrast, MICs and MBCs of chlorhexidine (CHX) increased by two steps after addition of serum. Taurolidine killed microorganisms in a concentration and time-dependent manner, the killing rate of 1.6% taurolidine was 99.08% ± 2.27% in mean after 2 h. Again, killing activity of taurolidine was not affected if serum was added, whereas addition of inactivated serum clearly reduced the killing rate of all selected bacterial strains by CHX. Therefore, taurolidine possesses antimicrobial properties which are not reduced in the presence of serum as a main component in gingival crevicular fluid and wound fluid. Taurolidine may have potential as an antimicrobial agent in non-surgical and surgical periodontal treatment.

  3. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin

    PubMed Central

    Kim, Doo; Kordick, Dorsey; Divers, Thomas

    2006-01-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05-6.25 µg/ml and 6.25-25.0 µg/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05-0.39 µg/ml and 0.20-0.78 µg/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05-0.39 µg/ml and 0.05-0.39 µg/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (≥100 µg/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (≤0.01 µg/ml). PMID:17106227

  4. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  5. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  6. High-level penicillin resistance and penicillin-gentamicin synergy in Enterococcus faecium.

    PubMed Central

    Torres, C; Tenorio, C; Lantero, M; Gastañares, M J; Baquero, F

    1993-01-01

    Thirty-seven Enterococcus faecium strains with different levels of penicillin susceptibility were studied in time-kill experiments with a fixed concentration (5 micrograms/ml) of gentamicin combined with different penicillin concentrations (6 to 600 micrograms/ml). Synergy was defined as a relative decrease in counts of greater than 2 log10 CFU per milliliter after 24 h of incubation when the combination of the antibiotics was compared with its most active component alone. The minimal synergistic penicillin concentrations found were 6 micrograms/ml for 16 of 16 strains for which penicillin MICs were < or = 25 micrograms/ml, 20 to 100 micrograms/ml for 14 of 17 strains for which penicillin MICs were 50 to 200 micrograms/ml, and 200 to 500 micrograms/ml for 4 of 4 strains for which MICs penicillin were > 200 micrograms/ml. Penicillin-gentamicin synergy was observed even in high-level penicillin-resistant E. faecium strains at penicillin concentrations close to one-half the penicillin MIC. The possibility of treating infections caused by high-level penicillin-resistant E. faecium strains with penicillin-gentamicin combinations in particular cases may depend on the penicillin levels attainable in vivo. PMID:8285628

  7. Effect of aqueous and ethanolic extracts of Lippia citriodora on candida albicans

    PubMed Central

    Ghasempour, Maryam; Omran, Saeid Mahdavi; Moghadamnia, Ali Akbar; Shafiee, Faranak

    2016-01-01

    Introduction Because of resistance and side effects to common antifungal drugs activity, the research on herbal substances with antifungal activity is frequent. Lemon verbena (Lippia citriodora) is a member of Verbenaceae family. The aim of this study was to determine the anti-candida activities of the ethanolic and aqueous extracts of the lemon verbena leaves and compare them with nystatin and fluconazole. Methods In this 2015 study, 15 clinical isolates and standard strain of candida albicans PTCC 5027 were used, and the inhibitory effects of the ethanolic and aqueous extracts, Nystatin and Fluconazole, were evaluated using disk and well diffusion methods. Also, the minimal inhibitory concentration (MIC) was determined. Five concentrations of aqueous and ethanolic extracts (156–2500 μg/ml), Nystatin (8–128 μg/ml) and Fluconazole (4–64 μg/ml) were used in disk and well diffusion methods, and nine concentrations of aqueous and ethanolic extracts (19–5000 μg/ml), Nystatin (0.5–128 μg/ml), and Fluconazole (0.25–64 μg/ml) were applied for MIC. Data were analyzed using Tukey’s post-hoc and one-way ANOVA tests. The significant level was considered p < 0.05 in the current study. Results In the well and disk diffusion techniques, limited growth inhibition halos were produced around some clinical isolates at different concentrations of ethanolic extract; however, no growth inhibitory halo was observed with any concentrations of the aqueous extract. The MIC values of ethanolic extract, aqueous extract, Nystatin and Fluconazole for clinical isolated and standard strain were 833 ± 78.5and 625μg/ml; 4156 ± 67.4 and 2500 μg/ml; 10.13 ± 1.91 and 4 μg/ml; and 1.97 ± 0.25 and 1 μg/ml, respectively. Conclusion The results showed that the ethanolic extract was stronger than the aqueous extract of this plant, which can be used as an alternative for drugs. It is recommended that the ethanolic extract of this plant be investigated in vivo for better evaluation of its efficacy and properties. PMID:27757185

  8. The PK/PD Interactions of Doxycycline against Mycoplasma gallisepticum

    PubMed Central

    Zhang, Nan; Gu, Xiaoyan; Ye, Xiaomei; Wu, Xun; Zhang, Bingxu; Zhang, Longfei; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong

    2016-01-01

    Mycoplasma gallisepticum is one of the most important pathogens that cause chronic respiratory disease in chicken. This study investigated the antibacterial activity of doxycycline against M. gallisepticum strain S6. In static time–killing studies with constant antibiotic concentrations [0–64 minimum inhibitory concentration (MIC)], M. gallisepticum colonies were quantified and kill rates were calculated to estimate the drug effect. The half-life of doxycycline in chicken was 6.51 ± 0.63 h. An in vitro dynamic model (the drug concentrations are fluctuant) was also established and two half-lives of 6.51 and 12 h were simulated. The samples were collected for drug concentration determination and viable counting of M. gallisepticum. In static time–killing studies, doxycycline produced a maximum antimycoplasmal effect of 5.62log10 (CFU/mL) reduction and the maximum kill rate was 0.11 h−1. In the in vitro dynamic model, doxycycline had a mycoplasmacidal activity in the two regimens, and the maximum antimycoplasmal effects were 4.1 and 4.75log10 (CFU/mL) reduction, respectively. Furthermore, the cumulative percentage of time over a 48-h period that the drug concentration exceeds the MIC (%T > MIC) was the pharmacokinetic–pharmacodynamic index that best correlated with antimicrobial efficacy (R2 = 0.986, compared with 0.897 for the peak level divided by the MIC and 0.953 for the area under the concentration–time curve over 48 h divided by the MIC). The estimated %T > MIC values for 0log10 (CFU/mL) reduction, 2log10 (CFU/mL) reduction and 3log10 (CFU/mL) reduction were 32.48, 45.68, and 54.36%, respectively, during 48 h treatment period of doxycycline. In conclusion, doxycycline shows excellent effectiveness and time-dependent characteristics against M. gallisepticum strain S6 in vitro. Additionally, these results will guide optimal dosing strategies of doxycycline in M. gallisepticum infection. PMID:27199972

  9. Minimum inhibitory concentration distribution in environmental Legionella spp. isolates.

    PubMed

    Sandalakis, Vassilios; Chochlakis, Dimosthenis; Goniotakis, Ioannis; Tselentis, Yannis; Psaroulaki, Anna

    2014-12-01

    In Greece standard tests are performed in the watering and cooling systems of hotels' units either as part of the surveillance scheme or following human infection. The purpose of this study was to establish the minimum inhibitory concentration (MIC) distributions of environmental Legionella isolates for six antimicrobials commonly used for the treatment of Legionella infections, by MIC-test methodology. Water samples were collected from 2004 to 2011 from 124 hotels from the four prefectures of Crete (Greece). Sixty-eight (68) Legionella isolates, comprising L. pneumophila serogroups 1, 2, 3, 5, 6, 8, 12, 13, 15, L. anisa, L. rubrilucens, L. maceachernii, L. quinlivanii, L. oakridgensis, and L. taurinensis, were included in the study. MIC-tests were performed on buffered charcoal yeast extract with α-ketoglutarate, L-cysteine, and ferric pyrophosphate. The MICs were read after 2 days of incubation at 36 ± 1 °C at 2.5% CO2. A large distribution in MICs was recorded for each species and each antibiotic tested. Rifampicin proved to be the most potent antibiotic regardless of the Legionella spp.; tetracycline appeared to have the least activity on our environmental isolates. The MIC-test approach is an easy, although not so cost-effective, way to determine MICs in Legionella spp. These data should be kept in mind especially since these Legionella species may cause human disease.

  10. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe.

    PubMed

    Kreizinger, Zsuzsa; Grózner, Dénes; Sulyok, Kinga M; Nilsson, Kristin; Hrivnák, Veronika; Benčina, Dušan; Gyuranecz, Miklós

    2017-11-17

    Mycoplasma synoviae causes infectious synovitis and respiratory diseases in chickens and turkeys and may lead to egg shell apex abnormalities in chickens; hence possesses high economic impact on the poultry industry. Control of the disease consists of eradication, vaccination or medication. The aim of the present study was to determine the in vitro susceptibility to 14 different antibiotics and an antibiotic combination of M. synoviae strains originating from Hungary and other countries of Central and Eastern Europe. Minimal inhibitory concentration (MIC) values of a total of 41 M. synoviae strains were determined by the microbroth dilution method. The strains were collected between 2002 and 2016 and originated from Hungary (n = 26), Austria (n = 3), the Czech Republic (n = 3), Slovenia (n = 3), Ukraine (n = 3), Russia (n = 2) and Serbia (n = 1). Tetracyclines (with MIC 50 values of 0.078 μg/ml, ≤0.25 μg/ml and 0.5 μg/ml for doxycycline, oxytetracycline and chlortetracycline, respectively), macrolides (with MIC 50 values of ≤0.25 μg/ml for tylvalosin, tylosin and tilmicosin), pleuromutilins (with MIC 50 values of 0.078 μg/ml and ≤0.039 μg/ml for tiamulin and valnemulin) and the combination of lincomycin and spectinomycin (MIC 50 1 μg/ml (0.333/0.667 μg/ml)) were found to be the most effective antibiotic agents against M. synoviae in vitro. High MIC values were detected in numerous strains for fluoroquinolones (with MIC 50 values of 1.25 μg/ml and 2.5 μg/ml for enrofloxacin and difloxacin), neomycin (MIC 50 32 μg/ml), spectinomycin (MIC 50 2 μg/ml), lincomycin (MIC 50 0.5 μg/ml) and florfenicol (MIC 50 4 μg/ml). Nevertheless, strains with elevated MIC values were detected for most of the applied antibiotics. In the medical control of M. synoviae infections the preliminary in vitro antibiotic susceptibility testing and the careful evaluation of the data are crucial. Based on the in vitro examinations doxycycline, oxytetracycline, tylvalosin, tylosin and pleuromutilins could be recommended for the therapy of M. synoviae infections in the region.

  11. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria

    PubMed Central

    2013-01-01

    Background Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains. Methods The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods. Results All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes. Conclusion These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes. PMID:23368430

  12. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    PubMed

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  13. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points. PMID:26872361

  14. Mutant Prevention Concentrations of Four Carbapenems against Gram-Negative Rods▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C.

    2010-01-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains. PMID:20308376

  15. In Vitro Activity and MIC of Sitafloxacin against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis Isolated in Thailand

    PubMed Central

    Leechawengwongs, Manoon; Prammananan, Therdsak; Jaitrong, Sarinya; Billamas, Pamaree; Makhao, Nampueng; Thamnongdee, Nongnard; Thanormchat, Arirat; Phurattanakornkul, Arisa; Rattanarangsee, Somcharn; Ratanajaraya, Chate; Disratthakit, Areeya

    2017-01-01

    ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB. PMID:29061759

  16. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016.

    PubMed

    Hackel, Meredith A; Tsuji, Masakatsu; Yamano, Yoshinori; Echols, Roger; Karlowsky, James A; Sahm, Daniel F

    2018-02-01

    The in vitro activity of the investigational siderophore cephalosporin, cefiderocol (formerly S-649266), was determined against a 2014-2016, 52-country, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae ( n = 1,022), multidrug-resistant (MDR) Acinetobacter baumannii ( n = 368), MDR Pseudomonas aeruginosa ( n = 262), Stenotrophomonas maltophilia ( n = 217), and Burkholderia cepacia ( n = 4) using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB), prepared according to a recently approved (2017), but not yet published, CLSI protocol, was used to test cefiderocol; all other antimicrobial agents were tested using CAMHB. The concentration of cefiderocol inhibiting 90% (MIC 90 ) of isolates of carbapenem-nonsusceptible Enterobacteriaceae was 4 μg/ml; cefiderocol MICs ranged from 0.004 to 32 μg/ml, and 97.0% (991/1,022) of isolates demonstrated cefiderocol MICs of ≤4 μg/ml. The MIC 90 s for cefiderocol for MDR A. baumannii , MDR P. aeruginosa , and S. maltophilia were 8, 1, and 0.25 μg/ml, respectively, with 89.7% (330/368), 99.2% (260/262), and 100% (217/217) of isolates demonstrating cefiderocol MICs of ≤4 μg/ml. Cefiderocol MICs for B. cepacia ranged from 0.004 to 8 μg/ml. We conclude that cefiderocol demonstrated potent in vitro activity against a 2014-2016, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae , MDR A. baumannii , MDR P. aeruginosa , S. maltophilia , and B. cepacia isolates as 96.2% of all (1,801/1,873) isolates tested had cefiderocol MICs of ≤4 μg/ml. Copyright © 2018 Hackel et al.

  17. Impact of Molecular Epidemiology and Reduced Susceptibility to Glycopeptides and Daptomycin on Outcomes of Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia

    PubMed Central

    Lee, Hao-Yuan; Chen, Chyi-Liang; Liu, Shu-Ying; Yan, Yu-Shan; Chang, Chee-Jen; Chiu, Cheng-Hsun

    2015-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia was associated with high mortality, but the risk factors associated with mortality remain controversial. Methods A retrospective cohort study was designed. All patients with MRSA bacteremia admitted were screened and collected for their clinical presentations and laboratory characteristics. Minimum inhibitory concentration (MIC) and staphylococcal cassette chromosome mec (SCCmec) type of bacterial isolates were determined. Risk factors for mortality were analyzed. Results Most MRSA isolates from the 189 enrolled patients showed reduced susceptibility to antibiotics, including MIC of vancomycin ≥ 1.5 mg/L (79.9%), teicoplanin ≥ 2 mg/L (86.2%), daptomycin ≥ 0.38 mg/L (73.0%) and linezolid ≥ 1.5 mg/L (64.0%). MRSA with vancomycin MIC ≥ 1.5 mg/L and inappropriate initial therapy were the two most important risk factors for mortality (both P < 0.05; odds ratio = 7.88 and 6.78). Hospital-associated MRSA (HA-MRSA), carrying SCCmec type I, II, or III, was associated with reduced susceptibility to vancomycin, teicoplanin or daptomycin and also with higher attributable mortality (all P < 0.05). Creeping vancomycin MIC was linked to higher MIC of teicoplanin and daptomycin (both P < 0.001), but not linezolid (P = 0.759). Conclusions Giving empirical broad-spectrum antibiotics for at least 5 days to treat catheter-related infections, pneumonia, soft tissue infection and other infections was the most important risk factor for acquiring subsequent HA-MRSA infection. Choice of effective anti-MRSA agents for treating MRSA bacteremia should be based on MIC of vancomycin, teicoplanin and daptomycin. Initiation of an effective anti-MRSA agent without elevated MIC in 2 days is crucial for reducing mortality. PMID:26295150

  18. In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method.

    PubMed

    Ghasemian, E; Naghoni, A; Tabaraie, B; Tabaraie, T

    2012-12-01

    Metal nanoparticles and their uses in various aspects have recently drawn a great deal of attention. One of the major applications is that it can be used as an antimicrobial agent. They can be considered in approaches targeted to decrease the harms caused by microorganisms, specifically fungi, threatening the medical and industrial areas. The aim of this study was to investigate the antifungal activity of synthesized copper nanoparticles (CuNPs) against four filamentous fungi including Alternaria alternata, Aspergillus flavus, Fusarium solani, and Penicillium chrysogenum. Zerovalent copper nanoparticles of mean size 8nm were synthesized by inert gas condensation (IGC) method. The antifungal activity of these synthesized copper nanoparticles was measured against selected fungi by using two different techniques including agar dilution method and XTT reduction assay. The minimal inhibitory concentrations (MICs) for copper nanoparticles by agar dilution method were less or equal to 40mg/L for P. chrysogenum, less or equal to 60mg/L for A. alternata, less or equal to 60mg/L for F. solani, and less or equal to 80mg/L for A. flavus. And also MICs obtained by XTT reduction assay ranged from 40 to 80mg/L. Our data demonstrated that the copper nanoparticles inhibited fungal growth, but the fungal sensitivity to copper nanoparticles varies depending on the fungal species. Therefore, it is advisable that the minimal inhibitory concentrations (MICs) be examined before using these compounds. It is hoped that, in future, copper nanoparticles could replace some antifungal agents, making them applicable to many different medical devices and antimicrobial control system. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  20. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  1. In vitro activity of flomoxef against rapidly growing mycobacteria.

    PubMed

    Tsai, Moan-Shane; Tang, Ya-Fen; Eng, Hock-Liew

    2008-06-01

    The aim of this study was to determine the in vitro sensitivity of rapidly growing mycobacteria (RGM) to flomoxef in respiratory secretions collected from 61 consecutive inpatients and outpatients at Chang Gung Memorial Hospital-Kaohsiung medical center between July and December, 2005. Minimal inhibitory concentrations (MIC) of flomoxef were determined by the broth dilution method for the 61 clinical isolates of RGMs. The MICs of flomoxef at which 90% of clinical isolates were inhibited was >128 microg/mL in 26 isolates of Mycobacterium abscessus and 4 microg/mL in 31 isolates of M. fortuitum. Three out of 4 clinical M. peregrinum isolates were inhibited by flomoxef at concentrations of 4 microg/mL or less. Although the numbers of the clinical isolates of RGMs were small, these preliminary in vitro results demonstrate the potential activity of flomoxef in the management of infections due to M. fortuitum, and probably M. peregrinum in humans.

  2. Pharmacokinetics and pharmacodynamics of levofloxacin injection in healthy Chinese volunteers and dosing regimen optimization

    PubMed Central

    Cao, G; Zhang, J; Wu, X; Yu, J; Chen, Y; Ye, X; Zhu, D; Zhang, Y; Guo, B; Shi, Y

    2013-01-01

    What is known and objective The pharmacokinetics (PK) and pharmacodynamics (PD) of levofloxacin were investigated following administration of levofloxacin injection in healthy Chinese volunteers for optimizing dosing regimen. Methods The PK study included single-dose (750 mg/150 mL) and multiple-dose (750 mg/150 mL once daily for 7 days) phases. The concentration of levofloxacin in blood and urine was determined using HPLC method. Both non-compartmental and compartmental analyses were performed to estimate PK parameters. Taking fCmax/MIC ≥5 and fAUC24 h/MIC ≥30 as a target, the cumulative fraction of response (CFR) of levofloxacin 750 mg for treatment of community-acquired pneumonia (CAP) was calculated using Monte Carlo simulation. The probability of target attainment (PTA) of levofloxacin at various minimal inhibitory concentrations (MICs) was also evaluated. Results and discussion The results of PK study showed that the Cmax and AUC0–∞ of levofloxacin were 14·94 μg/mL and 80·14 μg h/mL following single-dose infusion of levofloxacin. The half-life and average cumulative urine excretion ratio within 72 h post-dosing were 7·75 h and 86·95%, respectively. The mean Css,max, Css,min and AUC0–τ of levofloxacin at steady state following multiple doses were 13·31 μg/mL, 0·031 μg/mL and 103·7 μg h/mL, respectively. The accumulation coefficient was 1·22. PK/PD analysis revealed that the CFR value of levofloxacin 750-mg regimen against Streptococcus pneumoniae was 96·2% and 95·4%, respectively, in terms of fCmax/MIC and fAUC/MIC targets. What is new and conclusion The regimen of 750-mg levofloxacin once daily provides a satisfactory PK/PD profile against the main pathogenic bacteria of CAP, which implies promising clinical and bacteriological efficacy for patients with CAP. A large-scale clinical study is warranted to confirm these results. PMID:23701411

  3. Pharmacokinetics of Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients

    PubMed Central

    van't Boveneind-Vrubleuskaya, Natasha; Seuruk, Tatiana; van Hateren, Kai; van der Laan, Tridia; Kosterink, Jos G. W.; van der Werf, Tjip S.; van Soolingen, Dick; van den Hof, Susan; Skrahina, Alena

    2017-01-01

    ABSTRACT Pharmacodynamics are especially important in the treatment of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB). The free area under the concentration time curve in relation to MIC (fAUC/MIC) is the most relevant pharmacokinetic (PK)-pharmacodynamic (PD) parameter for predicting the efficacy of levofloxacin (LFX). The objective of our study was to assess LFX PK variability in M/XDR-TB patients and its potential consequence for fAUC/MIC ratios. Patients with pulmonary M/XDR-TB received LFX as part of the treatment regimen at a dose of 15 mg/kg administered once daily. Blood samples obtained at steady state before and 1, 2, 3, 4, 7, and 12 h after drug administration were measured by validated liquid chromatography-tandem mass spectrometry. The MIC values of LFX were determined by the agar dilution method on Middlebrook 7H10 and the MGIT960 system. Twenty patients with a mean age of 31 years (interquartile range [IQR] = 27 to 35 years) were enrolled in this study. The median AUC0–24 was 98.8 mg/h/liter (IQR = 84.8 to 159.6 mg/h/liter). The MIC median value for LFX was 0.5 mg/liter with a range of 0.25 to 2.0 mg/liter, and the median fAUC0–24/MIC ratio was 109.5 (IQR = 48.5 to 399.4). In 4 of the 20 patients, the value was below the target value of ≥100. When MICs of 0.25, 0.5, 1.0, and 2.0 mg/liter were applicable, 19, 18, 3, and no patients, respectively, had an fAUC/MIC ratio that exceeded 100. We observed a large variability in AUC. An fAUC0–24/MIC of ≥100 was only observed when the MIC values for LFX were 0.25 to 0.5 mg/liter. Dosages exceeding 15 mg/kg should be considered for target attainment if exposures are assumed to be safe. (This study has been registered at ClinicalTrials.gov under registration no. NCT02169141.) PMID:28507117

  4. [Molecular epidemiology and antifungal susceptibility of Candida species isolated from urine samples of patients in intensive care unit].

    PubMed

    Yüksekkaya, Serife; Fındık, Duygu; Arslan, Uğur

    2011-01-01

    The aims of this study were to analyse the amphotericin B and fluconazole susceptibility and molecular epidemiology of Candida strains (Candida albicans, Candida tropicalis and Candida glabrata) isolated from the urine samples of patients hospitalized in the intensive care unit. Identification of the isolates was done according to microscopic morphology (chlamydospor, blastospor, pseudohyphae and true hyphae) on cornmeal agar, germ tube formation and carbohydrate assimilation patterns (API ID 32C bioMérieux, France). Antifungal susceptibilities of the isolates were determined by in vitro broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). To investigate the clonal relationship of the isolates, randomly amplified polymorphic DNA (RAPD) analysis was performed by using Cnd3 primer. Of the 56 Candida isolates minimum inhibitory concentration (MIC) ranges, MIC50 and MIC90 values for amphotericin B were 0.125-1 µg/ml, 0.125 and 0.5 µg/ml for C.albicans, 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.tropicalis and 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.glabrata, respectively. Fluconazole MIC ranges, MIC50 and MIC90 values were 0.25-4 µg/ml, 0.25 and 0.5 µg/ml for C.albicans, 0.25-16 µg/ml, 0.5 and 1 µg/ml for C.tropicalis and 0.5-64 µg/ml, 8 and 16 µg/ml for C.glabrata, respectively. For amphotericin B, none of the isolates had high MIC values (MIC > 1 µg/ml). While one of the C.glabrata isolates was resistant to fluconazole (MIC ≥ 64 µg/ml), one C.tropicalis and two C.glabrata isolates were dose-dependent susceptible (MIC: 16-32 µg/ml). The results of RAPD analysis indicated an exogenous spread from two clones for C.albicans, one clone for C.glabrata and one clone for C.tropicalis. This study underlines the importance of molecular epidemiological analysis of clinical samples together with hospital environmental samples in terms of Candida spp. To determine the exogenous origin for the related strains and to prevent nosocomial Candida infections.

  5. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women.

    PubMed

    Moore, A G; Brown, D A; Fairlie, W D; Bauskin, A R; Brown, P K; Munier, M L; Russell, P K; Salamonsen, L A; Wallace, E M; Breit, S N

    2000-12-01

    Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta. A sensitive sandwich enzyme-linked immunosorbent assay for the quantification of MIC-1 was developed and used to examine the role of this cytokine in pregnancy. High levels of MIC-1 are present in the sera of pregnant women. The level rises substantially with progress of gestation. MIC-1 can also be detected, in large amounts, in amniotic fluid and placental extracts. In addition, the BeWo placental trophoblastic cell line was found to constitutively express the MIC-1 transcript and secrete large amounts of MIC-1. These findings suggest that the placental trophoblast is a major source of the MIC-1 present in maternal serum and amniotic fluid. We suggest that MIC-1 may promote fetal survival by suppressing the production of maternally derived proinflammatory cytokines within the uterus.

  6. Posaconazole in Human Serum: a Greater Pharmacodynamic Effect than Predicted by the Non-Protein-Bound Serum Concentration ▿

    PubMed Central

    Lignell, Anders; Löwdin, Elisabeth; Cars, Otto; Chryssanthou, Erja; Sjölin, Jan

    2011-01-01

    It is generally accepted that only the unbound fraction of a drug is pharmacologically active. Posaconazole is an antifungal agent with a protein binding of 98 to 99%. Taking into account the degree of protein binding, plasma levels in patients, and MIC levels of susceptible strains, it can be assumed that the free concentration of posaconazole sometimes will be too low to exert the expected antifungal effect. The aim was therefore to test the activity of posaconazole in serum in comparison with that of the calculated unbound concentrations in protein-free media. Significant differences (P < 0.05) from the serum control were found at serum concentrations of posaconazole of 1.0 and 0.10 mg/liter, with calculated free concentrations corresponding to 1× MIC and 0.1× MIC, respectively, against one Candida lusitaniae strain selected for proof of principle. In RPMI 1640, the corresponding calculated unbound concentration of 0.015 mg/liter resulted in a significant effect, whereas that of 0.0015 mg/liter did not. Also, against seven additional Candida strains tested, there was an effect of the low posaconazole concentration in serum, in contrast to the results in RPMI 1640. Fluconazole, a low-grade-protein-bound antifungal, was used for comparison at corresponding concentrations in serum and RPMI 1640. No effect was observed at the serum concentration, resulting in a calculated unbound concentration of 0.1× MIC. In summary, there was a substantially greater pharmacodynamic effect of posaconazole in human serum than could be predicted by the non-protein-bound serum concentration. A flux from serum protein-bound to fungal lanosterol 14α-demethylase-bound posaconazole is suggested. PMID:21502622

  7. Pharmacodynamic analysis of ceftriaxone, gatifloxacin,and levofloxacin against Streptococcus pneumoniae with the use of Monte Carlo simulation.

    PubMed

    Frei, Christopher R; Burgess, David S

    2005-09-01

    To evaluate the pharmacodynamics of four intravenous antimicrobial regimens-ceftriaxone 1 g, gatifloxacin 400 mg, levofloxacin 500 mg, and levofloxacin 750 mg, each every 24 hours-against recent Streptococcus pneumoniae isolates. Pharmacodynamic analysis using Monte Carlo simulation. The Surveillance Network (TSN) 2002 database. Streptococcus pneumoniae isolates (7866 isolates) were stratified according to penicillin susceptibilities as follows: susceptible (4593), intermediate (1986), and resistant (1287). Risk analysis software was used to simulate 10,000 patients by integrating published pharmacokinetic parameters, their variability, and minimum inhibitory concentration (MIC) distributions from the TSN database. Probability of target attainment was determined for percentage of time above the MIC (%T > MIC) from 0-100% for ceftriaxone and area under the concentration-time curve (AUC):MIC ratio from 0-150 for the fluoroquinolones. For ceftriaxone, probability of target attainment remained 90% or greater against the three isolate groups until a %T > MIC of 70% or greater, and it remained 90% or greater against susceptible and intermediate isolates over the entire interval (%T > MIC 0-100%). For levofloxacin 500 mg, probability of target attainment was 90% at an AUC:MIC < or = 30, but the curve declined sharply with further increases in pharmacodynamic target. Levofloxacin 750 mg achieved a probability of target attainment of 99% at an AUC:MIC ratio < or = 30; the probability remained approximately 90% until a target of 70 or greater, when it declined steeply. Gatifloxacin demonstrated a high probability (99%) of target attainment at an AUC:MIC ratio < or = 30, and it remained above 90% until a target of 70. Ceftriaxone maintained high probability of target attainment over a broad range of pharmacodynamic targets regardless of penicillin susceptibility (%T > MIC 0-60%). Levofloxacin 500 mg maintained high probability of target attainment for AUC:MIC ratios 0-30; whereas, levofloxacin 750 mg and gatifloxacin maintained high probability of target attainment for AUC:MIC ratios 0-60. Rate of decline in the pharmacodynamic curve was most pronounced for the two levofloxacin regimens and more gradual for gatifloxacin and ceftriaxone.

  8. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils

    PubMed Central

    Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz

    2016-01-01

    This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638

  9. Comparison of automated and traditional minimum inhibitory concentration procedures for microbiological cosmetic preservatives.

    PubMed

    Lenczewski, M E; McGavin, S T; VanDyke, K

    1996-01-01

    Minimum inhibitory concentration (MIC) is used to test resistance of microorganisms against antibiotics and to test cosmetic preservatives. This research expanded traditional MIC with automation and application of colorimetric endpoint MIC. All experiments included common cosmetic preservatives and microorganisms used in testing preservative efficacy. An autodilutor using three 96-well microtiter plates processed 6 preservatives against 1 microorganism in 15 min. The unique tip design made it possible to accurately deliver viscous test materials that cannot be dispensed accurately with vacuum or fluid-filled systems. Tetrazolium violet, a redox indicator, provided a visual color change from clear to purple at the MIC. Optimum concentration of tetrazolium violet was 0.01% with addition of 0.2% glucose to Mueller-Hinton broth for both gram-positive and gram-negative bacteria. The colorimetric endpoint was evident after 24 h from previously cryogenically stored organisms that were thawed before use and after 4 h for 18-24 h broth cultures subcultured from agar plates. The autodilutor accurately pipetted viscous cosmetic products such as hand lotion and shampoo, which cannot be pipetted with a traditional micropipetter.

  10. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  11. [A study for testing the antifungal susceptibility of yeast by the Japanese Society for Medical Mycology (JSMM) method. The proposal of the modified JSMM method 2009].

    PubMed

    Nishiyama, Yayoi; Abe, Michiko; Ikeda, Reiko; Uno, Jun; Oguri, Toyoko; Shibuya, Kazutoshi; Maesaki, Shigefumi; Mohri, Shinobu; Yamada, Tsuyoshi; Ishibashi, Hiroko; Hasumi, Yayoi; Abe, Shigeru

    2010-01-01

    The Japanese Society for Medical Mycology (JSMM) method used for testing the antifungal susceptibility of yeast, the MIC end point for azole antifungal agents, is currently set at IC(80). It was recently shown, however that there is an inconsistency in the MIC value between the JSMM method and the CLSI M27-A2 (CLSI) method, in which the end- point was to read as IC(50). To resolve this discrepancy and reassess the JSMM method, the MIC for three azoles, fluconazole, itraconazole and voriconazole were compared to 5 strains of each of the following Candida species: C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, for a total of 25 comparisons, using the JSMM method, a modified JSMM method, and the CLSI method. The results showed that when the MIC end- point criterion of the JSMM method was changed from IC(80) to IC(50) (the modified JSMM method) , the MIC value was consistent and compatible with the CLSI method. Finally, it should be emphasized that the JSMM method, using a spectrophotometer for MIC measurement, was superior in both stability and reproducibility, as compared to the CLSI method in which growth was assessed by visual observation.

  12. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

  13. In Vitro Activity of p-Hydroxybenzyl Penicillin (Penicillin X) and Five Other Penicillins Against Neisseria gonorrhoeae: Comparisons of Strains from Patients with Uncomplicated Infections and from Women with Pelvic Inflammatory Disease

    PubMed Central

    Sackel, Stephen G.; Alpert, Susan; Rosner, Bernard; McCormack, William M.; Finland, Maxwell

    1977-01-01

    Minimum inhibitory concentrations (MICs) of six penicillins against 95 strains of Neisseria gonorrhoeae from patients with uncomplicated anogenital infections and 22 strains from women with pelvic inflammatory disease were determined by an agar plate dilution method, using an inocula replicator. Against all 117 strains, the order of activity observed was: BL-P1654 > penicillin X > penicillin G > ampicillin > amoxicillin = carbenicillin. MICs against strains isolated from women with gonococcal pelvic inflammatory disease were significantly higher than those against isolates from uncomplicated infections: BL-P1654, P < 0.001; penicillin X, P < 0.001; penicillin G, P < 0.001; ampicillin, P < 0.001; and amoxicillin, P < 0.05. MICs of penicillin G were ≥0.125 μg/ml against 33 (36%) of the 92 strains from patients with uncomplicated infections, as contrasted with 15 (68%) of the 22 isolates from women with pelvic inflammatory disease (P < 0.01). The means of the MICs of penicillin G were 0.06 μg/ml for the former and 0.14 μg/ml for the latter. PMID:407840

  14. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens.

    PubMed

    Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S

    1989-09-01

    The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.

  15. Chemical Composition and Antibacterial Activity of the Essential Oil of Vitex agnus-castus L. (Lamiaceae).

    PubMed

    Gonçalves, Regiane; Ayres, Vanessa F S; Carvalho, Carlos E; Souza, Maria G M; Guimarães, Anderson C; Corrêa, Geone M; Martins, Carlos H G; Takeara, Renata; Silva, Eliane O; Crotti, Antônio E M

    2017-01-01

    Abnormal multiplication of oral bacteria causes dental caries and dental plaque. These diseases continue to be major public health concerns worldwide, mainly in developing countries. In this study, the chemical composition and antimicrobial activity of the essential oil of Vitex agnus-castus leaves (VAC‒EO) collected in the North of Brazil against a representative panel of cariogenic bacteria were investigated. The antimicrobial activity of VAC-EO was evaluated in terms of its minimum inhibitory concentration (MIC) values by using the broth microdilution method in 96-well microplates. The chemical constituents of VAC-EO were identified by gas chromatography (GC‒FID) and gas chromatography‒mass spectrometry (GC‒MS). VAC‒EO displayed some activity against all the investigated oral pathogens; MIC values ranged from 15.6 to 200 μg/mL. VAC-EO had promising activity against Streptococcus mutans (MIC= 15.6 μg/mL), Lactobacillus casei (MIC= 15.6 μg/mL), and Streptococcus mitis (MIC= 31.2 μg/mL). The compounds 1,8-cineole (23.8%), (E)-β-farnesene (14.6%), (E)-caryophyllene (12.5%), sabinene (11.4%), and α-terpinyl acetate (7.7%) were the major chemical constituents of VAC‒EO. VAC-EO displays antimicrobial activity against cariogenic bacteria. The efficacy of VAC-EO against S. mutans is noteworthy and should be further investigated.

  16. Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections

    PubMed Central

    Barbosa-Filho, Valter M; Waczuk, Emily P; Leite, Nadghia F; Menezes, Irwin RA; da Costa, José GM; Lacerda, Sírleis R; Adedara, Isaac A; Coutinho, Henrique Douglas Melo; Posser, Thais; Kamdem, Jean P

    2015-01-01

    Background The challenge of antibiotic resistance and the emergence of new infections have generated considerable interest in the exploration of natural products from plant origins as combination therapy. In this context, crude ethanolic extract (CEE), ethyl acetate fraction (EAF), and methanolic fraction (MF) from Anacardium microcarpum were tested alone or in combination with antibiotics (amikacin, gentamicin, ciprofloxacin, and imipenem) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Methods Antibiotic resistance-modifying activity was performed using the microdilution method by determining the minimal inhibitory concentration (MIC). In addition, phytochemical prospecting analyses of tested samples were carried out. Results Our results indicated that all the extracts showed low antibacterial activity against multidrug-resistant strains (MIC =512 μg/mL). However, addition of CEE, EAF, and MF to the growth medium at the subinhibitory concentration (MIC/8=64 μg/mL) significantly modulated amikacin- and gentamicin-resistant E. coli 06. CEE and EAF also demonstrated a significant (P<0.001) synergism with imipenem against S. aureus. In contrast, MF antagonized the antibacterial effect of ciprofloxacin and gentamicin against P. aeruginosa 03 and S. aureus 10, respectively. Qualitative phytochemical analysis of the extracts revealed the presence of secondary metabolites including phenols, flavonoids, xanthones, chalcones, and tannin pyrogallates. Conclusion Taken together, our results suggest that A. microcarpum is a natural resource with resistance-modifying antibacterial activity that needs to be further investigated to overcome the present resistant-infection problem. PMID:26604695

  17. Crude Extract from Ziziphus Jujuba Fruits, a Weapon against Pediatric Infectious Disease

    PubMed Central

    Daneshmand, F; Zare-Zardini, H; Tolueinia, B; Hasani, Z; Ghanbari, T

    2013-01-01

    Background Pediatric infectious disease is one of the main problems in cancerous children that treat by chemotherapy drugs. Thus, study in this regard is necessary. The aim of this study was to evaluate antimicrobial properties of ethanolic extract of Ziziphus Jujuba fruits against different infectious pathogens. Materials and Methods This study is descriptive. In vitro antimicrobial activity of extract was assessed on gram negative and gram positive bacteria as well as fungi. The antimicrobial activity was tested by Radial Diffusion Assay (RDA) and Minimal Inhibitory Concentration (MIC) methods. Results The results showed a wide antimicrobial activity of the extract against the microbes studied. Escherichia coli was the most susceptible to the extracts among tested microorganisms for which the MIC was 0.65±0.22 mg/ml. Amongst the bacterial strains investigated, Staphylococcus aureus was the most resistant strain with MIC of 2.26±0.68 mg/ml. The ethanolic extract also showed antimicrobial activity on the fungi studied as no growth was observed in 2.35±0.38 and 2.86±0.7 mg/ml concentration for Candida albicans and Aspergillus fumigatus, respectively. The results of qualitive and quantitative test are well indicative of the extract effective activity against the microbes mentioned. Conclusion Confirming the potential antimicrobial activities of crude extract of Ziziphus Jujuba fruits, this study suggested that ethanolic extracts of this plant is appropriate candidate for treatment of microbial infections, especially pediatric infectious diseases. PMID:24575267

  18. Anti-Salmonella activity of medicinal plants from Cameroon.

    PubMed

    Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C

    2001-06-01

    To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.

  19. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  20. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

    PubMed

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml.

  1. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables.

    PubMed

    de Sousa, Jossana Pereira; de Azerêdo, Geíza Alves; de Araújo Torres, Rayanne; da Silva Vasconcelos, Margarida Angélica; da Conceição, Maria Lúcia; de Souza, Evandro Leite

    2012-03-15

    This study assessed the occurrence of an enhancing inhibitory effect of the combined application of carvacrol and 1,8-cineole against bacteria associated with minimally processed vegetables using the determination of Fractional Inhibitory Concentration (FIC) index, time-kill assay in vegetable broth and application in vegetable matrices. Their effects, individually and in combination, on the sensory characteristics of the vegetables were also determined. Carvacrol and 1,8-cineole displayed Minimum Inhibitory Concentration (MIC) in a range of 0.6-2.5 and 5-20 μL/mL, respectively, against the organisms studied. FIC indices of the combined application of the compounds were 0.25 against Listeria monocytogenes, Aeromonas hydrophila and Pseudomonas fluorescens, suggesting a synergic interaction. Application of carvacrol and 1,8-cineole alone (MIC) or in a mixture (1/8 MIC+1/8 MIC or 1/4 MIC+1/4 MIC) in vegetable broth caused a significant decrease (p<0.05) in bacterial count over 24h. Mixtures of carvacrol and 1,8-cineole reduced (p<0.05) the inocula of all bacteria in vegetable broth and in experimentally inoculated fresh-cut vegetables. A similar efficacy was observed in the reduction of naturally occurring microorganisms in vegetables. Sensory evaluation revealed that the scores of the most-evaluated attributes fell between "like slightly" and "neither like nor dislike." The combination of carvacrol and 1,8-cineole at sub-inhibitory concentrations could constitute an interesting approach to sanitizing minimally processed vegetables. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Pelligand, L; Cheng, Z; Lees, P

    2017-10-01

    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  3. Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. latex against selected cariogenic bacteria

    PubMed Central

    Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Garg, Akanksha A.; Thakkar, Arpit M.

    2011-01-01

    In vitro antibacterial potential of the chloroform, ethyl acetate, hexane, methanol and aqueous extracts of Calotropis gigantia (L.) R. Br. was evaluated by using five cariogenic bacteria, Actinomyces viscosus, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus mitis and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The chloroform extracted fraction of latex showed inhibitory effect against S. mutans and L. acidophilus with MIC value of 0.032 and 0.52 mg/mL, respectively. Qualitative investigation on structure elucidation of bioactive compound using IR, NMR and GC–MS techniques revealed the presence of methyl nonanoate, a saturated fatty acid. PMID:23961166

  4. Rice hull smoke extract inactivates Salmonella Typhimurium in laboratory media and protects infected mice against mortality

    USDA-ARS?s Scientific Manuscript database

    A recently discovered and characterized rice hull liquid smoke extract was tested for bactericidal activity against Salmonella Typhimurium using the disc-agar method. The Minimum Inhibitory Concentration (MIC) value of rice hull smoke extract was found to be 0.822% (v/v). The in vivo antibacterial a...

  5. Pharmacokinetics/pharmacodynamics of levofloxacin 750 mg once daily in young women with acute uncomplicated pyelonephritis.

    PubMed

    Nicolle, Lindsay; Duckworth, Heather; Sitar, Dan; Bryski, Lisa; Harding, Godfrey; Zhanel, George

    2008-03-01

    This pilot study was undertaken to characterise the pharmacokinetics, pharmacodynamics and potential clinical efficacy of levofloxacin 750 mg once daily for 5 days for treatment of women with acute uncomplicated pyelonephritis. Four women diagnosed with acute pyelonephritis were enrolled. Following pre-therapy specimen collection, an initial oral dose of 750 mg levofloxacin was administered. The mean pharmacokinetic parameters for the first dose were: maximum serum concentration (C(max)) 12.5+/-4.7 mg/L (range 5.6-16.0mg/L) (fC(max) 8.8+/-3.3, where f indicates the levofloxacin free or non-protein-bound fraction), area under the serum concentration-time curve (AUC) 85.4+/-14.1 mgh/L (range 66.2-96.8 mgh/L) (fAUC 59.8+/-9.9) and serum half-life (t(1/2)) 6.7+/-0.5h. Mean urine concentrations were 88.0+/-100mg/L at the 0-3 h collection, 307+/-143 mg/L at 3-6 h, 170+/-107 mg/L at 6-12 h and 85+/-8 mg/L at 12-24 h. Mean levofloxacin serum pharmacodynamics for infecting Escherichia coli were: C(max)/minimum inhibitory concentration (MIC) 323+/-185(fC(max)/MIC 226+/-129); and AUC/MIC 2339+/-830(fAUC/MIC 1647+/-579). Mean urine levofloxacin concentration/MIC ratios were: 900+/-1389 for 0-3 h, 12100+/-4950 for 3-6 h, 5922+/-3912 for 6-12 h and 2233+/-1037 for 12-24 h. Levofloxacin eradicated E. coli from the urine by 3-6 h after the first dose. Levofloxacin 750 mg once daily for 5 days has pharmacodynamics that support further evaluation of this regimen for treatment of women with acute uncomplicated pyelonephritis.

  6. RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae

    PubMed Central

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC. PMID:23613664

  7. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    PubMed

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  8. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  9. Antibacterial Effect of Azadirachta indica (Neem) or Curcuma longa (Turmeric) against Enterococcus faecalis Compared with That of 5% Sodium Hypochlorite or 2% Chlorhexidine in vitro.

    PubMed

    Joy Sinha, Dakshita; D S Nandha, Kanwar; Jaiswal, Natasha; Vasudeva, Agrima; Prabha Tyagi, Shashi; Pratap Singh, Udai

    2017-01-01

    The purpose of this study was to compare the antibacterial properties of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis with those of 5% sodium hypochlorite or 2% chlorhexidine as root canal irrigants in vitro. The activity of neem, chlorhexidine, sodium hypochlorite, or turmeric against E. faecalis was measured on agar plates using the agar diffusion method. The tube dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the irrigants used. Chlorhexidine or neem exhibited the greatest antibacterial activity when used as endodontic irrigants against E. faecalis, followed by sodium hypochlorite. No statistically significant difference was observed between neem, sodium hypochlorite, or chlorhexidine. The MIC of neem was 1: 128, which was similar to that of chlorhexidine. The MBC for each of these irrigants was 1: 16. Neem yielded antibacterial activity equivalent to 2% chlorhexidine or sodium hypochlorite against E. faecalis, suggesting that it offers a promising alternative to the other root canal irrigants tested.

  10. Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Latin American and Caribbean countries, 2013-2015.

    PubMed

    Sawatzky, Pam; Martin, Irene; Galarza, Patricia; Carvallo, Marıa Elena Trigoso; Araya Rodriguez, Pamela; Cruz, Olga Marina Sanabria; Hernandez, Alina Llop; Martinez, Mario Fabian; Borthagaray, Graciela; Payares, Daisy; Moreno, José E; Chiappe, Marina; Corredor, Aura Helena; Thakur, Sidharath Dev; Dillon, Jo-Anne R

    2018-04-19

    A Neisseria gonorrhoeae antimicrobial susceptibility quality control comparison programme was re-established in Latin America and the Caribbean to ensure antimicrobial susceptibility data produced from the region are comparable nationally and internationally. Three panels, consisting of N. gonorrhoeae isolates comprising reference strains and other characterised isolates were sent to 11 participating laboratories between 2013 and 2015. Antimicrobial susceptibilities for these isolates were determined using agar dilution, Etest or disc diffusion methods. Modal minimum inhibitory concentrations (MICs) for each panel isolate/antibiotic combination were calculated. The guidelines of the Clinical and Laboratory Standards Institute were used for interpretations of antimicrobial susceptibility. The agreement of MICs with the modal MICs was determined for each of the participating laboratories as well as for each of the antibiotics tested. Five of 11 laboratories that participated in at least one panel had an overall average agreement between participants' MIC results and modal MICs of >90%. For other laboratories, agreements ranged from 60.0% to 82.4%. The proportion of agreement between interpretations for all the antibiotics, except penicillin and tetracycline, was >90%. The percentages of agreement between MIC results and their modes for erythromycin, spectinomycin, cefixime and azithromycin were >90%. Tetracycline, ceftriaxone and ciprofloxacin agreement ranged from 84.5% to 89.1%, while penicillin had 78.8% agreement between MICs and modal MICs. The participating laboratories had acceptable results, similar to other international quality assurance programmes. It is important to ensure continuation of the International Gonococcal Antimicrobial Susceptibility Quality Control Comparison Programme to ensure that participants can identify and correct any problems in antimicrobial susceptibility testing for N. gonorrhoeae as they arise and continue to generate reproducible and reliable data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Association Between In Vitro Susceptibility to Natamycin and Voriconazole and Clinical Outcomes in Fungal Keratitis

    PubMed Central

    Sun, Catherine Q.; Lalitha, Prajna; Prajna, N. Venkatesh; Karpagam, Rajarathinam; Geetha, Manoharan; O’Brien, Kieran S.; Oldenburg, Catherine E.; Ray, Kathryn J.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2014-01-01

    Purpose To assess the association between minimum inhibitory concentration (MIC) and clinical outcomes in a fungal keratitis clinical trial. Design Experimental study using data from a randomized comparative trial. Participants Of the 323 patients enrolled in the trial, we were able to obtain MIC values from 221 patients with monocular fungal keratitis. Methods The Mycotic Ulcer Treatment Trial I (MUTT I) was a randomized, double-masked clinical trial comparing clinical outcomes of monotherapy with topical natamycin versus voriconazole for the treatment of fungal keratitis. Speciation and determination of MIC to natamycin and voriconazole were performed according to Clinical and Laboratory Standards Institute guidelines. The relationship between MIC and clinical outcome was assessed. Main Outcome Measures The primary outcome was 3-month best spectacle-corrected visual acuity. Secondary outcomes included 3-month infiltrate/scar size, corneal perforation and/or therapeutic penetrating keratoplasty (TPK), and time to re-epithelialization. Results A 2-fold increase in MIC was associated with a larger 3-month infiltrate/scar size (0.21 mm, 95% confidence interval [CI] 0.10–0.31, P <0.001) and increased odds of perforation (odds ratio [OR] 1.32, 95% CI 1.04–1.69, P=0.02). No correlation was found between MIC and 3-month visual acuity. For natamycin-treated cases, an association was found between higher natamycin MIC with larger 3-month infiltrate/scar size (0.29 mm, 95% CI 0.15–0.43, P<0.001) and increased perforations (OR 2.41, 95% CI 1.46–3.97, P<0.001). Among voriconazole-treated cases, the voriconazole MIC did not correlate with any of the measured outcomes in the study. Conclusion Decreased susceptibility to natamycin was associated with increased infiltrate/scar size and increased odds of perforation. There was no association between susceptibility to voriconazole and outcome. PMID:24746358

  12. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters.

    PubMed

    Suárez-Quiroz, M L; Alonso Campos, A; Valerio Alfaro, G; González-Ríos, O; Villeneuve, P; Figueroa-Espinoza, M C

    2013-01-01

    The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. In vitro activity of pazufloxacin, tosufloxacin and other quinolones against Legionella species.

    PubMed

    Higa, Futoshi; Akamine, Morikazu; Haranaga, Shusaku; Tohyama, Masato; Shinzato, Takashi; Tateyama, Masao; Koide, Michio; Saito, Atsushi; Fujita, Jiro

    2005-12-01

    The activities of pazufloxacin and tosufloxacin against Legionella spp. were evaluated in vitro and compared with those of other quinolones, macrolides and azithromycin. The conventional MICs were determined by the microbroth dilution method. Intracellular activities of drugs were evaluated by a cfu count. The minimal extracellular concentration inhibiting intracellular growth of bacteria (MIEC) was determined by a colorimetric cytopathic assay. MICs of pazuloxacin and tosufloxacin at which 90% (MIC90) of isolates are inhibited in 76 different Legionella spp. strains (38 ATCC strains and 38 clinical isolates) were 0.032 and 0.016 mg/L, whereas the MIC90s of levofloxacin, ciprofloxacin, garenoxacin, erythromycin, clarithromycin and azithromycin were 0.032, 0.032, 0.032, 2.0, 0.125 and 2.0 mg/L, respectively. Pazufloxacin and tosufloxacin at 4x MIC inhibited intracellular growth of Legionella pneumophila SG1 (80-045 strain), as did other quinolones, clarithromycin and azithromycin, whereas erythromycin at 4x MIC did not. MIECs of pazufloxacin, tosufloxacin, levofloxacin, ciprofloxacin and garenoxacin for the strain were 0.063, 0.004, 0.016, 0.032 and 0.008 mg/L respectively, which were superior to those of macrolides and azithromycin. Pazufloxacin showed potent activity against three additional clinical isolates of L. pneumophila SG1, one clinical isolate each of L. pneumophila SG3 and SG5, as well as Legionella micdadei, Legionella dumoffii and Legionella longbeachae SG1. Pazufloxacin and tosufloxacin, as well as other quinolones, were more potent than macrolides and an azalide. Present data warrant further study on the efficacy of these drugs in the treatment of Legionella infections.

  14. Is Vancomycine Still a Choice for Chronic Osteomyelitis Empirical Therapy in Iran?

    PubMed Central

    Izadi, Morteza; Zamani, Mohammad Mahdi; Mousavi, Seyed Ahmad; Sadat, Seyed Mir Mostafa; Siami, Zeinab; Vais Ahmadi, Noushin; Jonaidi Jafari, Nematollah; Shirvani, Shahram; Majidi Fard, Mojgan; Imani Fooladi, Abbas Ali

    2012-01-01

    Background Pyogenic bacteria and especially Staphylococcus aurous (S. aurous) are the most common cause of chronic osteomyelitis. Not only treatment protocol of chronic osteomyelitis occasionally is amiss but also this malady responds to treatment difficultly. Objectives This study investigates antibiotic resistance pattern of S. aurous isolated from Iranian patients who suffer from chronic osteomyelitis by two methods: disk diffusion (Kirby bauyer) and E-test (Epsilometer test) to find Vancomycin susceptibility and MIC (Minimum inhibitory concentration). Patients and Methods One hundred and thirty one patients who suffer from chronic osteomyelitis which have been referred to both governmental and private hospitals at 2010 were tried out for culturing of osteomyelitis site (sites). Antibiotic susceptibility and MIC of isolated bacteria were investigated by Kirby bauyer and E-test respectively. Results Samples were collected from bone (73.4%), surrounding tissue (14.6%) and wound discharge (12%). S. aureus was isolated from 49.6% of the samples. According to disc diffusion, methicillin resistance S. aureus (MRSA) was 75% and Vancomycin resistance S. aurous (VRSA) was 0% and based on MIC, MRSA was 68.5% and VRSA was 0%. According to MIC experiments, maximum sensitivity was against to Vancomycin (90.2%) and ciprofloxacin (54.4%) respectively but based on disc diffusion, maximum sensitivity was against to Vancomycin (97.7%) and ciprofloxacin (43.2%), respectively (P = 0.001). E-test (9.8%) in comparison with Disc diffusion (2.3%) showed higher percent of intermediate susceptibility to Vancomycin (P = 0.017). Conclusions Comparison of antibiograms and MICs showed that Kirby bauyer technique especially for detection of VISA strains is not reliable comparison with E-test. Already VRSA strains have not detected in Iranian chronic osteomyelitis, Thus Vancomycin is the first choice for chronic osteomyelitis empirical therapy in Iran yet. PMID:23483042

  15. In vitro antibacterial activity of doripenem against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints.

    PubMed

    Lascols, C; Legrand, P; Mérens, A; Leclercq, R; Armand-Lefevre, L; Drugeon, H B; Kitzis, M D; Muller-Serieys, C; Reverdy, M E; Roussel-Delvallez, M; Moubareck, C; Lemire, A; Miara, A; Gjoklaj, M; Soussy, C-J

    2011-04-01

    The aims of the study were to determine the in vitro activity of doripenem, a new carbapenem, against a large number of bacterial pathogens and to propose zone diameter breakpoints for clinical categorization in France according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) minimum inhibitory concentration (MIC) breakpoints. The MICs of doripenem were determined by the broth microdilution method against 1,547 clinical isolates from eight French hospitals. The disk diffusion test was performed (10-μg discs) according to the Comité de l'Antibiogramme de la Société Française de Microbiologie (CASFM) method. The MIC(50/90) (mg/L) values were as follows: methicillin-susceptible Staphylococcus aureus (MSSA) (0.03/0.25), methicillin-resistant Staphylococcus aureus (MRSA) (1/2), methicillin-susceptible coagulase-negative staphylococci (MSCoNS) (0.03/0.12), methicillin-resistant coagulase-negative staphylococci (MRCoNS) (2/8), Streptococcus pneumoniae (0.016/0.25), viridans group streptococci (0.016/2), β-hemolytic streptococci (≤0.008/≤0.008), Enterococcus faecalis (2/4), Enterococcus faecium (128/>128), Enterobacteriaceae (0.06/0.25), Pseudomonas aeruginosa (0.5/8), Acinetobacter baumannii (0.25/2), Haemophilus influenzae (0.12/0.25), and Moraxella catarrhalis (0.03/0.06). According to the regression curve, the zone diameter breakpoints were 24 and 19 mm for MICs of 1 and 4 mg/L, respectively. This study confirms the potent in vitro activity of doripenem against Pseudomonas aeruginosa, Acinetobacter, Enterobacteriaceae, MSSA, MSCoNS, and respiratory pathogens. According to the EUCAST MIC breakpoints (mg/L) ≤1/>4 for Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter, and ≤1/>1 for streptococci, pneumococci, and Haemophilus, the zone diameter breakpoints could be (mm) ≥24/<19 and ≥24/<24, respectively.

  16. Cefotaxime and Amoxicillin-Clavulanate Synergism against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Murine Model of Urinary Tract Infection

    PubMed Central

    Rossi, B.; Soubirou, J. F.; Chau, F.; Massias, L.; Dion, S.; Lepeule, R.; Fantin, B.

    2015-01-01

    We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains—CFT073-RR and its transconjugant, CFT073-RR Tc blaCTX-M-15—harboring a blaCTX-M-15 plasmid and a blaOXA-1 plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc blaCTX-M-15, respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc blaCTX-M-15 to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc blaCTX-M-15. In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. PMID:26525800

  17. [In vitro susceptibilities of causative organisms isolated from patients with primary respiratory tract infections to BRL 25000 (clavulanic acid/amoxicillin)].

    PubMed

    Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K; Fukumoto, T

    1985-10-01

    The in vitro susceptibilities of various causative organisms recently isolated from patients with primary respiratory tract infections to BRL 25000 (a formulation of amoxicillin, 2 parts, and potassium clavulanate, 1 part), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase producing strains were detected by nitrocefin chromogenic method and PCG acidometric method. The frequency of isolation of beta-lactamase production in strains of S. aureus, H. influenzae, B. catarrhalis and K. pneumoniae was 92%, 18%, 36% and 98%, respectively. Against S. aureus strains with MIC values to AMPC of less than or equal to 100 micrograms/ml and CEX of less than or equal to 25 micrograms/ml BRL 25000 showed MIC values in the range 0.39-6.25 micrograms/ml with inocula of 10(6) CFU/ml, while BRL 25000 required 12.5-100 micrograms/ml of concentrations for inhibition of the strains with MIC values to AMPC of greater than 100 micrograms/ml and CEX of greater than or equal to 25 micrograms/ml. Against S. pyogenes and S. pneumoniae BRL 25000 showed MIC values in the range less than 0.024-0.10 micrograms/ml with inocula of 10(6) CFU/ml, which is much more active than CCL, CEX, CDX and CXD and slight less active than AMPC. Against H. influenzae and B. catarrhalis BRL 25000 showed MIC values in the range 0.20-6.25 micrograms/ml with inocula of 10(6) CFU/ml, which showed most potent activity among the agents tested. The activity of BRL 25000 against K. pneumoniae was approximately equal to that of CCL and superior to that of AMPC, CEX, CDX and CXD.

  18. Cefotaxime and Amoxicillin-Clavulanate Synergism against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Murine Model of Urinary Tract Infection.

    PubMed

    Rossi, B; Soubirou, J F; Chau, F; Massias, L; Dion, S; Lepeule, R; Fantin, B; Lefort, A

    2016-01-01

    We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains-CFT073-RR and its transconjugant, CFT073-RR Tc bla(CTX-M-15)-harboring a bla(CTX-M-15) plasmid and a bla(OXA-1) plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc bla(CTX-M-15), respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc bla(CTX-M-15) to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc bla(CTX-M-15). In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Plasma MIC-1 correlates with systemic inflammation but is not an independent determinant of nutritional status or survival in oesophago-gastric cancer

    PubMed Central

    Skipworth, R J E; Deans, D A C; Tan, B H L; Sangster, K; Paterson-Brown, S; Brown, D A; Hunter, M; Breit, S N; Ross, J A; Fearon, K C H

    2010-01-01

    Background: Macrophage inhibitory cytokine-1(MIC-1) is a potential modulator of systemic inflammation and nutritional depletion, both of which are adverse prognostic factors in oesophago-gastric cancer (OGC). Methods: Plasma MIC-1, systemic inflammation (defined as plasma C-reactive protein (CRP) of ⩾10 mg l–1 or modified Glasgow prognostic score (mGPS) of ⩾1), and nutritional status were assessed in newly diagnosed OGC patients (n=293). Healthy volunteers (n=35) served as controls. Results: MIC-1 was elevated in patients (median=1371 pg ml–1; range 141–39 053) when compared with controls (median=377 pg ml–1; range 141–3786; P<0.001). Patients with gastric tumours (median=1592 pg ml–1; range 141–12 643) showed higher MIC-1 concentrations than patients with junctional (median=1337 pg ml–1; range 383–39 053) and oesophageal tumours (median=1180 pg ml–1; range 258–31 184; P=0.015). Patients showed a median weight loss of 6.4% (range 0.0–33.4%), and 42% of patients had an mGPS of ⩾1 or plasma CRP of ⩾10 mg l–1 (median=9 mg l–1; range 1–200). MIC-1 correlated positively with disease stage (r2=0.217; P<0.001), age (r2=0.332; P<0.001), CRP (r2=0.314; P<0.001), and mGPS (r2=0.336; P<0.001), and negatively with Karnofsky Performance Score (r2=−0.269; P<0.001). However, although MIC-1 correlated weakly with dietary intake (r2=0.157; P=0.031), it did not correlate with weight loss, BMI, or anthropometry. Patients with MIC-1 levels in the upper quartile showed reduced survival (median=204 days; 95% CI 157–251) when compared with patients with MIC-1 levels in the lower three quartiles (median=316 days; 95% CI 259–373; P=0.036), but MIC-1 was not an independent prognostic indicator. Conclusions: There is no independent link between plasma MIC-1 levels and depleted nutritional status or survival in OGC. PMID:20104227

  20. In Vitro Activity of Ceftolozane-Tazobactam against Burkholderia pseudomallei.

    PubMed

    Slack, Andrew; Parsonson, Fiona; Cronin, Katie; Engler, Kathy; Norton, Robert

    2018-06-25

    We investigated the in vitro activity of a novel fifth-generation cephalosporin-tazobactam combination, ceftolozane-tazobactam against Burkholderia pseudomallei , the etiological agent of melioidosis. Using both disc diffusion and minimum inhibitory concentration (MIC) strip techniques against 56 clinical isolates and an NCTC strain, the MIC to ceftolozane-tazobactam was found to be between 0.75 and 4 mcg/mL. The MIC50 was found to be 1.5 mcg/mL and MIC90 was 2.0 mcg/mL. This study provides initial evidence of ceftolozane-tazobactam as a novel agent in the management of melioidosis.

  1. A microbiological method for determining serum levels of broad spectrum β-lactam antibiotics in critically ill patients.

    PubMed

    Fridlund, Jimmy; Woksepp, Hanna; Schön, Thomas

    2016-10-01

    Recent studies show that suboptimal blood levels of β-lactam antibiotics are present in intensive care unit (ICU) patients. A common reference method for assessing drug concentrations is liquid chromatography coupled with mass-spectrometry (LC-MS) which is highly accurate but rarely available outside reference centres. Thus, our aim was to develop a microbiological method for monitoring β-lactam antibiotic serum levels which could be used at any hospital with a microbiological laboratory. The method was developed as a 96-well broth microdilution format to assess the concentrations of cefotaxime (CTX), meropenem (MER), and piperacillin (PIP). Patient serum containing antibiotics were diluted in suspensions of bacteria with known minimal inhibitory concentrations (MICs). Serum antibiotic concentrations were calculated by dividing the MIC with the dilution factor at which the serum inhibited growth of the bacterial suspension. Serum (n=88) from ICU patients at four hospitals in south-east Sweden were analysed and compared to LC-MS analysis. The overall accuracy and precision for spiked samples and patient samples was within the pre-set target of ±20.0% for all drugs. There was a significant correlation between the microbiological assay and LC-MS for the patient samples (CTX: r=0.86, n=31; MER: r=0.96, n=11; PIP: r=0.88, n=39) and the agreement around the clinical cut-off for CTX (4.0mg/l), MER (2.0mg/l) and PIP (16.0mg/l) was 90%, 100% and 87%, respectively. The microbiological method has a performance for determination of serum levels of meropenem, piperacillin and cefotaxime suitable for clinical use. It is an inexpensive method applicable in any microbiology laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Detection of resistance to linezolid in Staphylococcus aureus infecting orthopedic patients.

    PubMed

    Thool, Vaishali U; Bhoosreddy, Girish L; Wadher, Bharat J

    2012-01-01

    In today's medical scenario, the human race is battling the most intelligent enemy who has unending alternatives to combat with the potent elements they have produced against it. To study the resistance to linezolid among Staphylococcus aureus isolated from pus samples of orthopedic patients. Pus samples were collected from dirty wounds of orthopedic patients undergoing long antimicrobial treatment programs. The sampling period was from July 2010 to June 2011. The samples were collected from different orthopedic hospitals of Nagpur (central India) representing a mixed sample of patients. One hundred pus samples were screened for S. aureus, by growth on mannitol salt agar (MSA), Baird-Parker agar (BPA), deoxyribonuclease test, tube coagulase test, and HiStaph latex agglutination test. Fifty-one S. aureus isolates were obtained which were further subjected to antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method (DDM). Minimal inhibitory concentrations (MICs) were determined by an automated system, the VITEK 2 system. Also, Ezy MIC strip method was carried out in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. Twelve linezolid-resistant S. aureus (LRSA) isolates were recovered from 51 S. aureus cultures tested for susceptibility to linezolid using the DDM, VITEK 2 system, and Ezy MIC strip method. The emergence of resistance suggests nosocomial spread and abuse of antibiotic.

  3. Standardization of Cassia spectabilis with respect to authenticity, assay and chemical constituent analysis.

    PubMed

    Torey, Angeline; Sasidharan, Sreenivasan; Yeng, Chen; Latha, Lachimanan Yoga

    2010-05-10

    Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.

  4. Antifungal Susceptibility Testing of Fluconazole by Flow Cytometry Correlates with Clinical Outcome

    PubMed Central

    Wenisch, Christoph; Moore, Caroline B.; Krause, Robert; Presterl, Elisabeth; Pichna, Peter; Denning, David W.

    2001-01-01

    Susceptibility testing of fungi by flow cytometry (also called fluorescence-activated cell sorting [FACS]) using vital staining with FUN-1 showed a good correlation with the standard M27-A procedure for assessing MICs. In this study we determined MICs for blood culture isolates from patients with candidemia by NCCLS M27-A and FACS methods and correlated the clinical outcome of these patients with in vitro antifungal resistance test results. A total of 24 patients with candidemia for whom one or more blood cultures were positive for a Candida sp. were included. Susceptibility testing was performed by NCCLS M27-A and FACS methods. The correlation of MICs (NCCLS M27-A and FACS) and clinical outcome was calculated. In 83% of the cases, the MICs of fluconazole determined by FACS were within 1 dilution of the MICs determined by the NCCLS M27-A method. For proposed susceptibility breakpoints, there was 100% agreement between the M27-A and FACS methods. In the FACS assay, a fluconazole MIC of <1 μg/ml was associated with cure (P < 0.001) whereas an MIC of ≥1 μg/ml was associated with death (P < 0.001). The M27-A-derived fluconazole MICs did not correlate with outcome (P = 1 and P = 0.133). PMID:11427554

  5. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.

    PubMed

    Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana

    2018-01-25

    Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.

  6. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.

  7. Observations of resistance through minimum inhibitory concentrations trends for respiratory specimens of commonly isolated organisms.

    PubMed

    Gillard, Christopher J; Al-Dahir, Sara; Brakta, Fatima

    2016-03-01

    The objective of this study was to determine minimum inhibitory concentration (MIC) trends among common bacterial organisms found in respiratory isolates in the trauma intensive care unit setting. In this retrospective observational study, MIC data was reviewed over a three year period from January 2009 to December 2011 for the three most frequently identified organisms isolated from respiratory specimens in a trauma intensive care unit along with corresponding hospital data. The most frequently isolated bacterial species identified were Staphylococcus aureus (229 isolates), Pseudomonas aeruginosa (129 isolates), and Acinetobacter species (87 isolates) in the analysis within our institution from 2009-2011. There was considerable variability among the MIC trends for the analyzed organisms. For Pseudomonas isolates, observed sensitivities were as high as 100% for antibiotics ciprofloxacin and imipenem in 2009, but decreased over the next two years in 2010 and 2011. There was considerable variability among the MIC trends for Acinetobacter over the three year period for the antibiotics tested. The MIC data for most Staphylococcus aureus isolates over the three years were sensitive to vancomycin with little change in the observed MIC data. The data reported is observational and indicates the need for future studies to establish a valid relationship of the MIC data over time in our institution particularly among our gram negative organisms, to monitor patterns of antimicrobial resistance. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli.

    PubMed

    de Andrade, João Paulo Lopes; de Macêdo Farias, Luiz; Ferreira, João Fernando Gonçalves; Bruna-Romero, Oscar; da Glória de Souza, Daniele; de Carvalho, Maria Auxiliadora Roque; dos Santos, Kênia Valéria

    2016-01-01

    Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.

  9. In Vitro Studies of Pharmacodynamic Properties of Vancomycin against Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Löwdin, E.; Odenholt, I.; Cars, O.

    1998-01-01

    The bactericidal activities of vancomycin against two reference strains and two clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis were studied with five different concentrations ranging from 2× to 64× the MIC. The decrease in the numbers of CFU at 24 h was at least 3 log10 CFU/ml for all strains. No concentration-dependent killing was observed. The postantibiotic effect (PAE) was determined by obtaining viable counts for two of the reference strains, and the viable counts varied markedly: 1.2 h for S. aureus and 6.0 h for S. epidermidis. The determinations of the PAE, the postantibiotic sub-MIC effect (PA SME), and the sub-MIC effect (SME) for all strains were done with BioScreen C, a computerized incubator for bacteria. The PA SMEs were longer than the SMEs for all strains tested. A newly developed in vitro kinetic model was used to expose the bacteria to continuously decreasing concentrations of vancomycin. A filter prevented the loss of bacteria during the experiments. One reference strain each of S. aureus and S. epidermidis and two clinical isolates of S. aureus were exposed to an initial concentration of 10× the MIC of vancomycin with two different half-lives (t1/2s): 1 or 5 h. The post-MIC effect (PME) was calculated as the difference in time for the bacteria to grow 1 log10 CFU/ml from the numbers of CFU obtained at the time when the MIC was reached and the corresponding time for an unexposed control culture. The difference in PME between the strains was not as pronounced as that for the PAE. Furthermore, the PME was shorter when a t1/2 of 5 h (approximate terminal t1/2 in humans) was used. The PMEs at t1/2s of 1 and 5 h were 6.5 and 3.6 h, respectively, for S. aureus. The corresponding figures for S. epidermidis were 10.3 and less than 6 h. The shorter PMEs achieved with a t1/2 of 5 h and the lack of concentration-dependent killing indicate that the time above the MIC is the parameter most important for the efficacy of vancomycin. PMID:9756787

  10. CHEMICAL CHARACTERIZATION AND EVALUATION OF ANTIBACTERIAL, ANTIFUNGAL, ANTIMYCOBACTERIAL, AND CYTOTOXIC ACTIVITIES OF Talinum paniculatum

    PubMed Central

    REIS, Luis F.C. DOS; CERDEIRA, Cláudio D.; PAULA, Bruno F. DE; da SILVA, Jeferson J.; COELHO, Luiz F.L.; SILVA, Marcelo A.; MARQUES, Vanessa B.B.; CHAVASCO, Jorge K.; ALVES-DA-SILVA, Geraldo

    2015-01-01

    SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteusand Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosis and Mycobacterium bovis as well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatum showed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans. PMID:26603226

  11. Effect of Ottoman Viper (Montivipera xanthina (Gray, 1849)) Venom on Various Cancer Cells and on Microorganisms.

    PubMed

    Yalcın, Husniye Tansel; Ozen, Mehmet Ozgün; Gocmen, Bayram; Nalbantsoy, Ayse

    2014-01-01

    Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 μg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 μg/ml and minimal fungicidal concentration, 62.5 μg/ml) and S. aureus (MIC, 31.25 μg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.

  12. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA

    PubMed Central

    Lai, Chih-Cheng; Chen, Chi-Chung; Chuang, Yin-Ching; Tang, Hung-Jen

    2017-01-01

    Eight heterogeneous vancomycin-intermediate S. aureus (h-VISA) and seven VISA clinical isolates confirmed by the population analysis profile/area under the curve ratio (PAP/AUC) were collected. We further performed the PAP/AUC, time-killing methods and MIC tests using vancomycin/teicoplanin alone or combination with susceptible breakpoint concentrations of cefazolin, cefmetazole, cefotaxime, and cefepime for these isolates. The PAP/AUC MIC curve shifted left after addition of cephalosporins with vancomycin or teicoplanin for both h-VISA and VISA isolates. With the combination of different cephalosporins with vancomycin or teicoplanin, the AUC/Mu3 AUC ratio decreased to <0.9 for the standard Mu3 isolate which are compatible with the definition of vancomycin susceptible S. aureus. These decreases ranged between 1.81–2.02 and 2.37–2.85-fold for h-VISA treated with cephalosporins and vancomycin or teicoplanin, and 2.05–4.59, and 2.93–4,89-fold for VISA treated with cephalosporins with vancomycin or teicoplanin. As measured by time-killing assays, the combinations of different cephalosporins with vancomycin concentrations at 1/2 and 1/4 MIC, exhibited a bactericidal and bacteriostatic effect in VISA. The mean fold of MIC decline for vancomycin base combinations ranged from 1.81–3.83 and 2.71–9.33 for h-VISA and VISA, respectively. Overall, this study demonstrated the enhanced antibacterial activity of vancomycin/teicoplanin after adding cephalosporins against clinical h-VISA/VISA isolates. PMID:28139739

  13. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.

    PubMed

    Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan

    2017-06-01

    Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. "Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves".

    PubMed

    Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A

    2018-02-08

    Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.

  15. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    PubMed

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E. hormaechei and P. rettgeri in India.

  16. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario.

    PubMed

    Slavić, Durđa; Boerlin, Patrick; Fabri, Marta; Klotins, Kim C; Zoethout, Jennifer K; Weir, Pat E; Bateman, Debbie

    2011-04-01

    Antimicrobial susceptibilities and toxin types were determined for 275 Clostridium perfringens isolates collected in Ontario in the spring of 2005. Minimal inhibitory concentrations (MICs) of C. perfringens isolates for 12 antimicrobials used in therapy, prophylaxis, and/or growth promotion of cattle (n = 40), swine (n = 75), turkeys (n = 50), and chickens (n = 100) were determined using the microbroth dilution method. Statistical analyses and MIC distributions showed reduced susceptibility to bacitracin, clindamycin, erythromycin, florfenicol, and tetracycline for some isolates. Reduced susceptibility to bacitracin was identified in chicken (64%) and turkey (60%) isolates. Swine isolates had predominantly reduced susceptibility to clindamycin (28%) and erythromycin (31%), whereas bovine isolates had reduced susceptibility to clindamycin (10%) and florfenicol (10%). Reduced susceptibility to tetracycline was spread across all species. No clear reduced susceptibility, but elevated MIC(50) for virginiamycin was found in chicken isolates in comparison with isolates from other species. Toxin typing revealed that C. perfringens type A is the dominant toxin type isolated in this study across all 4 host species.

  17. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives.

    PubMed

    Cunha, Wilson R; de Matos, Geilton X; Souza, Maria Goreti M; Tozatti, Marcos G; Andrade e Silva, Márcio L; Martins, Carlos H G; da Silva, Rosangela; Da Silva Filho, Ademar A

    2010-02-01

    The methylene chloride extract of Miconia ligustroides (DC.) Naudin (Melastomataceae), the isolated compounds ursolic and oleanolic acids and a mixture of these acids, and ursolic acid derivatives were evaluated against the following microorganisms: Bacillus cereus (ATCC 14579), Vibrio cholerae (ATCC 9458), Salmonella choleraesuis (ATCC 10708), Klebsiella pneumoniae (ATCC 10031), and Streptococcus pneumoniae (ATCC 6305). The microdilution method was used for determination of the minimum inhibitory concentration (MIC) during evaluation of the antibacterial activity. The methylene chloride extract showed no activity against the selected microorganisms. Ursolic acid was active against B. cereus, showing a MIC value of 20 microg/mL. Oleanolic acid was effective against B. cereus and S. pneumoniae with a MIC of 80 microg/mL in both cases. The mixture of triterpenes, ursolic and oleanolic acids, did not enhance the antimicrobial activity. However, the acetyl and methyl ester derivatives, prepared from ursolic acid, increased the inhibitory activity for S. pneumoniae.

  18. Synergistic antibacterial activity of Salvia officinalis and Cichorium intybus extracts and antibiotics.

    PubMed

    Stefanović, Olgica D; Stanojević, Dragana D; Comić, Ljiljana R

    2012-01-01

    Synergistic activity of Salvia officinalis and Cichorium intybus extracts and commonly used antibiotics, amoxicillin and chloramphenicol, were evaluated. Interactions between plant extracts and antibiotics were tested by checkerboard method and interpreted as FIC index. Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and clinical isolates Staphylococcus aureus, Bacillus subtilis, Enterobacter cloacae, Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis were used. Salvia officinalis showed better synergistic capacity than Cichorium intybus. Synergistic interactions were observed between amoxicillin and acetone or ethyl acetate extract of Salvia officinalis and between chloramphenicol and ethyl acetate extract of Salvia officinalis. In the presence of sub-inhibitory concentration (1/4 MIC to 1/32 MIC) of sage extracts, the MIC values of antibiotics were decreased by 2- to 10-fold. Synergism was observed against all test bacteria, except Escherichia coli. The combinations of acetone and ethyl acetate extract from Cichorium intybus and antibiotics resulted in additive and indifferent effects against tested bacteria.

  19. Effects of Intracanal Irrigant MTAD Combined with Nisin at Sub-Minimum Inhibitory Concentration Levels on Enterococcus faecalis Growth and the Expression of Pathogenic Genes

    PubMed Central

    Ling, Junqi; Mao, Xueli; Ning, Yang; Deng, Dongmei

    2014-01-01

    Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. PMID:24603760

  20. Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms.

    PubMed

    Xie, Ting; Liao, Zhenlin; Lei, Huan; Fang, Xiang; Wang, Jie; Zhong, Qingping

    2017-09-01

    Biofilm is a community composed of microbes and the extracellular polymeric substances. This special architecture poses a significant public health risk as it increases the fitness of bacteria in harsh conditions and renders bacterial resistance to antimicrobial agents and cleaning. In this study, we investigated the inhibition and eradication effects of chitosan on the biofilm of Vibrio parahaemolyticus, an important food-borne pathogen. The crystal violet staining, [2, 3-bis (2-methoxy-4-nitro-5- sulfophenyl)-2H-tetrazolium-5-carboxanilide] (XTT) reduction method, phenol-sulfuric acid method, fluorescence microscope and confocal laser scanning microscope (CLSM) observation were conducted. The results indicated that the minimum inhibitory concentration (MIC) of chitosan was 1.25 mg/mL. Sub-MIC of chitosan could significantly inhibit biofilm formation, reduce the metabolic activities and the secretion of extracellular polysaccharide (EPS). Moreover, chitosan at 4MIC could eradicate 85.06% mature biofilm of V. parahaemolyticus, and decrease 81.43% EPS in mature biofilm. These results were also confirmed by the visual images obtained from fluorescence microscopy and CLSM. This study elucidated that chitosan was not only effective to prevent biofilm formation, but also eradicate mature biofilms of V. parahaemolyticus. Copyright © 2017. Published by Elsevier Ltd.

  1. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    NASA Technical Reports Server (NTRS)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control (normal gravity) MIC values will be generated by simultaneous inoculation and incubation of a second set of test cards in a laboratory at the launch site. This procedure can provide a safe and compact experiment that should yield new information on the affects of microgravity on the biological activities of various classes of antibiotics.

  2. Detection of Salmonella spp. with the BACTEC 9240 Automated Blood Culture System in 2008 - 2014 in Southern Iran (Shiraz): Biogrouping, MIC, and Antimicrobial Susceptibility Profiles of Isolates.

    PubMed

    Anvarinejad, Mojtaba; Pouladfar, Gholam Reza; Pourabbas, Bahman; Amin Shahidi, Maneli; Rafaatpour, Noroddin; Dehyadegari, Mohammad Ali; Abbasi, Pejman; Mardaneh, Jalal

    2016-04-01

    Human salmonellosis continues to be a major international problem, in terms of both morbidity and economic losses. The antibiotic resistance of Salmonella is an increasing public health emergency, since infections from resistant bacteria are more difficult and costly to treat. The aims of the present study were to investigate the isolation of Salmonella spp. with the BACTEC automated system from blood samples during 2008 - 2014 in southern Iran (Shiraz). Detection of subspecies, biogrouping, and antimicrobial susceptibility testing by the disc diffusion and agar dilution methods were performed. A total of 19 Salmonella spp. were consecutively isolated using BACTEC from blood samples of patients between 2008 and 2014 in Shiraz, Iran. The isolates were identified as Salmonella, based on biochemical tests embedded in the API-20E system. In order to characterize the biogroups and subspecies, biochemical testing was performed. Susceptibility testing (disc diffusion and agar dilution) and extended-spectrum β-lactamase (ESBL) detection were performed according to the clinical and laboratory standards institute (CLSI) guidelines. Of the total 19 Salmonella spp. isolates recovered by the BACTEC automated system, all belonged to the Salmonella enterica subsp. houtenae. Five isolates (26.5%) were resistant to azithromycin. Six (31.5%) isolates with the disc diffusion method and five (26.3%) with the agar dilution method displayed resistance to nalidixic acid (minimum inhibitory concentration [MIC] > 32 μg/mL). All nalidixic acid-resistant isolates were also ciprofloxacin-sensitive. All isolates were ESBL-negative. Twenty-one percent of isolates were found to be resistant to chloramphenicol (MIC ≥ 32 μg/mL), and 16% were resistant to ampicillin (MIC ≥ 32 μg/mL). The results indicate that multidrug-resistant (MDR) strains of Salmonella are increasing in number, and fewer antibiotics may be useful for treating S. enterica infections. Routine investigation and reporting of antibiotic MICs in patients presenting with Salmonella infections is suggested.

  3. Biofilm formation in Malassezia pachydermatis strains isolated from dogs decreases susceptibility to ketoconazole and itraconazole.

    PubMed

    Jerzsele, Akos; Gyetvai, Béla; Csere, István; Gálfi, Péter

    2014-12-01

    Malassezia pachydermatis is a commonly isolated yeast in veterinary dermatology that can produce biofilms in vitro and in vivo, lowering its susceptibility to antimicrobial drugs. The aim of this study was to determine and compare the in vitro susceptibility of planktonic cells and biofilms of M. pachydermatis isolates to ketoconazole and itraconazole. The presence of biofilm formation was confirmed by crystal violet staining and absorbance measurement at 595 nm wavelength, and by a scanning electron microscopy method. Cell viability was determined by the Celltiter 96 Aqueous One solution assay containing a water-soluble tetrazolium compound (MTS) with absorbance measurement at 490 nm. Planktonic cell minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of ketoconazole and itraconazole were very low: MIC90 and MFC90 were 0.032 and 0.125 μg/ml for ketoconazole, while 0.063 and 0.25 μg/ml for itraconazole, respectively. Also, the half maximal effective concentrations (EC50) of itraconazole were higher for planktonic cells and biofilms compared to ketoconazole. The EC50 values of ketoconazole were 18-169 times higher and those of itraconazole 13-124 times higher for biofilms than for planktonic cells. Biofilm EC50 levels exceeded MICs 103-2060 times for ketoconazole and 84-1400 times for itraconazole. No significant difference was found between these values of the two substances. In conclusion, biofilms of all examined M. pachydermatis strains were much less susceptible to ketoconazole and itraconazole than their planktonic forms.

  4. Bioassay Guided Fractionation of an Anti-Methicillin-Resistant Staphylococcus aureus Flavonoid From Bromus inermis Leyss Inflorescences

    PubMed Central

    Aliahmadi, Atousa; Mirzajani, Fateme; Ghassempour, Alireza; Sonboli, Ali

    2014-01-01

    Background: Plants are considered as promising sources of new antibacterial agents as well as bioassay guided fractionation. Objectives: In the present work, the antibacterial properties, especially against methicillin-resistant Staphylococcus aureus (MRSA), of Bromus inermis inflorescence was studied, using the bioassay guided fractionation as well as the bio-autographic method. Materials and Methods: The plant organic extract was prepared via maceration in methanol, followed by the fractionation using n-hexane. The extracts were subjected for minimum inhibitory concentrations (MICs) against some human pathogenic bacteria via standard broth micro-dilution assay. Thereafter, a bio-autographical method was applied using the high performance thin layer chromatography (HPTLC) coupled with agar overlay assays for the primary characterization and identification of bioactive substance (s). Results: Through the bioassay guided fractionation method, the greatest antibacterial activities were related to the n-hexane extract. It was also revealed that the effective anti-MRSA agent of the assessed plant was a relatively polar substance with an MIC value of about 8 μg/mL against the tested MRSA strain (in comparison with the MIC value of 32 μg/mL for chloramphenicol). Conclusions: As a result of the full range UV-Vis scanning of the responsible band in the HPTLC experiments (200-700 nm), the flavonoid was the most imaginable natural compound. PMID:25741430

  5. Bactericidal effects of various concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin on clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K

    2015-10-01

    To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.

  6. Enhanced in vitro activity of tigecycline in the presence of chelating agents.

    PubMed

    Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut

    2018-05-01

    The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Correlation between In Vitro and In Vivo Antifungal Activities in Experimental Fluconazole-Resistant Oropharyngeal and Esophageal Candidiasis

    PubMed Central

    Walsh, Thomas J.; Gonzalez, Corina E.; Piscitelli, Steven; Bacher, John D.; Peter, Joanne; Torres, Richard; Shetti, Daiva; Katsov, Victoria; Kligys, Kristina; Lyman, Caron A.

    2000-01-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, ≤0.125 μg/ml) and three fluconazole-resistant (FR) (MIC, ≥64 μg/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro fluconazole susceptibility by NCCLS methods and in vivo response to fluconazole therapy of OPEC due to C. albicans. PMID:10835005

  8. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    PubMed

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, /=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro fluconazole susceptibility by NCCLS methods and in vivo response to fluconazole therapy of OPEC due to C. albicans.

  9. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil

    PubMed Central

    Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath

    2017-01-01

    Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658

  10. [Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus].

    PubMed

    Herrera, Mónica Tatiana; Artunduaga, Jhon Jhamilton; Ortiz, Claudia Cristina; Torres, Rodrigo Gonzalo

    2017-01-24

    Polymeric nanoparticles are promising nanotechnology tools to fight pathogenic bacteria resistant to conventional antibiotics. To synthesize polylactic acid nanoparticles loaded with ofloxacin and vancomycin, and to determine their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). We synthesized ofloxacin or vancomycin loaded polylactic acid nanoparticles by the emulsification-solvent evaporation method, and characterized them by dynamic light scattering, laser Doppler electrophoresis and scanning electron microscopy. We evaluated in vitro antibacterial activity of ofloxacin- and vancomycin-loaded polylactic acid nanoparticles against E. coli O157:H7 and MRSA using the broth microdilution method. Ofloxacin- and vancomycin-loaded polylactic acid nanoparticles registered a positive surface charge density of 21 mV and an average size lower than 379 nm. In vitro minimum inhibitory concentration (MIC50) of ofloxacin-polylactic acid nanoparticles was 0,001 μg/ml against E. coli O157:H7, i.e., 40 times lower than the free ofloxacin (MIC50: 0.04 μg/ml), indicating enhanced antibacterial activity while the in vitro MIC50 of vancomycin-polylactic acid nanoparticles was 0,005 μg/ml against MRSA, i.e., 100 times lower than that of free vancomycin (MIC50: 0.5 μg/ml). Polylactic acid nanoparticles loaded with ofloxacin and vancomycin showed a higher antibacterial activity. Polymeric nanoparticles are a possible alternative for drug design against pathogenic bacterial strains of public health interest.

  11. Pharmacodynamics of Ceftolozane plus Tazobactam Studied in an In Vitro Pharmacokinetic Model of Infection.

    PubMed

    MacGowan, Alasdair P; Noel, Alan R; Tomaselli, Sharon G; Nicholls, Donna; Bowker, Karen E

    2016-01-01

    Ceftolozane plus tazobactam is an antipseudomonal cephalosporin combined with tazobactam, an established beta-lactamase inhibitor, and has in vitro potency against a range of clinically important β-lactamase-producing bacteria, including most extended-spectrum-β-lactamase (ESBL)-positive Enterobacteriaceae. The pharmacodynamics of β-lactam-β-lactamase inhibitor combinations presents a number of theoretical and practical challenges, including modeling different half-lives of the compounds. In this study, we studied the pharmacodynamics of ceftolozane plus tazobactam against Escherichia coli and Pseudomonas aeruginosa using an in vitro pharmacokinetic model of infection. Five strains of E. coli, including three clinical strains plus two CTX-M-15 (one high and one moderate) producers, and five strains of P. aeruginosa, including two with OprD overexpression and AmpC β-lactamases, were employed. Ceftolozane MICs (E. coli, 0.12 to 0.25 mg/liter, and P. aeruginosa, 0.38 to 8 mg/liter) were determined in the presence of 4 mg/liter tazobactam. Dose ranging of ceftolozane (percentage of time in which the free-drug concentration exceeds the MIC [fT>MIC], 0 to 100%) plus tazobactam (human pharmacokinetics) was simulated every 8 hours, with half-lives (t1/2) of 2.5 and 1 h, respectively. Ceftolozane and tazobactam concentrations were confirmed by high-performance liquid chromatography (HPLC). The ceftolozane-plus-tazobactam fT>MIC values at 24 h for a static effect and a 1-log and 2-log drop in initial inoculum for E. coli were 27.8% ± 5.6%, 33.0% ± 5.6%, and 39.6% ± 8.5%, respectively. CTX-M-15 production did not affect the 24-h fT>MIC for E. coli strains. The ceftolozane-plus-tazobactam fT>MIC values for a 24-h static effect and a 1-log and 2-log drop for P. aeruginosa were 24.9% ± 3.0%, 26.6% ± 3.9%, and 31.2% ± 3.6%. Despite a wide range of absolute MICs, the killing remained predictable as long as the MICs were normalized to the corresponding fT>MIC. Emergence of resistance on 4× MIC plates and 8× MIC plates occurred maximally at an fT>MIC of 10 to 30% and increased as time of exposure increased. The fT>MIC for a static effect for ceftolozane plus tazobactam is less than that observed with other cephalosporins against E. coli and P. aeruginosa and is more similar to the fT>MIC reported for carbapenems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    PubMed Central

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539

  13. Two Pharmacodynamic Models for Assessing the Efficacy of Amoxicillin-Clavulanate against Experimental Respiratory Tract Infections Caused by Strains of Streptococcus pneumoniae

    PubMed Central

    Woodnutt, Gary; Berry, Valerie

    1999-01-01

    Two models of respiratory tract infection were used to investigate the pharmacodynamics of amoxicillin-clavulanate against Streptococcus pneumoniae. Eight strains of S. pneumoniae were used in a mouse model in which the animals were infected intranasally and were then treated with a range of doses and dose intervals. The time that the plasma amoxicillin concentration remained above the MIC (T>MIC) correlated well with bacterial killing, such that if T>MIC was below 20% there was no effect on bacterial numbers in the lungs. As T>MIC increased, the response, in terms of decreased bacterial load, improved and at T>MICs of greater than 35 to 40% of the dosing interval, bacteriological cure was maximal. On the basis of equivalent T>MICs, these data would suggest that in humans a dosage of 500 mg three times daily (t.i.d.) should have efficacy equal to that of a dosage of 875 mg twice daily (b.i.d.). This hypothesis was evaluated in a rat model in which amoxicillin-clavulanate was given by computer-controlled intravenous infusion to achieve concentrations that approximate the concentrations achieved in the plasma of humans following oral administration of 500/125 mg t.i.d. or 875/125 mg b.i.d. Infusions continued for 3 days and bacterial numbers in the lungs 2 h after the cessation of the infusion were significantly reduced (P < 0.01) by both treatments in strains of S. pneumoniae for which amoxicillin MICs were below 2 μg/ml. When tested against a strain of S. pneumoniae for which the amoxicillin MIC was 4 μg/ml, the simulated 500/125-mg dose was ineffective but the 875/125-mg dose demonstrated a small but significant (P < 0.01) reduction in bacterial numbers. These data confirm the findings in the mouse and indicate that amoxicillin-clavulanate administered at 875/125 mg b.i.d. would be as effective clinically as amoxicillin-clavulanate administered at 500/125 mg t.i.d. PMID:9869561

  14. A New Algorithm to Optimize Maximal Information Coefficient

    PubMed Central

    Luo, Feng; Yuan, Zheming

    2016-01-01

    The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001

  15. influence of TEM-1 beta-lactamase on the pharmacodynamic activity of simulated total versus free-drug serum concentrations of cefditoren (400 milligrams) versus amoxicillin-clavulanic acid (2,000/125 milligrams) against Haemophilus influenzae strains exhibiting an N526K mutation in the ftsI gene.

    PubMed

    Torrico, M; Aguilar, L; González, N; Giménez, M J; Echeverría, O; Cafini, F; Sevillano, D; Alou, L; Coronel, P; Prieto, J

    2007-10-01

    The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and beta-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, beta-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and beta-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of < or =0.12 microg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 microg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (> or =3 log(10) reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in beta-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P < or = 0.012) amoxicillin concentrations from 4 h on in simulations with beta-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of beta-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or beta-lactamase production.

  16. Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks

    PubMed Central

    Srivastava, Shashikant; Deshpande, Devyani; Pasipanodya, Jotam; Nuermberger, Eric; Swaminathan, Soumya; Gumbo, Tawanda

    2016-01-01

    Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible. PMID:27742641

  17. In Vivo Pharmacodynamic Target Assessment of Eravacycline against Escherichia coli in a Murine Thigh Infection Model.

    PubMed

    Zhao, Miao; Lepak, Alexander J; Marchillo, Karen; VanHecker, Jamie; Andes, David R

    2017-07-01

    Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration ( C max ) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC 0-∞ ) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC ( f AUC/MIC) was the PK/PD parameter that best correlated with efficacy ( R 2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean f AUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively. Copyright © 2017 American Society for Microbiology.

  18. Antibacterial activities of Origanum vulgare alone and in combination with different antimicrobials against clinical isolates of Salmonella typhi

    PubMed Central

    Bharti, Veni; Vasudeva, Neeru; Sharma, Sunil; Duhan, Joginder Singh

    2013-01-01

    Background: Typhoid fever continues to remain a major public health problem especially in the areas where there is problem of sanitation and hygiene. The emergence of multidrug resistance of Salmonella typhi, the bacteria responsible for Typhoid to ampicillin, chloramphenicol, and cotrimoxazole has further complicated the treatment and management of enteric fever. One strategy for the treatment of the multidrug resistant bacteria is to use herbs in combination with conventional drugs. The present study was done to find out the interaction effect of phenolic, nonphenolic fractions, and volatile oil of Origanum vulgare with ciprofloxacin. Materials and Methods: The minimum inhibitory concentration (MIC) by microdilution method for individual phytoconstituents and in combination with ciprofloxacin was compared for clinically isolated bacteria from patients infected with S. typhi. Fractional inhibitory concentration (FIC) and Fractional inhibitory concentration index (FICI) were also calculated. Results: The MIC declined to a significant level indicating synergistic relationship between ciprofloxacin and phenolic, nonphenolic fractions and volatile oil in vitro. The FICI exhibits synergistic effect for all the three samples while indifferent and antagonistic for samples and for phenolic and nonphenolic fractions. Conclusions: Present study shows that not only the formulation using O. vulgare and ciprofloxacin can overcome multidrug resistance but also will reduce the toxic effects of ciprofloxacin. PMID:24991069

  19. Antibacterial Activity of Ethanolic Extract of Cinnamon Bark, Honey, and Their Combination Effects against Acne-Causing Bacteria

    PubMed Central

    Julianti, Elin; Rajah, Kasturi K.; Fidrianny, Irda

    2017-01-01

    Propionibacterium acnes and Staphylococcus epidermidis are the major skin bacteria that cause the formation of acne. The present study was conducted to investigate antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination against acne bacteria. The antibacterial activity of extract of cinnamon bark and honey were investigated against P. acnes and S. epidermidis using disc diffusion. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were attained using Clinical and Laboratory Standard Institute (CLSI) methods. The interaction between cinnamon bark extract and honey was determined using a checkerboards method. The results showed that the MICs of cinnamon bark extract and honey against P. acne were 256 µg/mL and 50% v/v, respectively, while those against S. epidermidis were 1024 µg/mL and 50% v/v, respectively. The MBC of cinnamon bark extract against P. acnes and S. epidermidis were more than 2048 µg/mL, whereas the MBC for honey against P. acnes and S. epidermidis were 100%. The combination of cinnamon bark extract and honey against P. acnes and S. epidermidis showed additive activity with a fractional inhibitory concentration index (FICI) value of 0.625. Therefore, the combination of cinnamon bark extract and honey has potential activity against acne-causing bacteria. PMID:28398231

  20. Effect of levofloxacin, erythromycin or rifampicin pretreatment on growth of Legionella pneumophila in human monocytes.

    PubMed

    Smith, R P; Baltch, A L; Franke, M; Hioe, W; Ritz, W; Michelsen, P

    1997-11-01

    Opsonophagocytic killing of some bacteria (Staphylococcus aureus, Pseudomonas aeruginosa) by phagocytes is enhanced by previous brief exposure of the organism to antibiotics. We studied the regrowth of Legionella pneumophila previously pretreated with levofloxacin, erythromycin and/or rifampicin in human monocytes. The MIC for the L. pneumophila isolate of levofloxacin, erythromycin and rifampicin was 0.03, 0.5 and 0.001 mg/L, respectively. Growth of L. pneumophila from buffered charcoal yeast extract (BCYE) agar for 24 h was subcultured into BYE broth containing from 0 to 4x MIC of levofloxacin, erythromycin or rifampicin. After incubation at 35 degrees C in 5% CO2 for 18 h, the organisms were washed and opsonized with 20% heat inactivated pooled normal human serum. Thereafter, L. pneumophila was exposed to human monocytes (5:1 ratio) previously adhered to wells in tissue culture plates containing RPMI and 10% fetal calf serum. After 0, 24, 48 and 72 h of incubation, quantitative cultures of lysed human monocytes were done on BCYE agar. Our results indicate effective inhibition on L. pneumophila at 0 h regardless of the antibiotic (levofloxacin, rifampicin or erythromycin) or their concentrations (1x, 2x or 4x MIC). At 24, 48 and 72 h, recovery and regrowth of L. pneumophila were both antibiotic- and concentration-dependent. In comparison with controls (no antibiotic pretreatment), peak regrowth of L. pneumophila pretreated with either 1x MIC of levofloxacin or erythromycin was delayed (48 versus 24 h) and reduced (30% of control peak regrowth). Regrowth of L. pneumophila pretreated with 1x MIC of rifampicin continued beyond 72 h. Pretreatment with levofloxacin at 4x MIC caused the greatest degree of growth inhibition (2 log10). In contrast, at 72 h, regrowth of organisms pretreated with 4x MIC of erythromycin or rifampicin was less than peak control (P < 0.01) but greater than that seen with levofloxacin (P < 0.01). The rate and degree of regrowth of L. pneumophila pretreated with combinations of levofloxacin or erythromycin with rifampicin, or levofloxacin with erythromycin (all at 1x MIC) was similar to that seen with single drugs. Thus, significant delay and reduction of regrowth in this phagocytic system occurred with levofloxacin only. Prolonged exposure of the organism at 4x MIC levofloxacin concentrations was effective in suppressing regrowth of pretreated L. pneumophila in human monocytes.

  1. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study

    PubMed Central

    Shetty, Sapna B.; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil- Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja

    2016-01-01

    Background Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Material and Methods Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Results Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Conclusions Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Key words:Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus. PMID:26855710

  2. Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: an in vitro study.

    PubMed

    Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang

    2015-01-01

    Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  3. In Vitro Activity and Fecal Concentration of Rifaximin after Oral Administration

    PubMed Central

    Jiang, Zhi-Dong; Ke, Shi; Palazzini, Ernesto; Riopel, Lise; Dupont, Herbert

    2000-01-01

    Rifaximin showed moderately high MICs (the MIC at which 90% of the isolates tested were inhibited = 50 μg/ml) for 145 bacterial enteropathogens from patients with traveler's diarrhea acquired in Mexico during the summers of 1997 and 1998. Rifaximin concentrations in stool the day after oral administration (800 mg daily for 3 days) were high (average, 7,961 μg/g), proving the value of the drug. PMID:10898704

  4. Activities of Antimicrobial Peptides and Synergy with Enrofloxacin against Mycoplasma pulmonis▿

    PubMed Central

    Fassi Fehri, Lina; Wróblewski, Henri; Blanchard, Alain

    2007-01-01

    We showed in a previous study that associations of antimicrobial peptides (AMPs), which are key components of the innate immune systems of all living species, with the fluoroquinolone enrofloxacin can successfully cure HeLa cell cultures of Mycoplasma fermentans and M. hyorhinis contamination. In the present work, the in vitro susceptibility of M. pulmonis, a murine pathogen, to enrofloxacin and four AMPs (alamethicin, globomycin, gramicidin S, and surfactin) was investigated, with special reference to synergistic associations and the effect of the mycoplasma cell concentration. Enrofloxacin and globomycin displayed the lowest MICs (0.4 μM), followed by gramicidin S (3.12 μM), alamethicin (6.25 μM), and surfactin (25 μM). When the mycoplasma cell concentration was varied from 104 to 108 CFU/ml, the MICs of enrofloxacin and globomycin increased while those of the three other molecules remained essentially constant. The minimal bactericidal concentration of enrofloxacin (0.8 μM) was also lower than those of the peptides (6.25 to 100 μM), but the latter killed the mycoplasma cells much faster than enrofloxacin (2 h versus 1 day). The use of the AMPs in association with enrofloxacin revealed synergistic effects with alamethicin and surfactin. Interestingly, the mycoplasma-killing activities of the two combinations enrofloxacin (MIC/2) plus alamethicin (MIC/4) and enrofloxacin (MIC/2) plus surfactin (MIC/16) were about 2 orders of magnitude higher than those of the three molecules used separately. These results support the interest devoted to AMPs as a novel class of antimicrobial agents and pinpoint their ability to potentiate the activities of conventional antibiotics, such as fluoroquinolones. PMID:17101680

  5. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS response.

    PubMed

    Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M

    2013-09-01

    Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.

  6. Sub-inhibitory concentrations of penicillin G induce biofilm formation by field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Hathroubi, S; Fontaine-Gosselin, S-È; Tremblay, Y D N; Labrie, J; Jacques, M

    2015-09-30

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and causative agent of porcine pleuropneumonia. This is a highly contagious disease that causes important economic losses to the swine industry worldwide. Penicillins are extensively used in swine production and these antibiotics are associated with high systemic clearance and low oral bioavailability. This may expose A. pleuropneumoniae to sub-inhibitory concentrations of penicillin G when the antibiotic is administered orally. Our goal was to evaluate the effect of sub-minimum inhibitory concentration (MIC) of penicillin G on the biofilm formation of A. pleuropneumoniae. Biofilm production of 13 field isolates from serotypes 1, 5a, 7 and 15 was tested in the presence of sub-MIC of penicillin G using a polystyrene microtiter plate assay. Using microscopy techniques and enzymatic digestion, biofilm architecture and composition were also characterized after exposure to sub-MIC of penicillin G. Sub-MIC of penicillin G significantly induced biofilm formation of nine isolates. The penicillin G-induced biofilms contained more poly-N-acetyl-D-glucosamine (PGA), extracellular DNA and proteins when compared to control biofilms grown without penicillin G. Additionally, penicillin G-induced biofilms were sensitive to DNase which was not observed with the untreated controls. Furthermore, sub-MIC of penicillin G up-regulated the expression of pgaA, which encodes a protein involved in PGA synthesis, and the genes encoding the envelope-stress sensing two-component regulatory system CpxRA. In conclusion, sub-MICs of penicillin G significantly induce biofilm formation and this is likely the result of a cell envelope stress sensed by the CpxRA system resulting in an increased production of PGA and other matrix components. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Minimum inhibitory concentrations of tulathromycin against respiratory bacterial pathogens isolated from clinical cases in European cattle and swine and variability arising from changes in in vitro methodology.

    PubMed

    Godinho, Kevin S; Keane, Sue G; Nanjiani, Ian A; Benchaoui, Hafid A; Sunderland, Simon J; Jones, M Anne; Weatherley, Andrew J; Gootz, Thomas D; Rowan, Tim G

    2005-01-01

    The in vitro activity of tulathromycin was evaluated against common bovine and porcine respiratory pathogens collected from outbreaks of clinical disease across eight European countries from 1998 to 2001. Minimum inhibitory concentrations (MICs) for one isolate of each bacterial species from each outbreak were determined using a broth microdilution technique. The lowest concentrations inhibiting the growth of 90% of isolates (MIC90) for tulathromycin were 2 microg/ml for Mannheimia (Pasteurella) haemolytica, 1 microg/ml for Pasteurella multocida (bovine), and 2 microg/ml for Pasteurella multocida (porcine) and ranged from 0.5 to 4 microg/ml for Histophilus somni (Haemophilus somnus) and from 4 to 16 microg/ml for Actinobacillus pleuropneumoniae. Isolates were retested in the presence of serum. The activity of tulathromycin against fastidious organisms was affected by culture conditions, and MICs were reduced in the presence of serum.

  8. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants.

    PubMed

    Qu, Yilin; Li, Rongyan; Jiang, Mingshan; Wang, Xiuhong

    2017-07-01

    Because of heavy use of antimicrobials, antimicrobial resistance in bacteria has become of great concern. The effect of some widely used food additives such as sucralose on bacteria in the gut and the environment has also drawn increasing attention. In this study, we investigated the interaction between antimicrobials and sucralose impacting antimicrobial resistance and mutation of Escherichia coli (E. coli). To examine antimicrobial resistance and mutation frequency, different subinhibitory concentrations of sucralose were added to cultures of E.coli BW25113 that were then treated with antimicrobials, oxolinic acid, or moxifloxacin. Then the E.coli were assayed for bacterial survival and recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Pre-treatment of E.coli BW25113 with 1/2 minimal inhibitory concentration (MIC) of sucralose increased the survival rate in oxolinic acid or moxifloxacin. A 1/3 MIC of sucralose increased rifampicin-resistant mutation rate of E.coli BW25113 after 72 h, while rifampicin-resistant mutation rate was increased when co-treated with 1/8 MIC, 1/4 MIC, 1/3 MIC sucralose, and oxolinic acid after 24 h. Sucralose can increase the antimicrobial resistance and mutation frequency of E.coli to some antimicrobials.

  9. A long journey from minimum inhibitory concentration testing to clinically predictive breakpoints: deterministic and probabilistic approaches in deriving breakpoints.

    PubMed

    Dalhoff, A; Ambrose, P G; Mouton, J W

    2009-08-01

    Since the origin of an "'International Collaborative Study on Antibiotic Sensitivity Testing'" in 1971, considerable advancement has been made to standardize clinical susceptibility testing procedures of antimicrobial agents. However, a consensus on the methods to be used and interpretive criteria was not reached, so the results of susceptibility testing were discrepant. Recently, the European Committee on Antimicrobial Susceptibility Testing achieved a harmonization of existing methods for susceptibility testing and now co-ordinates the process for setting breakpoints. Previously, breakpoints were set by adjusting the mean pharmacokinetic parameters derived from healthy volunteers to the susceptibilities of a population of potential pathogens expressed as the mean minimum inhibitory concentration (MIC) or MIC90%. Breakpoints derived by the deterministic approach tend to be too high, since this procedure does not take the variabilities of drug exposure and the susceptibility patterns into account. Therefore, first-step mutants or borderline susceptible bacteria may be considered as fully susceptible. As the drug exposure of such sub-populations is inadequate, resistance development will increase and eradication rates will decrease, resulting in clinical failure. The science of pharmacokinetics/pharmacodynamics integrates all possible drug exposures for standard dosage regimens and all MIC values likely to be found for the clinical isolates into the breakpoint definitions. Ideally, the data sets used originate from patients suffering from the disease to be treated. Probability density functions for both the pharmacokinetic and microbiological variables are determined, and a large number of MIC/drug exposure scenarios are calculated. Therefore, this method is defined as the probabilistic approach. The breakpoints thus derived are lower than the ones defined deterministically, as the entire range of probable drug exposures from low to high is modeled. Therefore, the amplification of drug-resistant sub-populations will be reduced. It has been a long journey since the first attempts in 1971 to define breakpoints. Clearly, this implies that none of the various approaches is right or wrong, and that the different approaches reflect different philosophies and mirror the tremendous progress made in the understanding of the pharmacodynamic properties of different classes of antimicrobials.

  10. Evaluation of antibacterial activities of flomoxef against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation.

    PubMed

    Ito, Akinobu; Tatsumi, Yumiko Matsuo; Wajima, Toshihiro; Nakamura, Rio; Tsuji, Masakatsu

    2013-04-01

    The growing number of infection caused by extended-spectrum beta-lactamase (ESBL) producing pathogens has prompted a more rational use of available antibiotics because of the paucity of new, effective agents. Flomoxef (FMOX) is one of the beta-lactam antibiotic which is stable against beta-lactamase. In this study, the antibacterial activity of FMOX was investigated, and Monte Carlo Simulation was conducted to determine the appropriate dosing regimens of FMOX based on the probability of target attainment (TA%) at the critical drug exposure metric of time that drug concentrations remain above 40% (showing bacteriostatic effect) or 70% (showing bactericidal effect) of time during which plasma concentration above minimum inhibitory concentration (MIC) of the drug (T(>MIC)) against the ESBL producing Enterobacteriaceae. The effective regimens to achieve 80% of TA% at 70% of T(>MIC) were 1 g every 8 hours with 2-4 hours infusion, and 1 g every 6 hours with 1-4 hours infusion. Moreover, all the tested regimens were effective to achieve 80% of TA% at 40% of T(>MIC). These results of pharmacokinetics/ pharmacodynamics (PK/PD) modeling showed the potential efficacy of FMOX against bacterial infections caused by ESBL producing Enterobacteriaceae.

  11. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Modulation of quorum sensing-controlled virulence factors by Nymphaea tetragona (water lily) extract.

    PubMed

    Hossain, Md Akil; Lee, Seung-Jin; Park, Ji-Yong; Reza, Md Ahsanur; Kim, Tae-Hwan; Lee, Ki-Ja; Suh, Joo-Won; Park, Seung-Chun

    2015-11-04

    Nymphaea tetragona is a widely distributed ornamental species with ethnomedicinal uses in the treatment of diarrhea, dysentery, eruptive fevers, and infections. The anti-infectious activities of this herb have already been assessed to clarify its traditional use as a medicine. In this study, we aimed to verify the inhibitory effects of N. tetragona 50% methanol extract (NTME) on quorum sensing (QS)-controlled virulence factors of bacteria since QS and its virulence factors are novel targets for antimicrobial therapy. The antibacterial activity of this extract was evaluated against Chromobacterium violaceum and Pseudomonas aeruginosa. The inhibition of the violacein pigment of C. violaceum by NTME was determined qualitative and quantitative using standard methods. The effects of NTME on swarming motility, biofilm viability, pyocyanin production, and LasA protease activity were evaluated using P. aeruginosa. Finally, the in vitro and in vivo cytotoxicity of NTME were verified by MTT assay and oral administration to rats, respectively. The extract had concentration-dependent antibacterial activity against gram-negative bacteria. NTME at 1/2× minimum inhibitory concentration (MIC), 1× MIC and 2× MIC significantly lowered the levels of violacein of C. violaceum compared to that of the control. The swarming motility of P. aeruginosa was inhibited by ≥70% by treatment with 1/2× MIC of NTME. There were remarkable reductions in pyocyanin production and LasA protease activity in the overnight culture supernatant of P. aeruginosa supplemented with NTME when compared with that of the untreated control. The confocal micrographs of 24h biofilms of P. aeruginosa exposed to NTME exhibited a lower number of live cells than the control. No toxic effect was observed in in vitro and in vivo cytotoxicity assays of NTME. NTME was demonstrated to have significant concentration-dependent inhibitory effects on quorum sensing-mediated virulence factors of bacteria with non-toxic properties, and could thus be a prospective quorum sensing inhibitor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria.

    PubMed

    Palaniappan, Kavitha; Holley, Richard A

    2010-06-15

    Plant-derived antibacterial compounds may be of value as a novel means for controlling antibiotic resistant zoonotic pathogens which contaminate food animals and their products. Individual activity of natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate (AIT)) and activity when paired with an antibiotic was studied using broth microdilution and checkerboard methods. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interactions between the inhibitors. Bacteria tested were chosen because of their resistance to at least one antibiotic which had a known genetic basis. Substantial susceptibility of these bacteria toward the natural antimicrobials and a considerable reduction in the minimum inhibitory concentrations (MIC's) of the antibiotics were noted when paired combinations of antimicrobial and antibiotic were used. In the interaction study, thymol and carvacrol were found to be highly effective in reducing the resistance of Salmonella Typhimurium SGI 1 (tet A) to ampicillin, tetracycline, penicillin, bacitracin, erythromycin and novobiocin (FIC<0.4) and resistance of Streptococcus pyogenes ermB to erythromycin (FIC<0.5). With Escherichia coli N00 666, thymol and cinnamaldehyde were found to have a similar effect (FIC<0.4) in reducing the MIC's of ampicillin, tetracycline, penicillin, erythromycin and novobiocin. Carvacrol, thymol (FIC<0.3) and cinnamaldehyde (FIC<0.4) were effective against Staphylococcus aureus blaZ and in reducing the MIC's of ampicillin, penicillin and bacitracin. Allyl isothiocyanate (AIT) was effective in reducing the MIC of erythromycin (FIC<0.3) when tested against S. pyogenes. Fewer combinations were found to be synergistic when the decrease in viable population (log DP) was calculated. Together, fractional inhibitory concentrations < or = 0.5 and log DP<-1 indicated synergistic action between four natural antimicrobials and as many as three antibiotics to which these bacteria were normally resistant. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    PubMed

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  15. Pharmacodynamics of Isavuconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Box, Helen; Livermore, Joanne; Johnson, Adam; McEntee, Laura; Felton, Timothy W.; Whalley, Sarah; Goodwin, Joanne

    2015-01-01

    Isavuconazonium sulfate is a novel triazole prodrug that has been recently approved for the treatment of invasive aspergillosis by the FDA. The active moiety (isavuconazole) has a broad spectrum of activity against many pathogenic fungi. This study utilized a dynamic in vitro model of the human alveolus to describe the pharmacodynamics of isavuconazole against two wild-type and two previously defined azole-resistant isolates of Aspergillus fumigatus. A human-like concentration-time profile for isavuconazole was generated. MICs were determined using CLSI and EUCAST methodologies. Galactomannan was used as a measure of fungal burden. Target values for the area under the concentration-time curve (AUC)/MIC were calculated using a population pharmacokinetics-pharmacodynamics (PK-PD) mathematical model. Isolates with higher MICs required higher AUCs in order to achieve maximal suppression of galactomannan. The AUC/MIC targets necessary to achieve 90% probability of galactomannan suppression of <1 were 11.40 and 11.20 for EUCAST and CLSI, respectively. PMID:26503648

  16. In vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and the correlation between triazoles susceptibility: Results from a five-year study.

    PubMed

    Lei, J; Xu, J; Wang, T

    2018-06-01

    Candida spp. is a common cause of invasive fungal disease. The aim of this study was to examine the susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and explore the correlation between triazoles susceptibility. The antifungal susceptibility in the present study was measured by ATB Fungus 3 method, and the potential relationship was examined by obtaining the correlation of measured minimal inhibitory concentrations (MICs) of Candida spp. isolates. A total of 2099 clinical isolates of Candida spp. from 1441 patients were analyzed. The organisms included 1435 isolates of Candida albicans, 207 isolates of Candida glabrata, 65 isolates of Candida parapsilosis, 31 isolates of Candida krusei, 268 isolates of Candida tropicalis. Voriconazole and itraconazole were more active than fluconazole and against Candida spp. in vitro. The fluconazole, itraconazole and voriconazole MIC 90 (MIC for 90% of the isolates) for all Candida spp. isolates was 4mg/L, 1mg/L and 0.25mg/L, respectively. There was a moderate correlation between the fluconazole MIC s for Candida spp. isolates and this for voriconazole (R 2 =0.475; P<0.01) and itraconazole (R 2 =0.431; P<0.01). Voriconazole MICs for the Candida spp. isolates also correlated with those for itraconazole (R 2 =0.401; P<0.01). These observations suggest that the in vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole exhibits a moderate correlation. Published by Elsevier Masson SAS.

  17. Relationship of in vitro minimum inhibitory concentrations of tilmicosin against Mannheimia haemolytica and Pasteurella multocida and in vivo tilmicosin treatment outcome among calves with signs of bovine respiratory disease.

    PubMed

    McClary, David G; Loneragan, Guy H; Shryock, Thomas R; Carter, Brandon L; Guthrie, Carl A; Corbin, Marilyn J; Mechor, Gerald D

    2011-07-01

    To determine associations between in vitro minimum inhibitory concentrations (MICs) of tilmicosin against Mannheimia haemolytica and Pasteurella multocida and in vivo tilmicosin treatment outcome among calves with clinical signs of bovine respiratory disease (BRD). Observational, retrospective, cohort study. 976 feeder calves with clinical signs of BRD enrolled in 16 randomized clinical trials. Records of clinical trials from October 26, 1996, to November 15, 2004, were searched to identify calves with BRD from which a single isolate of M haemolytica or P multocida was identified via culture of deep nasal swab samples prior to treatment with tilmicosin (10 mg/kg [4.5 mg/lb], SC) and for which MICs of tilmicosin against the isolate were determined. The MICs of tilmicosin against recovered isolates and response to tilmicosin treatment were evaluated. Tilmicosin resistance among M haemolytica and P multocida isolates was uncommon (6/745 [0.8%] and 16/231 [6.9%], respectively). Treatment outcome, defined as success or failure after tilmicosin treatment, did not vary with the MIC of tilmicosin against recovered isolates. The proportion of treatment failures attributed to M haemolytica isolates categorized as resistant (MIC of tilmicosin, ≥ 32 μg/mL) or not susceptible (MIC of tilmicosin, ≥ 16 μg/mL), was 0.2% and 0.5%, respectively. Recovery of tilmicosin-resistant M haemolytica or P multocida isolates was rare, and no association was detected between MIC of tilmicosin and treatment response.

  18. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection

    PubMed Central

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller–Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration–time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin (R2 = 0.9711). The calculated AUC12h/MIC ratios in serum required to produce the net bacterial stasis, 1-log10 and 2-log10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections. PMID:29033841

  19. Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR*

    PubMed Central

    Alves, Carla S.; Melo, Manuel N.; Franquelim, Henri G.; Ferre, Rafael; Planas, Marta; Feliu, Lidia; Bardají, Eduard; Kowalczyk, Wioleta; Andreu, David; Santos, Nuno C.; Fernandes, Miguel X.; Castanho, Miguel A. R. B.

    2010-01-01

    The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred. PMID:20566635

  20. In vitro susceptibility of four antimicrobials against Riemerella anatipestifer isolates: a comparison of minimum inhibitory concentrations and mutant prevention concentrations for ceftiofur, cefquinome, florfenicol, and tilmicosin.

    PubMed

    Li, Yafei; Zhang, Yanan; Ding, Huanzhong; Mei, Xian; Liu, Wei; Zeng, Jiaxiong; Zeng, Zhenling

    2016-11-09

    Mutant prevention concentration (MPC) is an alternative pharmacodynamic parameter that has been used to measure antimicrobial activity and represents the propensities of antimicrobial agents to select resistant mutants. The concentration range between minimum inhibitory concentration (MIC) and MPC is defined as mutant selection window (MSW). The MPC and MSW parameters represent the ability of antimicrobial agents to inhibit the bacterial mutants selected. This study was conducted to determine the MIC and MPC values of four antimicrobials including ceftiofur, cefquinome, florfenicol and tilmicosin against 105 Riemerella anatipestifer isolates. The MIC 50 /MIC 90 values of clinical isolates tested in our study for ceftiofur, cefquinome, florfenicol and tilmicosin were 0.063/0.5、0.031/0.5、1/4、1/4 μg/mL, respectively; MPC 50 / MPC 90 values were 4/64、8/64、4/32、16/256 μg/mL, respectively. These results provided information on the use of these compounds in treating the R. anatipestifer infection; however, additional studies are needed to demonstrate their therapeutic efficacy. Based on the MSW theory, the hierarchy of these tested antimicrobial agents with respect to selecting resistant subpopulations was as follows: cefquinome > ceftiofur > tilmicosin > florfenicol. Cefquinome was the drug that presented the highest risk of selecting resistant mutant among the four antimicrobial agents.

  1. Healthcare-associated Staphylococcus aureus bacteremia in children: Evidence for reverse vancomycin creep and impact of vancomycin trough levels on outcome

    PubMed Central

    McNeil, J Chase; Kok, Eric Y; Forbes, Andrea; Lamberth, Linda; Hulten, Kristina G; Vallejo, Jesus G; Mason, Edward O; Kaplan, Sheldon L

    2015-01-01

    Introduction Elevated vancomycin MICs in S. aureus have been associated with worse clinical outcomes in adults. For invasive MRSA infections in adults, the IDSA recommends targeting vancomycin serum trough concentrations between 15–20 μg/ml. We evaluated trends in vancomycin MICs from healthcare-associated S. aureus bacteremia isolates in children in addition to correlating vancomycin serum trough levels with clinical outcomes. Methods Patients and isolates were identified from a prospective S. aureus surveillance study at Texas Children's Hospital (TCH). Healthcare-associated S. aureus bacteremia isolates from 2003–2013 were selected. Vancomycin MICs by E-test were determined and medical records were reviewed. Acute kidney injury (AKI) was defined as doubling of the baseline serum creatinine. Results 341 isolates met inclusion criteria. We observed a reverse vancomycin creep among MRSA isolates in the study period with a decline in the proportion of isolates with vancomycin MIC ≥ 2 μg/ml (from 32.7% to 5.6%, p<0.001). However, the proportion of MSSA isolates with MIC ≥ 2 μg/ml increased (from 2.9% to 9%, p=0.04). Among patients who had vancomycin troughs performed, there was no difference in duration of bacteremia or fever with vancomycin trough >15 μg/ml vs. < 15 μg/ml. A vancomycin trough > 15 μg/ml was, however, an independent risk factor for AKI. Conclusions Vancomycin MICs are shifting among healthcare-associated S. aureus bacteremia isolates with significant differences between MRSA and MSSA at TCH. Higher vancomycin troughs did not improve outcomes in pediatric healthcare-associated S. aureus bacteremia but were associated with increased nephrotoxicity. Further studies are needed to better understand optimal management of children with S. aureus bacteremia. PMID:26646549

  2. Relevance of liver failure for anti-infective agents: from pharmacokinetic alterations to dosage adjustments

    PubMed Central

    Büdingen, Fiona V.; Gonzalez, Daniel; Tucker, Amelia N.

    2014-01-01

    The liver is a complex organ with great ability to influence drug pharmacokinetics (PK). Due to its wide array of function, its impairment has the potential to affect bioavailability, enterohepatic circulation, drug distribution, metabolism, clearance, and biliary elimination. These alterations differ widely depending on the cause of the liver failure, if it is acute or chronic in nature, the extent of impairment, and comorbid conditions. In addition, the effects on liver functions do not occur in a proportional or predictable manner for escalating degrees of liver impairment. The ability of hepatic alterations to influence PK is also dependent on drug characteristics, such as administration route, chemical properties, protein binding, and extraction ratio, among others. This complexity makes it difficult to predict what effects these changes will have on a particular drug. Unlike certain classes of agents, efficacy of anti-infectives is most often dependent on fulfilling PK/pharmacodynamic targets, such as maximum concentration/minimum inhibitory concentration (Cmax/MIC), area under the curve/minimum inhibitory concentration (AUC/MIC), time above MIC (T>MIC), half-maximal inhibitory concentration (IC50) or half-maximal effective concentration (EC50), or the time above the concentration which inhibits viral replication by 95% (T>EC95). Loss of efficacy and/or an increased risk of toxicity may occur in certain circumstances of liver injury. Although it is important to consider these potential alterations and their effects on specific anti-infectives, many lack data to constitute specific dosing adjustments, making it important to monitor patients for effectiveness and toxicities of therapy. PMID:24949199

  3. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity.

    PubMed

    Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi

    2017-07-01

    Helicobacter pylori ( H. pylori ) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. This study is aimed at evaluating the anti- H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. The crude acacia honey was extracted with n -hexane, dichloromethane, ethyl acetate (EtOAc), and n -butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti- H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori . Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori -induced infections. The crude acacia honey was extracted with n -hexane, dichloromethane, EtOAc, and n -butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pylori Abscisic acid exhibited antibacterial activity against H. pylori . Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.

  4. Comparative in vitro study of the antimicrobial activities of different commercial antibiotic products of vancomycin

    PubMed Central

    2011-01-01

    Background One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Methods Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. Results The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. Conclusions All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents. PMID:21777438

  5. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral.

    PubMed

    Adukwu, Emmanuel C; Bowles, Melissa; Edwards-Jones, Valerie; Bone, Heather

    2016-11-01

    The aim of this study was to determine the antimicrobial effects of lemongrass essential oil (C. flexuosus) and to determine cytotoxic effects of both test compounds on human dermal fibroblasts. Antimicrobial susceptibility screening was carried out using the disk diffusion method. Antimicrobial resistance was observed in four of five Acinetobacter baumannii strains with two strains confirmed as multi-drug-resistant (MDR). All the strains tested were susceptible to both lemongrass and citral with zones of inhibition varying between 17 to 80 mm. The mean minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral (mic-0.14 % and mbc-0.3 % v/v) was lower than that of Lemongrass (mic-0.65 % and mbc-1.1 % v/v) determined using the microtitre plate method. Cell viability using human dermal fibroblasts (HDF; 106-05a) was determined following exposure to both compounds and a control (Grapeseed oil) using the XTT assay and the IC 50 determined at 0.095 % (v/v) for citral and 0.126 % (v/v) for lemongrass. Grapeseed oil had no effect on cell viability. Live cell imaging was performed using the LumaScope 500 imaging equipment and changes in HDF cell morphology such as necrotic features and shrinkage were observed. The ability of lemongrass essential oil (EO) and citral to inhibit and kill MDR A. baumannii highlights its potential for use in the management of drug-resistant infections; however, in vitro cytotoxicity does suggest further tests are needed before in vivo or ex vivo human exposure.

  6. Use of the Microbial Growth Curve in Postantibiotic Effect Studies of Legionella pneumophila

    PubMed Central

    Smith, Raymond P.; Baltch, Aldona L.; Michelsen, Phyllis B.; Ritz, William J.; Alteri, Richard

    2003-01-01

    Using the standard Craig and Gudmundsson method (W. A. Craig and S. Gudmundsson, p. 296-329, in V. Lorian, ed., Antibiotics in Laboratory Medicine, 1996) as a guideline for determination of postantibiotic effects (PAE), we studied a large series of growth curves for two strains of Legionella pneumophila. We found that the intensity of the PAE was best determined by using a statistically fitted line over hours 3 to 9 following antibiotic removal. We further determined the PAE duration by using a series of observations of the assay interval from hours 3 to 24. We determined that inoculum reduction was not necessarily the only predictor of the PAE but that the PAE was subject to the type and dose of the drug used in the study. In addition, there was a variation between strains. Only levofloxacin at five and ten times the minimum inhibitory concentration (MIC) resulted in a PAE duration of 4 to 10 h for both strains of L. pneumophila tested. Ciprofloxacin at five and ten times the MIC and azithromycin at ten times the MIC caused a PAE for one strain only. No PAE could be demonstrated for either strain with erythromycin or doxycycline. Using the presently described method of measuring PAE for L. pneumophila, we were able to detect differences in PAE which were dependent upon the L. pneumophila strain, the antibiotic tested, and the antibiotic concentration. We suggest the use of mathematically fitted curves for comparison of bacterial growth in order to measure PAE for L. pneumophila. PMID:12604545

  7. Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant

    PubMed Central

    Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan

    2014-01-01

    Background: Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. Objectives: This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Materials and Methods: Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Results: Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Conclusions: Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases. PMID:25625045

  8. Transference of bioactive compounds from support plants to the termites Constrictotermes cyphergaster (Isoptera).

    PubMed

    Policarpo, Iamara Silva; Vasconcellos, Alexandre; Chaves, Thiago Pereira; Raimundo, Joanda Paolla; Medeiros, Ana Cláudia D; Coutinho, Henrique D M; Alves, Rômulo Romeu Nóbrega

    2018-10-15

    This study aims to investigate the microbiological potential of the termite species Constrictotermes cyphergaster (Silvestri, 1901) and its support plants. We collected five C. cyphergaster nests from three different support plant species. Microbiological assays were performed on these extracts using the serial microdilution method in triplicate to measure the minimum inhibitory concentration (MIC) of each microorganism for the analysed extract. The ethanol extracts of the termite C. cyphergaster showed no significant activity against strains of Staphylococcus aureus and Escherichia coli, with an MIC >1000 μg mL-1. Only the extracts of the nests and termites with the nest had the same MICs. These results were in contrast to the extracts of Spondias tuberosa (Umbuzeiro), Poincianella pyramidalis (Catingueira), and Amburana cearensis (Cumaru), which demonstrated significant activity against S. aureus with MICs <1000 μg mL-1. The modulating activity of the extracts tested in the present study demonstrated potentiation of most antibiotics across the bacterial strains tested when combined with the extracts for both S. aureus and E. coli. These results indicate that the extracts tested in the present study may be composed of animal and vegetable origins with the potential to modify the activity of antibiotics and thus may aid in antimicrobial therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Amoxicillin-resistant oral streptococci identified in dental plaque specimens from healthy Japanese adults.

    PubMed

    Masuda, Katsuhiko; Nemoto, Hirotoshi; Nakano, Kazuhiko; Naka, Shuhei; Nomura, Ryota; Ooshima, Takashi

    2012-05-01

    Infective endocarditis (IE) is known to be a life-threatening disease and invasive dental procedures are considered to be important factors. Oral amoxicillin (AMPC) is widely used for prophylaxis in patients with heart disorders who are at risk for IE. However, there is only limited information regarding the inhibition of oral bacteria by AMPC. Dental plaque specimens were obtained from 120 healthy Japanese adult subjects, then diluted and streaked onto selective medium for oral streptococci. The minimum inhibitory concentration (MIC) of AMPC was evaluated using a macro-dilution method by Clinical Laboratory Standard Institute (2006). Seven strains with an MIC of AMPC of 16μg/mL or more were isolated from 5 subjects. The bacterial species were confirmed by sequence analysis of 16S rRNA from each strain, which demonstrated that most were Streptococcus sanguinis, followed by Streptococcus oralis. Dental plaque specimens collected from these 5 subjects again after an interval of 2-3 months possessed no strains with an MIC of AMPC of 16μg/mL or more. These findings suggest that strains with a high MIC of AMPC are present in the oral cavities of Japanese adults, though they may be transient rather than inhabitants. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    PubMed

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  11. Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

    PubMed Central

    Kosowska, Klaudia; Hoellman, Dianne B.; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C.

    2005-01-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole. PMID:15855516

  12. Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact.

    PubMed

    Mejía-Garibay, Beatriz; Palou, Enrique; López-Malo, Aurelio

    2015-04-01

    In this study, we characterized the essential oil (EO) of black mustard (Brassica nigra) and quantified its antimicrobial activity, when applied by direct contact into the liquid medium or by exposure in the vapor phase (in laboratory media or in a bread-type product), against the growth of Aspergillus niger, Aspergillus ochraceus, or Penicillium citrinum. Allyl-isothiocyanate (AITC) was identified as the major component of B. nigra EO with a concentration of 378.35 mg/ml. When B. nigra EO was applied by direct contact into the liquid medium, it inhibited the growth of A. ochraceus and P. citrinum when the concentration was 2 μl/ml of liquid medium (MIC), while for A. niger, a MIC of B. nigra EO was 4 μl/ml of liquid medium. Exposure of molds to B. nigra EO in vapor phase showed that 41.1 μl of B. nigra EO per liter of air delayed the growth of P. citrinum and A. niger by 10 days, while A. ochraceus growth was delayed for 20 days. Exposure to concentrations ≥ 47 μl of B. nigra EO per liter of air (MIC) inhibited the growth of tested molds by 30 days, and they were not able to recover after further incubation into an environment free of EO (fungicidal effect). Adsorbed AITC was quantified by exposing potato dextrose agar to B. nigra EO in a vapor phase, exhibiting that AITC was retained at least 5 days when testing EO at its MIC or with higher concentrations. Mustard EO MIC was also effective against the evaluated molds inhibiting their growth for 30 days in a bread-type product when exposed to EO by vapor contact, demonstrating its antifungal activity.

  13. Antipneumococcal activity of DW-224a, a new quinolone, compared to those of eight other agents.

    PubMed

    Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C

    2006-06-01

    DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC(50), 0.016 microg/ml; MIC(90), 0.03 microg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. beta-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 microg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2x MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.

  14. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  15. Activity of Daptomycin Alone and in Combination with Rifampin and Gentamicin against Staphylococcus aureus Assessed by Time-Kill Methodology▿ †

    PubMed Central

    Credito, Kim; Lin, Gengrong; Appelbaum, Peter C.

    2007-01-01

    The synergistic effects of daptomycin plus gentamicin or rifampin were tested against 50 Staphylococcus aureus strains, with daptomycin MICs ranging between 0.25 and 8 μg/ml. Daptomycin sub-MICs combined with gentamicin concentrations lower than the MIC yielded synergy in 34 (68%) of the 50 strains. Daptomycin combined with rifampin yielded synergy in one vancomycin-intermediate S. aureus strain only, and virtually all synergy occurred between daptomycin and gentamicin. PMID:17220402

  16. Activity of daptomycin alone and in combination with rifampin and gentamicin against Staphylococcus aureus assessed by time-kill methodology.

    PubMed

    Credito, Kim; Lin, Gengrong; Appelbaum, Peter C

    2007-04-01

    The synergistic effects of daptomycin plus gentamicin or rifampin were tested against 50 Staphylococcus aureus strains, with daptomycin MICs ranging between 0.25 and 8 microg/ml. Daptomycin sub-MICs combined with gentamicin concentrations lower than the MIC yielded synergy in 34 (68%) of the 50 strains. Daptomycin combined with rifampin yielded synergy in one vancomycin-intermediate S. aureus strain only, and virtually all synergy occurred between daptomycin and gentamicin.

  17. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.

  18. Chemical compositions and antimicrobial activities of Athrixia phylicoides DC. (bush tea), Monsonia burkeana (special tea) and synergistic effects of both combined herbal teas.

    PubMed

    Tshivhandekano, Itani; Ntushelo, Khayalethu; Ngezimana, Wonder; Tshikalange, Thilivhali Emmanuel; Mudau, Fhatuwani Nixwell

    2014-09-01

    To determine the chemical compositions and evaluate the antimicrobial activity of bush tea (Athrixia phylicoides DC.), special tea (Monsonia burkeana) and synergy (combination of bush tea and special tea). Total polyphenols were determined using the methods reported by Singleton and Rossi (1965) and modified by Waterman and Mole (1994). Tannins were determined using vanillin HCL methods described by Prince et al. (1978). Total antioxidants were determined using the methods described by Awika et al. (2004). The micro dilution technique using 96-well micro-plates, as described by Eloff (1998) was used to obtain the minimum inhibition concentration (MIC) and minimum microbicidal concentration (MMC) values of the ethanol extracts against the microorganisms under study. The microbes strain used was Gram negative bacteria such as Escherichia coli, Klebsiella oxytoca, Proteus vulgaris, Serratia marcescens, Salmonella typhi, Klebsiella pneumonia; Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus and a fungus Candida albicans. The results demonstrated that special tea contains significantly higher content of total polyphenols (8.34 mg/100 g) and total antioxidant (0.83 mg/100 g) as compared to bush tea [total polyphenols (6.41 mg/100g) and total antioxidant (0.63 mg/100g)] and combination of bush tea and special tea [total polyphenols (6.42 mg/100 g) and total antioxidant (0.64 mg/100 g)]. There was no significant difference in tannins between bush tea, special tea and synergy. The results of antimicrobial activity (MIC and MMC) demonstrated that the ethanol extracts of bush tea, special tea and synergy possessed antimicrobial activity against all microorganisms at different zones. The MIC of bush tea ranged from 1.56 to 12.50 mg/mL while the MMC ranged from 0.78 to 12.50 mg/mL. Special tea's MIC ranged from 0.39 to 12.50 mg/mL while the MMC ranged from 0.01 to 12.50 mg/mL. The MIC of synergy ranged from 3.13 to 12.50 mg/mL while the MMC ranged from 3.13 to 12.50 mg/mL without positive synergistic effect recorded. Both bush and special tea contain total polyphenols, total antioxidants and tannins with special tea containing a significantly higher total polyphenols and total antioxidant as compared to bush tea and synergy. Bush tea, special tea and synergy possess antimicrobial activity at various degrees. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. The Essential Oil from Origanum vulgare L. and Its Individual Constituents Carvacrol and Thymol Enhance the Effect of Tetracycline against Staphylococcus aureus.

    PubMed

    Cirino, Isis Caroline S; Menezes-Silva, Suellen Maria P; Silva, Helena Tainá D; de Souza, Evandro Leite; Siqueira-Júnior, José P

    2014-01-01

    In an ongoing project to evaluate essential oils as modulators of antibiotic resistance, the essential oil from Origanum vulgare L. (OVEO), as well as its individual constituents carvacrol (CAR) and thymol (THY), were investigated using Staphylococcus aureus strains possessing efflux mechanisms of resistance to norfloxacin, erythromycin and tetracycline. The minimum inhibitory concentration (MIC) values of the antibiotics were determined by agar dilution method, in the absence and in the presence of subinhibitory concentrations of OVEO, CAR or THY. Along with relevant antistaphylococcal activity, OVEO, CAR and THY modulated the activity of tetracycline, i.e. in combination with antibiotics a reduction in the MIC was observed (up to fourfold). The results presented here represent, as far as we know, the first report of OVEO, CAR and THY as putative efflux pump inhibitors. Broadly, these findings indicate that essential oils could serve as potential sources of compounds capable of modulating drug resistance. © 2015 S. Karger AG, Basel.

  20. C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors.

    PubMed

    Liger, François; Bouhours, Pascale; Ganem-Elbaz, Carine; Jolivalt, Claude; Pellet-Rostaing, Stéphane; Popowycz, Florence; Paris, Jean-Marc; Lemaire, Marc

    2016-02-04

    An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 μg mL(-1) (1 and 1.5 μm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bacterial resistance modifying tetrasaccharide agents from Ipomoea murucoides.

    PubMed

    Chérigo, Lilia; Pereda-Miranda, Rogelio; Gibbons, Simon

    2009-01-01

    As part of an ongoing project to identify oligosaccharides which modulate bacterial multidrug resistance, the CHCl(3)-soluble extract from flowers of a Mexican arborescent morning glory, Ipomoea murucoides, through preparative-scale recycling HPLC, yielded five lipophilic tetrasaccharide inhibitors of Staphylococcusaureus multidrug efflux pumps, murucoidins XII-XVI (1-5). The macrocyclic lactone-type structures for these linear hetero-tetraglycoside derivatives of jalapinolic acid were established by spectroscopic methods. These compounds were tested for in vitro antibacterial and resistance modifying activity against strains of Staphylococcus aureus possessing multidrug resistance efflux mechanisms. Only murucoidin XIV (3) displayed antimicrobial activity against SA-1199B (MIC 32microg/ml), a norfloxacin-resistant strain that over-expresses the NorA MDR efflux pump. The four microbiologically inactive (MIC>512microg/ml) tetrasaccharides increased norfloxacin susceptibility of this strain by 4-fold (8microg/ml from 32microg/ml) at concentrations of 25microg/ml, while murucoidin XIV (3) exerted the same potentiation effect at a concentration of 5microg/ml.

  2. Fluoroquinolone resistance in Streptococcus pneumoniae isolates in Germany from 2004-2005 to 2014-2015.

    PubMed

    Schmitz, Julia; van der Linden, Mark; Al-Lahham, Adnan; Levina, Natalia; Pletz, Mathias W; Imöhl, Matthias

    2017-06-01

    Streptococcus pneumoniae is a major cause of bacterial pneumonia, sepsis and meningitis worldwide. Prevalence of levofloxacin-resistant S. pneumoniae isolates in Germany and associated mutations in the quinolone resistance determining regions (QRDRs), as well as serotype distribution and multi locus sequence types (MLST) are shown. 21,764 invasive S. pneumoniae isolates from Germany, isolated in the epidemiological seasons from 2004/05 to 2014/15 were analyzed at the German National Reference Centre for Streptococci (GNRCS) for their levofloxacin resistance by micro broth dilution method. All resistant (minimal inhibitory concentration (MIC) ≥8μg/ml) and intermediate (MIC >2μg/ml and <8μg/ml) isolates were selected for the present study. Additionally, 29 susceptible isolates were randomly selected. A total of ninety isolates were tested for their levofloxacin-MIC by Etest, their serotype and sequence type, as well as for point-mutations at the QRDRs in the genes parC, parE, gyrA and gyrB. Twenty-five isolates exhibited levofloxacin MICs <2μg/ml (Etest) and no mutations in the QRDRs. Four isolates with MICs=2μg/ml had one mutation in parC; isolates with MICs >2μg/ml all had one or more mutations in the QRDRs. Four of nine intermediate isolates had a mutation in either parC or gyrA, and four isolates had mutations in both parC and gyrB. One isolate had mutations in both parC and gyrA. All isolates with MICs ≥8μg/ml (52) had mutations in both topoisomerase IV and gyrase. Serotypes associated with levofloxacin resistance shifted from a majority of PCV13 serotypes before the introduction of the PCV13 vaccine towards non-PCV serotypes. Resistant isolates were almost exclusively found among adults (98.1%). Copyright © 2017. Published by Elsevier GmbH.

  3. In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections.

    PubMed

    Isnard, Christophe; Dhalluin, Anne; Malandain, Damasie; Bruey, Quentin; Auzou, Michel; Michon, Jocelyn; Giard, Jean-Christophe; Guérin, François; Cattoir, Vincent

    2018-02-05

    Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC 50/90 , 0.25/0.5μg/mL) and 98% were susceptible to ceftobiprole (MIC 50/90 , 0.5/1μg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC 50/90 values at 0.06/0.25μg/mL and 0.25/1μg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  4. Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary?

    PubMed

    Girish, Revathy; Kumar, Anil; Khan, Sadia; Dinesh, Kavitha R; Karim, Shamsul

    2013-11-01

    To determine the minimum inhibitory concentration of ciprofloxacin among 50 blood stream isolates of Salmonella enterica. A total of 50 consecutive isolates of Salmonella enterica were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Minimum inhibitory concentrations were determined using Hi-Comb strips. All results were interpreted according to the CLSI guidelines. Of the 50 isolates 70%were Salmonella Typhi, 4% Salmonella paratyphi A, 2% Salmonella paratyphi B and the remaining 10% were identified only as Salmonella species. Using the CLSI 2011 breakpoints for disc diffusion, 86% (43/50) were resistant to nalidixic acid(NA), 22% (11/50) to ciprofloxacin, 12% to azithromycin, 6% to cotrimoxazole, 4% to ampicillin and 1% to chloramphenicol. The MIC50 and MIC90 of ciprofloxacin for S.Typhi were 0.181 μg/mL and 5.06 μg/mL respectively. While the same for S. paratyphi A was 0.212μg/mL and 0.228μg/mL respectively. None of the isolates were multi drug resistant and all were susceptible to ceftriaxone. Using the CLSI 2012 revised ciprofloxacin breakpoints for disc diffusion (>31mm) & MIC (<0.06 μg/mL), 90% (45/50) of these isolates were found to be resistant. MIC's of ciprofloxacin should be reported for all salmonella isolates and should be used to guide treatment. Blindly following western guidelines for a disease which is highly endemic in the subcontinent will spell the death knell of a cheap and effective drug in our armamentarium. Therefore it will be too premature to declare that "the concept of using ciprofloxacin in typhoid fever is dead!"

  5. [Determination of in vitro susceptibility of Candida species to amphotericin B by E-test and previously proposed MIC breakpoints on two different media].

    PubMed

    Alp, Sehnaz; Sancak, Banu; Arikan, Sevtap

    2008-04-01

    Although much work has concentrated on defining a reliable and reproducible method for determining in vitro susceptibility of Candida species to amphotericin B, there still has been limitations of the proposed techniques. In this study, amphotericin B minimal inhibitory concentrations (MIC) and susceptibility categories of 212 Candida strains (57 C. glabrata, 53 C. lusitaniae, 51 C. krusei and 51 C. tropicalis) were determined by E-test on RPMI agar (RPG) and antibiotic medium 3 agar (AM3) both supplemented with 2% glucose. The results were interpreted according to the proposed MIC breakpoints (> or = 0.38 microg/ml on RPG, >1 microg/ml on AM3) and discrepancies between susceptibility categories were investigated. While all Candida strains included in the study were determined to be susceptible on AM3 by amphotericin B E-test at 48h, 36.3% of the isolates were classified as resistant on RPG at 48 hours. On RPG, C. krusei strains showed the highest resistance rate (94.1% at 48 h), followed by C. tropicalis (35.3% at 48 h) and C. glabrata (17.5% at 48h). At 48h of incubation, 98.1% of C. lusitaniae isolates were found to be susceptible on RPG. The categorical agreement rates between the results obtained on two media and for C. lusitaniae and C. glabrata were 98.1% and 82.5% at 48 hours. For C. tropicalis and C. krusei, the rates of agreement were 64.7% and 5.9% at 48 hours. Conclusively, according to the previously proposed MIC breakpoints for amphotericin B E-test on RPG and AM3, discrepancies between susceptibility categories of Candida species were of remarkable significance.

  6. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  7. Tris-EDTA significantly enhances antibiotic efficacy against multidrug-resistant Pseudomonas aeruginosa in vitro.

    PubMed

    Buckley, Laura M; McEwan, Neil A; Nuttall, Tim

    2013-10-01

    Multidrug-resistant Pseudomonas aeruginosa commonly complicates chronic bacterial otitis in dogs. The aim of this in vitro study was to determine the effect of ethylenediaminetetraacetic acid-tromethamine (Tris-EDTA) on the minimal bactericidal concentrations (MBCs) and minimal inhibitory concentrations (MICs) of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa isolates from cases of canine otitis. Eleven isolates were identified as multidrug resistant on disc diffusion; 10 were resistant to marbofloxacin and two were resistant to gentamicin. Isolates were incubated for 90 min with each antibiotic alone and in combination with Tris-EDTA at concentrations of 0.075 μg/mL to 5 mg/mL for marbofloxacin, 0.001 μg/mL to 10 mg/mL for gentamicin and 17.8:4.7 to 0.14:0.04 mg/mL for Tris-EDTA. Positive and negative controls were included. Aliquots of each antibiotic and/or Tris-EDTA concentration were subsequently transferred to sheep blood agar to determine the MBCs, and tryptone soy broth was added to the remaining suspensions to determine the MICs. Tris-EDTA alone was bacteriostatic but not bactericidal at any concentration. The addition of Tris-EDTA significantly reduced the median MBC (from 625 to 468.8 μg/mL; P < 0.001) and MIC (from 29.3 to 2.4 μg/mL; P = 0.008) of marbofloxacin, and the median MBC (from 625 to 39.1 μg/mL) and MIC (from 19.5 to 1.2 μg/mL) of gentamicin (both P < 0.001). Tris-EDTA significantly reduced the MBCs and MICs of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa in vitro. This may be of use to clinicians managing these infections in dogs. © 2013 ESVD and ACVD.

  8. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M

    2010-01-01

    Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®

  9. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.

  10. Microbiological and near IR studies of leather from hides presoaked in formulations that can remove hardened bovine manure

    USDA-ARS?s Scientific Manuscript database

    New efficient eco-friendly soaking methods are urgently needed to clean raw hides for storage and shipment abroad of ~ 35M bovine hides produced annually in USA. High concentrations of surfactant(~0.15% w/w) and biocide(~0.10% w/w) in commonly used soaking solution are functional for eliminating mic...

  11. [Confirming the Utility of RAISUS Antifungal Susceptibility Testing by New-Software].

    PubMed

    Ono, Tomoko; Suematsu, Hiroyuki; Sawamura, Haruki; Yamagishi, Yuka; Mikamo, Hiroshige

    2017-08-15

    Clinical and Laboratory Standards Institute (CLSI) methods for susceptibility tests of yeast are used in Japan. On the other hand, the methods have some disadvantage; 1) reading at 24 and 48 h, 2) using unclear scale, approximately 50% inhibition, to determine MICs, 3) calculating trailing growth and paradoxical effects. These makes it difficult to test the susuceptibility for yeasts. Old software of RAISUS, Ver. 6.0 series, resolved problem 1) and 2) but did not resolve problem 3). Recently, new software of RAISUS, Ver. 7.0 series, resolved problem 3). We confirmed that using the new software made it clear whether all these issue were settled or not. Eighty-four Candida isolated from Aichi Medical University was used in this study. We compared the MICs obtained by using RAISUS antifungal susceptibility testing of yeasts RSMY1, RSMY1, with those obtained by using ASTY. The concordance rates (±four-fold of MICs) between the MICs obtained by using ASTY and RSMY1 with the new software were more than 90%, except for miconazole (MCZ). The rate of MCZ was low, but MICs obtained by using CLSI methods and Yeast-like Fungus DP 'EIKEN' methods, E-DP, showed equivalent MICs of RSMY1 using the new software. The frequency of skip effects on RSMY1 using the new software markedly decreased relative to RSMY1 using the old software. In case of showing trailing growth, the new software of RAISUS made it possible to choice the correct MICs and to put up the sign of trailing growth on the result screen. New software of RAISUS enhances its usability and the accuracy of MICs. Using automatic instrument to determine MICs is useful to obtain objective results easily.

  12. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening.

    PubMed

    Nunes, Ana Paula Ferreira; Teixeira, Lúcia Martins; Iorio, Natália Lopes Pontes; Bastos, Carla Callegário Reis; de Sousa Fonseca, Leila; Souto-Padrón, Thaís; dos Santos, Kátia Regina Netto

    2006-04-01

    The population analysis profile (PAP) method as well as analysis of autolytic activity and cellular ultrastructure by transmission electron microscopy (TEM) were used to characterise Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains with reduced susceptibility to glycopeptides. All strains showed heterogeneous profiles to vancomycin and teicoplanin by the PAP method. Subpopulations that grew in the presence of high concentrations of each drug were selected from the PAP as derivative strains. Their glycopeptide minimal inhibitory concentrations (MICs) were determined and subsequently all parental and derivative strains were grown in one-half of the MIC of vancomycin or teicoplanin. An increase in cell wall thickness of all derivative strains was seen by TEM, with statistically significant values (P<0.01) compared with their respective parental strains. In general, variable rates of autolysis among the strains were observed. Cell wall thickness is an important factor involved in glycopeptide resistance and, in association with PAP results, confirmed the Brazilian coagulase-negative staphylococci clinical isolates as being heteroresistant to glycopeptides. Detection of these heteroresistant organisms is important in order to achieve more judicious use of vancomycin and teicoplanin in hospitals.

  13. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    NASA Astrophysics Data System (ADS)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  14. Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults.

    PubMed

    Chaimanee, V; Thongtue, U; Sornmai, N; Songsri, S; Pettis, J S

    2017-11-01

    To explore alternative nonchemical control measures against two honeybee pathogens, Paenibacillus larvae and Ascosphaera apis, 37 plant species were screened for antimicrobial activity. The activity of selected plant extracts was screened using an in vitro disc diffusion assay and the minimal inhibitory concentration (MIC) was determined by the broth microdilution method. The results showed that 36 plant extracts had some antibacterial activity on P. larvae by disc diffusion assay. Chromolaena odorata showed the greatest antibacterial activity against P. larvae (MIC 16-64 μg ml -1 ). Of the 37 tested plants, only seven species, Amomum krervanh, Allium sativum, Cinnamomum sp., Piper betle, Piper ribesioides, Piper sarmentosum and Syzygium aromaticum had inhibitory effects on A. apis (MICs of 32-64 μg ml -1 ). The results demonstrated that promising plant extracts were not toxic to adult bees at the concentrations used in this study. The results demonstrate the potential antimicrobial activity of natural products against honeybee diseases caused by P. larvae and A. apis. Chromolaena odorata in particular showed high bioactivity against P. larvae. Further study is recommended to develop these nonchemical treatments against American foulbrood and chalkbrood in honeybees. This work proposes new natural products for the control of American foulbrood and chalkbrood in honeybees. © 2017 The Society for Applied Microbiology.

  15. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    PubMed

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  16. Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections.

    PubMed

    Barbosa-Filho, Valter M; Waczuk, Emily P; Leite, Nadghia F; Menezes, Irwin R A; da Costa, José G M; Lacerda, Sírleis R; Adedara, Isaac A; Coutinho, Henrique Douglas Melo; Posser, Thais; Kamdem, Jean P

    2015-01-01

    The challenge of antibiotic resistance and the emergence of new infections have generated considerable interest in the exploration of natural products from plant origins as combination therapy. In this context, crude ethanolic extract (CEE), ethyl acetate fraction (EAF), and methanolic fraction (MF) from Anacardium microcarpum were tested alone or in combination with antibiotics (amikacin, gentamicin, ciprofloxacin, and imipenem) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotic resistance-modifying activity was performed using the microdilution method by determining the minimal inhibitory concentration (MIC). In addition, phytochemical prospecting analyses of tested samples were carried out. Our results indicated that all the extracts showed low antibacterial activity against multidrug-resistant strains (MIC =512 μg/mL). However, addition of CEE, EAF, and MF to the growth medium at the subinhibitory concentration (MIC/8=64 μg/mL) significantly modulated amikacin- and gentamicin-resistant E. coli 06. CEE and EAF also demonstrated a significant (P<0.001) synergism with imipenem against S. aureus. In contrast, MF antagonized the antibacterial effect of ciprofloxacin and gentamicin against P. aeruginosa 03 and S. aureus 10, respectively. Qualitative phytochemical analysis of the extracts revealed the presence of secondary metabolites including phenols, flavonoids, xanthones, chalcones, and tannin pyrogallates. Taken together, our results suggest that A. microcarpum is a natural resource with resistance-modifying antibacterial activity that needs to be further investigated to overcome the present resistant-infection problem.

  17. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data.

    PubMed

    Burgess, David S; Hall, Ronald G

    2007-07-01

    Until the 2002 approval of levofloxacin 750 mg QD, ciprofloxacin was the fluoroquinolone of choice against Pseudomonas aeruginosa infections. This study evaluated the AUC:MIC ratios for ciprofloxacin 400 mg BID and TID and levofloxacin 750 mg QD, all administered intravenously, against P. aeruginosa using a Monte Carlo simulation. Pharmacokinetic data for ciprofloxacin and levofloxacin and 2002 MIC distributions against P. aeruginosa were obtained from studies in healthy volunteers published in the peer-reviewed literature. Pharmacokinetic studies of each agent were identified by separate MEDLINE searches combining the MeSH heading pharmacokinetics with the generic name of the antimicrobial. Only human studies published in English between 1990 and 2001 were included. Included studies also had to meet 3 minimum criteria: evaluation of clinically relevant dosing regimens, use of rigorous study methods, and provision of mean (SD) values for the pharmacokinetic parameters of interest. When multiple studies met these criteria, a single study was selected for each antimicrobial regimen. Pharmacodynamic analysis was performed using a Monte Carlo simulation of 10,000 patients by integrating the pharmacokinetic parameters, their variability, and 2002 MIC distributions for each antimicrobial regimen. The probability of target attainment was determined for each regimen for an AUC:MIC ratio from 0 to 300. A > or =90% probability of target attainment was considered satisfactory. For ciprofloxacin 400 mg TID and levofloxacin 750 mg QD, the AUC:MIC ratio at the corresponding 2002 Clinical Laboratory Standards Institute break points of 1 and 2 microg/mL were 33 and 34, respectively. The probabilities of target attainment for a free AUC:MIC ratio >90 (equivalent to a total AUC:MIC ratio > or =125) were 47% for ciprofloxacin 400 mg BID, 54% for ciprofloxacin 400 mg TID, and 48% for levofloxacin 750 mg QD. When pharmacokinetic data from healthy volunteers and 2002 MIC data were used, none of the simulated fluoroquinolone regimens achieved a high likelihood of target attainment against P. aeruginosa.

  18. [Emerging pathogen: Candida kefyr (Kluvyeromyces marxianus)].

    PubMed

    Çuhadar, Tuğba; Kalkancı, Ayşe

    2017-10-01

    In the central microbiology laboratory of Gazi University Hospital Candida kefyr was isolated from different clinical samples as 5.3% in 2016 and in 2017 this rate increased to 9.3% which was nearly two-fold and this has drawn our attention. The aim of this study was to evaluate the special characteristics, antifungal susceptibility and virulence properties of C.keyfr species. Germ tube, corn meal-tween 80 agar morphology and carbohydrate assimilation profiles on ID32C yeast identification system were used for the diagnosis of Candida species. In this study, DNA sequencing was performed using ITS1 and ITS4 primers amplifying fungal gene between 5.8S and 18S regions of rRNA. Antifungal susceptibility was performed using M27A microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). Minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, voriconazole and itraconazole were determined. MIC distribution, MIC50 and MIC90 values and geometric mean (GM) were detected. The existence of virulence factors caseinase, secreted aspartyl proteinase, esterase and phospholipase were investigated in vitro. A total of 865 Candida species were isolated from different clinical samples in the central microbiology laboratory of Gazi University Hospital in 2016. Among them, 46 (5.3%) were C.kefyr. In the first four months of 2017, 30 (9.3%) C.kefyr were identified among 320 Candida isolates. Ten isolates which have shown atypical morphology on corn meal agar were selected. Among these 10 isolates, nine of them were identified as C.kefyr by using ID32C system and DNA sequencing method. Amphotericin B MIC value was 2 µg/ml for one isolate, and fluconazole MIC value was 8 µg/ml for another isolate among 46 isolates. Among the 30 isolates of the year 2017, one of them presented MIC value for fluconazole as 8 µg/ml. No marked antifungal resistance was detected in our isolate group. Caseinase was positive in one C.kefyr isolate, and phospholipase were positive in eight of nine isolates. As a result, the reason of increase in the incidence of this Candida species, which does not show significant resistance and presents mostly phospholipase activity as a virulence factor, should be investigated in more detail.

  19. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae)

    PubMed Central

    2013-01-01

    Background The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Methods Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Results Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. Conclusion The isolated compounds generally had a much lower activity than expected based on the activity of the fractions from which they were isolated. This may be the result of synergism between different compounds in the complex extracts or fractions. The results support the traditional use of E. robustum to treat infections. The crude extract had a good activity and low preparation cost, and may be useful in topical applications to combat microbial infections. PMID:24165199

  20. Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).

    PubMed

    Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping

    2017-09-01

    Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

  1. Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Li, Xiao; Chen, Mei-Ren; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    This work aimed to characterize the mammary gland pharmacokinetics of cefquinome after an intramammary administration and integrate pharmacokinetic/pharmacodynamic model. The pharmacokinetic profiles of cefquinome in gland tissue were measured using high performance liquid chromatograph. Therapeutic regimens covered various dosages ranging from 25 to 800 μg/gland and multiple dosing intervals of 8, 12, and 24 h. The in vivo bacterial killing activity elevated when dosage increased or when dosing intervals were shortened. The best antibacterial effect was demonstrated by a mean 1.5 log10CFU/gland visible count reduction. On the other hand, the results showed that the percentage of time duration of drug concentration exceeding the MIC during a dose interval (%T > MIC) was generally 100% because of the influence of drug distribution caused by the blood-milk barrier. Therefore, pharmacokinetic/pharmacodynamic parameter of the ratio of area under the concentration-time curve over 24 h to the MIC (AUC0-24/MIC) was used to describe the efficacy of cefquinome instead of %T > MIC. When the magnitude of AUC0-24/MIC exceeding 16571.55 h⋅mL/g, considerable activity of about 1.5 log10CFU/g gland bacterial count reduction was observed in vivo. Based on the Monte Carlo simulation, the clinical recommended regimen of three infusions of 75 mg per quarter every 12 h can achieve a 76.67% cure rate in clinical treatment of bovine mastitis caused by Staphylococcus aureus infection. PMID:27774090

  2. Effectiveness of Persea major Kopp (Lauraceae) extract against Enterococcus faecalis: a preliminary in vitro study.

    PubMed

    Volpato, Lusiane; Gabardo, Marilisa Carneiro Leão; Leonardi, Denise Piotto; Tomazinho, Paulo Henrique; Maranho, Leila Teresinha; Baratto-Filho, Flares

    2017-03-06

    Persea major Kopp (Lauraceae) is a plant with wound healing, antibacterial, and analgesic properties. The aim of this study was to assess the in vitro antibacterial activity of the concentrated crude extract (CCE) and ethyl acetate fraction (EAF) of this plant against Enterococcus faecalis and compare it with calcium hydroxide [Ca(OH) 2 ] paste and 2% chlorhexidine digluconate (CHX). The plant material was collected, and an extract was prepared according to the requirements of the study (CCE and EAF). The minimum inhibitory concentrations (MICs) of CCE, EAF, Ca(OH) 2 , Ca(OH) 2  + CCE, and CHX against E. faecalis were determined using the broth microdilution method RESULTS: The EAF inhibited E. faecalis at concentrations of 166.50, 83.25, and 41.62 mg mL -1 , and 1.00, 0.50, and 0.25% of CHX solutions showed antimicrobial activity. The MICs of Ca(OH) 2 paste were 166.50 and 83.25 mg mL -1 , whereas Ca(OH) 2  + CCE showed antimicrobial activity only at a concentration of 166.50 mg mL -1 . CCE showed no inhibitory effect at any of the concentrations tested CONCLUSIONS: The CCE did not show any antimicrobial activity against E. faecalis; however, the EAF was the most effective among the three highest concentrations tested.

  3. Anti-enteric bacterial activity and phytochemical analysis of the seed kernel extract of Mangifera indica Linnaeus against Shigella dysenteriae (Shiga, corrig.) Castellani and Chalmers.

    PubMed

    Rajan, S; Thirunalasundari, T; Jeeva, S

    2011-04-01

    To evaluate the phytochemical and anti-bacterial efficacy of the seed kernel extract of Mangifera indica (M. indica) against the enteropathogen, Shigella dysenteriae (S. dysenteriae), isolated from the diarrhoeal stool specimens. The preliminary phytochemical screening was performed by the standard methods as described by Harborne. Cold extraction method was employed to extract the bioactive compounds from mango seed kernel. Disc diffusion method was adopted to screen antibacterial activity. Minimum inhibitory concentration (MIC) was evaluated by agar dilution method. The crude extracts were partially purified by thin layer chromatography (TLC) and the fractions were analyzed by high performance thin layer chromatography (HPTLC) to identify the bioactive compounds. Phytochemical scrutiny of M. indica indicated the presence of phytochemical constituents such as alkaloids, gums, flavanoids, phenols, saponins, steroids, tannins and xanthoproteins. Antibacterial activity was observed in two crude extracts and various fractions viz. hexane, benzene, chloroform, methanol and water. MIC of methanol fraction was found to be (95±11.8) μg/mL. MIC of other fractions ranged from 130-380 μg/mL. The present study confirmed that each crude extracts and fractions of M. indica have significant antimicrobial activity against the isolated pathogen S. dysenteriae. The antibacterial activity may be due to the phytochemical constituents of the mango seed kernel. The phytochemical tannin could be the reason for its antibacterial activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination.

    PubMed Central

    Jones, R N; Barry, A L

    1987-01-01

    The ampicillin-sulbactam combination was evaluated in vitro to determine the optimal susceptibility testing conditions among five combination ratios and four fixed concentrations of sulbactam. The organisms tested were markedly resistant to aminopenicillins and most other beta-lactams. The ratio of 2:1 is recommended to assure recognition of the ampicillin-sulbactam spectrum and minimize false-susceptible results among strains known to be resistant to this combination. Proposed MIC breakpoint concentrations were compatible with levels in serum achieved with recommended clinical doses. Cross-resistance analyses comparing ampicillin-sulbactam and amoxicillin-clavulanate showed comparable activity and spectra. However, the major interpretive disagreement was sufficient to require separate testing of these aminopenicillin-inhibitor combinations. The recommended ampicillin-sulbactam MIC susceptibility breakpoints are as follows: (i) less than or equal to 8.0/4.0 micrograms/ml for tests against members of the family Enterobacteriaceae, anaerobes, nonenteric gram-negative bacilli, staphylococci, Haemophilus influenzae, and Branhamella catarrhalis; (ii) the ampicillin MICs alone interpreted by National Committee for Clinical Laboratory Standards criteria should predict ampicillin-sulbactam susceptibility for the enterococci, streptococci, and Listeria monocytogenes. MIC quality control ranges were determined by multiple laboratory broth microdilution trials for the ampicillin-sulbactam 1:1 and 2:1 ratio tests. PMID:3117843

  5. [Studies on flomoxef in the perinatal period].

    PubMed

    Cho, N; Fukunaga, K; Kunii, K; Kobayashi, I

    1991-06-01

    Pharmacokinetic, bacteriological and clinical studies on flomoxef (FMOX) in the perinatal period were carried out with the following summary of the results. Antibacterial effects of FMOX on the growth of methicillin-resistant Staphylococcus aureus (MRSA, MIC 400 micrograms/ml), methicillin-sensitive S. aureus (MSSA, MIC 0.78 microgram/ml), Escherichia coli (MIC 3.13 micrograms/ml and MIC 0.20 microgram/ml) in amniotic fluid were determined and it was found that the activity of FMOX was enhanced in the amniotic fluid. FMOX rapidly penetrated into tissues and sera of pregnant women upon intravenous injection and its maternal serum concentrations reached their peak levels shortly after administration. Placental penetration of FMOX to the fetus was good and, after single intravenous injection of 1 g, the concentrations of FMOX in the umbilical cord serum and amniotic fluid exceeded MICs against major causative organisms of perinatal infections. These results indicate that single intravenous injection of FMOX 1 g twice a day is effective for the treatment and prophylaxis of perinatal infections. Injection of FMOX for the treatment of 14 cases of puerperal infections showed excellent clinical effectiveness with 100% clinical effect and 81.8% bacteriological response. No side-effect was observed in any case. All of these results suggested clinical usefulness of FMOX in the perinatal period.

  6. In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.

    PubMed

    Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P

    2015-03-01

    The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Effect of Nickel Concentration on Bias Reliability and Thermal Stability of Thin-Film Transistors Fabricated by Ni-Metal-Induced Crystallization

    NASA Astrophysics Data System (ADS)

    Lai, Ming-Hui; Sermon Wu, YewChung; Huang, Jung-Jie

    2012-01-01

    Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Although the high leakage current is a major issue in the performance of conventional MIC-TFTs since Ni contamination induces deep-level state traps, it can be greatly improved by using well-known technologies to reduce Ni contamination. However, for active-matrix organic light-emitting diode (AMOLED) display applications, the bias reliability and thermal stability are major concerns especially when devices are operated under a hot carrier condition and in a high-temperature environment. It will be interesting to determine how the bias reliability and thermal stability are affected by the reduction of Ni concentration. In the study, the effect of Ni concentration on bias reliability and thermal stability was investigated. We found that a device exhibited high immunity against hot-carrier stress and elevated temperatures. These findings demonstrated that reducing the Ni concentration in MIC films was also beneficial for bias reliability and thermal stability.

  8. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis.

    PubMed

    Karpanen, T J; Worthington, T; Hendry, E R; Conway, B R; Lambert, P A

    2008-11-01

    Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2-8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5-4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2-16 g/L) and EO (4-64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25-1 mg/L and MIC of 32-64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.

  9. In vitro and in vivo activities of posaconazole and amphotericin B in a murine invasive infection by Mucor circinelloides: poor efficacy of posaconazole.

    PubMed

    Salas, Valentina; Pastor, F Javier; Calvo, Enrique; Alvarez, Eduardo; Sutton, Deanna A; Mayayo, Emilio; Fothergill, Anette W; Rinaldi, Michael G; Guarro, Josep

    2012-05-01

    The in vitro susceptibility of 17 strains of Mucor circinelloides to amphotericin B and posaconazole was ascertained by using broth microdilution and disk diffusion methods and by determining the minimal fungicidal concentration (MFC). We evaluated the efficacy of posaconazole at 40 mg/kg of body weight/day and amphotericin B at 0.8 mg/kg/day in a neutropenic murine model of disseminated infection by M. circinelloides by using 6 different strains tested previously in vitro. In general, most of the posaconazole MICs were within the range of susceptibility or intermediate susceptibility, while the small inhibition zone diameters (IZDs) were indicative of nonsusceptibility for all isolates tested. The MFCs were ≥ 3 dilutions higher than the corresponding MICs. In contrast, amphotericin B showed good activity against all of the strains tested regardless of the method used. The in vivo studies demonstrated that amphotericin B was effective in prolonging survival and reducing the fungal load. Posaconazole showed poor in vivo efficacy with no correlation with the MIC values. The results suggested that posaconazole should be used with caution in the treatment of infections caused by Mucor circinelloides or by strains of Mucor not identified to the species level.

  10. In vitro antibacterial activity of ethanolic extract of Morus alba leaf against periodontal pathogens.

    PubMed

    Gunjal, Shilpa; Ankola, Anil V; Bhat, Kishore

    2015-01-01

    Antibiotic resistance is a major problem with inadvertent usage. Thus, there is a need to search for new antimicrobial agents of herbal origin to combat antibiotic resistance. One such plant is Morus alba which has a long history of medicinal use in traditional Chinese medicine. To compare the antibacterial activity of ethanolic extract of M. alba leaves with chlorhexidine gluconate against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. Experimental in vitro study. Crude extract from the leaves of M. alba were prepared by Soxhlet extraction method by using ethanol as a solvent. Minimum inhibitory concentration (MIC) of the extract was assessed against A. actinomycetemcomitans, P. gingivalis and T. forsythia, and compared with that of chlorhexidine gluconate by broth dilution method. P. gingivalis was the most sensitive organism against the M. alba extract with an MIC value of 1.95 mg/ml; while T. forsythia and P. gingivalis both were most sensitive organisms against chlorhexidine gluconate with MIC values of 0.00781 mg/ml. M. alba possess good antibacterial activity against A. actinomycetemcomitans, P. gingivalis and T. forsythia and thus would be beneficial for the prevention and treatment of periodontal disease. However, chlorhexidine gluconate was found to be more effective when compared to M. alba.

  11. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    NASA Astrophysics Data System (ADS)

    Holešová, Sylva; Valášková, Marta; Hlaváč, Dominik; Madejová, Jana; Samlíková, Magda; Tokarský, Jonáš; Pazdziora, Erich

    2014-06-01

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  12. Subinhibitory Concentrations of Antimicrobial Agents Reduce the Uptake of Legionella pneumophila into Acanthamoeba castellanii and U937 Cells by Altering the Expression of Virulence-Associated Antigens

    PubMed Central

    Lück, P. Christian; Schmitt, Jürgen W.; Hengerer, Arne; Helbig, Jürgen H.

    1998-01-01

    We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reduced Legionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionella antigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected. PMID:9797218

  13. Susceptibility to antimicrobial agents of Streptococcus suis capsular type 2 strains isolated from pigs.

    PubMed

    Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T

    1996-03-01

    The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.

  14. Antipneumococcal Activity of DW-224a, a New Quinolone, Compared to Those of Eight Other Agents

    PubMed Central

    Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A.; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C.

    2006-01-01

    DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC50, 0.016 μg/ml; MIC90, 0.03 μg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. β-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 μg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2× MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days. PMID:16723567

  15. Short communication: Pharmacokinetics of intramammary hetacillin in dairy cattle milked 3 times per day.

    PubMed

    Lindquist, Danielle A; Baynes, Ronald E; Smith, Geof W

    2015-03-01

    Mastitis remains a critical disease in the dairy industry and the use of intramammary antibiotics plays a critical role in mastitis treatment. Hetacillin is currently approved as an intramammary antibiotic that is used to treat mastitis in dairy cows. It is approved for once a day administration and can be used for a total of 3 d. An increasing number of dairy farms are milking 3 times per day (instead of the traditional 2 times per day) and very little pharmacokinetic data exists on the use of intramammary drugs in a 3×system. The primary purpose of this study was to determine if once a day intramammary infusion of hetacillin is sufficient to maintain therapeutic drug concentrations in cattle milked 3 times per day. Eight Holstein cattle milked 3 times per day were used in this study. After collecting a baseline milk sample, each cow received intramammary infusions of hetacillin in the left front and right rear quarters once a day for 3 d. Milk samples from each of the treated quarters were collected at each milking and frozen until analysis. Milk samples were analyzed for ampicillin concentrations using an ultra-performance liquid chromatography method. All treated quarters had antibiotic concentrations well above the minimum inhibitory concentration (MIC) for gram-positive mastitis pathogens at 8 and 16 h postinfusion. Milk concentrations had fallen well below the MIC by the 24-h period (before the next infusion). All 8 cows in this study consistently had individual quarter milk ampicillin concentrations below the FDA tolerance of 0.01 μg/mL (10 ppb) within 48 h of the last infusion. Based on this study, milk ampicillin concentrations exceed the minimum inhibitory concentration required to inhibit the growth of 90% of organisms (MIC90) for at least 65% of the dosing interval, which is sufficient for once-daily dosing with most cases of gram-positive mastitis. Therefore, intramammary hetacillin should be an effective treatment for the vast majority of gram-positive mastitis pathogens when used according to label (once per day) in cows milked 3 times per day. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  17. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario

    PubMed Central

    Slavić, Đurđa; Boerlin, Patrick; Fabri, Marta; Klotins, Kim C.; Zoethout, Jennifer K.; Weir, Pat E.; Bateman, Debbie

    2011-01-01

    Antimicrobial susceptibilities and toxin types were determined for 275 Clostridium perfringens isolates collected in Ontario in the spring of 2005. Minimal inhibitory concentrations (MICs) of C. perfringens isolates for 12 antimicrobials used in therapy, prophylaxis, and/or growth promotion of cattle (n = 40), swine (n = 75), turkeys (n = 50), and chickens (n = 100) were determined using the microbroth dilution method. Statistical analyses and MIC distributions showed reduced susceptibility to bacitracin, clindamycin, erythromycin, florfenicol, and tetracycline for some isolates. Reduced susceptibility to bacitracin was identified in chicken (64%) and turkey (60%) isolates. Swine isolates had predominantly reduced susceptibility to clindamycin (28%) and erythromycin (31%), whereas bovine isolates had reduced susceptibility to clindamycin (10%) and florfenicol (10%). Reduced susceptibility to tetracycline was spread across all species. No clear reduced susceptibility, but elevated MIC50 for virginiamycin was found in chicken isolates in comparison with isolates from other species. Toxin typing revealed that C. perfringens type A is the dominant toxin type isolated in this study across all 4 host species. PMID:21731178

  18. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    PubMed

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  19. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.

    PubMed

    Waller, Stefanie Bressan; Madrid, Isabel Martins; Ferraz, Vanny; Picoli, Tony; Cleff, Marlete Brum; de Faria, Renata Osório; Meireles, Mário Carlos Araújo; de Mello, João Roberto Braga

    The study aimed to evaluate the anti-Sporothrix sp. activity of the essential oil of Origanum majorana Linn. (marjoram), its chemical analysis, and its cytotoxic activity. A total of 18 fungal isolates of Sporothrix brasiliensis (n: 17) from humans, dogs and cats, and a standard strain of Sporothrix schenckii (n: 1) were tested using the broth microdilution technique (Clinical and Laboratory Standard Institute - CLSI M27-A3) and the results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). The MIC 50 and MIC 90 of itraconazole against S. brasiliensis were 2μg/mL and 8μg/mL, respectively, and the MFC 50 and MFC 90 were 2μg/mL and >16μg/mL, respectively, with three S. brasiliensis isolates resistant to antifungal. S. schenckii was sensitive at MIC of 1μg/mL and MFC of 8μg/mL. For the oil of O. majorana L., all isolates were susceptible to MIC of ≤2.25-9mg/mL and MFC of ≤2.25-18mg/mL. The MIC 50 and MIC 90 were ≤2.25mg/mL and 4.5mg/mL, respectively, and the MFC 50/90 values were twice more than the MIC. Twenty-two compounds were identified by gas chromatography with a flame ionization detector (CG-FID) and 1,8-cineole and 4-terpineol were the majority. Through the colorimetric (MTT) assay, the toxicity was observed in 70-80% of VERO cells between 0.078 and 5mg/mL. For the first time, the study demonstrated the satisfactory in vitro anti-Sporothrix sp. activity of marjoram oil and further studies are needed to ensure its safe and effective use. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations

    PubMed Central

    Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka

    2017-01-01

    Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v/v, which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans, and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N-acetyl-β-glucosaminidase and 14% isolates—α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25–0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity. PMID:28629195

  1. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations.

    PubMed

    Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka

    2017-06-19

    Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v / v , which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans , and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N -acetyl-β-glucosaminidase and 14% isolates-α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25-0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity.

  2. [Optimization of cluster analysis based on drug resistance profiles of MRSA isolates].

    PubMed

    Tani, Hiroya; Kishi, Takahiko; Gotoh, Minehiro; Yamagishi, Yuka; Mikamo, Hiroshige

    2015-12-01

    We examined 402 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in our hospital between November 19, 2010 and December 27, 2011 to evaluate the similarity between cluster analysis of drug susceptibility tests and pulsed-field gel electrophoresis (PFGE). The results showed that the 402 strains tested were classified into 27 PFGE patterns (151 subtypes of patterns). Cluster analyses of drug susceptibility tests with the cut-off distance yielding a similar classification capability showed favorable results--when the MIC method was used, and minimum inhibitory concentration (MIC) values were used directly in the method, the level of agreement with PFGE was 74.2% when 15 drugs were tested. The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method was effective when the cut-off distance was 16. Using the SIR method in which susceptible (S), intermediate (I), and resistant (R) were coded as 0, 2, and 3, respectively, according to the Clinical and Laboratory Standards Institute (CLSI) criteria, the level of agreement with PFGE was 75.9% when the number of drugs tested was 17, the method used for clustering was the UPGMA, and the cut-off distance was 3.6. In addition, to assess the reproducibility of the results, 10 strains were randomly sampled from the overall test and subjected to cluster analysis. This was repeated 100 times under the same conditions. The results indicated good reproducibility of the results, with the level of agreement with PFGE showing a mean of 82.0%, standard deviation of 12.1%, and mode of 90.0% for the MIC method and a mean of 80.0%, standard deviation of 13.4%, and mode of 90.0% for the SIR method. In summary, cluster analysis for drug susceptibility tests is useful for the epidemiological analysis of MRSA.

  3. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    PubMed

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  4. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria.

    PubMed

    Graziano, Talita Signoreti; Calil, Caroline Morini; Sartoratto, Adilson; Franco, Gilson César Nobre; Groppo, Francisco Carlos; Cogo-Müller, Karina

    2016-01-01

    Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine.

  5. An empirical comparison of isolate-based and sample-based definitions of antimicrobial resistance and their effect on estimates of prevalence.

    PubMed

    Humphry, R W; Evans, J; Webster, C; Tongue, S C; Innocent, G T; Gunn, G J

    2018-02-01

    Antimicrobial resistance is primarily a problem in human medicine but there are unquantified links of transmission in both directions between animal and human populations. Quantitative assessment of the costs and benefits of reduced antimicrobial usage in livestock requires robust quantification of transmission of resistance between animals, the environment and the human population. This in turn requires appropriate measurement of resistance. To tackle this we selected two different methods for determining whether a sample is resistant - one based on screening a sample, the other on testing individual isolates. Our overall objective was to explore the differences arising from choice of measurement. A literature search demonstrated the widespread use of testing of individual isolates. The first aim of this study was to compare, quantitatively, sample level and isolate level screening. Cattle or sheep faecal samples (n=41) submitted for routine parasitology were tested for antimicrobial resistance in two ways: (1) "streak" direct culture onto plates containing the antimicrobial of interest; (2) determination of minimum inhibitory concentration (MIC) of 8-10 isolates per sample compared to published MIC thresholds. Two antibiotics (ampicillin and nalidixic acid) were tested. With ampicillin, direct culture resulted in more than double the number of resistant samples than the MIC method based on eight individual isolates. The second aim of this study was to demonstrate the utility of the observed relationship between these two measures of antimicrobial resistance to re-estimate the prevalence of antimicrobial resistance from a previous study, in which we had used "streak" cultures. Boot-strap methods were used to estimate the proportion of samples that would have tested resistant in the historic study, had we used the isolate-based MIC method instead. Our boot-strap results indicate that our estimates of prevalence of antimicrobial resistance would have been considerably lower in the historic study had the MIC method been used. Finally we conclude that there is no single way of defining a sample as resistant to an antimicrobial agent. The method used greatly affects the estimated prevalence of antimicrobial resistance in a sampled population of animals, thus potentially resulting in misleading results. Comparing methods on the same samples allows us to re-estimate the prevalence from other studies, had other methods for determining resistance been used. The results of this study highlight the importance of establishing what the most appropriate measure of antimicrobial resistance is, for the proposed purpose of the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Vancomycin tolerance in enterococci.

    PubMed

    Saribas, Suat; Bagdatli, Yasar

    2004-11-01

    Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.

  7. Influence of TEM-1 β-Lactamase on the Pharmacodynamic Activity of Simulated Total versus Free-Drug Serum Concentrations of Cefditoren (400 Milligrams) versus Amoxicillin-Clavulanic Acid (2,000/125 Milligrams) against Haemophilus influenzae Strains Exhibiting an N526K Mutation in the ftsI Gene▿

    PubMed Central

    Torrico, M.; Aguilar, L.; González, N.; Giménez, M. J.; Echeverría, O.; Cafini, F.; Sevillano, D.; Alou, L.; Coronel, P.; Prieto, J.

    2007-01-01

    The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and β-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, β-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and β-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of ≤0.12 μg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 μg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (≥3 log10 reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in β-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P ≤ 0.012) amoxicillin concentrations from 4 h on in simulations with β-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of β-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or β-lactamase production. PMID:17664320

  8. Pharmacodynamics of Imipenem in Combination with β-Lactamase Inhibitor MK7655 in a Murine Thigh Model

    PubMed Central

    Mavridou, Eleftheria; Melchers, Ria J. B.; van Mil, Anita C. H. A. M.; Mangin, E.; Motyl, Mary R.

    2014-01-01

    MK7655 is a newly developed beta-lactamase inhibitor of class A and class C carbapenemases. Pharmacokinetics (PK) of imipenem-cilastatin (IMP/C) and MK7655 were determined for intraperitoneal doses of 4 mg/kg to 128 mg/kg of body weight. MIC and pharmacodynamics (PD) studies of MK7655 were performed against several beta-lactamase producing Pseudomonas aeruginosa and Klebsiella pneumoniae strains to determine its effect in vitro and in vivo. Neutropenic mice were infected in each thigh 2 h before treatment with an inoculum of approximately 5 × 106 CFU. They were treated with IMP/C alone (every 2 hours [q2h], various doses) or in combination with MK7655 in either a dose fractionation study or q2h for 24 h and sacrificed for CFU determinations. IMP/MK7655 decreased MICs regarding IMP MIC. The PK profiles of IMP/C and MK7655 were linear over the dosing range studied and comparable with volumes of distribution (V) of 0.434 and 0.544 liter/kg and half-lives (t1/2) of 0.24 and 0.25 h, respectively. Protein binding of MK7655 was 20%. A sigmoidal maximum effect (Emax) model was fit to the PK/PD index responses. The effect of the inhibitor was not related to the maximum concentration of drug in serum (Cmax)/MIC, and model fits for T>MIC and area under the concentration-time curve (AUC)/MIC were comparable (R2 of 0.7 and 0.75), but there appeared to be no significant relationship of effect with dose frequency. Escalating doses of MK7655 and IMP/C showed that the AUC of MK7655 required for a static effect was dependent on the dose of IMP/C and the MIC of the strain, with a mean area under the concentration-time curve for the free, unbound fraction of the drug (fAUC) of 26.0 mg · h/liter. MK7655 shows significant activity in vivo and results in efficacy of IMP/C in otherwise resistant strains. The exposure-response relationships found can serve as a basis for establishing dosing regimens in humans. PMID:25403667

  9. [Pharmacokinetics and pharmacodynamics of antibiotics in intensive care].

    PubMed

    Sörgel, F; Höhl, R; Glaser, R; Stelzer, C; Munz, M; Vormittag, M; Kinzig, M; Bulitta, J; Landersdorfer, C; Junger, A; Christ, M; Wilhelm, M; Holzgrabe, U

    2017-02-01

    Optimized dosage regimens of antibiotics have remained obscure since their introduction. During the last two decades pharmacokinetic(PK)-pharmacodynamic(PD) relationships, originally established in animal experiments, have been increasingly used in patients. The action of betalactams is believed to be governed by the time the plasma concentration is above the minimum inhibitory concentration (MIC). Aminoglycosides act as planned when the peak concentration is a multiple of the MIC and vancomycin seems to work best when the area under the plasma vs. time curve (AUC) to MIC has a certain ratio. Clinicians should be aware that these relationships can only be an indication in which direction dosing should go. Larger studies with sufficiently high numbers of patients and particularly severely sick patients are needed to prove the concepts. In times where all antibiotics can be measured with new technologies, the introduction of therapeutic drug monitoring (TDM) is suggested for ICUs (Intensive Care Unit). The idea of a central lab for TDM of antibiotics such as PEAK (Paul Ehrlich Antibiotika Konzentrationsmessung) is supported.

  10. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species.

    PubMed

    Salgueiro, L R; Cavaleiro, C; Pinto, E; Pina-Vaz, C; Rodrigues, A G; Palmeira, A; Tavares, C; Costa-de-Oliveira, S; Gonçalves, M J; Martinez-de-Oliveira, J

    2003-09-01

    The composition and the antifungal activity of the essential oil of Origanum virens on Candida species were studied. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC and GC-MS. The oil was characterized by its high content of carvacrol (68.1 %) and its biogenetic precursors, gamma-terpinene (9.9 %) and p-cymene (4.5 %). The minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) were used to evaluate the antifungal activity against Candida strains (7 clinical isolates and 3 ATCC type strains). The inhibition of germ tube formation and flow cytometry, using the fluorescent probe propidium iodide (PI), were used to evaluate their mechanisms of action. MIC and MLC values were similar for most tested strains, ranging from 0.16 to 0.32 microL/mL. Concentrations lower than MIC values strongly prevent germ tube formation. The fungicidal effect is primarily due to an extensive lesion of the membrane.

  11. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species.

    PubMed

    Aristimuño Ficoseco, M E; Vattuone, M A; Audenaert, K; Catalán, C A N; Sampietro, D A

    2014-05-01

    The purpose of this research was to identify antifungal compounds from leaves of Schinus and Schinopsis species useful for the control of toxigenic Fusarium species responsible of ear rot diseases. Leaves of Schinopsis (S. lorentzii and S. haenkeana) and Schinus (S. areira, S. gracilipes and S. fasciculatus) were sequentially extracted with dichloromethane, ethyl acetate and methanol. The antifungal activity of the fraction soluble in methanol of these extracts (fCH2Cl2, fAcEt and fMeOH, respectively) was determined by the broth microdilution method and the disc-diffusion method. The minimum inhibitory dose (MID), the diameter of growth inhibition (DGI) and the minimum concentration for 50% inhibition of fungal growth (MIC50) were calculated. The fCH2Cl2 and fAcEt of the Schinopsis species had the lowest MID and MIC50 values and the highest DGI. The antifungal compounds were identified as lupeol and a mix of phenolic lipids. The last one had the highest antifungal activity with MIC50 31-28 μg g(-1) and 165-150 μg g(-1) on Fusarium graminearum and Fusarium verticillioides, respectively. The identified metabolites completely inhibited fumonisin and deoxynivalenol production at lower concentrations than ferulic acid, a natural antimycotoxigenic compound. It was proven that lupeol and phenolic lipids were inhibitors of both fungal growth and mycotoxin production of toxigenic Fusarium species. This fact is specially interesting in the control of the toxigenic Fusarium species because several commercial antifungals showed to stimulate mycotoxin biosynthesis at sublethal concentrations. Control of toxigenic Fusarium species requires compounds able to inhibit both fungal growth and mycotoxin production. Our results suggest that the use of lupeol as food preservative and the phenolic lipids as fungal growth inhibitors of F. verticillioides and F. graminearum did not imply an increase in mycotoxin accumulation. © 2014 The Society for Applied Microbiology.

  12. [Identification of filamentous fungi isolated from clinical samples by two different methods and their susceptibility results].

    PubMed

    Direkel, Sahin; Otağ, Feza; Aslan, Gönül; Ulger, Mahmut; Emekdaş, Gürol

    2012-01-01

    Molds are widely distributed in nature. Aspergillus spp. represent the most frequently observed causative agents, however less frequent pathogens Fusarium, Scedosporium and Zygomycetes have also been considered the most important causes of morbidity and mortality in profoundly immunosuppressed hosts. The aims of this study were to identify filamentous fungi isolated from clinical specimens by conventional and molecular methods, and to detect their antifungal susceptibilities. A total of 6742 clinical specimens obtained from hospitalized patients at critical units of Mersin University Medical Faculty Hospital and sent to our laboratory between April 2008-January 2010 were included in the study. The isolates were identified by classical mycological methods and polymerase chain reaction-based DNA sequencing. Susceptibilities to fluconazole and voriconazole were tested by disk diffusion method and to fluconazole, voriconazole, amfoterisin B, caspofungin and posaconazole by E-test. Filamentous fungi were isolated from 71 (1.05%) samples (13 sputum, 4 wound, 4 peritoneal fluid, 3 extrenal ear discharge, 3 abscess and one of each cerebrospinal fluid, blood, tissue biopsy, nasal swab and conjunctival swab) which belonged to 32 patients (13 female, 19 male; age range 7 months-77 years, mean age: 46.6 years). Of the patients 62.3% presented one or more risk factors such as chronic renal failure (n= 8), chronic obstructive lung disease (n= 6), malignancy (n= 6), diabetes mellitus (n= 5) and peripheral vascular disease (n= 5). Of the isolates six were identified as Aspergillus niger, six as Aspergillus flavus, five as Aspergillus fumigatus, four as Aspergillus terreus, five as Fusarium spp., two as Bipolaris spp., and one of each as Acremonium spp., Aurebasidium spp., Mucor spp., and Scedosporium spp. By conventional methods. Three isolates exhibited different identities by DNA sequencing. All Aspergillus isolates were correctly identified at species level by both methods, Other fungi were identified at genus level by conventional methods and at species level by DNA sequencing. Fluconazole minimum inhibitory concentration (MIC) values were determined as > 256 mg/L in all strains, except Scedosporium; voriconazole MIC values were < 0.38 mg/L in all Aspergillus spp. Caspofungin MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and Bipolaris strains and ≤ 0.006-0.125 mg/L in all Aspergillus isolates, In three strains (Fusarium equiseti, Cylindrocarpon lichenicola and Rhizopus oryzae) posaconazole minimum inhibitory concentration (MIC) values were > 32 mg/L, however it was < 1.5 mg/L, for the other strains. Amphotericin B MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and all A.terreus strains and < 2 mg/L for the others. E-test and disk diffusion test results were compatible with each other for all the antifungal agents tested. In conclusion, the identification of filamentous fungi such as Aspergillus and Fusarium spp. is easily and reliably achieved by conventional methods. Since the rate of invasive fungal infections is increasing currently, filamentous molds should be searched especially in the clinical specimens of immunocompromised patients for accurate and prompt diagnosis of such infections and to decrease the related mortality risk.

  13. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization.

    PubMed

    Remy, Joan M; Tow-Keogh, Cheryl A; McConnell, Timothy S; Dalton, James M; Devito, Joseph A

    2012-12-01

    To determine the potential for delafloxacin to select for resistant mutants in methicillin-resistant Staphylococcus aureus (MRSA), including isolates with existing mutations in the quinolone resistance determining region (QRDR). Susceptibility testing by broth microdilution was performed on 30 MRSA clinical isolates. For four of these isolates, the presence or absence of mutations in the QRDR was characterized. Resistance selection was performed on these four isolates by spreading cells on drug-containing agar plates followed by incubation for 48 h. Resistance frequencies and mutant prevention concentrations (MPCs) were calculated for each; PCR amplification and sequencing were performed using standard methods to characterize mutations in the QRDR. Growth rate analysis was performed and relative fitness was determined. Delafloxacin demonstrated potent in vitro activity against this set of MRSA isolates, with MICs of 0.008-1 mg/L and an MIC(50) and MIC(90) of 0.03 and 0.5 mg/L, respectively. Spontaneous delafloxacin resistance frequencies for the MRSA strains were 2 × 10(-9) to <9.5 × 10(-11). Delafloxacin MPCs were one to four times the MIC for any isolate, lower than those of comparator quinolones. Some delafloxacin-selected mutants showed a fitness cost when co-cultured with the parent strain. Delafloxacin demonstrates excellent antibacterial potency and exhibits a low probability for the selection of resistant mutants in MRSA. Although mutants can be selected at low frequencies in vitro from quinolone-resistant isolates, delafloxacin MICs and MPCs remain low and a fitness cost can be observed. Consequently delafloxacin warrants further investigation for the potential treatment of drug-resistant MRSA infections.

  14. In vitro activity of Tedizolid phosphate against multidrug-resistant Streptococcus pneumoniae isolates from Asian countries.

    PubMed

    Baek, Jin Yang; Kang, Cheol-In; Kim, So Hyun; Ko, Kwan Soo; Chung, Doo Ryeon; Peck, Kyong Ran; Hsueh, Po-Ren; Thamlikitkul, Visanu; So, Thomas Man-Kit; Lee, Nam Yong; Song, Jae-Hoon

    2016-06-01

    Tedizolid phosphate is a second-generation oxazolidinone prodrug that is potential activity against a wide range of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, penicillin-resistant streptococci, and vancomycin-resistant enterococci. The in vitro activity of tedizolid and other comparator agents against multidrug-resistant (MDR) pneumococci from various Asian countries were evaluated. Of the S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 8 Asian countries (Korea, Taiwan, Thailand, Hong Kong, Vietnam, Malaysia, Philippines, and Sri Lanka), 104 isolates of MDR pneumococci were included in this study. Antimicrobial susceptibility testing for 18 antimicrobial agents was performed by broth microdilution method. Tedizolid was highly active against pneumococci. All isolates tested were inhibited at a tedizolid minimum inhibitory concentration (MIC) value of ≤0.25μg/ml (ranged from ≤0.03μg/ml to 0.25μg/ml). The MIC50 and MIC90 of tedizolid against MDR pneumococci were both 0.12μg/ml, while MIC50 and MIC90 of linezolid were 0.5μg/ml and 1μg/ml, respectively. In addition, tedizolid maintained the activity against S. pneumoniae regardless of the extensively drug-resistant (XDR) phenotype of the isolates. The activity of tedizolid was excellent against all types of MDR pneumococci, exhibiting and maintaining at least 4-fold-greater potency compared to linezolid, regardless of resistance phenotypes to other commonly utilized agents. Tedizolid has the potential to be an agent to treat infections caused by MDR pneumococci in the Asia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil

    PubMed Central

    Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane

    2014-01-01

    Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231

  16. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    PubMed

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  17. Interpretive criteria of antimicrobial disk susceptibility tests with flomoxef.

    PubMed

    Grimm, H

    1991-01-01

    320 recently isolated pathogens, 20 strains from each of 16 species, were investigated using Mueller-Hinton agar and DIN as well as NCCLS standards. The geometric mean of the agar dilution MICs of flomoxef were 0.44 mg/l for Staphylococcus aureus, 0.05 mg/l (Klebsiella oxytoca) to 12.6 mg/l (Enterobacter spp.) for enterobacteriaceae, 33.1 mg/l for Acinetobacter anitratus, 64 mg/l for Enterococcus faecalis, and more than 256 mg/l for Pseudomonas aeruginosa. For disk susceptibility testing of flomoxef a 30 micrograms disk loading and the following interpretation of inhibition zones using the DIN method were recommended: resistant-up to 22 mm (corresponding to MICs of 8 mg/l or more), moderately susceptible-23 to 29 mm (corresponding to MICs from 1 to 4 mg/l), and susceptible-30 mm or more (corresponding to MICs of 0.5 mg/l or less). The respective values for the NCCLS method using the American high MIC breakpoints are: resistant--up to 14 mm (corresponding to MICs of 32 mg/l or more), moderately susceptible--15 to 17 mm (corresponding to MICs of 16 mg/l), and susceptible--18 mm or more (corresponding to MICs of 8 mg/l or less).

  18. Campylobacter Prevalence and Quinolone Susceptibility in Feces of Preharvest Feedlot Cattle Exposed to Enrofloxacin for the Treatment of Bovine Respiratory Disease.

    PubMed

    Smith, Ashley B; Renter, David G; Shi, Xiaorong; Cernicchiaro, Natalia; Sahin, Orhan; Nagaraja, T G

    2018-03-20

    Campylobacter spp. can be pathogenic to humans and often harbor antimicrobial resistance genes. Data on resistance in relation to fluoroquinolone use in beef cattle are scarce. This cross-sectional study of preharvest cattle evaluated Campylobacter prevalence and susceptibility to nalidixic acid and ciprofloxacin in feedlots that previously administered a fluoroquinolone as primary treatment for bovine respiratory disease. Twenty fresh fecal samples were collected from each of 10 pens, in each of five feedlots, 1-2 weeks before harvest. Feces were cultured for Campylobacter using selective enrichment and isolation methods. Genus and species were confirmed via PCR. Minimum inhibitory concentrations (MICs) of ciprofloxacin and nalidixic acid were determined using a micro-broth dilution method and human breakpoints. Antimicrobial use within each pen was recorded. Data were analyzed using generalized linear mixed-models (prevalence) and survival analysis (MICs). Overall, sample-level prevalence of Campylobacter was 27.2% (272/1000) and differed significantly among feedlots (p < 0.01). Campylobacter coli was the most common species (55.1%; 150/272), followed by Campylobacter hyointestinalis (42.6%; 116/272). Within-pen prevalence was not significantly associated with the number of fluoroquinolone treatments, sex, body weight, or metaphylaxis use, but was associated with the number of days cattle were in the feedlot (p = 0.03). The MICs for the majority of Campylobacter isolates were above the breakpoints for nalidixic acid (68.4%; 175/256) and for ciprofloxacin (65.6%; 168/256). Distributions of MICs for nalidixic acid (p ≤ 0.01) and ciprofloxacin (p ≤ 0.05) were significantly different among feedlots, and by Campylobacter species. However, fluoroquinolone treatments, sex, body weight, days on feed, and metaphylaxis were not significantly associated with MIC distributions within pens. We found no evidence that the number of fluoroquinolone treatments within feedlot pens significantly affected the within-pen fecal prevalence or quinolone susceptibilies of Campylobacter in feedlots that used a fluoroquinolone as primary treatment for bovine respiratory disease.

  19. In vitro Antibacterial Activity of Ocimum suave Essential Oils against Uropathogens Isolated from Patients in Selected Hospitals in Bushenyi District, Uganda

    PubMed Central

    Tibyangye, Julius; Okech, Matilda Angela; Nyabayo, Josephat Maniga; Nakavuma, Jessica Lukanga

    2015-01-01

    Aims To determine antibacterial activity of Ocimum suave essential oils against bacterial uropathogens. Study Design A cross sectional and experimental study. Place and Duration of Study Six selected hospitals in Bushenyi District, Uganda between June 2012 and July 2013. Methodology Clean catch midstream urine samples were collected and inoculated on Cystine Lysine Electrolyte Deficient (CLED) agar. The plates were incubated at 37°C for 24hrs to 48hrs. The O. suave essential oils were extracted by hydrodistillation of leaves for 4hrs using a Clevenger apparatus. The oil was collected and dried over anhydrous sodium sulphate (Na2SO4) and kept at 4°C till further use. The antimicrobial activity of O. suave essential oils against isolates was determined by agar well method. The MIC of O. suave essential oil extract was carried out by microbroth dilution method. Results Of the three hundred (300) midstream urine samples collected, 67(22.33%) had significant bacterial growth. Escherichia coli is the most common isolate (61.19%, n = 41). The essential oil from O. suave showed activity against isolates of E. coli, K. pneumoniae, S. aureus, E. feacalis, M. morganii, Citrobacter species, Enterobacter species and P. aeruginosa with mean zone of inhibition (ZI) ranging from 10–22 mm. The essential oils had no inhibitory activity on Acinetobacter species. The minimum inhibitory concentration (MIC) for O. suave essential oils ranged from 0.78 to 22 μg/ml. This study showed that O. suave essential oils had MIC value of 0.78 μg/ml against S. aureus and MIC values ranging from 3 to 22 μg/ml against the other tested isolates. Conclusion The most common uropathogen was E. coli (61.19% n = 41). O. suave essential oils exhibited antibacterial activity against majority of the uropathogens, except Acinetobacter species, mean ZI of 10–22 mm and MIC of 0.78 – 22 μg/ml. PMID:26120574

  20. Pharmacokinetics of Enrofloxacin and Danofloxacin in Plasma, Inflammatory Exudate, and Bronchial Secretions of Calves following Subcutaneous Administration

    PubMed Central

    McKellar, Quintin; Gibson, Ian; Monteiro, Ana; Bregante, Miguel

    1999-01-01

    Enrofloxacin (2.5 mg/kg of body weight) and danofloxacin (1.25 mg/kg) were administered subcutaneously to ruminating calves (n = 8) fitted with subcutaneous tissue cages. Concentrations of enrofloxacin, its metabolite ciprofloxacin, and danofloxacin in blood (plasma), tissue cage exudate (following intracaveal injection of 0.3 ml of 1% [vol/wt] carrageenan), and bronchial secretions were measured by high-performance liquid chromatography (HPLC) and microbiological assay (enrofloxacin plus ciprofloxacin and danofloxacin). Mean maximum concentrations (Cmax) ± standard deviations of enrofloxacin (0.24 ± 0.08 μg/ml), ciprofloxacin (0.11 ± 0.03 [total, 0.34 ± 0.10] μg/ml), and danofloxacin (0.23 ± 0.05 μg/ml) were detected in the plasma of calves by HPLC. The Cmax were 0.49 ± 0.17 μg/ml (enrofloxacin equivalents) and 0.24 ± 0.03 μg/ml (danofloxacin) when they were measured by microbiological assay. Mean Cmax in exudate (HPLC) were 0.18 ± 0.07 μg/ml (enrofloxacin), 0.10 ± 0.04 μg/ml (ciprofloxacin), 0.27 ± 0.09 μg/ml (enrofloxacin plus ciprofloxacin), and 0.19 ± 0.05 μg/ml (danofloxacin), and concentrations in exudate exceeded those in plasma from 8 h (enrofloxacin and ciprofloxacin) or 6 h (danofloxacin) after drug administration. The Cmax were 0.34 ± 0.09 μg/ml (enrofloxacin equivalents) and 0.22 ± 0.04 μg/ml (danofloxacin) in exudate when they were measured by the microbiological assay. The maximum mean concentration achieved in bronchial secretions (HPLC) were 0.07 ± 0.04 μg/ml (enrofloxacin), 0.04 ± 0.07 μg/ml (ciprofloxacin), 0.10 ± 0.05 μg/ml (enrofloxacin plus ciprofloxacin), and 0.12 ± 0.09 μg/ml (danofloxacin). The maximum mean concentration in bronchial secretions from a limited number of animals from which samples were available for microbiological assay were 0.27 ± 0.11 μg/ml (n = 4 [enrofloxacin equivalents]) and 0.14 ± 0.02 μg/ml (n = 3 [danofloxacin]). With predictive models of efficacy (Cmax/MIC and area under the concentration-time curve/MIC ratios in plasma) for Pasteurella multocida (MIC of enrofloxacin, 0.06 μg/ml [24]; MIC of danofloxacin, 0.06 μg/ml [6]), enrofloxacin produced scores of 8.17 and 52.00, respectively, compared to those of danofloxacin, which were 4.02 and 23.05, respectively. With the dosing rates recommended in some markets by manufacturers, enrofloxacin and danofloxacin achieved concentrations above the MICs for important pathogenic organisms in plasma, tissue cage exudate, and bronchial secretion. Since fluoroquinolones display concentration-dependent activities, Cmax/MIC ratios may be critical to efficacy. In the United States enrofloxacin is currently the only fluoroquinolone licensed for food animals and dosages for acute respiratory disease are 2.5 to 5 mg/kg for 3 days or 7.5 to 12.5 mg/kg once. The higher dosages on a single occasion are likely to confer Cmax/MIC ratios that are associated with greater clinical efficacy. PMID:10428924

  1. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  2. Pharmacokinetic-pharmacodynamic (PK-PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs.

    PubMed

    Papich, Mark G

    2014-07-16

    One of the strategies to decrease inappropriate antimicrobial use in veterinary medicine is to apply pharmacokinetic-pharmacodynamic (PK-PD) principles to dosing regimens. If antimicrobials are used appropriately by applying these principles to attain targets for area-under-the-curve to MIC ratio (AUC/MIC), peak concentration to MIC ratio (CMAX/MIC), and time above MIC (T>MIC), more effective antibiotic therapy is possible, thus avoiding ineffective administration. Another mechanism whereby inappropriate antibiotic administration can be avoided is to use accurate Interpretive Criteria established by the Clinical Laboratory Standards Institute (CLSI) for breakpoint selection. Inaccurate breakpoints will encourage antibiotic administration that is likely to be ineffective. For newly approved antimicrobials, three criteria are used for determining breakpoints: PK-PD criteria, MIC distributions, and clinical response. For older (often generic drugs) evaluated by the CLSI, recent clinical data may not be available and breakpoints are derived from PK-PD principles, wild-type distributions, and Monte Carlo simulations. It is the goal of the CLSI subcommittee that these revised breakpoints will encourage more effective antimicrobial use and avoid unnecessary antimicrobial administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A randomized pharmacokinetic and pharmacodynamic evaluation of every 8-hour and 12-hour dosing strategies of vancomycin and cefepime in neurocritically-ill patients.

    PubMed

    Kassel, Lynn E; Van Matre, Edward T; Foster, Charles J; Fish, Douglas N; Mueller, Scott W; Sherman, Deb S; Wempe, Michael F; MacLaren, Robert; Neumann, Robert T; Kiser, Tyree H

    2018-06-15

    Neurocritically-ill patients have clinically significant alterations in pharmacokinetic parameters of renally-eliminated medications, which may result in subtherapeutic plasma and cerebrospinal fluid antibiotic concentrations. Prospective, randomized, open-label study of adult neurocritically-ill patients treated with vancomycin and cefepime. Vancomycin 15 mg/kg and cefepime 2 g were dosed at every 8 or 12-hour intervals. The primary outcomes were the achievement of pharmacodynamic targets related to time of unbound drug above minimum inhibitory concentrations (MIC) for 60% or more of the dosing interval (fT>MIC ≥60%) for β-lactams and ratio of 24-hour area under the curve (AUC):MIC of 400 or greater for vancomycin. Twenty patients were included in the study. Patients were divided equally between the every 12-hour (n=10) and every 8-hour (n=10) dosing groups. Patients (mean age of 51.8 ± 11 years) were primarily male (60%) and Caucasian (95%), and the majority had an admission diagnosis of intracranial hemorrhage (80%). Compared to the every 12-hour group, the every 8-hour vancomycin group achieved target trough concentrations (>15 μg/ml) significantly more frequently at initial measurement (0% vs 80%, p<0.01) and at 7 to 10 days (0% vs 90%, p=0.045) and achieved pharmacodynamic targets more frequently at increasing MICs. Similarly, compared to every 12-hour dosing, the every 8-hour cefepime dosing strategy significantly increased pharmacodynamic target attainment (fT>MIC ≥60%) at an MIC of 8 μg/ml (20% vs 70%, p=0.02). This study demonstrated that more frequent dosing of vancomycin and cefepime is required to achieve optimal pharmacodynamic targets in adult neurocritically-ill patients. The need for increased total daily doses is potentially secondary to the development of augmented renal clearance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds.

    PubMed

    Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David

    2014-08-01

    Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes

    PubMed Central

    Ahrari, Farzaneh; Eslami, Neda; Rajabi, Omid; Ghazvini, Kiarash; Barati, Sahar

    2015-01-01

    Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO), copper oxide (CuO), titanium dioxide (TiO2) and silver (Ag) nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs) and with subcultures obtained minimum bactericidal concentrations (MBCs) of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO2-containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05). The colloidal solutions containing nanoTiO2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05). On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05). Conclusion: The nanoTiO2-containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues. PMID:25709674

  6. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    PubMed

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Honey Bee as Alternative Medicine to Treat Eleven Multidrug-Resistant Bacteria Causing Urinary Tract Infection during Pregnancy.

    PubMed

    Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud

    2018-04-13

    Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.

  8. Species Identification and In Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Clinical Isolates from a French Multicenter Study.

    PubMed

    Imbert, S; Normand, A C; Ranque, S; Costa, J M; Guitard, J; Accoceberry, I; Bonnal, C; Fekkar, A; Bourgeois, N; Houzé, S; Hennequin, C; Piarroux, R; Dannaoui, E; Botterel, F

    2018-05-01

    Aspergillus section Terrei is a species complex currently comprised of 14 cryptic species whose prevalence in clinical samples as well as antifungal susceptibility are poorly known. The aims of this study were to investigate A. Terrei clinical isolates at the species level and to perform antifungal susceptibility analyses by reference and commercial methods. Eighty-two clinical A. Terrei isolates were collected from 8 French university hospitals. Molecular identification was performed by sequencing parts of beta-tubulin and calmodulin genes. MICs or minimum effective concentrations (MECs) were determined for 8 antifungal drugs using both EUCAST broth microdilution (BMD) methods and concentration gradient strips (CGS). Among the 79 A. Terrei isolates, A. terreus stricto sensu ( n = 61), A. citrinoterreus ( n = 13), A. hortai ( n = 3), and A. alabamensis ( n = 2) were identified. All strains had MICs of ≥1 mg/liter for amphotericin B, except for two isolates (both A. hortai ) that had MICs of 0.25 mg/liter. Four A. terreus isolates were resistant to at least one azole drug, including one with pan-azole resistance, yet no mutation in the CYP51A gene was found. All strains had low MECs for the three echinocandins. The essential agreements (EAs) between BMD and CGS were >90%, except for those of amphotericin B (79.7%) and itraconazole (73.4%). Isolates belonging to the A section Terrei identified in clinical samples show wider species diversity beyond the known A. terreus sensu stricto Azole resistance inside the section Terrei is uncommon and is not related to CYP51A mutations here. Finally, CGS is an interesting alternative for routine antifungal susceptibility testing. Copyright © 2018 American Society for Microbiology.

  9. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thymoides.

    PubMed

    Silva, Fabrício Souza; Menezes, Pedro Modesto Nascimento; de Sá, Pedro Guilherme Souza; Oliveira, André Luís de Santana; Souza, Eric Alencar Araújo; Almeida, Jackson Roberto Guedes da Silva; de Lima, Julianeli Tolentino; Uetanabaro, Ana Paula Trovatti; Silva, Tânia Regina dos Santos; Peralta, Edna Dória; Lucchese, Angélica Maria

    2016-01-01

    Lippia thymoides Mart. & Schauer (Verbenaceae) is used in folk medicine to treat wounds, fever, bronchitis, rheumatism, headaches, and weakness. This study determinates the chemical composition of essential oils from L. thymoides, obtained at during each of the four seasons and correlates with pharmacological properties. Essential oils were obtained by hydrodistillation and analyzed by gas chromatography coupled to mass spectroscopy (GC-MS). Antioxidant activity was determined by DPPH free radical scavenging and β-carotene bleaching methods. The antimicrobial assays were performed by minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) methods. Isolated rat aorta and uterus, and guinea-pig trachea were utilized to evaluate relaxant potential in pre-contracted smooth muscle. Essential oils from leaves of L. thymoides had the sesquiterpene β-caryophyllene (17.22-26.27%) as the major constituent followed by borneol (4.45-7.36%), camphor (3.22-8.61%), camphene (2.64-5.66%), and germacrene D (4.72-6.18%). In vitro assays showed that these essential oils do not have antioxidant activity, have antimicrobial selectivity to Gram-positive bacteria Staphylococcus aureus (MIC = 0.004 mg/mL and MMC = 0.26-10.19 mg/mL) and Micrococcus luteus (MIC = 0.03 mg/mL and MMC = 8.43 mg/mL), relax isolated rat aorta (EC50 = 305-544 μg/mL, with endothelium; and EC50 = 150-283 μg/mL, without endothelium), and uterus (EC50 = 74-257 μg/mL), and minor potency, isolated guinea-pig trachea. Lippia thymoides is a source of natural products of pharmaceutical interest, being necessary additional studies to determine the substances involved in the biological activities.

  10. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer.

    PubMed

    Gholami, Mitra; Mohammadi, Rashin; Arzanlou, Mohsen; Akbari Dourbash, Fakhraddin; Kouhsari, Ebrahim; Majidi, Gharib; Mohseni, Seyed Mohsen; Nazari, Shahram

    2017-06-05

    Nano-scale dendrimers are synthetic macromolecules that frequently used in medical and health field. Traditional anibiotics are induce bacterial resistence so there is an urgent need for novel antibacterial drug invention. In the present study seventh generation poly (amidoamine) (PAMAM-G7) dendrimer was synthesized and its antibacterial activities were evaluated against representative Gram- negative and Gram-positive bacteria. PAMAM-G7 was synthesized with divergent growth method. The structural and surface of PAMAM-G7 were investigated by transmission electron microscopy, scanning electron microscope and fourier transform infrared. Pseudomonas. aeruginosa (n = 15), E. coli (n = 15), Acinetobacter baumanni (n = 15), Shigella dysenteriae (n = 15), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Staphylococcus aureus (n = 15) and Bacillus subtilis (n = 10) have been used for antibacterial activity assay. Additionally, representative standard strains for each bacterium were included. Minimum Inhibitory Concentration (MIC) was determined using microdilution method. Subsequently, Minimum Bactericidal Concentration (MBC) was determined by sub-culturing each of the no growth wells onto Mueller Hinton agar medium. The cytotoxicity of PAMAM-G7 dendrimer were evaluated in HCT116 and NIH 3 T3 cells by MTT assay. The average size of each particle was approximately 20 nm. PAMAM-G7 was potentially to inhibit both Gram positive and gram negative growth. The MIC50 and MIC90 values were determined to be 2-4 μg/ml and 4-8 μg/ml, respectively. The MBC50 and MBC90 values were found to be 64-256 μg/ml and 128-256 μg/ml, respectively. The cytotoxity effect of dendrimer on HCT116 and NIH 3 T3 cells is dependent upon exposure time to and concentration of dendrimers. The most reduction (44.63 and 43%) in cell viability for HCT116 and NIH 3 T3 cells was observed at the highest concentration, 0.85 μM after 72 h treatmentm, respectively. This study we conclude that PAMAM-G7 dendrimer could be a potential candidate as a novel antibacterial agent.

  11. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa.

    PubMed

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-04-01

    The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections.

  12. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values.

    PubMed

    Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico

    2015-09-01

    This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Incidence of gonorrhoea due to penicillinase producing Neisseria gonorrhoeae in Japan 1981-3 and treatment using a new antibiotic combination, BRL25000 (amoxycillin and clavulanic acid).

    PubMed Central

    Osato, K; Tsugami, H; Harada, K; Maruyama, J

    1986-01-01

    During the three years 1981-3, 134 (9.1%) of 1473 patients presenting at our clinics were found to be infected with penicillinase producing strains of Neisseria gonorrhoeae (PPNG). Minimum inhibitory concentrations (MICs) of benzylpenicillin and ampicillin against these PPNG strains were 8 mg/l or more, whereas against non-PPNG strains they were consistently 4 mg/l or less. In contrast, the MIC of BRL25000 (two parts amoxycillin and one part clavulanic acid, the beta lactamase inhibitor) was 4 mg/l or less even against PPNG strains. MICs of a number of other drugs commonly used to treat gonorrhoea, such as cephaloridine, cefoxitin, tetracycline, doxycycline, minocycline, kanamycin, and spectinomycin, showed no appreciable differences between non-PPNG and PPNG strains and the MIC of cephaloridine in particular was relatively high. BRL25000 proved to be very effective in the treatment of PPNG infection and cured all of 121 patients treated. A daily dose of 2.25g, cured 105 patients in two days, 11 patients in three days, four patients in four days, and one patient in five days. A new rapid diagnostic method for detecting PPNG strains, capable of application at an outpatient clinic and providing a result on the following day, is described. Images PMID:3089905

  14. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture

    PubMed Central

    2013-01-01

    Background A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture. Methods Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes. Results Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities. Conclusions It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications. PMID:24330547

  15. Evaluation of Antioxidant Activity and Growth Control Properties of Nonoscale Structure Produced from Aloe vera var. littoralis Extract on Clinical Isolates of Salmonella.

    PubMed

    Ranjbar, Reza; Arjomandzadegan, Mohammad; Hosseiny, Hossein

    2017-07-31

    The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis ( A. littoralis ) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella , 17 isolates-including resistant isolates of S.E.1103 and S.E.49-had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC 50 was 0.25 mg/mL and MBC 50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine.

  16. Pharmacokinetics and pharmacodynamics of levofloxacin injection in healthy Chinese volunteers and dosing regimen optimization.

    PubMed

    Cao, G; Zhang, J; Wu, X; Yu, J; Chen, Y; Ye, X; Zhu, D; Zhang, Y; Guo, B; Shi, Y

    2013-10-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of levofloxacin were investigated following administration of levofloxacin injection in healthy Chinese volunteers for optimizing dosing regimen. The PK study included single-dose (750 mg/150 mL) and multiple-dose (750 mg/150 mL once daily for 7 days) phases. The concentration of levofloxacin in blood and urine was determined using HPLC method. Both non-compartmental and compartmental analyses were performed to estimate PK parameters. Taking fC(max) /MIC ≥5 and fAUC(24 h) /MIC ≥30 as a target, the cumulative fraction of response (CFR) of levofloxacin 750 mg for treatment of community-acquired pneumonia (CAP) was calculated using Monte Carlo simulation. The probability of target attainment (PTA) of levofloxacin at various minimal inhibitory concentrations (MICs) was also evaluated. The results of PK study showed that the C(max) and AUC(0-∞) of levofloxacin were 14·94 μg/mL and 80·14 μg h/mL following single-dose infusion of levofloxacin. The half-life and average cumulative urine excretion ratio within 72 h post-dosing were 7·75 h and 86·95%, respectively. The mean C(ss,max), C(ss,min) and AUC(0-τ) of levofloxacin at steady state following multiple doses were 13·31 μg/mL, 0·031 μg/mL and 103·7 μg h/mL, respectively. The accumulation coefficient was 1·22. PK/PD analysis revealed that the CFR value of levofloxacin 750-mg regimen against Streptococcus pneumoniae was 96·2% and 95·4%, respectively, in terms of fC(max) /MIC and fAUC/MIC targets. The regimen of 750-mg levofloxacin once daily provides a satisfactory PK/PD profile against the main pathogenic bacteria of CAP, which implies promising clinical and bacteriological efficacy for patients with CAP. A large-scale clinical study is warranted to confirm these results. © 2013 John Wiley & Sons Ltd.

  17. Antifungal activity of Cleome gynandra L. aerial parts for topical treatment of Tinea capitis: an in vitro evaluation.

    PubMed

    Imanirampa, Lawrence; Alele, Paul E

    2016-07-08

    Cleome gynandra L. (Capparaceae) is an edible weed used in Uganda topically for its presumed antifungal activity against Tinea capitis. The goal of this study was to determine if this plant possesses antifungal activity in vitro, since T. capitis is a pervasive infection among especially rural children. Antifungal activity assay was performed by Broth dilution method, and testing done on clinical isolates of three common Tinea capitis-causing fungal strains. Evaluation of in vitro antifungal activity of the ethanol and water extracts of C. gynandra was done to determine the minimum inhibitory concentrations (MICs) and the minimum fungicidal concentrations (MFCs) of the extracts. The MIC of C. gynandra ethanol extract ranged from 0.0313 to 0.0625 mg/ml for Trichophyton rubrum, and from 0.25 to 0.5 mg/ml for both Microsporum canis and Trichophyton mentagrophytes. The MICs of C. gynandra aqueous extract ranged between 0.125 to 0.25 mg/ml for T. rubrum, and 0.25 to 0.5 mg/ml for both M. canis and T. mentagrophytes. T. rubrum was more sensitive than M. canis (p < 0.002) and more sensitive than T. mentagrophytes (p < 0.035) to the antifungal activity of C. gynandra. T. rubrum was 6.9 times (95 % CL: 1.15 - 41.6) more likely to have a better outcome (more sensitive) than T. mentagrophytes. Cleome gynandra aqueous extract had MFC of ≥0.0313 mg/ml for M. canis, ≥0.0156 mg/ml for T. mentagropyhtes, and ≥0.0625 mg/ml for T. rubrum. Cleome gynandra ethanol extract showed MFCs of ≥0.5 mg/ml for M. canis and T. mentagrophytes, and ≥0.125 mg/ml for T. rubrum. Both plant extracts demonstrated antifungal activity, shown by the MIC and MFC for the different extracts, which varied with the type of organism of the clinical fungal isolates. The ethanol extract exhibited comparable antifungal activity to the aqueous extract indicated by the MIC values seen. Conversely, after subculturing the fungal isolates, MFCs were lower for the aqueous than for the ethanol extract.

  18. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    PubMed

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC values were lowest for Lactobacillus acidophilus (MIC 25 mg/ml, MBC 50 mg/ml) and Streptococcus oralis (MIC 50 mg/ml, MBC 100 mg/ml). Mangosteen pericarp extract had a higher zone of inhibition against the tested microorganisms which suggests its potent antibacterial action against cariogenic organisms. However, further analytical studies are needed to isolate the key molecules of mangosteen pericarp, to explore its anticariogenic therapeutic potential on gram negative oral microorganisms.

  19. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics

    PubMed Central

    AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen

    2018-01-01

    Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368

  20. Diagnostic Accuracy Assessment of Sensititre and Agar Disk Diffusion for Determining Antimicrobial Resistance Profiles of Bovine Clinical Mastitis Pathogens▿

    PubMed Central

    Saini, V.; Riekerink, R. G. M. Olde; McClure, J. T.; Barkema, H. W.

    2011-01-01

    Determining the accuracy and precision of a measuring instrument is pertinent in antimicrobial susceptibility testing. This study was conducted to predict the diagnostic accuracy of the Sensititre MIC mastitis panel (Sensititre) and agar disk diffusion (ADD) method with reference to the manual broth microdilution test method for antimicrobial resistance profiling of Escherichia coli (n = 156), Staphylococcus aureus (n = 154), streptococcal (n = 116), and enterococcal (n = 31) bovine clinical mastitis isolates. The activities of ampicillin, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin, the penicillin-novobiocin combination, pirlimycin, and tetracycline were tested against the isolates. Diagnostic accuracy was determined by estimating the area under the receiver operating characteristic curve; intertest essential and categorical agreements were determined as well. Sensititre and the ADD method demonstrated moderate to highly accurate (71 to 99%) and moderate to perfect (71 to 100%) predictive accuracies for 74 and 76% of the isolate-antimicrobial MIC combinations, respectively. However, the diagnostic accuracy was low for S. aureus-ceftiofur/oxacillin combinations and other streptococcus-ampicillin combinations by either testing method. Essential agreement between Sensititre automatic MIC readings and MIC readings obtained by the broth microdilution test method was 87%. Essential agreement between Sensititre automatic and manual MIC reading methods was 97%. Furthermore, the ADD test method and Sensititre MIC method exhibited 92 and 91% categorical agreement (sensitive, intermediate, resistant) of results, respectively, compared with the reference method. However, both methods demonstrated lower agreement for E. coli-ampicillin/cephalothin combinations than for Gram-positive isolates. In conclusion, the Sensititre and ADD methods had moderate to high diagnostic accuracy and very good essential and categorical agreement for most udder pathogen-antimicrobial combinations and can be readily employed in veterinary diagnostic laboratories. PMID:21270215

  1. Antimicrobial activity of clove and rosemary essential oils alone and in combination.

    PubMed

    Fu, Yujie; Zu, Yuangang; Chen, Liyan; Shi, Xiaoguang; Wang, Zhe; Sun, Su; Efferth, Thomas

    2007-10-01

    In the present study, the antimicrobial activity of the essential oils from clove (Syzygium aromaticum (L.) Merr. et Perry) and rosemary (Rosmarinus officinalis L.) was tested alone and in combination. The compositions of the oils were analysed by GC/MS. Minimum inhibitory concentrations (MIC) against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined for the essential oils and their mixtures. Furthermore, time-kill dynamic processes of clove and rosemary essential oils against Staphylococcus epidermidis, Escherichia coli and Candida albicans were tested. Both essential oils possessed significant antimicrobial effects against all microorganisms tested. The MICs of clove oil ranged from 0.062% to 0.500% (v/v), while the MICs of rosemary oil ranged from 0.125% to 1.000% (v/v). The antimicrobial activity of combinations of the two essential oils indicated their additive, synergistic or antagonistic effects against individual microorganism tests. The time-kill curves of clove and rosemary essential oils towards three strains showed clearly bactericidal and fungicidal processes of (1)/(2) x MIC, MIC, MBC and 2 x MIC.

  2. Bactericidal Activity and Postantibiotic Effect of Levofloxacin against Anaerobes

    PubMed Central

    Pendland, Susan L.; Diaz-Linares, Mariela; Garey, Kevin W.; Woodward, Jennifer G.; Ryu, Seonyoung; Danziger, Larry H.

    1999-01-01

    The bactericidal activity and postantibiotic effect (PAE) of levofloxacin against nine anaerobes were determined. Levofloxacin at concentrations of the MIC and twice the MIC was bactericidal at 24 h to five of nine and nine of nine strains, respectively. The PAE of levofloxacin following a 2-h exposure ranged from 0.06 to 2.88 h. PMID:10508042

  3. Comparison of Meropenem MICs and Susceptibilities for Carbapenemase-Producing Klebsiella pneumoniae Isolates by Various Testing Methods▿

    PubMed Central

    Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.

    2010-01-01

    We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603

  4. Susceptibility and PK/PD relationships of Staphylococcus aureus strains from ovine and caprine with clinical mastitis against five veterinary fluoroquinolones.

    PubMed

    Serrano-Rodríguez, J M; Cárceles-García, C; Cárceles-Rodríguez, C M; Gabarda, M L; Serrano-Caballero, J M; Fernández-Varón, E

    2017-04-15

    Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of veterinary fluoroquinolones as enrofloxacin, its metabolite ciprofloxacin, danofloxacin, difloxacin and marbofloxacin against Staphylococcus aureus strains (n=24) isolated from milk of sheep and goats affected by clinical mastitis were evaluated. The authors have used the MIC and MPC, as well as the pharmacokinetic-pharmacodynamic relationships in plasma and milk. MIC values were significantly different between drugs, unlike MPC values. Lower MIC values were obtained for danofloxacin and difloxacin, middle and higher values for enrofloxacin, ciprofloxacin and marbofloxacin. However, differences in MPC values were not found between drugs. At conventional doses, the AUC 24 /MIC and AUC 24 /MPC ratios were close to 30-80 hours and 5-30 hours, with exception of danofloxacin, in plasma and milk. The time inside the mutant selection window (T MSW ) was close to 3-6 hours for enrofloxacin, ciprofloxacin and marbofloxacin, near to 8 hours for danofloxacin and 12-22 hours for difloxacin. From these data, the mutant selection window could be higher for danofloxacin and difloxacin compared with the other fluoroquinolones tested. The authors concluded that enrofloxacin and marbofloxacin, at conventional doses, could prevent the selection of bacterial subpopulations of S aureus , unlike danofloxacin and difloxacin, where higher doses could be used. British Veterinary Association.

  5. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice.

    PubMed

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J; Wicks, Shawna; Stephens, Jacqueline M; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-06-01

    Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. What is the true in vitro potency of oxytetracycline for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida?

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-10-01

    The pharmacodynamics of oxytetracycline was determined for pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Indices of potency were determined for the following: (i) two matrices, broth and pig serum; (ii) five overlapping sets of twofold dilutions; and (iii) a high strength starting culture. For A. pleuropneumoniae, minimum inhibitory concentration (MIC) was similar for the two matrices, but for P. multocida, differences were marked and significantly different. MIC and minimum bactericidal concentration (MBC) serum: broth ratios for A. pleuropneumoniae were 0.83:1 and 1.22:1, respectively, and corresponding values for P. multocida were 22.0:1 and 7.34:1. For mutant prevention concentration (MPC) serum: broth ratios were 0.79:1 (A. pleuropneumoniae) and 20.9:1 (P. multocida). These ratios were corrected for serum protein binding to yield fraction unbound (fu) serum: broth MIC ratios of 0.24:1 (A. pleuropneumoniae) and 6.30:1 (P. multocida). Corresponding fu serum: broth ratios for MPC were almost identical, 0.23:1 and 6.08:1. These corrections for protein binding did not account for potency differences between serum and broth for either species; based on fu serum MICs, potency in serum was approximately fourfold greater than predicted for A. pleuropneumoniae and sixfold smaller than predicted for P. multocida. For both broth and serum and both bacterial species, MICs were also dependent on initial inoculum strength. The killing action of oxytetracycline had the characteristics of codependency for both A. pleuropneumoniae and P. multocida in both growth media. The in vitro potency of oxytetracycline in pig serum is likely to be closer to the in vivo plasma/serum concentration required for efficacy than potency estimated in broths. © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  7. Anticariogenic activity and phytochemical studies of crude extract from some Indian plant leaves

    PubMed Central

    Barad, Mahesh K.; Ishnava, Kalpesh B.; Chauhan, Jenabhai B.

    2014-01-01

    Aim: The aim was to screen the selected Indian plants for their antibacterial efficacy against four cariogenic bacteria Lactobacillus acidophilus (LA)(Microbial Type Culture Collection [MTCC]-*447), Lactobacillus casei (LC) (MTCC-1423), Streptococcus mutans (SMU) (MTCC-890) and Staphylococcus aureus (MTCC-96). To identify and characterize active principle present in these plants for the treatment of dental caries. Materials and Methods: The dried plant leaves materials are extracted by cold extraction using hexane, ethyl acetate, methanol, and distilled water. The solvents were evaporated, and the dried masses were suspended in dimethyl sulfoxide and used for anticariogenic activity by agar well diffusion method. Minimum inhibitory concentration (MIC) was evaluated by two-fold serial broth dilution method. Preliminary phytochemical analysis of effective extract was carried out by thin-layer chromatography (TLC) and bioautography. Results: Ethyl acetate and hexane extract of Eucalyptus globules was found most effective against L. acidophilus with MIC value 31 μg/ml and 62 μg/ml, respectively. Ethyl acetate extracts of Acacia nilotica and methanolic extract of E. globules also exhibited antibacterial activity against SMU and L. casei with MIC value of 50 μg/ml. Qualitative analysis of E. globules revealed the presence of alkaloids, terpenoids, phenolic compounds, and cardiac glycosides. The active principle responsible for the anticariogenic activity from E. globules were separated by TLC and subjected to bioautography using SMU, LA and LC. Conclusion: Anticariogenic activity and preliminary phytochemical analysis revealed that E. globule have potential to treat dental caries. PMID:26401353

  8. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.

    PubMed

    Yiğit, D; Yiğit, N; Mavi, A

    2009-04-01

    The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.

  9. Tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles to pigs: Combined antibacterial activities and pharmacokinetics.

    PubMed

    Ling, Z; Yonghong, L; Junfeng, L; Li, Z; Xianqiang, L

    2018-04-01

    The combined antibacterial effects of tilmicosin (TIL) and florfenicol (FF) against Actinobacillus pleuropneumoniae (APP) (n = 2), Streptococcus suis (S. suis) (n = 2), and Haemophilus parasuis (HPS) (n = 2) were evaluated by chekerboard test and time-kill assays. The pharmacokinetics (PKs) of TIL- and FF-loaded hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) were performed in healthy pigs. The results indicated that TIL and FF showed synergistic or additive antibacterial activities against APP, S. suis and HPS with the fractional inhibitory concentration (FIC) ranging from 0.375 to 0.75. The time-kill assays showed that 1/2 minimum inhibitory concentration (MIC) TIL combined with 1/2 MIC FF had a stronger ability to inhibit the growth of APP, S. suis, and HPS than 1 MIC TIL or 1 MIC FF, respectively. After oral administration, plasma TIL and FF concentrations could maintain about 0.1 μg/ml for 192 and 176 hr. The SLN prolonged the last time point with detectable concentrations (T last ), area under the concentration-time curve (AUC 0-t ), elimination half-life (T ½ke ), and mean residence time (MRT) by 3.1, 5.6, 12.7, 3.4-fold of the active pharmaceutical ingredient (API) of TIL and 11.8, 16.5, 18.1, 12.1-fold of the API of FF, respectively. This study suggests that the TIL-FF-SLN could be a useful oral formulation for the treatment of APP, S. suis, and HPS infection in pigs. © 2017 John Wiley & Sons Ltd.

  10. Positive interaction of thyme (red) essential oil with human polymorphonuclear granulocytes in eradicating intracellular Candida albicans.

    PubMed

    Tullio, Vivian; Mandras, Narcisa; Allizond, Valeria; Nostro, Antonia; Roana, Janira; Merlino, Chiara; Banche, Giuliana; Scalas, Daniela; Cuffini, Anna Maria

    2012-10-01

    The essential oils have started to be recognized for their potential antimicrobial role only in recent years. Clinical experience showed that the efficacy of antimicrobial agents depends not only on their direct effect on a given microorganism but also on the functional activity of the host immune system. Since data on the effects of essential oils on the innate immune system are scanty and fragmentary, the aim of this study was to evaluate the influence of thyme (red) essential oil (EO), at subinhibitory/inhibitory concentrations, on intracellular killing activity by human polymorphonuclear granulocytes (PMNs) against Candida albicans. In order to provide a frame of reference for the activity of this EO, its in vitro killing activity in the absence of PMNs was also evaluated.Results showed that EO at subminimal inhibitory (subMIC)/minimal inhibitory (MIC) concentrations significantly enhanced intracellular killing of C. albicans in comparison with EO-free controls and was comparable to the positive control (fluconazole). In in vitro killing assays without PMNs, we observed progressive growth of the yeast cells in the presence of EO subMIC/MIC concentrations. A positive antifungal interaction with phagocytes could explain why this EO, which appeared to be only fungistatic in time-kill assays, had efficacy in killing yeast cells once incubated with PMNs. Georg Thieme Verlag KG Stuttgart · New York.

  11. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    PubMed Central

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  12. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    PubMed

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  13. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  14. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains.

    PubMed

    Fratini, Filippo; Mancini, Simone; Turchi, Barbara; Friscia, Elisabetta; Pistelli, Luisa; Giusti, Giulia; Cerri, Domenico

    2017-01-01

    Origanum vulgare (oregano) and Leptospermum scoparium (manuka) were traditionally employed as natural remedies for infected wounds and skin injuries where Staphylococcus aureus is mainly involved. The first aim of this study was to investigate oregano and manuka essential oils (EOs) chemical compositions and evaluate their antibacterial activity (MIC, Minimum Inhibitory Concentration) against fourteen S. aureus wild strains. The second aim was to evaluate the antibacterial activities of oregano and manuka EOs mixed in different combination (FIC, Fractional Inhibitory Concentration) with an improved chequerboard technique. This allowed to avoid the usual uncertainty in the determination of MIC and FIC values and to obtain a more precise interpretation of FIC indexes (FICIs). Moreover, FICIs were discussed on the basis of a novel interpretation method to evaluate the synergistic/antagonistic effect of EOs mixtures. The most representative compounds in oregano EO were Carvacrol (65.93%), p-Cymene (9.33%) and γ-Terpinene (5.25%), while in manuka EO were Leptospermone (31.65%), cis-Calamenene (15.93%) and Flavesone (6.92%). EOs presented MIC values ranging from 1:2048 to 1:4096 v/v and FIC values ranging from 0.125 to 1. According to our interpretation, a synergistic effect (34.68%), a commutative effect (15.32%) and an indifferent effect (50.00%) and no antagonistic effect were observed. Conversely, according to two previously proposed FICI interpretation models, 1.80% synergistic effect could be observed and, respectively, 98.20% indifferent effect or 48.20% additive effect and 50.00% indifferent effect. As practical results, oregano and manuka EOs may be an effective alternative to chemotherapic drugs in staphylococcal infections and useful tools to enhance food security. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts

    PubMed Central

    Luís, Ângelo; Breitenfeld, Luiza; Ferreira, Susana; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion assay and Minimum Inhibitory Concentration (MIC) value determination. The antibiofilm activity was determined by quantification of total biofilm biomass with crystal violet. Cytotoxicity was evaluated by hemolysis assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: For Gram-positive bacteria, MIC values of H. sericea methanolic extracts ranged between 0.040 and 0.625 mg/mL, whereas the fruits extract yielded the lowest MIC for several strains of microorganisms, namely, S. aureus, B. cereus, L. monocytogenes and clinical methicillin-resistant S. aureus (MRSA). Stems and fruits extract at 2.5 mg/mL effectively eradicated the biofilm of S. aureus ATCC 25923, SA 01/10 and MRSA 12/10. Regarding leaves extract, hemolysis was not observed, and in the case of stems and fruits, hemolysis was verified only for higher concentrations, suggesting its low toxicity. Fruits extract presented no toxic effect to normal human dermal fibroblasts (NHDF) cells however for concentrations of 0.017 and 0.008 mg/mL this extract was able to decrease human breast adenocarcinoma cells (MCF-7) viability in about 60%, as MTT test results had confirmed. This is a clearly demonstrator of the cytotoxicity of this extract against MCF-7 cells. PMID:24914310

  16. Antimicrobial Activity and Biocompatibility of the Psidium cattleianum Extracts for Endodontic Purposes.

    PubMed

    Massunari, Loiane; Novais, Renata Zoccal; Oliveira, Márcio Teixeira; Valentim, Diego; Dezan Junior, Eloi; Duque, Cristiane

    2017-01-01

    Psidium cattleianum (PC) has been displaying inhibitory effect against a variety of microorganisms, but this effect has not yet been tested against endodontic pathogens. The aim of this study was to evaluate the antimicrobial activity and biocompatibility of the aqueous (PCAE) and hydroethanolic (PCHE) extracts from Psidium cattleianum (PC) leaves. Minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the microdilution broth method in order to analyze the antimicrobial effect against Enterococcus faecalis, Pseudomonas aeruginosa, Actinomyces israelii and Candida albicans in planktonic conditions. Biofilm assays were conducted only with the extracts that were able to determine the MLC for microorganisms in planktonic conditions. Immediate and late tissue reactions against PC extracts were evaluated using edemogenic test and histological analysis of subcutaneous implants in Wistar rats. The results showed that the MIC and MLC values ranged between 0.25 and 4 mg/mL. The MLC obtained for PCHE inhibited 100% growth of all the tested strains, except for C. albicans. PCAE had the same effect for E. faecalis and P. aeruginosa. Both PC extracts were able to eliminate E. faecalis biofilms and only the PCHE eliminated P. aeruginosa biofilms. The positive controls inhibited the growth of all tested strains in MIC and MLC essays, but no CHX tested concentrations were able to eliminate A. israelii biofilm. PCAE caused a discrete increase in the edema over time, while PCHE caused a higher initial edema, which decreased progressively. Both PCAE and PCHE extracts were biocompatible, but PCHE showed better results with slight levels of inflammation at 28 days. In conclusion, PCHE was biocompatible and presented better antimicrobial effect against important pathogens associated with persistent endodontic infections.

  17. Could essential oils of green and black pepper be used as food preservatives?

    PubMed

    Nikolić, Miloš; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Marković, Tatjana; Smiljković, Marija; Soković, Marina

    2015-10-01

    Black and green pepper essential oils were used in this study in order to determine the chemical composition, in vitro antimicrobial activity against food spoilage microorganisms and in situ oils effect on food microorganism, after incorporation in chicken soup, by suggested methodology for calculation of Growth inhibition concentrations (GIC50). Chemical analysis revealed a total of 34 components. The major constituent of black pepper oil was trans-caryophyllene (30.33 %), followed by limonene (12.12 %), while β-pinene (24.42 %), δ(3)-carene (19.72 %), limonene (18.73 %) and α-pinene (10.39 %) were dominant compounds in green pepper oil. Antimicrobial activity was determined by microdilution technique and minimal inhibitory (MIC) and minimal bactericidal/fungicidal concentrations (MBC/MFC) were determined. Green pepper oil showed stronger antibacterial and antifungal activity (MIC 0.50-1.87; MBC 0.63-2.5 mg/ml; MIC 0.07-0.16; MFC 0.13-1.25 mg/ml) against black pepper oil (MIC 0.07-3.75; MBC 0.60-10.00 mg/ml; MIC 0.63-5.00; MFC 1.25-10.00 mg/ml. Oils successfully inhibited the growth of S. aureus in chicken soup in a dose dependent manner. GIC50 values were calculated after 24, 48 and 72 h and were in range of 0.156-0.689 mg/ml. The 50 % inhibitory concentrations (IC50) of EOs were 36.84 and 38.77 mg/ml with in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay respectively. The obtained results revealed that black and green pepper volatiles are efficient in controlling the growth of known food-spoilage microorganisms.

  18. Heterologous expression of glycopeptide resistance vanHAX gene clusters from soil bacteria in Enterococcus faecalis.

    PubMed

    Hasman, Henrik; Aarestrup, Frank M; Dalsgaard, Anders; Guardabassi, Luca

    2006-04-01

    The aim of the study was to determine whether glycopeptide resistance gene clusters from soil bacteria could be heterologously expressed in Enterococcus faecalis and adapt to the new host following exposure to vancomycin. The vanHAX clusters from Paenibacillus thiaminolyticus PT-2B1, Paenibacillus apiarius PA-B2B and Amycolatopsis coloradensis DSM 44225 were separately cloned in an appropriately constructed shuttle vector containing the two-component regulatory system (vanRS) of Tn1546. The complete vanA(PT) operon (vanRSHAXY) from P. thiaminolyticus PT-2B1 was cloned in the same shuttle vector lacking enterococcal vanRS. All plasmid constructs were electroporated into E. faecalis JH2-2 and the MICs of vancomycin and teicoplanin were determined for each recombinant strain before and following exposure to sublethal concentrations of vancomycin. The vanHAX clusters from P. thiaminolyticus and P. apiarius conferred high-level vancomycin resistance (MIC > or = 125 mg/L) in E. faecalis JH2-2. In contrast, cloning of the vanHAX cluster from A. coloradensis did not result in a significant increase of vancomycin resistance (MIC = 0.7 mg/L). Resistance to vancomycin was not observed after cloning the complete vanA(PT) operon from P. thiaminolyticus (MIC = 2 mg/L), but this recombinant rapidly adapted to high concentrations of vancomycin (MIC = 500 mg/L) following exposure to sub-lethal concentrations of this antibiotic. The results showed that vanA(PT) in P. thiaminolyticus is a possible ancestor of vanA-mediated glycopeptide resistance in enterococci. Experimental evidence supported the hypothesis that enterococci did not acquire glycopeptide resistance directly from glycopeptide-producing organisms such as A. coloradensis.

  19. A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada.

    PubMed

    Portis, Ellen; Lindeman, Cynthia; Johansen, Lacie; Stoltman, Gillian

    2012-09-01

    Bovine isolates of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, collected from 2000 to 2009, were tested for in vitro susceptibility to ceftiofur, penicillin, danofloxacin, enrofloxacin, florfenicol, tetracycline, tilmicosin, and tulathromycin. Ceftiofur remained very active against all isolates. Penicillin retained good activity against P. multocida and H. somni isolates with no appreciable changes in susceptibility or minimal inhibitory concentration (MIC) distributions with time. While there was no obvious trend, the percent of M. haemolytica that were susceptible to penicillin ranged from 40.9% to 66.7%. Danofloxacin MIC(50) and MIC(90) values for M. haemolytica and P. multocida did not change beyond a single dilution over the 6 years it was included in the testing panel. The MIC(90) for H. somni increased beyond 1 dilution. Enrofloxacin MIC(50) values for the 3 pathogens also did not change over time, unlike the MIC(90) values, which increased by at least 4-doubling dilutions. Ninety percent or more of M. haemolytica and H. somni isolates were susceptible to florfenicol, while susceptibility among P. multocida was 79% or greater. Less than 50% of the isolates tested as susceptible to tetracycline in many of the years. All 3 organisms showed declines in tilmicosin and tulathromycin MIC(50) and MIC(90) values over the years in which they were tested.

  20. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    PubMed

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-02-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar.

Top