Sample records for concentration mic values

  1. Effective concentration-based serum pharmacodynamics for antifungal azoles in a murine model of disseminated Candida albicans infection.

    PubMed

    Maki, Katsuyuki; Kaneko, Shuji

    2013-12-01

    An assessment of the effective in vivo concentrations of antifungal drugs is important in determining their pharmacodynamics, and therefore, their optimal dosage regimen. Here we establish the effective in vivo concentration-based pharmacodynamics of three azole antifungal drugs (fluconazole, itraconazole, and ketoconazole) in a murine model of disseminated Candida albicans infection. A key feature of this study was the use of a measure of mycelial (m) growth rather than of yeast growth, and pooled mouse sera rather than synthetic media as a growth medium, for determining the minimum inhibitory concentrations (MICs) of azoles for C. albicans (denoted serum mMICs). The serum mMIC assay was then used to measure antifungal concentrations and effects as serum antifungal titers in the serum of treated mice. Both serum mMIC and sub-mMIC values reflected the effective in vivo serum concentrations. Supra-mMIC and mMIC effects exhibited equivalent efficacies and were concentration-independent, while the sub-mMIC effect was concentration-dependent. Following administration of the minimum drug dosage that inhibited an increase in mouse kidney fungal burden, the duration periods of these effects were similar for all drugs tested. The average duration of either the mMIC effect including the supra-mMIC effect, the sub-mMIC effect, or the post-antifungal effect (PAFE) were 6.9, 6.5 and 10.6 h, respectively. Our study suggests that the area under the curve for serum drug concentration versus time, between the serum mMIC and the sub-mMIC, and exposure time above the serum sub-mMIC after the mMIC effect, are major pharmacodynamic parameters. These findings have important implications for effective concentration-based pharmacodynamics of fungal infections treated with azoles.

  2. In vitro activity of echinocandins against 562 clinical yeast isolates from a Romanian multicentre study.

    PubMed

    Mares, Mihai; Minea, Bogdan; Nastasa, Valentin; Rosca, Irina; Bostanaru, Andra-Cristina; Marincu, Iosif; Toma, Vasilica; Cristea, Violeta Corina; Murariu, Carmen; Pinteala, Mariana

    2018-06-01

    The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.

  3. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance?

    PubMed

    Udy, Andrew A; Lipman, Jeffrey; Jarrett, Paul; Klein, Kerenaftali; Wallis, Steven C; Patel, Kashyap; Kirkpatrick, Carl M J; Kruger, Peter S; Paterson, David L; Roberts, Michael S; Roberts, Jason A

    2015-01-30

    The aim of this study was to explore the impact of augmented creatinine clearance and differing minimum inhibitory concentrations (MIC) on piperacillin pharmacokinetic/pharmacodynamic (PK/PD) target attainment (time above MIC (fT>MIC)) in critically ill patients with sepsis receiving intermittent dosing. To be eligible for enrolment, critically ill patients with sepsis had to be receiving piperacillin-tazobactam 4.5 g intravenously (IV) by intermittent infusion every 6 hours for presumed or confirmed nosocomial infection without significant renal impairment (defined by a plasma creatinine concentration greater than 171 μmol/L or the need for renal replacement therapy). Over a single dosing interval, blood samples were drawn to determine unbound plasma piperacillin concentrations. Renal function was assessed by measuring creatinine clearance (CLCR). A population PK model was constructed, and the probability of target attainment (PTA) for 50% and 100% fT>MIC was calculated for varying MIC and CLCR values. In total, 48 patients provided data. Increasing CLCR values were associated with lower trough plasma piperacillin concentrations (P < 0.01), such that with an MIC of 16 mg/L, 100% fT>MIC would be achieved in only one-third (n = 16) of patients. Mean piperacillin clearance was approximately 1.5-fold higher than in healthy volunteers and correlated with CLCR (r = 0.58, P < 0.01). A reduced PTA for all MIC values, when targeting either 50% or 100% fT>MIC, was noted with increasing CLCR measures. Standard intermittent piperacillin-tazobactam dosing is unlikely to achieve optimal piperacillin exposures in a significant proportion of critically ill patients with sepsis, owing to elevated drug clearance. These data suggest that CLCR can be employed as a useful tool to determine whether piperacillin PK/PD target attainment is likely with a range of MIC values.

  4. [Determination of sensitivity of biofilm-positive forms of microorganisms to antibiotics].

    PubMed

    Holá, Veronika; Růzicka, Filip; Tejkalová, Renata; Votava, Miroslav

    2004-10-01

    Nosocomial infections caused by biofilm-positive microorganisms are a serious therapeutic problem. In the biofilm, microorganisms are protected against adverse effects of the external environment, including the action of antibiotics. It is well known that the values of minimum inhibitory concentrations (MIC) determined for planktonic forms do not correspond to the actual concentrations of antibiotics necessary for the eradication of bacteria in a biofilm. The purpose of the study was to propose a method of determining minimum biofilm inhibitory concentrations (MBIC) and minimum biofilm eradication concentrations (MBEC) and to compare these values with MIC values. Biofilm-positive strains of Staphylococcus epidermidis were cultured so as to form a biofilm layer on polystyrene pegs. The biofilm on the pegs was then exposed to the action of antibiotics and after 18 hours we determined the minimum biofilm inhibitory concentration (MBIC). The evaluation of minimum biofilm eradication concentrations was done colorimetrically from the metabolic activity of surviving cells. MBIC and MBEC values were many times higher than MIC values. We selected such a duration of the biofilms cultivation on the pegs of the plate, which ensured that the number of bacterial cells corresponded to standard MIC assessment. The MBEC values established in our study indicate that the currently used concentrations of tested antibiotics cannot be used in monotherapy for an efficacious eradication of a biofilm. The MBEC determination is a far more laborious and time-consuming method than the determination of MIC, but the use of plates with pegs facilitates the handling of biofilms. The advantage of our method is the possibility of standardization of the size of the inoculum and thus of the whole MBEC assessment.

  5. The activity of silver nanoparticles against microalgae of the Prototheca genus.

    PubMed

    Jagielski, Tomasz; Bakuła, Zofia; Pleń, Małgorzata; Kamiński, Michał; Nowakowska, Julita; Bielecki, Jacek; Wolska, Krystyna I; Grudniak, Anna M

    2018-05-01

    To investigate the in vitro activity of silver NPs (AgNPs) against pathogenic microalgae of the Prototheca genus. The antialgal potential of AgNPs against Prototheca species of both clinical and environmental origin was assessed from minimum inhibitory (algistatic) and algicidal concentrations. The in vitro cytotoxicity of AgNPs against bovine mammary epithelial cell line was evaluated by means of the standard MTT assay. AgNPs showed a strong killing activity toward Prototheca algae, as the minimal algicidal concentration (MAC) values matched perfectly the corresponding minimum inhibitory concentration (MIC) values for all species (MAC = MIC, 1-4 mg/l), except P. stagnora (MIC > 8 mg/l). The concentrations inhibitory to pathogenic Prototheca spp. (MIC, 1-4 mg/l) were below the concentrations at which any toxicity in epithelial cells could be observed (CC 20 > 6 mg/l). The study emphasizes the potential of AgNPs as a new therapeutic tool for the management of Prototheca infections.

  6. Short communication: In vitro antimicrobial susceptibility of Mycoplasma bovis isolates identified in milk from dairy cattle in Belgium, Germany, and Italy.

    PubMed

    Barberio, A; Flaminio, B; De Vliegher, S; Supré, K; Kromker, V; Garbarino, C; Arrigoni, N; Zanardi, G; Bertocchi, L; Gobbo, F; Catania, S; Moroni, P

    2016-08-01

    The objective of this study was to assess the in vitro antimicrobial susceptibility of 73 isolates of Mycoplasma bovis isolated from milk of dairy cattle herds of Belgium, Germany, and Italy. Minimal inhibitory concentration (MIC) values were determined by the microbroth dilution method for the following antimicrobials: erythromycin, spiramycin, tilmicosin, tylosin, lincomycin, enrofloxacin, doxycycline, oxytetracycline, florfenicol, and tiamulin. Macrolides, florfenicol, oxytetracycline, and enrofloxacin, were chosen because they represent antimicrobials families commonly used in several countries for treatment of M. bovis, and their MIC values in cattle population are reported in several studies, allowing a comparison with previous data. Doxycycline and tiamulin were selected to assess the susceptibility of M. bovis to new antimicrobials, because they are not registered in the European Union for the treatment of dairy cattle. Among the agents of the different antimicrobial classes, the macrolides showed the highest concentration to inhibit 90% of isolates (MIC90), all above the highest concentration tested: >8μg/mL for erythromycin, >16μg/mL for spiramycin, and >32μg/mL for tilmicosin and tylosin. Also the MIC90 of lincomycin was above the highest concentration tested (>32μg/mL), but the distribution of the MIC values was almost perfectly bimodal: 41 isolates had a MIC ≤0.5μg/mL and 30 isolates >32μg/mL. Oxytetracycline had a 2-fold higher concentration to inhibit 50% of isolates (2 vs. 0.5μg/mL) and 1-fold higher MIC90 (4 vs. 2μg/mL) than doxycycline. Enrofloxacin and florfenicol had both a MIC90 of 2μg/mL, whereas tiamulin had a MIC90 of 0.5μg/mL. Significant differences on the MIC values were found among the 3 countries for several antimicrobials: compared with Germany, Belgium and Italy showed significantly higher MIC for lincomycin, spiramycin, and tylosin, and lower for oxytetracycline and florfenicol. The Belgian isolates showed the lowest MIC for enrofloxacin compared with Germany and Italy. The MIC results obtained in our study suggest the presence of a high level of resistance of M. bovis isolates originating from milk to macrolides in all countries involved in this study. On the contrary, a low level of resistance was found against the antimicrobials that are not used in cattle, such as tiamulin and doxycycline, highlighting a possible link between antimicrobial treatments and development of resistance in the studied M. bovis population. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. British Veterinary Association.

  8. Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2013-06-01

    The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of oxytetracycline were investigated, when administered both alone and in the presence of carprofen, in healthy calves. The study comprised a four treatment, four sequences, and four period cross-over design and used a tissue cage model, which permitted the collection of serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). There were no clinically relevant differences in the PK profile of oxytetracycline when administered alone and when administered with carprofen. PK-PD integration was undertaken for a pathogenic strain of Mannheimia haemolytic (A1 76/1), by correlating in vitro minimum inhibitory concentration (MIC) and time-kill data with in vivo PK data obtained in the cross-over study. Based on in vitro susceptibility in cation adjusted Mueller Hinton Broth (CAMHB) and in vivo determined PK variables, ratios of maximum concentration (Cmax) and area under curve (AUC) to MIC and time for which concentration exceeded MIC (T>MIC) were determined. The CAMHB MIC data satisfied integrated PK/PD relationships predicted to achieve efficacy for approximately 48 h after dosing; mean values for serum were 5.13 (Cmax/MIC), 49.3 h (T>MIC) and 126.6 h (AUC(96h)/MIC). Similar findings were obtained when oxytetracycline was administered in the presence of carprofen, with PK-PD indices based on MIC determined in CAMHB. However, PK-PD integration of data, based on oxytetracycline MICs determined in the biological fluids, serum, exudate and transudate, suggest that it possesses, at most, limited direct killing activity against the M. haemolytica strain A1 76/1; mean values for serum were 0.277 (Cmax/MIC), 0 h (T>MIC) and 6.84 h (AUC(96h)/MIC). The data suggest that the beneficial therapeutic effects of oxytetracycline may depend, at least in part, on actions other than direct inhibition of bacterial growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  10. Assessment of Minimum Inhibitory Concentrations of Telavancin by Revised Broth Microdilution Method in Phase 3 Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Clinical Isolates.

    PubMed

    Smart, Jennifer I; Corey, Gordon Ralph; Stryjewski, Martin E; Wang, Whedy; Barriere, Steven L

    2016-12-01

    The broth microdilution method (BMD) for testing telavancin minimum inhibitory concentrations (MICs) was revised (rBMD) in 2014 to improve the accuracy, precision, and reproducibility of the testing method. The aim of this study was to determine the effect of the revised method on telavancin MIC values for Staphylococcus aureus (S. aureus) clinical isolates obtained from hospital-acquired pneumonia (HAP) patients. Isolates from patients who participated in the phase 3 Assessment of Telavancin for Treatment of HAP Studies were retested using the rBMD method. Retesting of 647 isolates produced a range of telavancin MIC values from 0.015 µg/mL to 0.12 µg/mL with MIC 50/90 values of 0.06/0.06 µg/mL for the total pool of samples. For methicillin-resistant S. aureus (MRSA), MIC 50/90 values were 0.06/0.12 µg/mL. These values are up to 4-fold lower than MIC 50/90 values obtained using the original method. These results were used in part to justify lowering the telavancin breakpoints. All tested isolates remained susceptible to telavancin at the revised susceptibility breakpoint of ≤0.12 µg/mL. Overall, the clinical cure rate for microbiologically evaluable telavancin-treated patients was 78% for S. aureus, 76% for patients with MRSA, and 79% for patients with isolates with reduced susceptibility to vancomycin (MIC ≥1 µg/mL). Results from the rBMD method support the in vitro potency of telavancin against S. aureus. ATTAIN (NCT00107952 and NCT00124020). Theravance Biopharma Antibiotics, Inc.

  11. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    PubMed Central

    Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite

    2015-01-01

    Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation. PMID:26413067

  12. Evaluation of graphical and statistical representation of analytical signals of spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty

    2017-09-01

    Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.

  13. Susceptibility and PK/PD relationships of Staphylococcus aureus strains from ovine and caprine with clinical mastitis against five veterinary fluoroquinolones.

    PubMed

    Serrano-Rodríguez, J M; Cárceles-García, C; Cárceles-Rodríguez, C M; Gabarda, M L; Serrano-Caballero, J M; Fernández-Varón, E

    2017-04-15

    Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of veterinary fluoroquinolones as enrofloxacin, its metabolite ciprofloxacin, danofloxacin, difloxacin and marbofloxacin against Staphylococcus aureus strains (n=24) isolated from milk of sheep and goats affected by clinical mastitis were evaluated. The authors have used the MIC and MPC, as well as the pharmacokinetic-pharmacodynamic relationships in plasma and milk. MIC values were significantly different between drugs, unlike MPC values. Lower MIC values were obtained for danofloxacin and difloxacin, middle and higher values for enrofloxacin, ciprofloxacin and marbofloxacin. However, differences in MPC values were not found between drugs. At conventional doses, the AUC 24 /MIC and AUC 24 /MPC ratios were close to 30-80 hours and 5-30 hours, with exception of danofloxacin, in plasma and milk. The time inside the mutant selection window (T MSW ) was close to 3-6 hours for enrofloxacin, ciprofloxacin and marbofloxacin, near to 8 hours for danofloxacin and 12-22 hours for difloxacin. From these data, the mutant selection window could be higher for danofloxacin and difloxacin compared with the other fluoroquinolones tested. The authors concluded that enrofloxacin and marbofloxacin, at conventional doses, could prevent the selection of bacterial subpopulations of S aureus , unlike danofloxacin and difloxacin, where higher doses could be used. British Veterinary Association.

  14. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study.

    PubMed

    Ehmann, Lisa; Zoller, Michael; Minichmayr, Iris K; Scharf, Christina; Maier, Barbara; Schmitt, Maximilian V; Hartung, Niklas; Huisinga, Wilhelm; Vogeser, Michael; Frey, Lorenz; Zander, Johannes; Kloft, Charlotte

    2017-10-21

    Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCR CG ). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100%T >MIC , 50%T >4×MIC ) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCR CG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Large inter- and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100%T >MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50%T >4×MIC . A hyperbolic relationship between CLCR CG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C 8h ) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy- and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed. Clinicaltrials.gov, NCT01793012 . Registered on 24 January 2013.

  15. Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function.

    PubMed

    Sharma, Y; Khan, L A; Manzoor, N

    2016-09-01

    Candidiasis is a major problem in immunocompromised patients. Candida, an opportunistic fungal pathogen, is a major health concern today as conventional drugs are highly toxic with undesirable side effects. Their fungistatic nature is responsible for drug resistance in continuously evolving strains. Geraniol, an acyclic monoterpene alcohol, is a component of several plant essential oils. In the present study, an attempt has been made to understand the antifungal activity of geraniol at the cell membrane level in three Candida species. With an MIC of 30-130μg/mL, this natural compound was fungicidal at concentrations 2×MIC. There was complete suppression of fungal growth at MIC values (growth curves) and encouragingly geraniol is non-toxic even at the concentrations approaching 5×MIC (hemolysis assay). Exposed cells showed altered morphology, wherein the cells appeared either broken or shrivelled up (SEM studies). Significant reduction was seen in ergosterol levels at sub-MIC and glucose-induced H(+) efflux at concentrations>MIC values. Our results suggest that geraniol disrupts cell membrane integrity by interfering with ergosterol biosynthesis and inhibiting the very crucial PM-ATPase. It may hence be used in the management and treatment of both superficial and invasive candidiasis but further studies are required to elaborate its mode of action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey. PMID:23758747

  17. Antibacterial activity of selected Malaysian honey.

    PubMed

    Zainol, Mohd Izwan; Mohd Yusoff, Kamaruddin; Mohd Yusof, Mohd Yasim

    2013-06-10

    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.

  18. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  19. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349

  20. Combined Activity of Colloid Nanosilver and Zataria Multiflora Boiss Essential Oil-Mechanism of Action and Biofilm Removal Activity.

    PubMed

    Shirdel, Maryam; Tajik, Hossein; Moradi, Mehran

    2017-12-01

    Purpose: The aim of this study was to investigate antimicrobial and biofilm removal potential of Zataria multiflora essential oil (ZEO) and silver nanoparticle (SNP) alone and in combination on Staphylococcus aureus and Salmonella Typhimurium and evaluate the mechanism of action. Methods: The minimum inhibitory concentration (MIC), and optimal inhibitory combination (OIC) of ZEO and SNP were determined according to fractional inhibitory concentration (FIC) method. Biofilm removal potential and leakage pattern of 260-nm absorbing material from the bacterial cell during exposure to the compounds were also investigated. Results: MICs of SNP for both bacteria were the same as 25 μg/ mL. The MICs and MBCs values of ZEO were 2500 and 1250 μg/mL, respectively. The most effective OIC value for SNP and ZEO against Salm. Typhimurium and Staph. aureus were 12.5, 625 and 0.78, 1250 μg/ mL, respectively. ZEO and SNP at MIC and OIC concentrations represented a strong removal ability (>70%) on biofilm. Moreover, ZEO at MIC and OIC concentrations did a 6-log reduction of primary inoculated bacteria during 15 min contact time. The effect of ZEO on the loss of 260-nm material from the cell was faster than SNP during 15 and 60 min. Conclusion: Combination of ZEO and SNP had significant sanitizing activity on examined bacteria which may be suitable for disinfecting the surfaces.

  1. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  2. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    PubMed

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  3. Short communication: In vitro antimicrobial susceptibility of Mycoplasma agalactiae strains isolated from dairy goats.

    PubMed

    Paterna, A; Sánchez, A; Gómez-Martín, A; Corrales, J C; De la Fe, C; Contreras, A; Amores, J

    2013-01-01

    This study examined the susceptibility to several antimicrobials of 28 isolates of Mycoplasma agalactiae obtained from goats in a region (southeastern Spain) where contagious agalactia is endemic. For each isolate, the minimum inhibitory concentration (MIC) against 12 antimicrobials of the quinolone, macrolide, aminoglycoside, and tetracycline families was determined. The antimicrobials with the lowest MIC were enrofloxacin, ciprofloxacin, tylosin, and doxycycline, all with MIC90 (concentration at which growth of 90% of the isolates is inhibited) <1 µg/mL. Norfloxacin (a quinolone) showed a wide MIC range (0.1-12.8 µg/mL), suggesting a resistance mechanism toward this antimicrobial that was not elicited by enrofloxacin or ciprofloxacin (the other quinolones tested). Erythromycin showed the highest MIC90 such that its use against Mycoplasma agalactiae is not recommended. Finally, Mycoplasma agalactiae isolates obtained from goat herds with clinical symptoms of contagious agalactia featured higher MIC90 and MIC50 (concentration at which growth of 50% of the isolates is inhibited) values for many of the antimicrobials compared with isolates from asymptomatic animals. The relationship between the extensive use of antimicrobials in herds with clinical contagious agalactia and variations in MIC requires further study. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Efficacy of taurolidine against periodontopathic species--an in vitro study.

    PubMed

    Eick, Sigrun; Radakovic, Sabrina; Pfister, Wolfgang; Nietzsche, Sandor; Sculean, Anton

    2012-06-01

    The antimicrobial effect of taurolidine was tested against periodontopathic species in comparison to chlorhexidine digluconate in the presence or absence of serum. Minimal inhibitory concentrations (MIC), microbiocidal concentrations (MBC), as well as killing were determined against 32 different microbial strains including 3 Porphyromonas gingivalis, 3 Aggregatibacter actinomycetemcomitans, and 15 potentially superinfecting species with and without 25% v/v human serum. The MIC(50) of taurolidine against the tested microbial strains was 0.025% and the MIC(90) 0.05%. The respective values for the MBCs were 0.05% and 0.1%. Addition of 25% serum (heat-inactivated) did not change the MIC and MBC values of taurolidine. In contrast, MICs and MBCs of chlorhexidine (CHX) increased by two steps after addition of serum. Taurolidine killed microorganisms in a concentration and time-dependent manner, the killing rate of 1.6% taurolidine was 99.08% ± 2.27% in mean after 2 h. Again, killing activity of taurolidine was not affected if serum was added, whereas addition of inactivated serum clearly reduced the killing rate of all selected bacterial strains by CHX. Therefore, taurolidine possesses antimicrobial properties which are not reduced in the presence of serum as a main component in gingival crevicular fluid and wound fluid. Taurolidine may have potential as an antimicrobial agent in non-surgical and surgical periodontal treatment.

  5. In vitro susceptibility of four antimicrobials against Riemerella anatipestifer isolates: a comparison of minimum inhibitory concentrations and mutant prevention concentrations for ceftiofur, cefquinome, florfenicol, and tilmicosin.

    PubMed

    Li, Yafei; Zhang, Yanan; Ding, Huanzhong; Mei, Xian; Liu, Wei; Zeng, Jiaxiong; Zeng, Zhenling

    2016-11-09

    Mutant prevention concentration (MPC) is an alternative pharmacodynamic parameter that has been used to measure antimicrobial activity and represents the propensities of antimicrobial agents to select resistant mutants. The concentration range between minimum inhibitory concentration (MIC) and MPC is defined as mutant selection window (MSW). The MPC and MSW parameters represent the ability of antimicrobial agents to inhibit the bacterial mutants selected. This study was conducted to determine the MIC and MPC values of four antimicrobials including ceftiofur, cefquinome, florfenicol and tilmicosin against 105 Riemerella anatipestifer isolates. The MIC 50 /MIC 90 values of clinical isolates tested in our study for ceftiofur, cefquinome, florfenicol and tilmicosin were 0.063/0.5、0.031/0.5、1/4、1/4 μg/mL, respectively; MPC 50 / MPC 90 values were 4/64、8/64、4/32、16/256 μg/mL, respectively. These results provided information on the use of these compounds in treating the R. anatipestifer infection; however, additional studies are needed to demonstrate their therapeutic efficacy. Based on the MSW theory, the hierarchy of these tested antimicrobial agents with respect to selecting resistant subpopulations was as follows: cefquinome > ceftiofur > tilmicosin > florfenicol. Cefquinome was the drug that presented the highest risk of selecting resistant mutant among the four antimicrobial agents.

  6. A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada.

    PubMed

    Portis, Ellen; Lindeman, Cynthia; Johansen, Lacie; Stoltman, Gillian

    2012-09-01

    Bovine isolates of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, collected from 2000 to 2009, were tested for in vitro susceptibility to ceftiofur, penicillin, danofloxacin, enrofloxacin, florfenicol, tetracycline, tilmicosin, and tulathromycin. Ceftiofur remained very active against all isolates. Penicillin retained good activity against P. multocida and H. somni isolates with no appreciable changes in susceptibility or minimal inhibitory concentration (MIC) distributions with time. While there was no obvious trend, the percent of M. haemolytica that were susceptible to penicillin ranged from 40.9% to 66.7%. Danofloxacin MIC(50) and MIC(90) values for M. haemolytica and P. multocida did not change beyond a single dilution over the 6 years it was included in the testing panel. The MIC(90) for H. somni increased beyond 1 dilution. Enrofloxacin MIC(50) values for the 3 pathogens also did not change over time, unlike the MIC(90) values, which increased by at least 4-doubling dilutions. Ninety percent or more of M. haemolytica and H. somni isolates were susceptible to florfenicol, while susceptibility among P. multocida was 79% or greater. Less than 50% of the isolates tested as susceptible to tetracycline in many of the years. All 3 organisms showed declines in tilmicosin and tulathromycin MIC(50) and MIC(90) values over the years in which they were tested.

  7. Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents.

    PubMed

    Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra

    2005-05-01

    Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).

  9. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    PubMed

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  10. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    PubMed

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  11. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    PubMed

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  12. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    PubMed Central

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  13. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi.

    PubMed

    Abbaszadeh, S; Sharifzadeh, A; Shokri, H; Khosravi, A R; Abbaszadeh, A

    2014-06-01

    This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  15. Implementing Electric Potential Difference as a New Practical Parameter for Rapid and Specific Measurement of Minimum Inhibitory Concentration of Antibiotics.

    PubMed

    Mobasheri, Nasrin; Karimi, Mehrdad; Hamedi, Javad

    2018-06-05

    New methods to determine antimicrobial susceptibility of bacterial pathogens especially the minimum inhibitory concentration (MIC) of antibiotics have great importance in pharmaceutical industry and treatment procedures. In the present study, the MIC of several antibiotics was determined against some pathogenic bacteria using macrodilution test. In order to accelerate and increase the efficiency of culture-based method to determine antimicrobial susceptibility, the possible relationship between the changes in some physico-chemical parameters including conductivity, electrical potential difference (EPD), pH and total number of test strains was investigated during the logarithmic phase of bacterial growth in presence of antibiotics. The correlation between changes in these physico-chemical parameters and growth of bacteria was statistically evaluated using linear and non-linear regression models. Finally, the calculated MIC values in new proposed method were compared with the MIC derived from macrodilution test. The results represent significant association between the changes in EPD and pH values and growth of the tested bacteria during the exponential phase of bacterial growth. It has been assumed that the proliferation of bacteria can cause the significant changes in EPD values. The MIC values in both conventional and new method were consistent to each other. In conclusion, cost and time effective antimicrobial susceptibility test can be developed based on monitoring the changes in EPD values. The new proposed strategy also can be used in high throughput screening of biocompounds for their antimicrobial activity in a relatively shorter time (6-8 h) in comparison with the conventional methods.

  16. Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens.

    PubMed

    Zhao, D H; Yu, Y; Zhou, Y F; Shi, W; Deng, H; Liu, Y H

    2014-02-01

    The postantibiotic effect (PAE) and postantibiotic sub-minimum inhibitory concentration (MIC) effect (PA-SME) of valnemulin against Staphylococcus aureus were investigated in vitro using a spectrophotometric technique and classic viable count method. A standard curve was constructed by regression analysis of the number of colonies and the corresponding optical density (OD) at 630 nm of the inoculum. After exposure to valnemulin at different concentrations for an hour, the antibiotic was removed by centrifuging and washing. The PA-SMEs were measured after initial exposure to valnemulin at 4 × the MIC, and then, valnemulin was added to reach corresponding desired concentrations in the resuspended culture. Samples were collected hourly until the culture became turbid. The results were calculated by converting the OD values into the counts of bacteria in accordance with the curve. The MIC of valnemulin against eight strains was identically 0.125 μg ml(-1) . The mean PAEs were 2.12 h (1 × MIC) and 5.06 h (4 × MIC), and the mean PA-SMEs were 6.85 h (0.1 × MIC), 9.12 h (0.2 × MIC) and 10.8 h (0.3 × MIC). The results showed that the strains with identical MICs exhibited different PAEs and PA-SMEs. Valnemulin produced prolonged PAE and PA-SME periods for Staph. aureus, supporting a longer dosing interval while formulating a daily administration dosage. In this study, valnemulin demonstrated prolonged postantibiotic effects and postantibiotic sub-MIC effects on strains of Staphylococcus aureus. The strains with identical MICs of valnemulin exhibited different PAEs and PA-SMEs. Staphylococcus aureus isolated from different species has little impact on the postantibiotic effect of valnemulin. The result suggests a longer dosing interval while formulating a daily administration dosage, and it may play a valuable role of valnemulin in treating Staph. aureus infections in animals. © 2013 The Society for Applied Microbiology.

  17. [Antimycoplasmal activities of ofloxacin and commonly used antimicrobial agents on Mycoplasma gallisepticum].

    PubMed

    Takahashi, I; Yoshida, T

    1989-05-01

    In vitro activities of ofloxacin (OFLX), a new quinolone derivative, against 29 strains of Mycoplasma gallisepticum was compared with those of 4 commonly used antimicrobial agents, doxycycline (DOXY), tylosin (TS), spectinomycin (SPCM) and thiamphenicol (TP). Antimycoplasmal activities of the drugs were evaluated on the MIC (final MIC) and MPC (minimum mycoplasmacidal concentration) values which were determined by a broth dilution procedure. The following results were obtained. 1. The MIC90s of OFLX and DOXY were both 0.20 micrograms/ml. The MICs of TS were distributed through a wide range (less than or equal to 0.006 - 0.78 micrograms/ml), and its MIC90 was 0.78 micrograms/ml. Of 29 M. gallisepticum strains, 27.6% were recognized as TS-resistant. The MIC90 values of SPCM and TP were 1.56 micrograms/ml and 3.13 micrograms/ml, respectively. The MIC90 of OFLX was equal to that of DOXY and 4- to 16-fold smaller than the values of the other 3 antibiotics. 2. The MPC of OFLX was the lowest among the antibiotics tested, its MPC90 value was 0.39 micrograms/ml and was followed by DOXY (1.56 micrograms/ml). The MPCs of TS were distributed in a wide range (0.012 - 3.13 micrograms/ml), and its MPC90 was 3.13 micrograms/ml. The MPC90 values of SPCM and TP were both 6.25 micrograms/ml. Therefore, the mycoplasmacidal activity of OFLX evaluated with MPC90 values was 4- to 16-fold greater than those of the other 4 antibiotics.

  18. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M

    2010-01-01

    Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®

  19. In Vitro Activity and Fecal Concentration of Rifaximin after Oral Administration

    PubMed Central

    Jiang, Zhi-Dong; Ke, Shi; Palazzini, Ernesto; Riopel, Lise; Dupont, Herbert

    2000-01-01

    Rifaximin showed moderately high MICs (the MIC at which 90% of the isolates tested were inhibited = 50 μg/ml) for 145 bacterial enteropathogens from patients with traveler's diarrhea acquired in Mexico during the summers of 1997 and 1998. Rifaximin concentrations in stool the day after oral administration (800 mg daily for 3 days) were high (average, 7,961 μg/g), proving the value of the drug. PMID:10898704

  20. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species.

    PubMed

    Salgueiro, L R; Cavaleiro, C; Pinto, E; Pina-Vaz, C; Rodrigues, A G; Palmeira, A; Tavares, C; Costa-de-Oliveira, S; Gonçalves, M J; Martinez-de-Oliveira, J

    2003-09-01

    The composition and the antifungal activity of the essential oil of Origanum virens on Candida species were studied. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC and GC-MS. The oil was characterized by its high content of carvacrol (68.1 %) and its biogenetic precursors, gamma-terpinene (9.9 %) and p-cymene (4.5 %). The minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) were used to evaluate the antifungal activity against Candida strains (7 clinical isolates and 3 ATCC type strains). The inhibition of germ tube formation and flow cytometry, using the fluorescent probe propidium iodide (PI), were used to evaluate their mechanisms of action. MIC and MLC values were similar for most tested strains, ranging from 0.16 to 0.32 microL/mL. Concentrations lower than MIC values strongly prevent germ tube formation. The fungicidal effect is primarily due to an extensive lesion of the membrane.

  1. Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma

    PubMed Central

    Niedźwiecka, Katarzyna; Augustyniak, Daria; Majkowska-Skrobek, Grażyna; Cal-Bąkowska, Magdalena; Ko, Young H.; Pedersen, Peter L.; Goffeau, Andre

    2016-01-01

    In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC). Finally, at different concentrations of 3BP (equal to the half-MIC, MIC and double-MIC in a case of fungi, 1 mM and 2.5 mM for microalgae and 25, 50, 100 μM for human multiple myeloma (MM) cells), a significant decrease in GSH concentration is observed inside microorganisms as well as tumor cells. In contrast to the GSH concentration decrease, the presence of 3BP at concentrations corresponding to sub-MIC values or half maximal inhibitory concentration (IC50) clearly results in increasing the expression of genes encoding enzymes involved in the synthesis of GSH in Cryptococcus neoformans and MM cells. Moreover, as shown for the first time in the MM cell model, the drastic decrease in the ATP level and GSH concentration and the increase in the amount of ROS caused by 3BP ultimately results in cell death. PMID:27582536

  2. Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma.

    PubMed

    Niedźwiecka, Katarzyna; Dyląg, Mariusz; Augustyniak, Daria; Majkowska-Skrobek, Grażyna; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-10-04

    In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC). Finally, at different concentrations of 3BP (equal to the half-MIC, MIC and double-MIC in a case of fungi, 1 mM and 2.5 mM for microalgae and 25, 50, 100 μM for human multiple myeloma (MM) cells), a significant decrease in GSH concentration is observed inside microorganisms as well as tumor cells. In contrast to the GSH concentration decrease, the presence of 3BP at concentrations corresponding to sub-MIC values or half maximal inhibitory concentration (IC50) clearly results in increasing the expression of genes encoding enzymes involved in the synthesis of GSH in Cryptococcus neoformans and MM cells. Moreover, as shown for the first time in the MM cell model, the drastic decrease in the ATP level and GSH concentration and the increase in the amount of ROS caused by 3BP ultimately results in cell death.

  3. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe.

    PubMed

    Kreizinger, Zsuzsa; Grózner, Dénes; Sulyok, Kinga M; Nilsson, Kristin; Hrivnák, Veronika; Benčina, Dušan; Gyuranecz, Miklós

    2017-11-17

    Mycoplasma synoviae causes infectious synovitis and respiratory diseases in chickens and turkeys and may lead to egg shell apex abnormalities in chickens; hence possesses high economic impact on the poultry industry. Control of the disease consists of eradication, vaccination or medication. The aim of the present study was to determine the in vitro susceptibility to 14 different antibiotics and an antibiotic combination of M. synoviae strains originating from Hungary and other countries of Central and Eastern Europe. Minimal inhibitory concentration (MIC) values of a total of 41 M. synoviae strains were determined by the microbroth dilution method. The strains were collected between 2002 and 2016 and originated from Hungary (n = 26), Austria (n = 3), the Czech Republic (n = 3), Slovenia (n = 3), Ukraine (n = 3), Russia (n = 2) and Serbia (n = 1). Tetracyclines (with MIC 50 values of 0.078 μg/ml, ≤0.25 μg/ml and 0.5 μg/ml for doxycycline, oxytetracycline and chlortetracycline, respectively), macrolides (with MIC 50 values of ≤0.25 μg/ml for tylvalosin, tylosin and tilmicosin), pleuromutilins (with MIC 50 values of 0.078 μg/ml and ≤0.039 μg/ml for tiamulin and valnemulin) and the combination of lincomycin and spectinomycin (MIC 50 1 μg/ml (0.333/0.667 μg/ml)) were found to be the most effective antibiotic agents against M. synoviae in vitro. High MIC values were detected in numerous strains for fluoroquinolones (with MIC 50 values of 1.25 μg/ml and 2.5 μg/ml for enrofloxacin and difloxacin), neomycin (MIC 50 32 μg/ml), spectinomycin (MIC 50 2 μg/ml), lincomycin (MIC 50 0.5 μg/ml) and florfenicol (MIC 50 4 μg/ml). Nevertheless, strains with elevated MIC values were detected for most of the applied antibiotics. In the medical control of M. synoviae infections the preliminary in vitro antibiotic susceptibility testing and the careful evaluation of the data are crucial. Based on the in vitro examinations doxycycline, oxytetracycline, tylvalosin, tylosin and pleuromutilins could be recommended for the therapy of M. synoviae infections in the region.

  4. Head-to-Head Comparison of Inhibitory and Fungicidal Activities of Fluconazole, Itraconazole, Voriconazole, Posaconazole, and Isavuconazole against Clinical Isolates of Trichosporon asahii

    PubMed Central

    Hazirolan, Gulsen; Canton, Emilia; Sahin, Selma

    2013-01-01

    Treatment of disseminated Trichosporon infections still remains difficult. Amphotericin B frequently displays inadequate fungicidal activity and echinocandins have no meaningful antifungal effect against this genus. Triazoles are currently the drugs of choice for the treatment of Trichosporon infections. This study evaluates the inhibitory and fungicidal activities of five triazoles against 90 clinical isolates of Trichosporon asahii. MICs (μg/ml) were determined according to Clinical and Laboratory Standards Institute microdilution method M27-A3 at 24 and 48 h using two endpoints, MIC-2 and MIC-0 (the lowest concentrations that inhibited ∼50 and 100% of growth, respectively). Minimum fungicidal concentrations (MFCs; μg/ml) were determined by seeding 100 μl of all clear MIC wells (using an inoculum of 104 CFU/ml) onto Sabouraud dextrose agar. Time-kill curves were assayed against four clinical T. asahii isolates and the T. asahii ATCC 201110 strain. The MIC-2 (∼50% reduction in turbidity compared to the growth control well)/MIC-0 (complete inhibition of growth)/MFC values that inhibited 90% of isolates at 48 h were, respectively, 8/32/64 μg/ml for fluconazole, 1/2/8 μg/ml for itraconazole, 0.12/0.5/2 μg/ml for voriconazole, 0.5/2/4 μg/ml for posaconazole, and 0.25/1/4 μg/ml for isavuconazole. The MIC-0 endpoints yielded more consistent MIC results, which remained mostly unchanged when extending the incubation to 48 h (98 to 100% agreement with 24-h values) and are easier to interpret. Based on the time-kill experiments, none of the drugs reached the fungicidal endpoint (99.9% killing), killing activity being shown but at concentrations not reached in serum. Statistical analysis revealed that killing rates are dose and antifungal dependent. The lowest concentration at which killing activity begins was for voriconazole, and the highest was for fluconazole. These results suggest that azoles display fungistatic activity and lack fungicidal effect against T. asahii. By rank order, the most active triazole is voriconazole, followed by itraconazole ∼ posaconazole ∼ isavuconazole > fluconazole. PMID:23877683

  5. In vitro assessment of the antimicrobial susceptibility of caprine isolates of Mycoplasma mycoides subsp. capri.

    PubMed

    Paterna, A; Tatay-Dualde, J; Amores, J; Prats-van der Ham, M; Sánchez, A; de la Fe, C; Contreras, A; Corrales, J C; Gómez-Martín, Á

    2016-08-01

    The minimum inhibitory concentration (MIC) and minimum mycoplasmacidal concentration (MMC) of 17 antimicrobials against 41 Spanish caprine isolates of Mycoplasma mycoides subsp. capri (Mmc) obtained from different specimens (milk, external auricular canal and semen) were determined using a liquid microdilution method. For half of the isolates, the MIC was also estimated for seven of the antimicrobials using an epsilometric test (ET), in order to compare both methods and assess the validity of ET. Mutations in genes gyrA, gyrB, parC and parE conferring fluoroquinolone resistance, which have been recently described in Mmc, were investigated using PCR. The anatomical origin of the isolate had no effect on its antimicrobial susceptibility. Moxifloxacin and doxycycline had the lowest MIC values. The rest of the fluoroquinolones studied (except norfloxacin), together with tylosin and clindamycin, also had low MIC values, although the MMC obtained for clindamycin was higher than for the other antimicrobials. For all the aminoglycosides, spiramycin and erythromycin, a notable level of resistance was observed. The ET was in close agreement with broth microdilution at low MICs, but not at intermediate or high MICs. The analysis of the genomic sequences revealed the presence of an amino acid substitution in codon 83 of the gene gyrA, which has not been described previously in Mmc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Failure of Quality Control Measures To Prevent Reporting of False Resistance to Imipenem, Resulting in a Pseudo-Outbreak of Imipenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Carmeli, Yehuda; Eichelberger, Karen; Soja, Don; Dakos, Joanna; Venkataraman, Lata; DeGirolami, Paola; Samore, Matthew

    1998-01-01

    False results showing an outbreak of Pseudomonas aeruginosa with resistance to imipenem were traced to a defective lot of microdilution MIC testing panels. These panels contained two- to threefold lower concentrations of imipenem than expected and resulted in artifactual two- to fourfold increases in MICs of imipenem. The quality-control MIC results for Pseudomonas aeruginosa ATCC 27853 were 4 μg/ml, the highest value within the range recommended by the National Committee for Clinical Laboratory Standards. We recommend that this value be considered out of the quality-control range. PMID:9466787

  7. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil

    PubMed Central

    Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane

    2014-01-01

    Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231

  8. Pharmacokinetics of meropenem after intravenous, intramuscular and subcutaneous administration to cats.

    PubMed

    Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F

    2016-12-01

    The aim of the study was to describe the pharmacokinetics and predicted efficacy of meropenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to cats at a single dose of 10 mg/kg. Five adult healthy cats were used. Blood samples were withdrawn at predetermined times over a 12 h period. Meropenem concentrations were determined by microbiological assay. Pharmacokinetic analyses were performed with computer software. Initial estimates were determined using the residual method and refitted by non-linear regression. The time that plasma concentrations were greater than the minimum inhibitory concentration (T >MIC) was estimated by applying bibliographic MIC values and meropenem MIC breakpoint. Maximum plasma concentrations of meropenem were 101.02 µg/ml (C p(0) , IV), 27.21 µg/ml (C max , IM) and 15.57 µg/ml (C max , SC). Bioavailability was 99.69% (IM) and 96.52 % (SC). Elimination half-lives for the IV, IM and SC administration were 1.35, 2.10 and 2.26 h, respectively. Meropenem, when administered to cats at a dose of 10 mg/kg q12h,, is effective against bacteria with MIC values of 6 μg/ml, 7 μg/ml and 10 μg/ml for IV, IM and SC administration, respectively. However, clinical trials are necessary to confirm clinical efficacy of the proposed dosage regimen. © The Author(s) 2015.

  9. In vitro susceptibility of Borrelia burgdorferi isolates to three antibiotics commonly used for treating equine Lyme disease.

    PubMed

    Caol, Sanjie; Divers, Thomas; Crisman, Mark; Chang, Yung-Fu

    2017-09-29

    Lyme disease in humans is predominantly treated with tetracycline, macrolides or beta lactam antibiotics that have low minimum inhibitory concentrations (MIC) against Borrelia burgdorferi. Horses with Lyme disease may require long-term treatment making frequent intravenous or intramuscular treatment difficult and when administered orally those drugs may have either a high incidence of side effects or have poor bioavailability. The aim of the present study was to determine the in vitro susceptibility of three B. burgdorferi isolates to three antibiotics of different classes that are commonly used in practice for treating Borrelia infections in horses. Broth microdilution assays were used to determine minimum inhibitory concentration of three antibiotics (ceftiofur sodium, minocycline and metronidazole), for three Borrelia burgdorferi isolates. Barbour-Stoner-Kelly (BSK K + R) medium with a final inoculum of 10 6 Borrelia cells/mL and incubation periods of 72 h were used in the determination of MICs. Observed MICs indicated that all isolates had similar susceptibility to each drug but susceptibility to the tested antimicrobial agents varied; ceftiofur sodium (MIC = 0.08 μg/ml), minocycline hydrochloride (MIC = 0.8 μg/ml) and metronidazole (MIC = 50 μg/ml). The MIC against B. burgorferi varied among the three antibiotics with ceftiofur having the lowest MIC and metronidazole the highest MIC. The MIC values observed for ceftiofur in the study fall within the range of reported serum and tissue concentrations for the drug metabolite following ceftiofur sodium administration as crystalline-free acid. Minocycline and metronidazole treatments, as currently used in equine practice, could fall short of attaining MIC concentrations for B. burgdorferi.

  10. Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR*

    PubMed Central

    Alves, Carla S.; Melo, Manuel N.; Franquelim, Henri G.; Ferre, Rafael; Planas, Marta; Feliu, Lidia; Bardají, Eduard; Kowalczyk, Wioleta; Andreu, David; Santos, Nuno C.; Fernandes, Miguel X.; Castanho, Miguel A. R. B.

    2010-01-01

    The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred. PMID:20566635

  11. Postantibiotic effect of various antibiotics on Legionella pneumophila strains isolated from water systems.

    PubMed

    Birteksöz-Tan, Ayşe Seher; Zeybek, Zuhal

    2012-11-01

    The postantibiotic effects (PAE) of azithromycin, clarithromycin, ciprofloxacin, and levofloxacin were investigated against Legionella pneumophila (L. pneumophila) strains isolated from several hot water systems of different buildings in Istanbul. Each strain in logarithmic phase of growth was exposed to concentrations of antibiotics equal to minimum inhibitory concentration (MIC) and 4× MIC for 1 h. Recovery periods of test cultures were evaluated after centrifugation using the viable counting method. The mean values of PAEs for the strains of L. pneumophila, azithromycin at a concentration equal to and 4 times of MIC values were found 1.75 ± 0.28 h and 4.06 ± 0.44 h, for clarithromycin 2.98 ± 0.70 h and 4.18 ± 0.95 h, for ciprofloxacin 2.97 ± 0.63 h and 4.70 ± 0.63 h, for levofloxacin 2.05 ± 0.33 h and 3.78 ± 0.46 h, respectively. All of the antibiotics showed increased PAE values in a concentration-dependent manner. The findings of our study may play useful role in selecting the appropriate timing of doses during therapy with antimicrobials to treat patients infected with L. pneumophila.

  12. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E

    2012-11-09

    Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Vancomycin tolerance in enterococci.

    PubMed

    Saribas, Suat; Bagdatli, Yasar

    2004-11-01

    Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.

  14. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

    PubMed Central

    Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur

    2009-01-01

    Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926

  15. Evaluating the Relationship between Vancomycin Trough Concentration and 24-Hour Area under the Concentration-Time Curve in Neonates.

    PubMed

    Tseng, Sheng-Hsuan; Lim, Chuan Poh; Chen, Qi; Tang, Cheng Cai; Kong, Sing Teang; Ho, Paul Chi-Lui

    2018-04-01

    Bacterial sepsis is a major cause of morbidity and mortality in neonates, especially those involving methicillin-resistant Staphylococcus aureus (MRSA). Guidelines by the Infectious Diseases Society of America recommend the vancomycin 24-h area under the concentration-time curve to MIC ratio (AUC 24 /MIC) of >400 as the best predictor of successful treatment against MRSA infections when the MIC is ≤1 mg/liter. The relationship between steady-state vancomycin trough concentrations and AUC 24 values (mg·h/liter) has not been studied in an Asian neonatal population. We conducted a retrospective chart review in Singapore hospitals and collected patient characteristics and therapeutic drug monitoring data from neonates on vancomycin therapy over a 5-year period. A one-compartment population pharmacokinetic model was built from the collected data, internally validated, and then used to assess the relationship between steady-state trough concentrations and AUC 24 A Monte Carlo simulation sensitivity analysis was also conducted. A total of 76 neonates with 429 vancomycin concentrations were included for analysis. Median (interquartile range) was 30 weeks (28 to 36 weeks) for postmenstrual age (PMA) and 1,043 g (811 to 1,919 g) for weight at the initiation of treatment. Vancomycin clearance was predicted by weight, PMA, and serum creatinine. For MRSA isolates with a vancomycin MIC of ≤1, our major finding was that the minimum steady-state trough concentration range predictive of achieving an AUC 24 /MIC of >400 was 8 to 8.9 mg/liter. Steady-state troughs within 15 to 20 mg/liter are unlikely to be necessary to achieve an AUC 24 /MIC of >400, whereas troughs within 10 to 14.9 mg/liter may be more appropriate. Copyright © 2018 American Society for Microbiology.

  16. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects.

    PubMed

    Conte, John E; Golden, Jeffrey A; McIver, Marina; Zurlinden, Elisabeth

    2006-08-01

    The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.

  17. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  18. Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary.

    PubMed

    Grózner, Dénes; Kreizinger, Zsuzsa; Sulyok, Kinga M; Rónai, Zsuzsanna; Hrivnák, Veronika; Turcsányi, Ibolya; Jánosi, Szilárd; Gyuranecz, Miklós

    2016-08-19

    Mycoplasma sp. 1220 can induce inflammation primarily in the genital and respiratory tracts of waterfowl, leading to serious economic losses. Adequate housing and appropriate antibiotic treatment are promoted in the control of the disease. The aim of the present study was to determine the in vitro susceptibility to thirteen different antibiotics and an antibiotic combination of thirty-eight M. sp. 1220 strains isolated from geese and a duck in several parts of Hungary, Central Europe between 2011 and 2015. High MIC50 values were observed in the cases of tilmicosin (>64 μg/ml), oxytetracycline (64 μg/ml), norfloxacin (>10 μg/ml) and difloxacin (10 μg/ml). The examined strains yielded the same MIC50 values with spectinomycin, tylosin and florfenicol (8 μg/ml), while enrofloxacin (MIC50 5 μg/ml), doxycycline (MIC50 5 μg/ml), lincomycin (MIC50 4 μg/ml) and lincomycin-spectinomycin (1:2) combination (MIC50 4 μg/ml) inhibited the growth of the bacteria with lower concentrations. Tylvalosin (MIC50 0.5 μg/ml) and two pleuromutilins (tiamulin MIC50 0.625 μg/ml; valnemulin MIC50 ≤ 0.039 μg/ml) were found to be the most effective drugs against M. sp. 1220. However, strains with elevated MIC values were detected for all applied antibiotics. Valnemulin, tiamulin and tylvalosin were found to be the most effective antibiotics in the study. Increasing resistance was observed in the cases of several antibiotics. The results highlight the importance of testing Mycoplasma species for antibiotic susceptibility before therapy.

  19. In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries.

    PubMed

    Verweij, P E; González, G M; Wiedrhold, N P; Lass-Flörl, C; Warn, P; Heep, M; Ghannoum, M A; Guinea, J

    2009-06-01

    Although mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The objective of this report was to collate data on the in vitro activity of isavuconazole against a collection of 345 diverse mucorales isolates, collected and tested at eight study centers in europe, mexico and North America. Each study center undertook minimum inhibitory concentration (MIC) susceptibility testing of their isolates, according to EUCAST or CLSI guidelines. Across all study centers, isavuconazole exhibited MIC(50 )values of 1-4 mg/l and MIC(90 )values of 4-16 mg/l against the five genera. There were also marked differences in MIC distributions, which could be ascribed to differences in inoculum and/or endpoint. EUCAST guidelines appeared to generate modal MICs 2-fold higher than CLSI. These results confirm that isavuconazole possesses at least partial antifungal activity against mucorales.

  20. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  1. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Fazly Bazzaz, Bibi Sedigheh; Sarabandi, Sahar; Khameneh, Bahman; Hosseinzadeh, Hossein

    2016-01-01

    Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance. PMID:28097041

  2. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  3. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat

    PubMed Central

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

    2009-01-01

    Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  4. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi.

    PubMed

    Xu, Yan; Gao, Chuanwen; Li, Xiaohua; He, Yi; Zhou, Lutan; Pang, Guangren; Sun, Shengtao

    2013-03-01

    Fungal keratitis is emerging as a major cause of vision loss in a developing country such as China because of higher incidence and the unavailability of effective antifungals. It is urgent to explore broad-spectrum antifungals to effectively suppress ocular fungal pathogens, and to develop new antifungal eye drops to combat this vision-threatening infection. The aim of this study is to investigate the antifungal activity of silver nanoparticles (nano-Ag) in comparison with that of natamycin against ocular pathogenic filamentous fungi in vitro. Susceptibility tests were performed against 216 strains of fungi isolated from patients with fungal keratitis from the Henan Eye Institute in China by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A document. The isolates included 112 Fusarium isolates (82 Fusarium solani species complex, 20 Fusarium verticillioides species complex, and 10 Fusarium oxysporum species complex), 94 Aspergillus isolates (61 Aspergillus flavus species complex, 11 Aspergillus fumigatus species complex, 12 Aspergillus versicolor species complex, and 10 Aspergillus niger species complex), and 10 Alternaria alternata isolates. The minimum inhibitory concentration (MIC) range and mode, the MIC for 50% of the strains tested (MIC50 value), and the MIC90 value were provided for the isolates with the SPSS statistical package. MIC50 value of nano-Ag were 1, 0.5, and 0.5 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of nano-Ag were 1, 1, and 1 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC50 values of natamycin were 4, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of natamycin were 8, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. Nano-Ag, relative to natamycin, exhibits potent in vitro activity against ocular pathogenic filamentous fungi.

  5. Short communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves.

    PubMed

    Kissels, W; Wu, X; Santos, R R

    2017-02-01

    Bovine respiratory disease is the major problem faced by cattle, specially calves, leading to reduced animal performance and increased mortality, consequently causing important economic losses. Hence, calves must be submitted to antibiotic therapy to counteract this infection usually initiated by the combination of environmental stress factors and viral infection, altering the animal's defense mechanism, and thus allowing lung colonization by the opportunistic bacteria Mannheimia haemolytica and Pasteurella multocida. Essential oils appear to be candidates to replace antibiotics or to act as antibiotic adjuvants due to their antimicrobial properties. In the present study, we aimed to evaluate the 4 essential oil components carvacrol, thymol, trans-anethole, and 1,8 cineole as antibacterial agents or as adjuvants for the antibiotics doxycycline and tilmicosin against M. haemolytica and P. multocida. Bacteria were cultured according to standard protocols, followed by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration. A checkerboard assay was applied to detect possible interactions between components, between antibiotics, and between components and antibiotics. Doxycycline at 0.25 and 0.125 μg/mL inhibited the growth of P. multocida and M. haemolytica, respectively, whereas tilmicosin MIC values were 1.0 and 4.0 μg/mL for P. multocida and M. haemolytica, respectively. Carvacrol MIC values were 2.5 and 1.25 mM for P. multocida and M. haemolytica, respectively, whereas thymol MIC values were 1.25 and 0.625 mM for P. multocida and M. haemolytica, respectively. Trans-anethole and 1,8 cineole did not present any antibacterial effect even at 40 mM against the investigated pathogens. All minimum bactericidal concentration values were the same as MIC, except when thymol was tested against M. haemolytica, being twice the MIC data (i.e., 1.25 mM thymol). Based on fractional inhibitory concentration checkerboard assay, no interaction was observed between doxycycline and tilmicosin. Carvacrol and thymol presented an additive effect when one of them was combined with tilmicosin. Additive effect was also observed when doxycycline was combined with thymol. Synergism was observed when carvacrol was combined with doxycycline or with thymol. Although the antibacterial effects of the tested essential oil components were observed at high concentrations for in vitro conditions, the additive and synergic effects of carvacrol and thymol with antibiotics suggest the option to apply them as antibiotic adjuvants. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Potential Information Loss Due to Categorization of Minimum Inhibitory Concentration Frequency Distributions.

    PubMed

    Mazloom, Reza; Jaberi-Douraki, Majid; Comer, Jeffrey R; Volkova, Victoriya

    2018-01-01

    A bacterial isolate's susceptibility to antimicrobial is expressed as the lowest drug concentration inhibiting its visible growth, termed minimum inhibitory concentration (MIC). The susceptibilities of isolates from a host population at a particular time vary, with isolates with specific MICs present at different frequencies. Currently, for either clinical or monitoring purposes, an isolate is most often categorized as Susceptible, Intermediate, or Resistant to the antimicrobial by comparing its MIC to a breakpoint value. Such data categorizations are known in statistics to cause information loss compared to analyzing the underlying frequency distributions. The U.S. National Antimicrobial Resistance Monitoring System (NARMS) includes foodborne bacteria at the food animal processing and retail product points. The breakpoints used to interpret the MIC values for foodborne bacteria are those relevant to clinical treatments by the antimicrobials in humans in whom the isolates were to cause infection. However, conceptually different objectives arise when inference is sought concerning changes in susceptibility/resistance across isolates of a bacterial species in host populations among different sampling points or times. For the NARMS 1996-2013 data for animal processing and retail, we determined the fraction of comparisons of susceptibility/resistance to 44 antimicrobial drugs of twelve classes of a bacterial species in a given animal host or product population where there was a significant change in the MIC frequency distributions between consecutive years or the two sampling points, while the categorization-based analyses concluded no change. The categorization-based analyses missed significant changes in 54% of the year-to-year comparisons and in 71% of the slaughter-to-retail within-year comparisons. Hence, analyses using the breakpoint-based categorizations of the MIC data may miss significant developments in the resistance distributions between the sampling points or times. Methods considering the MIC frequency distributions in their entirety may be superior for epidemiological analyses of resistance dynamics in populations.

  7. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    PubMed

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  8. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan.

    PubMed

    Miyashita, Naoyuki; Kobayashi, Intetsu; Higa, Futoshi; Aoki, Yosuke; Kikuchi, Toshiaki; Seki, Masafumi; Tateda, Kazuhiro; Maki, Nobuko; Uchino, Kazuhiro; Ogasawara, Kazuhiko; Kurachi, Satoe; Ishikawa, Tatsuya; Ishimura, Yoshito; Kanesaka, Izumo; Kiyota, Hiroshi; Watanabe, Akira

    2018-05-01

    The activities of various antibiotics against 58 clinical isolates of Legionella species were evaluated using two methods, extracellular activity (minimum inhibitory concentration [MIC]) and intracellular activity. Susceptibility testing was performed using BSYEα agar. The minimum extracellular concentration inhibiting intracellular multiplication (MIEC) was determined using a human monocyte-derived cell line, THP-1. The most potent drugs in terms of MICs against clinical isolates were levofloxacin, garenoxacin, and rifampicin with MIC 90 values of 0.015 μg/ml. The activities of ciprofloxacin, pazufloxacin, moxifloxacin, clarithromycin, and azithromycin were slightly higher than those of levofloxacin, garenoxacin, and rifampicin with an MIC 90 of 0.03-0.06 μg/ml. Minocycline showed the highest activity, with an MIC 90 of 1 μg/ml. No resistance against the antibiotics tested was detected. No difference was detected in the MIC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The MIECs of ciprofloxacin, pazufloxacin, levofloxacin, moxifloxacin, garenoxacin, clarithromycin, and azithromycin were almost the same as their MICs, with MIEC 90 values of 0.015-0.06 μg/ml, although the MIEC of minocycline was relatively lower and that of rifampicin was higher than their respective MICs. No difference was detected in the MIEC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The ratios of MIEC:MIC for rifampicin (8) and pazufloxacin (2) were higher than those for levofloxacin (1), ciprofloxacin (1), moxifloxacin (1), garenoxacin (1), clarithromycin (1), and azithromycin (1). Our study showed that quinolones and macrolides had potent antimicrobial activity against both extracellular and intracellular Legionella species. The present data suggested the possible efficacy of these drugs in treatment of Legionella infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    PubMed

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  10. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria

    NASA Astrophysics Data System (ADS)

    Andrade, Patricia F.; Nakazato, Gerson; Durán, Nelson

    2017-06-01

    It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association.

  11. Pharmacokinetics of Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients

    PubMed Central

    van't Boveneind-Vrubleuskaya, Natasha; Seuruk, Tatiana; van Hateren, Kai; van der Laan, Tridia; Kosterink, Jos G. W.; van der Werf, Tjip S.; van Soolingen, Dick; van den Hof, Susan; Skrahina, Alena

    2017-01-01

    ABSTRACT Pharmacodynamics are especially important in the treatment of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB). The free area under the concentration time curve in relation to MIC (fAUC/MIC) is the most relevant pharmacokinetic (PK)-pharmacodynamic (PD) parameter for predicting the efficacy of levofloxacin (LFX). The objective of our study was to assess LFX PK variability in M/XDR-TB patients and its potential consequence for fAUC/MIC ratios. Patients with pulmonary M/XDR-TB received LFX as part of the treatment regimen at a dose of 15 mg/kg administered once daily. Blood samples obtained at steady state before and 1, 2, 3, 4, 7, and 12 h after drug administration were measured by validated liquid chromatography-tandem mass spectrometry. The MIC values of LFX were determined by the agar dilution method on Middlebrook 7H10 and the MGIT960 system. Twenty patients with a mean age of 31 years (interquartile range [IQR] = 27 to 35 years) were enrolled in this study. The median AUC0–24 was 98.8 mg/h/liter (IQR = 84.8 to 159.6 mg/h/liter). The MIC median value for LFX was 0.5 mg/liter with a range of 0.25 to 2.0 mg/liter, and the median fAUC0–24/MIC ratio was 109.5 (IQR = 48.5 to 399.4). In 4 of the 20 patients, the value was below the target value of ≥100. When MICs of 0.25, 0.5, 1.0, and 2.0 mg/liter were applicable, 19, 18, 3, and no patients, respectively, had an fAUC/MIC ratio that exceeded 100. We observed a large variability in AUC. An fAUC0–24/MIC of ≥100 was only observed when the MIC values for LFX were 0.25 to 0.5 mg/liter. Dosages exceeding 15 mg/kg should be considered for target attainment if exposures are assumed to be safe. (This study has been registered at ClinicalTrials.gov under registration no. NCT02169141.) PMID:28507117

  12. [Comparative evaluation of the sensitivity of Acinetobacter to colistin, using the prediffusion and minimum inhibitory concentration methods: detection of heteroresistant isolates].

    PubMed

    Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R

    2011-01-01

    The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.

  13. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study.

    PubMed

    Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan

    2016-09-01

    Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.

  14. Comparative Pharmacodynamics and Antimutant Potentials of Doripenem and Imipenem with Ciprofloxacin-Resistant Pseudomonas aeruginosa in an In Vitro Model

    PubMed Central

    Gilbert, Deborah; Greer, Kenneth; Portnoy, Yury A.; Zinner, Stephen H.

    2012-01-01

    To compare the antipseudomonal efficacy of doripenem and imipenem as well as their abilities to restrict the enrichment of resistant Pseudomonas aeruginosa, multiple-dosing regimens of each drug were simulated at comparable values of the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (T>MIC) and ratios of the 24-hour area under the curve (AUC24) to the MIC. Three clinical isolates of ciprofloxacin-resistant P. aeruginosa (MIC of doripenem, 1 μg/ml; MICs of imipenem, 1, 2, and 2 μg/ml) were exposed to thrice-daily doripenem or imipenem for 3 days at AUC24/MIC ratios of from 50 to 170 h (doripenem) and from 30 to 140 h (imipenem). The antimicrobial effects for susceptible and resistant subpopulations of bacteria were expressed by the areas between control growth and time-kill curves (IEs) and areas under the bacterial mutant concentration curves (AUBCMs), respectively. With each antibiotic, the IE and AUBCM versus log AUC24/MIC relationships were bacterial strain independent. At similar AUC24/MIC ratios, doripenem was slightly less efficient than imipenem against susceptible and resistant subpopulations of bacteria. However, doripenem appeared to be somewhat more efficient than imipenem at clinically achievable AUC24s related to the means of the MICs for the three studied strains and had higher antimutant potentials for two of the three strains. PMID:22203591

  15. An investigation of vancomycin minimum inhibitory concentration creep among methicillin-resistant Staphylococcus aureus strains isolated from pediatric patients and healthy children in Northern Taiwan.

    PubMed

    Chang, Chia-Ning; Lo, Wen-Tsung; Chan, Ming-Chin; Yu, Ching-Mei; Wang, Chih-Chien

    2017-06-01

    The phenomenon of vancomycin minimum inhibitory concentration (MIC) creep is an increasingly serious problem in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. In this study, we investigated the vancomycin and daptomycin MIC values of MRSA strains isolated from pediatric patients and MRSA colonized healthy children. Then, we assessed whether there was evidence of clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. We collected clinical MRSA isolates from pediatric patients and from healthy children colonized with MRSA during 2008-2012 at a tertiary medical center in northern Taiwan and obtained vancomycin and daptomycin MIC values using the Etest method. Pulse-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome (SCCmec) typing were used to assess clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. A total 195 MRSA strains were included in this study; 87 were isolated patients with a clinical MRSA infection, and the other 108 strains from nasally colonized healthy children. Vancomycin MIC≥1.5 μg/mL was seen in more clinical isolates (60/87, 69%) than colonized isolates (32/108, 29.6%), p < 0.001. The PFGE typing of both strains revealed multiple pulsotypes. Vancomycin MIC creeps existed in both clinical MRSA isolates and colonized MRSA strains. Great diversity of PFGE typing was in both strains collected. There was no association between the clinical and colonized MRSA isolates with vancomycin MIC creep. Copyright © 2016. Published by Elsevier B.V.

  16. A New Algorithm to Optimize Maximal Information Coefficient

    PubMed Central

    Luo, Feng; Yuan, Zheming

    2016-01-01

    The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001

  17. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    PubMed

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  18. Evaluation of usage of essential oils instead of spices in meat ball formulation for controlling Salmonella spp.

    PubMed

    Ozdikmenli, Seda; Demirel Zorba, Nukhet N

    2016-03-01

    The purpose of this study was to show the efficacy of essential oils (EOs) in meat balls instead of spices because of their high antimicrobial effect and to evaluate the antimicrobial effect of Origanum onites and Ocimum basilicum EOs against Salmonella Typhimurium in minced beef (20% fat) stored at 4 ℃ for seven days. This is the first study about use of O. basilicum EO in minced beef against bacterial pathogens. Both EOs inhibit microorganisms in in vitro antibacterial tests. Minimum inhibitory concentration (MIC) values of EOs were determined. The lowest MIC values were obtained with O. onites EO 0.6 µl/ml against S. Typhimurium strains. The MIC values of O. basilicum EO 0.25 µl/ml against microorganisms. Both EOs showed a significant decrease in microorganisms inoculated in minced beef at end of storage. The concentration of the both EOs at 20 µg/mg and 10 µg/mg showed stronger antimicrobial activity against bacterial cocktail of S. Typhimurium in beef; however, the higher concentrations caused alterations in the organoleptic properties of meatballs. The results of the present study indicate that O. onites and O. basilicum EOs may be used in combination with each other and different food preservation systems in meat ball formulation. © The Author(s) 2015.

  19. Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

    PubMed Central

    Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung

    2011-01-01

    The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548

  20. Determination of minimum inhibitory concentrations of itraconazole, terbinafine and ketoconazole against dermatophyte species by broth microdilution method.

    PubMed

    Bhatia, V K; Sharma, P C

    2015-01-01

    Various antifungal agents both topical and systemic have been introduced into clinical practice for effectively treating dermatophytic conditions. Dermatophytosis is the infection of keratinised tissues caused by fungal species of genera Trichophyton, Epidermophyton and Microsporum, commonly known as dermatophytes affecting 20-25% of the world's population. The present study aims at determining the susceptibility patterns of dermatophyte species recovered from superficial mycoses of human patients in Himachal Pradesh to antifungal agents; itraconazole, terbinafine and ketoconazole. The study also aims at determining the minimum inhibitory concentrations (MICs) of these agents following the recommended protocol of Clinical and Laboratory Standards Institute (CLSI) (M38-A2). A total of 53 isolates of dermatophytes (T. mentagrophyte-34 in no., T. rubrum-18 and M. gypseum-1) recovered from the superficial mycoses were examined. Broth microdilution method M38-A2 approved protocol of CLSI (2008) for filamentous fungi was followed for determining the susceptibility of dermatophyte species. T. mentagrophyte isolates were found more susceptible to both itraconazole and ketoconazole as compared to terbinafine (MIC50: 0.125 µg/ml for itraconazole, 0.0625 µg/ml for ketoconazole and 0.5 µg/ml for terbinafine). Three isolates of T. mentagrophytes (VBS-5, VBSo-3 and VBSo-73) and one isolate of T. rubrum (VBPo-9) had higher MIC values of itraconazole (1 µg/ml). Similarly, the higher MIC values of ketoconazole were observed in case of only three isolates of T. mentagrophyte (VBSo-30 = 2 µg/ml; VBSo-44, VBM-2 = 1 µg/ml). The comparative analysis of the three antifungal drugs based on t-test revealed that 'itraconazole and terbinafine' and 'terbinafine and ketoconazole' were found independent based on the P < 0.005 in case of T. mentagrophyte isolates. In case of T. rubrum, the similarity existed between MIC values of 'itraconazole and ketoconazole' and 'terbinafine and ketoconazole'. The MIC values observed in the present study based on standard protocol M38-A2 of CLSI 2008 might serve as reference for further studies covering large number of isolates from different geographic regions of the state. Such studies might reflect on the acquisition of drug resistance among isolates of dermatophyte species based on MIC values.

  1. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection.

    PubMed

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller-Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration-time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin ( R 2 = 0.9711). The calculated AUC 12h /MIC ratios in serum required to produce the net bacterial stasis, 1-log 10 and 2-log 10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections.

  2. Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections.

    PubMed

    Curis, Emmanuel; Pestre, Vincent; Jullien, Vincent; Eyrolle, Luc; Archambeau, Denis; Morand, Philippe; Gatin, Laure; Karoubi, Matthieu; Pinar, Nicolas; Dumaine, Valérie; Nguyen Van, Jean-Claude; Babinet, Antoine; Anract, Philippe; Salmon, Dominique

    2015-08-01

    Clindamycin, a lincosamide antibiotic with a good penetration into bone, is widely used for treating bone and joint infections by Gram-positive pathogens. To be active against Staphylococcus spp, its concentration at the infection site, C, must be higher than 2× the minimal inhibitory concentration (MIC). The aims of the work were to study the determinants of plasma clindamycin trough concentration, C min, especially the effect of co-treatment with rifampicin, and the consequences on clinical outcome. An observational study was performed, involving patients hospitalized for a bone and joint infection who received clindamycin as part of their antibiotic treatment. Target C min was 1.7 mg/L, to reach the desired bone concentration/MIC >2, assuming a 30% diffusion into bone and MIC = 2.5 mg/L. Sixty one patients (mean age: 56.8 years, 57.4% male) were included between 2007 and 2011. 72.1% underwent a surgery on a foreign material, and 91.1% were infected by at least a Gram-positive micro-organism. Median C min value was 1.39 mg/L, with 58% of the values below the threshold value of 1.7 mg/L. Median C min was significantly lower for patients taking rifampicin (0.46 vs 1.52 mg/L, p = 0.034). No patient with rifampicin co-administration reached the target concentration (maximal C min: 0.85 mg/L). After a median follow-up of 17 months (1.5-38 months), 4 patients relapsed, 2 died and 47 (88.7% of the patients with known outcome) were cured, independently of association with rifampicin. This study shows the high inter-variability of plasma clindamycin concentration and confirms that co-treatment with rifampicin significantly decreases clindamycin trough concentrations.

  3. Pharmacodynamics of Ceftolozane plus Tazobactam Studied in an In Vitro Pharmacokinetic Model of Infection.

    PubMed

    MacGowan, Alasdair P; Noel, Alan R; Tomaselli, Sharon G; Nicholls, Donna; Bowker, Karen E

    2016-01-01

    Ceftolozane plus tazobactam is an antipseudomonal cephalosporin combined with tazobactam, an established beta-lactamase inhibitor, and has in vitro potency against a range of clinically important β-lactamase-producing bacteria, including most extended-spectrum-β-lactamase (ESBL)-positive Enterobacteriaceae. The pharmacodynamics of β-lactam-β-lactamase inhibitor combinations presents a number of theoretical and practical challenges, including modeling different half-lives of the compounds. In this study, we studied the pharmacodynamics of ceftolozane plus tazobactam against Escherichia coli and Pseudomonas aeruginosa using an in vitro pharmacokinetic model of infection. Five strains of E. coli, including three clinical strains plus two CTX-M-15 (one high and one moderate) producers, and five strains of P. aeruginosa, including two with OprD overexpression and AmpC β-lactamases, were employed. Ceftolozane MICs (E. coli, 0.12 to 0.25 mg/liter, and P. aeruginosa, 0.38 to 8 mg/liter) were determined in the presence of 4 mg/liter tazobactam. Dose ranging of ceftolozane (percentage of time in which the free-drug concentration exceeds the MIC [fT>MIC], 0 to 100%) plus tazobactam (human pharmacokinetics) was simulated every 8 hours, with half-lives (t1/2) of 2.5 and 1 h, respectively. Ceftolozane and tazobactam concentrations were confirmed by high-performance liquid chromatography (HPLC). The ceftolozane-plus-tazobactam fT>MIC values at 24 h for a static effect and a 1-log and 2-log drop in initial inoculum for E. coli were 27.8% ± 5.6%, 33.0% ± 5.6%, and 39.6% ± 8.5%, respectively. CTX-M-15 production did not affect the 24-h fT>MIC for E. coli strains. The ceftolozane-plus-tazobactam fT>MIC values for a 24-h static effect and a 1-log and 2-log drop for P. aeruginosa were 24.9% ± 3.0%, 26.6% ± 3.9%, and 31.2% ± 3.6%. Despite a wide range of absolute MICs, the killing remained predictable as long as the MICs were normalized to the corresponding fT>MIC. Emergence of resistance on 4× MIC plates and 8× MIC plates occurred maximally at an fT>MIC of 10 to 30% and increased as time of exposure increased. The fT>MIC for a static effect for ceftolozane plus tazobactam is less than that observed with other cephalosporins against E. coli and P. aeruginosa and is more similar to the fT>MIC reported for carbapenems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Comparative Pharmacodynamics of Telavancin and Vancomycin in the Neutropenic Murine Thigh and Lung Infection Models against Staphylococcus aureus

    PubMed Central

    Lepak, Alexander J.; Zhao, Miao

    2017-01-01

    ABSTRACT The pharmacodynamics of telavancin and vancomycin were compared using neutropenic murine thigh and lung infection models. Four Staphylococcus aureus strains were included. The telavancin MIC ranged from 0.06 to 0.25 mg/liter, and the vancomycin MIC ranged from 1 to 4 mg/liter. The plasma pharmacokinetics of escalating doses (1.25, 5, 20, and 80 mg/kg of body weight) of telavancin and vancomycin were linear over the dose range. Epithelial lining fluid (ELF) pharmacokinetics for each drug revealed that penetration into the ELF mirrored the percentage of the free fraction (the fraction not protein bound) in plasma for each drug. Telavancin (0.3125 to 80 mg/kg/6 h) and vancomycin (0.3125 to 1,280 mg/kg/6 h) were administered by the subcutaneous route in treatment studies. Dose-dependent bactericidal activity against all four strains was observed in both models. A sigmoid maximum-effect model was used to determine the area under the concentration-time curve (AUC)/MIC exposure associated with net stasis and 1-log10 kill relative to the burden at the start of therapy. The 24-h plasma free drug AUC (fAUC)/MIC values associated with stasis and 1-log kill were remarkably congruent. Net stasis for telavancin was noted at fAUC/MIC values of 83 and 40.4 in the thigh and lung, respectively, and 1-log kill was noted at fAUC/MIC values of 215 and 76.4, respectively. For vancomycin, the fAUC/MIC values for stasis were 77.9 and 45.3, respectively, and those for 1-log kill were 282 and 113, respectively. The 24-h ELF total drug AUC/MIC targets in the lung model were very similar to the 24-h plasma free drug AUC/MIC targets for each drug. Integration of human pharmacokinetic data for telavancin, the results of the MIC distribution studies, and the pharmacodynamic targets identified in this study suggests that the current dosing regimen of telavancin is optimized to obtain drug exposures sufficient to treat S. aureus infections. PMID:28416551

  5. Imaging the antimicrobial mechanism(s) of cathelicidin-2

    PubMed Central

    Schneider, Viktoria A. F.; Coorens, Maarten; Ordonez, Soledad R.; Tjeerdsma-van Bokhoven, Johanna L. M.; Posthuma, George; van Dijk, Albert; Haagsman, Henk P.; Veldhuizen, Edwin J. A.

    2016-01-01

    Host defence peptides (HDPs) have the potential to become alternatives to conventional antibiotics in human and veterinary medicine. The HDP chicken cathelicidin-2 (CATH-2) has immunomodulatory and direct killing activities at micromolar concentrations. In this study the mechanism of action of CATH-2 against Escherichia coli (E. coli) was investigated in great detail using a unique combination of imaging and biophysical techniques. Live-imaging with confocal fluorescence microscopy demonstrated that FITC-labelled CATH-2 mainly localized at the membrane of E. coli. Upon binding, the bacterial membrane was readily permeabilized as was shown by propidium iodide influx into the cell. Concentration- and time-dependent effects of the peptide on E. coli cells were examined by transmission electron microscopy (TEM). CATH-2 treatment was found to induce dose-dependent morphological changes in E. coli. At sub-minimal inhibitory concentrations (sub-MIC), intracellular granulation, enhanced vesicle release and wrinkled membranes were observed, while membrane breakage and cell lysis occurred at MIC values. These effects were visible within 1–5 minute of peptide exposure. Immuno-gold TEM showed CATH-2 binding to bacterial membranes. At sub-MIC values the peptide rapidly localized intracellularly without visible membrane permeabilization. It is concluded that CATH-2 has detrimental effects on E. coli at concentrations that do not immediately kill the bacteria. PMID:27624595

  6. Pharmacodynamics of Isavuconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Box, Helen; Livermore, Joanne; Johnson, Adam; McEntee, Laura; Felton, Timothy W.; Whalley, Sarah; Goodwin, Joanne

    2015-01-01

    Isavuconazonium sulfate is a novel triazole prodrug that has been recently approved for the treatment of invasive aspergillosis by the FDA. The active moiety (isavuconazole) has a broad spectrum of activity against many pathogenic fungi. This study utilized a dynamic in vitro model of the human alveolus to describe the pharmacodynamics of isavuconazole against two wild-type and two previously defined azole-resistant isolates of Aspergillus fumigatus. A human-like concentration-time profile for isavuconazole was generated. MICs were determined using CLSI and EUCAST methodologies. Galactomannan was used as a measure of fungal burden. Target values for the area under the concentration-time curve (AUC)/MIC were calculated using a population pharmacokinetics-pharmacodynamics (PK-PD) mathematical model. Isolates with higher MICs required higher AUCs in order to achieve maximal suppression of galactomannan. The AUC/MIC targets necessary to achieve 90% probability of galactomannan suppression of <1 were 11.40 and 11.20 for EUCAST and CLSI, respectively. PMID:26503648

  7. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    PubMed

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli

    PubMed Central

    Zhang, Jing; Ye, Ke-Ping; Zhang, Xin; Pan, Dao-Dong; Sun, Yang-Ying; Cao, Jin-Xuan

    2017-01-01

    The aim of this study was to investigate the antibacterial activity of black pepper essential oil (BPEO) on Escherichia coli, further evaluate the potential mechanism of action. Results showed that the minimum inhibition concentration (MIC) of BPEO was 1.0 μL/mL. The diameter of inhibition zone values were with range from 17.12 to 26.13 mm. 2 × MIC treatments had lower membrane potential and shorter kill-time than 1 × MIC, while control had the highest values. E. coli treated with BPEO became deformed, pitted, shriveled, adhesive, and broken. 2 × MIC exhibited the greatest electric conductivity at 1, 3, 5, 7, 9, 11, and 13 h, leaked DNA materials at 4, 8, 12, 16, 20, 24, and 28 h, proteins at 4, 6, 8, 10, 12, 14, and 16 h, potassium ion at 0, 0.5, 1, 1.5, and 2 h, phosphate ion at 0.5, 1, 1.5, and 2 h and ATP (P < 0.05); 1 × MIC had higher values than control. BPEO led to the leakage, disorder and death by breaking cell membrane. This study suggested that the BPEO has potential as the natural antibacterial agent in meat industry. PMID:28101081

  9. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  10. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Susceptibility of Microsporum canis arthrospores to a mixture of chemically defined essential oils: a perspective for environmental decontamination.

    PubMed

    Nardoni, Simona; Tortorano, Annamaria; Mugnaini, Linda; Profili, Greta; Pistelli, Luisa; Giovanelli, Silvia; Pisseri, Francesca; Papini, Roberto; Mancianti, Francesca

    2015-01-01

    The zoophilic dermatophyte Microsporum canis has cats as natural reservoir, but it is able to infect a wide range of hosts, including humans, where different clinical features of the so-called ringworm dermatophytosis have been described. Human infections are increasingly been reported in Mediterranean countries. A reliable control program against M. canis infection in cats should include an antifungal treatment of both the infected animals and their living environment. In this article, a herbal mixture composed of chemically defined essential oils (EOs) of Litsea cubeba (1%), Illicium verum, Foeniculum vulgare, and Pelargonium graveolens (0.5% each) was formulated and its antifungal activity assessed against M. canis arthrospores which represent the infective environmental stage of M. canis. Single compounds present in higher amounts in the mixture were also separately tested in vitro. Litsea cubeba and P. graveolens EOs were most effective (minimum inhibitory concentration (MIC) 0.5%), followed by EOs of I. verum (MIC 2%) and F. vulgare (MIC 2.5%). Minimum fungicidal concentrations (MFC) values were 0.75% (L. cubeba), 1.5% (P. graveolens), 2.5% (I. verum) and 3% (F. vulgare). MIC and MFC values of the mixture were 0.25% and 0.5%, respectively. The daily spray of the mixture (200 μL) directly onto infected hairs inhibited fungal growth from the fourth day onwards. The compounds present in higher amounts exhibited variable antimycotic activity, with MIC values ranging from >10% (limonene) to 0.1% (geranial and neral). Thus, the mixture showed a good antifungal activity against arthrospores present in infected hairs. These results are promising for a further application of the mixture as an alternative tool or as an adjuvant in the environmental control of feline microsporosis.

  12. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Antimicrobial Susceptibility of Udder Pathogens Isolated from Dairy Herds in the West Littoral Region of Uruguay

    PubMed Central

    2002-01-01

    A total of 522 strains belonging to streptococci, enterococci and staphylococci isolated from sub-clinical and clinical cases of bovine mastitis from the west littoral region of Uruguay were analysed for their susceptibility to several antimicrobial agents. The susceptibility patterns were studied by agar disk diffusion methods (ADDM) and broth micro-dilution to determine the minimum inhibitory concentration (MIC). The concentration that inhibits 90% (MIC90) of the analysed strains reported in micrograms per millilitre, for Staphylococcus aureus were > 8, 8, ≤ 0.5, ≤ 4, ≤ 1, ≤ 0.5, > 64, ≤ 0.25, 0.5, ≤ 1 and ≤ 1 to penicillin, ampicillin, oxacillin, cephalotin, gentamicin, erythromycin, oxitetracycline, enrofloxacin, trimethoprim/sulfamethoxazole, neomycin, and clindamycin, respectively. Coagulase-negative staphylococci (CNS) had different values for penicillin (4) and ampicillin (2), while the other antimicrobial agents had the same MIC90 values as reported for S. aureus. The MIC90 values for streptococci were 0.12, 0.25, ≤ 4, 16, ≤ 0.25, 0.5, 0.25 for penicillin, ampicillin, cephalotin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, whereas MIC90 for enterococci were 4, 4, 4, ≤ 0.5, 2, > 8 for penicillin, ampicillin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, respectively. Of 336 strains of S. aureus, 160 (47.6%) were resistant to penicillin. For 41 CNS strains, 10 (27%) presented penicillin-resistance. All the streptococcal strains were susceptible to penicillin, while 3 (7%) of the 43 enteroccocal strains were resistant. Non significant statistical differences were found between the results obtained by ADDM and broth micro-dilution for classifying bacterial isolates as susceptible or resistant according to the National Committee of Clinical Laboratory Standards. PMID:12071114

  14. Pharmacokinetic Modeling and Limited Sampling Strategies Based on Healthy Volunteers for Monitoring of Ertapenem in Patients with Multidrug-Resistant Tuberculosis.

    PubMed

    van Rijn, S P; Zuur, M A; van Altena, R; Akkerman, O W; Proost, J H; de Lange, W C M; Kerstjens, H A M; Touw, D J; van der Werf, T S; Kosterink, J G W; Alffenaar, J W C

    2017-04-01

    Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% T MIC ). To assess the 40% T MIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC 0-24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation ( n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% T MIC with the free fraction ( f 40% T MIC ) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC 0-24 ) in MDR-TB patients by 6.8% (range, -17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h ( r 2 = 0.78, mean prediction error = -0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, -15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% T MIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients. Copyright © 2017 American Society for Microbiology.

  15. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2016-01-01

    Antibacterial resistance has dramatically increased and resulted in serious health problems worldwide. One appealing strategy to overcome this resistance problem is the use of combinations of antibacterial compounds to increase their potency. The objective of this study is to determine the synergistic effects of artocarpin for ampicillin, norfloxacin, and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA) as well as the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. A broth microdilution method (1.95-250 µg/mL) was used to determine the minimum inhibitory concentration (MIC) of artocarpin and the antibiotics. Any synergistic effects were evaluated at their own MIC using the checkerboard method and a time-kill assay at 37 °C for 24 h. Artocarpin showed antibacterial activity against MRSA and E. coli with an MIC value of 62.5 µg/mL, and against P. aeruginosa with an MIC value of 250 µg/mL. The interaction of artocarpin with all tested antibiotics produced synergistic effects against MRSA with a fractional inhibitory concentration index (FICI) of 0.15-0.37. In addition, a combination of artocarpin and norfloxacin showed a synergistic effect against E. coli with an FICI value of 0.37, while the combinations of artocarpin and tetracycline as well as artocarpin and norfloxacin exhibited synergy interactions against P. aeruginosa with FICI values of 0.24 and 0.37, respectively. Time-kill assays indicated that artocarpin enhanced the antimicrobial activities of tetracycline, ampicillin, and norfloxacin against MRSA as well as Gram-negative bacteria.

  16. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study.

    PubMed

    de Castro, Ricardo Dias; de Souza, Trícia Murielly Pereira Andrade; Bezerra, Louise Morais Dornelas; Ferreira, Gabriela Lacet Silva; Costa, Edja Maria Melo de Brito; Cavalcanti, Alessandro Leite

    2015-11-24

    Limitations of antifungal agents used in the treatment of oral candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to evaluate the antifungal activity of thymol against Candida albicans, Candida tropicalis and Candida krusei strains and to determine its mode of action and synergistic effect when combined with the synthetic antifungal nystatin. The minimum inhibitory concentration (MIC) was determined using a microdilution technique, and the minimum fungicidal concentration (MFC) was determined via subculture sowing. The mode of action of thymol was established by verifying fungal growth in the presence of sorbitol or ergosterol. The fractional inhibitory concentration index (FIC) was determined using the checkerboard method. Thymol presented an antifungal effect, with MICs of 39 μg/mL for C. albicans and C. krusei and 78 μg/mL for C. tropicalis. The results of the antifungal test remained unchanged in the presence of sorbitol; however, the MIC value of thymol against C. albicans increased eight times (from 39.0 to 312.5 μg/mL) in presence of exogenous ergosterol. The combination of thymol and nystatin reduced the MIC values of both products by 87.4%, generating an FIC index of 0.25. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with nystatin.

  17. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations.

    PubMed

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-05-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38-A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC(50) values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted.

  18. Compilation and analysis of global surface water concentrations for individual insecticide compounds.

    PubMed

    Stehle, Sebastian; Bub, Sascha; Schulz, Ralf

    2018-10-15

    The decades-long agricultural use of insecticides resulted in frequent contamination of surface waters globally regularly posing high risks for the aquatic biodiversity. However, the concentration levels of individual insecticide compounds have by now not been compiled and reported using global scale data, hampering our knowledge on the insecticide exposure of aquatic ecosystems. Here, we specify measured insecticide concentrations (MICs, comprising in total 11,300 water and sediment concentrations taken from a previous publication) for 28 important insecticide compounds covering four major insecticide classes. Results show that organochlorine and organophosphate insecticides, which dominated the global insecticide market for decades, have been detected most often and at highest concentration levels in surface waters globally. In comparison, MICs of the more recent pyrethroids and neonicotinoids were less often reported and generally at lower concentrations as a result of their later market introduction and lower application rates. An online insecticide classification calculator (ICC; available at: https://static.magic.eco/icc/v1) is provided in order to enable the comparison and classification of prospective MICs with available global insecticide concentrations. Spatial analyses of existing data show that most MICs were reported for surface waters in North America, Asia and Europe, whereas highest concentration levels were detected in Africa, Asia and South America. An evaluation of water and sediment MICs showed that theoretical organic carbon-water partition coefficients (K OC ) determined in the laboratory overestimated K OC values based on actual field concentrations by up to a factor of more than 20, with highest deviations found for highly sorptive pyrethroids. Overall, the comprehensive compilation of insecticide field concentrations presented here is a valuable tool for the classification of future surface water monitoring results and serves as important input data for more field relevant toxicity testing approaches and pesticide exposure and risk assessment schemes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In vitro activity of cefditoren: antimicrobial efficacy against major respiratory pathogens from Asian countries.

    PubMed

    Lee, Mi Young; Ko, Kwan Soo; Oh, Won Sup; Park, Sulhee; Lee, Ji-Young; Baek, Jin Yang; Suh, Ji-Yoeun; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-07-01

    In this study we evaluated the in vitro activities of cefditoren and 14 other comparator agents against 1025 isolates of major respiratory tract pathogens including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae and Staphylococcus aureus. Bacterial isolates were collected from 11 Asian countries. The majority of S. pneumoniae isolates (98.8%) were susceptible to cefditoren. The MIC(50) and MIC(90) values (minimum inhibitory concentrations for 50% and 90% of the organisms, respectively) of S. pneumoniae were

  20. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds

    PubMed Central

    Penduka, Dambudzo; Okoh, Anthony I.

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8–11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079–0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log10 decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy. PMID:22072929

  1. In vitro anti-listerial activities of crude n-hexane and aqueous extracts of Garcinia kola (heckel) seeds.

    PubMed

    Penduka, Dambudzo; Okoh, Anthony I

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8-17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8-11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079-0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log(10) decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy.

  2. Technical note: Antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis.

    PubMed

    Nunes, S F; Bexiga, R; Cavaco, L M; Vilela, C L

    2007-07-01

    To evaluate the antimicrobial resistance traits of staphylococci responsible for subclinical bovine mastitis in Portugal, the minimum inhibitory concentrations (MIC) of 7 antimicrobial agents, frequently administered for mastitis treatment, were determined for 30 Staphylococcus aureus and 31 Staphylococcus epidermidis field isolates. Beta-lactamase production was detected through the use of nitrocefin-impregnated discs. The MIC that inhibited 90% of the isolates tested (MIC90) of penicillin, oxacillin, cefazolin, gentamicin, sulfamethoxazole/trimethoprim, oxytetracycline, and enrofloxacin were, respectively, 4, 0.5, 1, 1, 0.25, 0.25, and 0.06 microg/mL for Staph. aureus and > or = 64, 8, 1, 32, > or = 64, > or = 64, and 0.06 microg/mL for Staph. epidermidis. All Staph. aureus isolates showed susceptibility to oxacillin, cefazolin, gentamicin, sulphamethoxazole/trimethoprim, and enrofloxacin. Beta-lactamase production was detected in 20 of these isolates (66.7%), all of which were resistant to penicillin. Of the 31 Staph. epidermidis tested, 24 (77.4%) were beta-lactamase positive. All isolates were susceptible to both cefazolin and enrofloxacin. Nine Staph. epidermidis isolates were resistant to oxacillin, with MIC values ranging from 4 to 8 microg/mL. The MIC values of 5 antimicrobial agents tested were higher than those reported in other countries. Enrofloxacin was the only exception, showing lower MIC values compared with other reports. Overall, the antimicrobial agents tested in our study, with the exception of penicillin, were active against the 61 isolates studied.

  3. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 μg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Semisynthetic Phenol Derivatives Obtained from Natural Phenols: Antimicrobial Activity and Molecular Properties.

    PubMed

    Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano

    2018-01-10

    Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.

  5. In Vitro Activities of Various Antimicrobials Alone and in Combination with Tigecycline against Carbapenem-Intermediate or -Resistant Acinetobacter baumannii▿

    PubMed Central

    Scheetz, Marc H.; Qi, Chao; Warren, John R.; Postelnick, Michael J.; Zembower, Teresa; Obias, Arlene; Noskin, Gary A.

    2007-01-01

    The activities of tigecycline alone and in combination with other antimicrobials are not well defined for carbapenem-intermediate or -resistant Acinetobacter baumannii (CIRA). Pharmacodynamic activity is even less well defined when clinically achievable serum concentrations are considered. Antimicrobial susceptibility testing of clinical CIRA isolates from 2001 to 2005 was performed by broth or agar dilution, as appropriate. Tigecycline concentrations were serially increased in time-kill studies with a representative of the most prevalent carbapenem-resistant clone (strain AA557; imipenem MIC, 64 mg/liter). The in vitro susceptibility of the strain was tested by time-kill studies in duplicate against the average free serum steady-state concentrations of tigecycline alone and in combination with various antimicrobials. Ninety-three CIRA isolates were tested and were found to have the following antimicrobial susceptibility profiles: tigecycline, MIC50 of 1 mg/liter and MIC90 of 2 mg/liter; minocycline, MIC50 of 0.5 mg/liter and MIC90 of 8 mg/liter; doxycycline, MIC50 of 2 mg/liter and MIC90 of ≥32 mg/liter; ampicillin-sulbactam, MIC50 of 48 mg/liter and MIC90 of 96 mg/liter; ciprofloxacin, MIC50 of ≥16 mg/liter and MIC90 of ≥16 mg/liter; rifampin, MIC50 of 4 mg/liter and MIC90 of 8 mg/liter; polymyxin B, MIC50 of 1 mg/liter and MIC90 of 1 mg/liter; amikacin, MIC50 of 32 mg/liter and MIC90 of ≥32 mg/liter; meropenem, MIC50 of 16 mg/liter and MIC90 of ≥128 mg/liter; and imipenem, MIC50 of 4 mg/liter and MIC90 of 64 mg/liter. Among the tetracyclines, the isolates were more susceptible to tigecycline than minocycline and doxycycline, according to FDA breakpoints (95%, 88%, and 71% of the isolates were susceptible to tigecycline, minocycline, and doxycycline, respectively). Concentration escalation studies with tigecycline revealed a maximal killing effect near the MIC, with no additional extent or rate of killing at concentrations 2× to 4× the MIC for tigecycline. Time-kill studies demonstrated indifference for tigecycline in combination with the antimicrobials tested. Polymyxin B, minocycline, and tigecycline are the most active antimicrobials in vitro against CIRA. Concentration escalation studies demonstrate that tigecycline may need to approach concentrations higher than those currently achieved in the bloodstream to adequately treat CIRA bloodstream infections. Future studies should evaluate these findings in vivo. PMID:17307973

  6. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds.

    PubMed

    Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David

    2014-08-01

    Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  8. Pharmacokinetic behavior of enrofloxacin and its metabolite ciprofloxacin in urutu pit vipers (Bothrops alternatus) after intramuscular administration.

    PubMed

    Waxman, Samanta; Prados, Ana Paula; de Lucas, José Julio; San Andrés, Manuel Ignacion; Regner, Pablo; de Oliveira, Vanesa Costa; de Roodt, Adolfo; Rodríguez, Casilda

    2014-03-01

    Enrofloxacin is widely used in veterinary medicine and is an important alternative to treating bacterial infections, which play an important role as causes of disease and death in captive snakes. Its extralabel use in nontraditional species has been related to its excellent pharmacokinetic and antimicrobial characteristics. This can be demonstrated by its activity against gram-negative organisms implicated in serious infectious diseases of reptile species with a rapid and concentration-dependent bactericidal effect and a large volume of distribution. Pharmacokinetic parameters for enrofloxacin were investigated in seven urutu pit vipers (Bothrops alternatus), following intramuscular injections of 10 mg/kg. The plasma concentrations of enrofloxacin and its metabolite, ciprofloxacin, were measured using high-performance liquid chromatography. Blood samples were collected from the ventral coccygeal veins at 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, 96, 108, and 168 hr. The kinetic behavior was characterized by a relatively slow absorption (time of maximal plasma concentration = 4.50 +/- 3.45 hr) with peak plasma concentration of 4.81 +/- 1.12 microg/ml. The long half-life during the terminal elimination phase (t1/2 lambda = 27.91 +/- 7.55 hr) of enrofloxacin after intramuscular administration, calculated in the present study, could suggest that the antibiotic is eliminated relatively slowly and/or the presence of a slow absorption in urutu pit vipers. Ciprofloxacin reached a peak plasma concentration of 0.35 microg/ml at 13.45 hr, and the fraction of enrofloxacin metabolized to ciprofloxacin was 13.06%. If enrofloxacin's minimum inhibitory concentration (MIC90) values of 0.5 microg/ml were used, the ratios AUC(e+c): MIC90 (276 +/- 67 hr) and Cmax(e+c): MIC90 (10 +/- 2) reach the proposed threshold values (125 hr and 10, respectively) for optimized efficacy and minimized resistance development when treating infections caused by Pseudomonas. The administration of 10 mg/kg of enrofloxacin by the i.m. route should be considered to be a judicious choice in urutu pit vipers against infections caused by microorganisms with MIC values < or = 0.5 microg/ml. For less susceptible bacteria, a dose increase and/or an interval reduction should be evaluated.

  9. Susceptibility of Malassezia pachydermatis to aminoglycosides.

    PubMed

    Silva, Freddy Alejandro; Conde-Felipe, Magnolia; Rosario, Inmaculada; Ferrer, Otilia; Real, Fernando; Déniz, Soraya; Acosta, Félix; Padilla, Daniel; Acosta-Hernández, Begoña

    2017-12-01

    Previous studies have evaluated the action of gentamicin against Malassezia pachydermatis. The aim of this study was to evaluate in vitro susceptibility of M. pachydermatis to the aminoglycosides- gentamicin, tobramycin, netilmicin and framycetin. The minimum inhibitory concentration (MIC) of gentamicin was determined following methods M27-A3 microdilution and Etest ® . The Etest ® was used to determine the minimum inhibitory concentration (MIC) of the tobramycin and netilmicin. The Kirby-Bauer test was used to determine the antibiotic susceptibility to the framycetin. The MIC50 and MIC90 were 8.12 μg/mL and 32.5 μg/mL by microdilution method for gentamicin. The MIC50, determined by the Etest ® , was 8 μg/mL for gentamicin and netilmicin and 64 μg/mL for tobramycin. The MIC90 was 16 and 32 μg/mL for gentamicin and netilmicin respectively. The MIC90 was outside of the detectable limits for tobramycin. To framycetin, 28 strains (40%) of the 70 M. pachydermatis isolates tested showed a diameter of 22 mm, 22 strains (31.42%) showed a diameter of 20 mm, 16 strains showed a diameter of ≤ 18 mm, and only 5.71% of the isolates showed a diameter of ≥ 22 mm. This study provides evidence of high in vitro activity of the aminoglycosides-gentamicin, tobramycin, netilmicin and framycetin against M. pachydermatis. For gentamicin Etest ® showed similar values of MIC50 y MIC90 that the obtained by microdilution method. We considered Etest ® method could be a good method for these calculations with aminoglycosides. © 2017 Blackwell Verlag GmbH.

  10. IN VITRO EFFICACY OF EXTRACTS FROM PLANTS USED BY SMALL-HOLDER FARMERS IN THE TREATMENT OF DERMATOPHILOSIS IN CATTLE.

    PubMed

    Ndhlovu, Daud N; Masika, Patrick J

    2017-01-01

    Bovine dermatophilosis, an important skin disease of cattle caused by Dermatophilus congolensis , negatively impacts the livelihoods of small-holder farmers in Zimbabwe. This impact is through, morbidity, loss of draught animal power, costs incurred to manage the disease, losses associated with devalued damaged hides and the resultant culling of some of the affected cattle. Due to the inaccessibility of conventional drugs to manage bovine dermatophilosis, farmers have been reported to use local medicinal plants to manage the disease. The aim of the study was to evaluate the in vitro antimicrobial activities of three plants that small-holder farmers in Zimbabwe used to manage bovine dermatophilosis. Dried plant materials were ground into powder and extracted individually using, water, 80 % acetone and 80 % methanol. The antimicrobial properties of the plants were evaluated against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and one Gram-positive (Staphylococcus aureus) reference bacterial strains. They were further evaluated against a field isolate of Dermatophilus congolensis . The assays used were the disc diffusion, minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Acetone and methanol extracts had superior inhibitory activities than did those of water. Pterocarpus angolensis DC extracts had better inhibitory properties with absolute MIC values of 0.156 - 5 mg/ml, Cissus Quadrangularis L had MIC values in the range 0.156 - 5 mg/ml while that of Catunaregam spinosa Thunb, Terveng was 0.156 - 10 mg/ml. Dermatophilus congolensis was more sensitive to Pterocarpus angolensis DC average MIC = 0.63 mg/ml than to Cissus quadrangularis L average MIC = 1.25 mg/ml and Catunaregam. spinosa Thunb, Terveng average MIC = 2.08 mg/ml. These results suggest the potential antibacterial activities of extracts of the three plants and hence farmers are, in a way, justified in using the plants. Better results (lower MIC) could be obtained by extracting and evaluating pure active compounds of the plants.

  11. The synthesis and antistaphylococcal activity of 9, 13-disubstituted berberine derivatives.

    PubMed

    Wang, Jing; Yang, Teng; Chen, Huang; Xu, Yun-Nan; Yu, Li-Fang; Liu, Ting; Tang, Jie; Yi, Zhengfang; Yang, Cai-Guang; Xue, Wei; Yang, Fan

    2017-02-15

    A series of novel 9, 13-disubstituted berberine derivatives have been synthesized and evaluated for the antibacterial activities against Staphylococcus aureus, including Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108, and NRS-271). Compound 20 shows the most potent activity against the growth of Newman strain, with a MIC value of 0.78 μg/mL, which is comparable with the positive control vancomycin. In addition, compound 20, 21, and 33 are highly antistaphylococcal active against five strains of multidrug-resistant S. aureus, with MIC values of 0.78-1.56 μg/mL. Of note, theses antibacterial active compounds have no obvious toxicity to the viability of human fibroblast (HAF) cells at the MIC concentration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Efficacy of simulated cefditoren versus amoxicillin-clavulanate free concentrations in countering intrastrain ftsI gene diffusion in Haemophilus influenzae.

    PubMed

    González, Natalia; Aguilar, Lorenzo; Sevillano, David; Giménez, Maria-Jose; Alou, Luis; Cafini, Fabio; Torrico, Martha; López, Ana-Maria; Coronel, Pilar; Prieto, Jose

    2011-06-01

    This study explores the effects of cefditoren (CDN) versus amoxicillin-clavulanic acid (AMC) on the evolution (within a single strain) of total and recombined populations derived from intrastrain ftsI gene diffusion in β-lactamase-positive (BL⁺) and β-lactamase-negative (BL⁻) Haemophilus influenzae. DNA from β-lactamase-negative, ampicillin-resistant (BLNAR) isolates (DNA(BLNAR)) and from β-lactamase-positive, amoxicillin-clavulanate-resistant (BLPACR) (DNA(BLPACR)) isolates was extracted and added to a 10⁷-CFU/ml suspension of one BL⁺ strain (CDN MIC, 0.007 μg/ml; AMC MIC, 1 μg/ml) or one BL⁻ strain (CDN MIC, 0.015 μg/ml; AMC MIC, 0.5 μg/ml) in Haemophilus Test Medium (HTM). The mixture was incubated for 3 h and was then inoculated into a two-compartment computerized device simulating free concentrations of CDN (400 mg twice a day [b.i.d.]) or AMC (875 and 125 mg three times a day [t.i.d.]) in serum over 24 h. Controls were antibiotic-free simulations. Colony counts were performed; the total population and the recombined population were differentiated; and postsimulation MICs were determined. At time zero, the recombined population was 0.00095% of the total population. In controls, the BL⁻ and BL⁺ total populations and the BL⁻ recombined population increased (from ≈3 log₁₀ to 4.5 to 5 log₁₀), while the BL⁺ recombined population was maintained in simulations with DNA(BLPACR) and was decreased by ≈2 log₁₀ with DNA(BLNAR). CDN was bactericidal (percentage of the dosing interval for which experimental antibiotic concentrations exceeded the MIC [ft>MIC], >88%), and no recombined populations were detected from 4 h on. AMC was bactericidal against BL⁻ strains (ft>MIC, 74.0%) in DNA(BLNAR) and DNA(BLPACR) simulations, with a small final recombined population (MIC, 4 μg/ml; ft>MIC, 30.7%) in DNA(BLPACR) simulations. When AMC was used against the BL⁺ strain (in DNA(BLNAR) or DNA(BLPACR) simulations), the bacterial load was reduced ≈2 log₁₀ (ft>MIC, 44.3%), but 6.3% and 32% of the total population corresponded to a recombined population (MIC, 16 μg/ml; ft>MIC, 0%) in DNA(BLNAR) and DNA(BLPACR) simulations, respectively. AMC, but not CDN, unmasked BL⁺ recombined populations obtained by transformation. ft>MIC values higher than those classically considered for bacteriological response are needed to counter intrastrain ftsI gene diffusion by covering recombined populations.

  13. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Pelligand, L; Cheng, Z; Lees, P

    2017-10-01

    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  14. Monitoring of antimicrobial susceptibility of Streptococcus suis in the Netherlands, 2013-2015.

    PubMed

    van Hout, Jobke; Heuvelink, Annet; Gonggrijp, Maaike

    2016-10-15

    The objective of the present study was to analyse the in vitro antimicrobial susceptibility of Streptococcus suis isolates from post-mortem samples from pigs in the Netherlands. S. suis isolates originated from diagnostic submissions of pigs sent to the Pathology Department of GD Animal Health, from April 2013 till June 2015. Minimal inhibitory concentrations (MICs) of in total 15 antimicrobials were assessed by broth microdilution following CLSI recommendations. MIC 50 and MIC 90 values were determined and MICs were interpreted as susceptible, intermediate and resistant using CLSI veterinary breakpoints (when available). Emergence of resistance among S. suis (n=1163) derived from clinical submissions of pigs appeared to be limited. Resistance to ampicillin, ceftiofur, clindamycin, enrofloxacin, florfenicol, penicillin, trimethoprim/sulfamethoxazole and tetracycline was 0.3%, 0.5%, 48.1%, 0.6%, 0.1%, 0.5%, 3.0%, and 78.4%, respectively. Cross-resistance between penicillin and ampicillin appeared to be incomplete. MIC values of erythromycin, clindamycin, neomycin, penicillin and tilmicosin for isolates originating from grower/finisher pigs were significantly more often lower than the MIC values of isolates from suckling/weaned piglets. It has to be kept in mind that these results represent only part of the Dutch pig population and it can be discussed whether this is a representative sample. Interpretation of the MIC results of (clinically relevant) antimicrobials tested for treatment of S. suis infection is strongly hampered by the lack of CLSI-defined veterinary clinical breakpoints that are animal species- and body site-specific. Therefore, and to conduct a clinically reliable monitoring of antimicrobial susceptibility of veterinary pathogens, more species- and organ-specific veterinary breakpoints are urgently needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Experimental design and modelling approach to evaluate efficacy of β-lactam/β-lactamase inhibitor combinations.

    PubMed

    Sy, S K B; Derendorf, H

    2017-07-29

    A β-lactamase inhibitor (BLI) confers susceptibility of β-lactamase-expressing multidrug resistant (MDR) organisms to the partnering β-lactam (BL). To discuss the experimental design and modelling strategies for two-drug combinations, using ceftazidime- and aztreonam-avibactam combinations, as examples. The information came from several publications on avibactam in vitro time-kill studies and corresponding pharmacodynamic models. The experimental design to optimally gather crucial information from constant-concentration time-kill studies is to use an agile matrix of two-drug concentration combinations that cover 0.25- to 4-fold BL minimum inhibitory concentration (MIC) relative to the BLI concentrations to be tested against the particular isolate. This shifting agile design can save substantial costs and resources, without sacrificing crucial information needed for model development. The complex synergistic BL/BLI interaction is quantitatively explored using a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) mathematical model that accounts for antimicrobial activities in the combination, bacteria-mediated BL degradation and inhibition of BL degradation by BLI. A predictive mathematical formulation for the two-drug killing effects preserves the correlation between the model-derived EC 50 of BL and the BL MIC. The predictive value of PK/PD model is evaluated against external data that were not used for model development, including but not limited to in vitro hollow fibre and in vivo murine infection models. As a framework for translational predictions, the goal of this modelling strategy is to significantly decrease the decision-making time by running clinical trial simulations with MIC-substituted EC 50 function for isolates of comparable susceptibility through established correlation between BL MIC and EC 50 values. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds.

    PubMed

    Mohammed, Muthanna J; Al-Bayati, Firas A

    2009-06-01

    The aerial parts of Thymus kotschyanus Boiss. and Hohen. (Lamiaceae) and flower buds of Dianthus caryophyllus L. (Caryophyllaceae) have been traditionally implemented in the treatment of wounds, throat and gum infections and gastro-intestinal disorder by the indigenous people of northern Iraq, although the compounds responsible for the medicinal properties have not been identified. In this study, antibacterial compounds from both plants were isolated and characterized, and the biological activity of each compound was assessed individually and combined. Compounds were isolated and characterized from the extracted essential oils of both plants using different spectral techniques: TLC, FTIR spectra and HPLC. The minimum inhibitory concentrations MIC values for the compounds were assessed individually and combined based on a microdilution and the checkerboard method in 96 multi-well microtiter plates. Two known compounds were isolated from the essential oils of both plants and were identified as thymol and eugenol. The isolated compounds were investigated for their single and combined antibacterial activities against seven selected pathogenic bacteria; Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Thymol MIC values ranged from 15.6 to 250.0 microg/ml and B. cereus was found to be the most sensitive pathogen with a MIC value of 15.6 microg/ml. Eugenol achieved stronger MIC values against most tested pathogens and the best MIC value (15.6 microg/ml) was observed against B. cereus, L. monocytogenes and K. pneumoniae whereas, S. aureus, P. mirabilis and E. coli were inhibited with a MIC value of 31.2 microg/ml. Combination results had antibacterial enhancement against most pathogens and the best synergistic result was seen against P. mirabilis and E. coli. The isolation of two antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds validates the use of these species in the treatment of throat and gum infections, wound-healing and gastro-intestinal disorder.

  17. The PK/PD Interactions of Doxycycline against Mycoplasma gallisepticum

    PubMed Central

    Zhang, Nan; Gu, Xiaoyan; Ye, Xiaomei; Wu, Xun; Zhang, Bingxu; Zhang, Longfei; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong

    2016-01-01

    Mycoplasma gallisepticum is one of the most important pathogens that cause chronic respiratory disease in chicken. This study investigated the antibacterial activity of doxycycline against M. gallisepticum strain S6. In static time–killing studies with constant antibiotic concentrations [0–64 minimum inhibitory concentration (MIC)], M. gallisepticum colonies were quantified and kill rates were calculated to estimate the drug effect. The half-life of doxycycline in chicken was 6.51 ± 0.63 h. An in vitro dynamic model (the drug concentrations are fluctuant) was also established and two half-lives of 6.51 and 12 h were simulated. The samples were collected for drug concentration determination and viable counting of M. gallisepticum. In static time–killing studies, doxycycline produced a maximum antimycoplasmal effect of 5.62log10 (CFU/mL) reduction and the maximum kill rate was 0.11 h−1. In the in vitro dynamic model, doxycycline had a mycoplasmacidal activity in the two regimens, and the maximum antimycoplasmal effects were 4.1 and 4.75log10 (CFU/mL) reduction, respectively. Furthermore, the cumulative percentage of time over a 48-h period that the drug concentration exceeds the MIC (%T > MIC) was the pharmacokinetic–pharmacodynamic index that best correlated with antimicrobial efficacy (R2 = 0.986, compared with 0.897 for the peak level divided by the MIC and 0.953 for the area under the concentration–time curve over 48 h divided by the MIC). The estimated %T > MIC values for 0log10 (CFU/mL) reduction, 2log10 (CFU/mL) reduction and 3log10 (CFU/mL) reduction were 32.48, 45.68, and 54.36%, respectively, during 48 h treatment period of doxycycline. In conclusion, doxycycline shows excellent effectiveness and time-dependent characteristics against M. gallisepticum strain S6 in vitro. Additionally, these results will guide optimal dosing strategies of doxycycline in M. gallisepticum infection. PMID:27199972

  18. Relationship between the clinical efficacy and AUC/MIC of intravenous ciprofloxacin in Japanese patients with intraabdominal infections.

    PubMed

    Ohki, Emiko; Yamagishi, Yuka; Mikamo, Hiroshige

    2013-10-01

    The efficacy of fluoroquinolones (FQs) correlates with the pharmacokinetic/pharmacodynamic (PK-PD) parameter, AUC/MIC. To our knowledge, however, no prospective studies have reported the relationship between FQ efficacy and PK-PD parameters in intraabdominal infection; therefore, we prospectively investigated the relationship between the efficacy of intravenous ciprofloxacin (CPFX IV) and PK-PD parameters. The study included 16 patients diagnosed with peritonitis between 2006 and 2008: 14 patients infected with a single organism and 2 patients infected with more than one organism. Each patient was treated with CPFX IV (300 mg twice daily). The response rate was 56% (9 responders and 7 non-responders). Non-responders were infected with Escherichia coli, Pseudomonas aeruginosa, and Bacteroides fragilis (6 patients were infected with a single organism and 1 with more than one organism). Plasma drug concentrations were measured 1 h and 2 or 4 h after administration of CPFX IV. AUC for 24 h (AUC(0-24))/MIC values was calculated. The range of AUC(0-24)/MIC values in responders [95.3-3628.4 (geometric mean, 521.6)] was significantly different from that in non-responders [7.0-45.2 (geometric mean, 16.5)] (p = 0.001). The target AUC/MIC value of CPFX IV would be considered to be 45-95 in patients with peritonitis.

  19. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  20. ANTI-ADHESIVE AND ANTI-BIOFILM ACTIVITIES IN VITRO OF LINEZOLID, VANCOMYCIN, TIGECYCLINE AND DAPTOMYCIN AGAINST STAPHYLOCOCCUS HAEMOLYTICUS.

    PubMed

    Juda, Marek; Helon, Pawel; Malm, Anna

    2016-11-01

    Biofilm may be formed on wide variety of surfaces, including indwelling medical devices, leading to several infectious diseases, e.g., bacteremia and sepsis. The most,important pathogens related with infections associated with medical devices are coagulase-negative staphylococci, including Staphylococcus haeinolyticus - bacterial species which express quite often the multidrug resistance. The four clinical multiresistant and methicillin-resistant S. haenzolyticus were included in the present study. The evaluation of drug susceptibility was performed by using disc-diffusion method and broth microdilution method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The biofilm formation on the Nelaton catheter and the effect of linezolid, vancomycin, tigecycline and daptomycin on the biofilm formation and disruption of mature structure was based on the method with TTC (2,3,5-triphenyltetrazolium chloride). The adhesion process of S. haenzolyticus to the Nelaton catheter was inhibited by antibiotics, as follows: line-zolid at concentration 0.25-0.5 x MIC, vancomycin - concentration 0.5 x MIC, tigecycline - concentration 0.25-4 x MIC and daptomycin - concentration 0.06-1 x MIC, depending on the isolate. Linezolid inhibited the biofilm formation at concentration between 0.5-1 x MIC, vancomycin - 1-2 x MIC, tigecycline - 0.5-4 x MIC and daptomycin - 0.06-2 x MIC. The concentration of linezolid eradicating the mature biofilm was found to be 1-2 x MIC, vancomycin - 2-8 x MIC, tigecycline - 2-4 x MIC and daptomycin - 0.06-2 x MIC. The most active antibiotic against S. haentolyticus biofilm formation and disruption of mature structure seems to be daptomycin.

  1. Monomeric and gemini surfactants as antimicrobial agents - influence on environmental and reference strains.

    PubMed

    Koziróg, Anna; Brycki, Bogumił

    2015-01-01

    Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms.

  2. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  3. [Molecular epidemiology and antifungal susceptibility of Candida species isolated from urine samples of patients in intensive care unit].

    PubMed

    Yüksekkaya, Serife; Fındık, Duygu; Arslan, Uğur

    2011-01-01

    The aims of this study were to analyse the amphotericin B and fluconazole susceptibility and molecular epidemiology of Candida strains (Candida albicans, Candida tropicalis and Candida glabrata) isolated from the urine samples of patients hospitalized in the intensive care unit. Identification of the isolates was done according to microscopic morphology (chlamydospor, blastospor, pseudohyphae and true hyphae) on cornmeal agar, germ tube formation and carbohydrate assimilation patterns (API ID 32C bioMérieux, France). Antifungal susceptibilities of the isolates were determined by in vitro broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). To investigate the clonal relationship of the isolates, randomly amplified polymorphic DNA (RAPD) analysis was performed by using Cnd3 primer. Of the 56 Candida isolates minimum inhibitory concentration (MIC) ranges, MIC50 and MIC90 values for amphotericin B were 0.125-1 µg/ml, 0.125 and 0.5 µg/ml for C.albicans, 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.tropicalis and 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.glabrata, respectively. Fluconazole MIC ranges, MIC50 and MIC90 values were 0.25-4 µg/ml, 0.25 and 0.5 µg/ml for C.albicans, 0.25-16 µg/ml, 0.5 and 1 µg/ml for C.tropicalis and 0.5-64 µg/ml, 8 and 16 µg/ml for C.glabrata, respectively. For amphotericin B, none of the isolates had high MIC values (MIC > 1 µg/ml). While one of the C.glabrata isolates was resistant to fluconazole (MIC ≥ 64 µg/ml), one C.tropicalis and two C.glabrata isolates were dose-dependent susceptible (MIC: 16-32 µg/ml). The results of RAPD analysis indicated an exogenous spread from two clones for C.albicans, one clone for C.glabrata and one clone for C.tropicalis. This study underlines the importance of molecular epidemiological analysis of clinical samples together with hospital environmental samples in terms of Candida spp. To determine the exogenous origin for the related strains and to prevent nosocomial Candida infections.

  4. Evaluation of anti-microbial activity of spore powder of Ganoderma lucidum on clinical isolates of Prevotella intermedia: A pilot study.

    PubMed

    Nayak, Ranganath N; Dixitraj, P T; Nayak, Aarati; Bhat, Kishore

    2015-09-01

    This study aimed at evaluating the anti-microbial activity of spore powder of Ganoderma lucidum on Prevotella intermedia isolated from subgingival plaque from chronic periodontitis patients. Written informed consent was obtained from each subject enrolled in the study. The Institutional Ethics Committee granted the ethical clearance for the study. This study included 20 patients diagnosed with chronic periodontitis. Pooled subgingival plaque samples were collected using sterile curettes from the deepest sites of periodontal pockets. The collected samples were then transported in 1 mL of reduced transport fluid. The organisms were cultured and confirmed. These organisms were then used for minimum inhibitory concentration (MIC) procedure. Mean of the MIC value obtained was calculated. Thirteen out of the 20 clinical samples were tested that showed sensitivity at various concentrations. Five samples showed sensitivity at all concentrations. Twelve samples showed sensitivity at 8 mcg/ml. Eleven samples showed sensitivity at 4 mcg/ml, 8 samples showed sensitivity at 2 mcg/ml, and 5 samples showed sensitivity even at 1 mcg/ml. Mean MIC value of G. lucidum spore powder for P. intermedia obtained was 3.62 mcg/ml. G. lucidum with its multipotential bioactivity could be used as an anti-microbial, in conjunction with conventional therapy in periodontal disease.

  5. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    PubMed

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  6. Anti-MRSA cephalosporins Bristol-Myers Squibb.

    PubMed

    Johnson, A P

    2001-02-01

    BMS is investigating a series of cephalosporins for potential use in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection [274213]. In vitro activity tests resulted in a minimum inhibitory concentration (MIC) of 1 to 8 microg/ml against MRSA 1274213]. A series of C(3) benzoyloxymethyl cephalosporins exhibited in vitro activity against MRSA and methicillin-susceptible Staphylococcus aureus (MSSA), with MIC values ranging from 0.007 to 2 microM, and improved in vivo stability in human plasma [258890].

  7. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits.

    PubMed

    Daneshmand, Fatemeh; Zare-Zardini, Hadi; Ebrahimi, Leila

    2013-01-01

    Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.

  8. In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    NASA Astrophysics Data System (ADS)

    Saha, Biswarup; Bhattacharya, Jaydeep; Mukherjee, Ananda; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Dasgupta, Anjan K.; Karmakar, Parimal

    2007-12-01

    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains, Escherichia coli DH5α, Micrococcus luteus and Staphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications.

  9. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    PubMed

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  10. Growth Inhibition and Morphological Alterations of Trichophyton Rubrum Induced by Essential oil from Cymbopogon Winterianus Jowitt Ex Bor

    PubMed Central

    de Oliveira Pereira, Fillipe; Alves Wanderley, Paulo; Cavalcanti Viana, Fernando Antônio; Baltazar de Lima, Rita; Barbosa de Sousa, Frederico; de Oliveira Lima, Edeltrudes

    2011-01-01

    Trichophyton rubrum is one of the most common fungi causer of dermatophytosis, mycosis that affect humans and animals around the world. Researches aiming new products with antifungal activity become necessary to overcome difficulties on treatment of these infections. Accordingly, this study aimed to investigate the antifungal activity of essential oil from Cymbopogon winterianus against the dermatophyte T. rubrum. The antifungal screening was performed by solid medium diffusion method with 16 T. rubrum strains, minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined using the microdilution method. The effects on mycelial dry weight and morphology were also observed. Screening showed essential oil in natura inhibited all the tested strains, with inhibition zones between 24-28 mm diameter. MIC50 and MIC90 values of the essential oil were 312 μg/mL for nearly all the essayed strains (93.75 %) while the MFC50 and MFC90 values were about eight times higher than MIC for all tested strains. All tested essential oil concentrations managed to inhibit strongly the mycelium development. Main morphological changes on the fungal strains observed under light microscopy, which were provided by the essential oil include loss of conidiation, alterations concerning form and pigmentation of hyphae. In the oil presence, colonies showed folds, cream color and slightly darker than the control, pigment production was absent on the reverse and with evident folds. It is concluded that C. winterianus essential oil showed activity against T. rubrum. Therefore, it could be known as potential antifungal compound especially for protection against dermatophytosis. PMID:24031626

  11. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    PubMed

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  12. Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

    PubMed Central

    Kosowska, Klaudia; Hoellman, Dianne B.; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C.

    2005-01-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole. PMID:15855516

  13. Antibacterial activities of the methanol extract, fractions and compounds from Elaeophorbia drupifera (Thonn.) Stapf. (Euphorbiaceae).

    PubMed

    Voukeng, Igor K; Nganou, Blaise K; Sandjo, Louis P; Celik, Ilhami; Beng, Veronique P; Tane, Pierre; Kuete, Victor

    2017-01-07

    Elaeophorbia drupifera (Thonn.) Stapf. (Euphorbiaceae) is used in Cameroonian folk medicine to treat several ailments including bacterial-related diseases such as skin infections. In this study, the methanol extract from the leaves (EDL), fractions (EDLa-d), sub-fractions EDLc1-7 and EDLc31-35 as well as isolated compounds were tested for their antimicrobial activities against a panel of Gram-negative and Gram-positive bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; column chromatography was used for the fractionation and purification of the leaves extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Phytochemical investigation lead to the isolation of a mixture (1:3) of stigmasterol and β-sitosterol (1 + 2), euphol (3), sitosterol-O-β- D -xylopyranoside (4), 3,3',4'-tri-O-methylellagic acid (5), a mixture (1:1) of afzelin and quercetin-3-O-β- D -xylopyranoside (6 + 7), 3,3',4'-tri-O-methylellagic acid 4-O-β- D -glucopyranoside (8), ellagic acid-4-O-β-xylopyranoside-3,3',4'-trimethyl ether (9) from EDLc. Crude extract and fractions displayed selective activities with MIC values ranged from 32 to 1024 μg/mL for EDL against 84.9% of the 33 tested bacteria, 93.9% for EDLc, 69.7% for EDLb, 33.4% for EDLa and 0.03% for EDLd. MIC values ranged from 16 to 1024 μg/mL were obtained with EDLc3 and EDLc4 on all tested bacteria meanwhile other sub-fractions displayed selective activities. MIC value of 32 μg/mL was obtained with fractions EDLa against Escherichia coli AG100, EDLc against Enterobacer aerogenes ATCC13048 and EA298. For sub-fractions obtained from EDLc, the lowest MIC value of 16 μg/mL was recorded with EDLc3 against Staphylococcus aureus MRSA11. A corresponding value of 8 μg/mL against Providencia stuartii NAE16 was recorded with EDLc33 obtained from further fractionation of EDLc3. EDLc3 had MIC values below 100 μg/mL against all tested bacteria. Compound 5 as well as the mixture (1:1) of 6 and 7 inhibited the growth of all the tested bacteria with MICs ranged from 64 to 256 μg/mL. Elaeophorbia drupifera is a potential source of phytomedicine to tackle MDR bacteria. Sub-fraction EDLc3 was more active than all isolated compounds and deserves further investigations to develop natural drug to combat Gram-negative, Gram-positive bacteria and otherwise MDR phenotypes.

  14. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens

    PubMed Central

    Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.

    2014-01-01

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676

  15. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens.

    PubMed

    Vučić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2014-11-15

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract.

  16. Tetracycline improved the efficiency of other antimicrobials against Gram-negative multidrug-resistant bacteria.

    PubMed

    Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor

    2015-01-01

    Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  17. Anti-Salmonella activity of medicinal plants from Cameroon.

    PubMed

    Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C

    2001-06-01

    To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.

  18. [Preoperatively administered flomoxef sodium concentration in aqueous humor].

    PubMed

    Miyamoto, Mariko; Watanabe, Yoichiro; Mizuki, Nobuhisa

    2007-04-01

    We intravenously administered flomoxef sodium (FMOX) 0.5-3.5 hours before cataract surgery and measured the concentration of the agent in the aqueous humor to investigate its penetration into the aqueous humor and its efficacy in the prevention of postoperative endophthalmitis. 56 patients who underwent cataract surgery were enrolled in this study. They received 1 g FMOX via a 20-minute intravenous drip beginning 0.5-3.5 hours before the operation. Aqueous humor was aspirated from the anterior chamber and assayed for FMOX concentration using high-performance liquid chromatography. The mean intraoperative FMOX concentrations in the patients' aqueous humor were 0.79 +/- 0.24 microg/ml (administered 3.5 hours before surgery)--1.47 0.79 microg/ml (administered 1.5 hours before surgery). These concentrations administered 0.5-3.0 hours before surgery sufficiently exceeded the minimum inhibitory concentration (MIC) 90 values against Staphylococcus epidermidis, Staphylococcus aureus and Propionibacterium acnes, but did not achieve the MIC90 values against Enterococcus faecalis and Pseudomonas aeruginosa. The FMOX concentrations in the aqueous humor sampling were adequate to kill bacteria in vitro. This drug may be efficacious in the prevention of postoperative endophthalmitis in patients undergoing cataract surgery.

  19. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection

    PubMed Central

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller–Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration–time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin (R2 = 0.9711). The calculated AUC12h/MIC ratios in serum required to produce the net bacterial stasis, 1-log10 and 2-log10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections. PMID:29033841

  20. Mutant prevention concentration, pharmacokinetic-pharmacodynamic integration, and modeling of enrofloxacin data established in diseased buffalo calves.

    PubMed

    Ramalingam, B; Sidhu, P K; Kaur, G; Venkatachalam, D; Rampal, S

    2015-12-01

    The pharmacokinetic-pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax ), terminal half-life (t1/2 K10) , apparent volume of distribution (Vd(area) /F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h /MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h /MIC values by modeling PK/PD data. The lipopolysaccharide-induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves. © 2015 John Wiley & Sons Ltd.

  1. [In vitro susceptibilities of causative organisms isolated from patients with primary respiratory tract infections to BRL 25000 (clavulanic acid/amoxicillin)].

    PubMed

    Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K; Fukumoto, T

    1985-10-01

    The in vitro susceptibilities of various causative organisms recently isolated from patients with primary respiratory tract infections to BRL 25000 (a formulation of amoxicillin, 2 parts, and potassium clavulanate, 1 part), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase producing strains were detected by nitrocefin chromogenic method and PCG acidometric method. The frequency of isolation of beta-lactamase production in strains of S. aureus, H. influenzae, B. catarrhalis and K. pneumoniae was 92%, 18%, 36% and 98%, respectively. Against S. aureus strains with MIC values to AMPC of less than or equal to 100 micrograms/ml and CEX of less than or equal to 25 micrograms/ml BRL 25000 showed MIC values in the range 0.39-6.25 micrograms/ml with inocula of 10(6) CFU/ml, while BRL 25000 required 12.5-100 micrograms/ml of concentrations for inhibition of the strains with MIC values to AMPC of greater than 100 micrograms/ml and CEX of greater than or equal to 25 micrograms/ml. Against S. pyogenes and S. pneumoniae BRL 25000 showed MIC values in the range less than 0.024-0.10 micrograms/ml with inocula of 10(6) CFU/ml, which is much more active than CCL, CEX, CDX and CXD and slight less active than AMPC. Against H. influenzae and B. catarrhalis BRL 25000 showed MIC values in the range 0.20-6.25 micrograms/ml with inocula of 10(6) CFU/ml, which showed most potent activity among the agents tested. The activity of BRL 25000 against K. pneumoniae was approximately equal to that of CCL and superior to that of AMPC, CEX, CDX and CXD.

  2. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population

    PubMed Central

    Lardieri, Allison B.; Heil, Emily L.; Morgan, Jill A.

    2017-01-01

    OBJECTIVES Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. METHODS This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. RESULTS A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. CONCLUSIONS The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC. PMID:28337080

  3. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.

    PubMed

    Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A

    2017-01-01

    Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.

  4. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina.

    PubMed

    Córdoba, Susana; Isla, Maria G; Szusz, Wanda; Vivot, Walter; Altamirano, Rodrigo; Davel, Graciela

    2016-06-01

    Epidemiological cut-off values (ECVs) based on minimal inhibitory concentration (MIC) distribution have been recently proposed for some antifungal drug/Cryptococcus neoformans combinations. However, these ECVs vary according to the species studied, being serotypes and the geographical origin of strains, variables to be considered. The aims were to define the wild-type (WT) population of the C. neoformans species complex (C. neoformans) isolated from patients living in Argentina, and to propose ECVs for six antifungal drugs. A total of 707 unique C. neoformans isolates obtained from HIV patients suffering cryptococcal meningitis were studied. The MIC of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and posaconazole was determined according to the EDef 7.2 (EUCAST) reference document. The MIC distribution, MIC50 , MIC90 and ECV for each of these drugs were calculated. The highest ECV, which included ≥95% of the WT population modelled, was observed for flucytosine and fluconazole (32 μg ml(-1) each). For amphotericin B, itraconazole, voriconazole and posaconazole, the ECVs were: 0.5, 0.5, 0.5 and 0.06 μg ml(-1) respectively. The ECVs determined in this study may aid in identifying the C. neoformans strains circulating in Argentina with decreased susceptibility to the antifungal drugs tested. © 2016 Blackwell Verlag GmbH.

  5. Promethazine improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei.

    PubMed

    Sidrim, José Júlio Costa; Vasconcelos, David Caldas; Riello, Giovanna Barbosa; Guedes, Glaucia Morgana de Melo; Serpa, Rosana; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Cordeiro, Rossana de Aguiar; Castelo-Branco, Débora de Souza Collares Maia; Rocha, Marcos Fábio Gadelha; Brilhante, Raimunda Sâmia Nogueira

    2017-01-01

    Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l -1 , while the minimum biofilm elimination concentration (MBEC) was 780-3,120 mg l -1 . Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.

  6. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius).

    PubMed

    Yong, Yi Yi; Dykes, Gary; Lee, Sui Mae; Choo, Wee Sim

    2017-03-01

    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.

  7. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis.

    PubMed

    Pereira, Fillipe de Oliveira; Mendes, Juliana Moura; Lima, Igara Oliveira; Mota, Kelly Samara de Lira; Oliveira, Wylly Araújo de; Lima, Edeltrudes de Oliveira

    2015-02-01

    Trichophyton rubrum is the most common fungus causing chronic dermatophytosis in humans. Antifungal activity of promising agents is of great interest. Geraniol and citronellol are monoterpenes with antimicrobial properties. This study aimed to investigate the inhibitory effects and possible mechanism of antifungal activity of geraniol and citronellol against strains of T. rubrum. The minimum inhibitory concentration (MIC) of each drug against 14 strains was determined by broth microdilution. The effects of the drugs on dry mycelial weight, conidial germination, infectivity on human nail fragments, and morphogenesis of T. rubrum were analyzed. The effects on the cell wall (test with sorbitol) and cell membrane (release of intracellular material and ergosterol biosynthesis) were investigated. MIC values of geraniol ranged between 16 and 256 µg/mL while citronellol showed MIC values from 8 to 1024 µg/mL. The drugs (MIC and 2 × MIC) inhibited the mycelial growth, conidia germination, and fungal growth on nail fragments. The drugs (half of MIC) induced the formation of wide, short, and crooked hyphae in T. rubrum morphology. With sorbitol, geraniol MIC was increased by 64-fold and citronellol by 32-fold. The drugs caused leakage of intracellular material and inhibited ergosterol biosynthesis. The results suggest that the drugs damage cell wall and cell membrane of T. rubrum through a mechanism that seems to involve the inhibition of the ergosterol biosynthesis. This study confirms that geraniol and citronellol can be regarded as potential drugs for controlling T. rubrum growth, with great potential against agents of dermatophytosis.

  8. Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).

    PubMed

    Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping

    2017-09-01

    Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

  9. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  11. A diterpenoid taxodone from Metasequoia glyptostroboides with antimycotic potential against clinical isolates of Candida species.

    PubMed

    Bajpai, V K; Park, Y-H; Kang, S C

    2015-03-01

    The increasing importance of clinical isolates of Candida species and emerging resistance of Candida species to current synthetic antifungal agents have stimulated the search for safer and more effective alternative drugs from natural sources. This study was directed towards exploring the antimycotic potential of a diterpenoid compound taxodone isolated from Metasequoia glyptostroboides against pathogenic isolates of Candida species. Antimycotic efficacy of taxodone was evaluated by disc diffusion assay, determination of minimum inhibitory (MIC) and minimum fungicidal (MFC) concentrations, and cell viability assay. To confirm a partial antimycotic mode of action of taxodone, the efficacy of taxodone was determined by measuring the release of 260 nm absorbing materials from the selected Candida species as compared to control. The taxodone at the concentration of 400 μg/disc displayed potential antimycotic effect against the tested clinical and pathogenic isolates of Candida species as diameters of zones of inhibitions, which were found in the range of 11 ± 0.0 to 12.6 ± 0.5mm. The MIC and MFC values of taxodone against the tested clinical isolates were found in the range of 250 to 1000 and 500 to 2000μ g/mL, respectively. On the other hand, the MIC and MFC values of positive control (amphotericin B) against the tested Candida isolates were found in the range of 62.5 to 250 and 500 to 2000 μg/mL. On the viable counts of the tested fungal isolates, the taxodone exerted significant antimycotic effect. Elaborative study of partial mode of action conducted onto the release of 260nm materials (DNA and RNA) revealed potential detrimental effect of taxodone on the membrane integrity of the tested pathogens at MIC concentration. With respect to the antimycotic effect of taxodone against pathogenic and clinical isolates of Candida species, it might be confirmed that bioactive compound taxodone present in M. glyptostroboides holds therapeutic value of medicinal significance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Susceptibility to antimicrobial agents of Streptococcus suis capsular type 2 strains isolated from pigs.

    PubMed

    Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T

    1996-03-01

    The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.

  13. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts Against Pathogenic Oral Microorganisms--An In Vitro Comparative Study.

    PubMed

    Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri

    2015-01-01

    To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  14. Pharmacokinetic-Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers.

    PubMed

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2015-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (C max), the time when the maximum concentration reached (T max), and the area under the concentration-time curve (AUC) were 21.69-31.69 μg/mL, 1.13-1.23 h, and 228.97-444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller-Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid E max (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0-24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance.

  15. In vitro activity of origanum vulgare essential oil against candida species

    PubMed Central

    Cleff, Marlete Brum; Meinerz, Ana Raquel; Xavier, Melissa; Schuch, Luiz Filipe; Schuch, Luiz Filipe; Araújo Meireles, Mário Carlos; Alves Rodrigues, Maria Regina; de Mello, João Roberto Braga

    2010-01-01

    The aim of this study was to evaluate the in vitro activity of the essential oil extracted from Origanum vulgare against sixteen Candida species isolates. Standard strains tested comprised C. albicans (ATCC strains 44858, 4053, 18804 and 3691), C. parapsilosis (ATCC 22019), C. krusei (ATCC 34135), C. lusitaniae (ATCC 34449) and C. dubliniensis (ATCC MY646). Six Candida albicans isolates from the vaginal mucous membrane of female dogs, one isolate from the cutaneous tegument of a dog and one isolate of a capuchin monkey were tested in parallel. A broth microdilution technique (CLSI) was used, and the inoculum concentration was adjusted to 5 x 106 CFU mL-1. The essential oil was obtained by hydrodistillation in a Clevenger apparatus and analyzed by gas chromatography. Susceptibility was expressed as Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC). All isolates tested in vitro were sensitive to O. vulgare essential oil. The chromatographic analysis revealed that the main compounds present in the essential oil were 4-terpineol (47.95%), carvacrol (9.42%), thymol (8.42%) and □-terpineol (7.57%). C. albicans isolates obtained from animal mucous membranes exhibited MIC and MFC values of 2.72 μL mL-1 and 5 μL mL-1, respectively. MIC and MFC values for C. albicans standard strains were 2.97 μL mL-1 and 3.54 μL mL-1, respectively. The MIC and MFC for non-albicans species were 2.10 μL mL-1 and 2.97 μL mL-1, respectively. The antifungal activity of O. vulgare essential oil against Candida spp. observed in vitro suggests its administration may represent an alternative treatment for candidiasis. PMID:24031471

  16. Susceptibility patterns for amoxicillin/clavulanate tests mimicking the licensed formulations and pharmacokinetic relationships: do the MIC obtained with 2:1 ratio testing accurately reflect activity against beta-lactamase-producing strains of Haemophilus influenzae and Moraxella catarrhalis?

    PubMed

    Pottumarthy, Sudha; Sader, Helio S; Fritsche, Thomas R; Jones, Ronald N

    2005-11-01

    Amoxicillin/clavulanate has recently undergone formulation changes (XR and ES-600) that represent 14:1 and 16:1 ratios of amoxicillin/clavulanate. These ratios greatly differ from the 2:1 ratio used in initial formulations and in vitro susceptibility testing. The objective of this study was to determine if the reference method using a 2:1 ratio accurately reflects the susceptibility to the various clinically used amoxicillin/clavulanate formulations and their respective serum concentration ratios. A collection of 330 Haemophilus influenzae strains (300 beta-lactamase-positive and 30 beta-lactamase-negative) and 40 Moraxella catarrhalis strains (30 beta-lactamase-positive and 10 beta-lactamase-negative) were tested by the broth microdilution method against eight amoxicillin/clavulanate combinations (4:1, 5:1, 7:1, 9:1, 14:1, and 16:1 ratios; 0.5 and 2 microg/mL fixed clavulanate concentrations) and the minimum inhibitory concentration (MIC) results were compared with those obtained with the reference 2:1 ratio testing. For the beta-lactamase-negative strains of both genera, there was no demonstrable change in the MIC values obtained for all ratios analyzed (2:1 to 16:1). For the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, at ratios >or=4:1 there was a shift in the central tendency of the MIC scatterplot compared with the results of testing 2:1 ratio. As a result, there was a 2-fold dilution increase in the MIC(50) and MIC(90) values, most evident for H. influenzae and BRO-1-producing M. catarrhalis strains. For beta-lactamase-positive strains of H. influenzae, the shift resulted in a change in the interpretive result for 3 isolates (1.0%) from susceptible using the reference method (2:1 ratio) to resistant (8/4 microg/mL; very major error) at the 16:1 ratio. In addition, the number of isolates with MIC values at or 1 dilution lower than the breakpoint (4/2 microg/mL) increased from 5% at 2:1 ratio to 32-33% for ratios 14:1 and 16:1. Our results indicate that, for the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, the results of the amoxicillin/clavulanate reference 2:1 ratio testing do not accurately represent all the currently licensed formulations. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment might be compromised when higher amoxicillin/clavulanate ratios are used clinically. With a better understanding of PK/PD parameters, reevaluation of the amoxicillin/clavulanate in vitro susceptibility testing should be considered by the standardizing authorities to reflect the licensed formulations and accurately predict clinical outcomes.

  17. Activity of TDT 067 (Terbinafine in Transfersome) against Agents of Onychomycosis, as Determined by Minimum Inhibitory and Fungicidal Concentrations▿

    PubMed Central

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-01-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38–A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC50 values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted. PMID:21411586

  18. Antimicrobial susceptibility of Brachyspira hyodysenteriae isolated from 21 Polish farms.

    PubMed

    Zmudzki, J; Szczotka, A; Nowak, A; Strzelecka, H; Grzesiak, A; Pejsak, Z

    2012-01-01

    Swine dysentery (SD) is a common disease among pigs worldwide, which contributes to major production losses. Antimicrobial susceptibility testing of B. hyodysenteriae, the etiological agent of SD, is mainly performed by the agar dilution method. This method has certain limitations due to difficulties in interpretation of results. The aim of this study was the analysis of antimicrobial susceptibility of Brachyspira hyodysenteriae (B. hyodysenteriae) Polish field isolates by broth microdilution procedure. The study was performed on 21 isolates of B. hyodysenteriae, collected between January 2006 to December 2010 from cases of swine dysentery. VetMIC Brachyspira panels with antimicrobial agents (tiamulin, valnemulin, doxycycline, lincomycin, tylosin and ampicillin) were used for susceptibility testing of B. hyodysenteriae. The minimal inhibitory concentration (MIC) was determined by the broth dilution procedure. The lowest antimicrobial activity was demonstrated for tylosin and lincomycin, with inhibition of bacterial growth using concentrations > 128 microg/ml and 32 microg/ml, respectively. In the case of doxycycline, the MIC values were < or = 2.0 microg/ml. No decreased susceptibility to tiamulin was found among the Polish isolates and MIC values for this antibiotic did not exceed 1.0 microg/ml. The results of the present study confirmed that Polish B. hyodysenteriae isolates were susceptible to the main antibiotics (tiamulin and valnemulin) used in treatment of swine dysentery. Further studies are necessary to evaluate a possible slow decrease in susceptibility to tiamulin and valnemulin of B. hyodysenteriae strains in Poland.

  19. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives.

    PubMed

    Fontenelle, Raquel O S; Morais, Selene M; Brito, Erika H S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Lima, Ynayara C; Brasil, Nilce V G P S; Monteiro, André J; Sidrim, José J C; Rocha, Marcos F G

    2011-07-29

    In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol) against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC). The minimum fungicidal concentrations (MFC) for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8-9.7; 78-150; 39; 78-150; 78-150; 19-39 µg/mL and 0.006-2.5 mg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620-1250; 150-620; 310-620; 620; 620-1250 and 0.25-2.0 mg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo.

  20. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies

    PubMed Central

    Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; Aguirre, C.; Chan, R.; Meyer, K.; Kuhlman, A.; Townesmith, A.; Effio-Carbajal, J.; Frías-Fernandez, F.; Benito, M.

    2010-01-01

    Aim The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as “inflammation”. The aim of this study was to evaluate the Minimum Inhibitory Concentration (MIC) of their antibacterial properties against Gram-positive and Gram-negative bacteria. Materials and methods The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. Results The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against E. coli and 38 extracts against S. aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256mg/ml, with only 36 species showing inhibitory concentrations of <4mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. Conclusions The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. PMID:20678568

  1. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies.

    PubMed

    Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M

    2010-10-28

    The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of <4 mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis.

    PubMed

    Montironi, Ivana D; Cariddi, Laura N; Reinoso, Elina B

    Bovine mastitis is a disease that causes great economic losses per year, being Streptococcus uberis the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Minthostachys verticillata essential oil and limonene for S. uberis strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5mg/ml (1.56-12.5%v/v) and MBC between 114.5 and 229mg/ml (12.5-25%v/v). MICs for limonene ranged from 3.3 to 52.5mg/ml (0.39-6.25%v/v) and MBC was 210mg/ml (25%v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by S. uberis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Isojacareubin from the Chinese Herb Hypericum japonicum: Potent Antibacterial and Synergistic Effects on Clinical Methicillin-Resistant Staphylococcus aureus (MRSA)

    PubMed Central

    Zuo, Guo-Ying; An, Jing; Han, Jun; Zhang, Yun-Ling; Wang, Gen-Chun; Hao, Xiao-Yan; Bian, Zhong-Qi

    2012-01-01

    Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA. PMID:22942699

  4. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    PubMed

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  5. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria.

    PubMed

    Graziano, Talita Signoreti; Calil, Caroline Morini; Sartoratto, Adilson; Franco, Gilson César Nobre; Groppo, Francisco Carlos; Cogo-Müller, Karina

    2016-01-01

    Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine.

  6. In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.

    PubMed

    Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P

    2015-03-01

    The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  8. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis

    PubMed Central

    Boikov, Dina A.; James, Kenneth D.; Bartizal, Ken; Sobel, Jack D.

    2017-01-01

    Background: The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. Objectives: To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. Methods: MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans (n = 60), Candida glabrata (n = 21), Candida parapsilosis (n = 14) and Candida tropicalis (n = 13). Results: Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. Conclusions: CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. PMID:28158577

  9. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis.

    PubMed

    Boikov, Dina A; Locke, Jeffrey B; James, Kenneth D; Bartizal, Ken; Sobel, Jack D

    2017-05-01

    The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans ( n  =   60), Candida glabrata ( n  =   21), Candida parapsilosis ( n  =   14) and Candida tropicalis ( n  =   13). Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  10. Meta-Analysis

    PubMed Central

    Kale-Pradhan, Pramodini B.; Mariani, Nicholas P.; Wilhelm, Sheila M.; Johnson, Leonard B.

    2015-01-01

    Background: Vancomycin is used to treat serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA). It is unclear whether MRSA isolates with minimum inhibitory concentration (MIC) 1.5 to 2 µg/mL are successfully treated with vancomycin. Objective: Evaluate vancomycin failure rates in MRSA bacteremia with an MIC <1.5 versus ≥1.5 µg/mL, and MIC ≤1 versus ≥2 µg/mL. Methods: A literature search was conducted using MESH terms vancomycin, MRSA, bacteremia, MIC, treatment and vancomycin failure to identify human studies published in English. All studies of patients with MRSA bacteremia treated with vancomycin were included if they evaluated vancomycin failures, defined as mortality, and reported associated MICs determined by E-test. Study sample size, vancomycin failure rates, and corresponding MIC values were extracted and analyzed using RevMan 5.2.5. Results: Thirteen studies including 2955 patients met all criteria. Twelve studies including 2861 patients evaluated outcomes using an MIC cutoff of 1.5 µg/mL. A total of 413 of 1186 (34.8%) patients with an MIC <1.5 and 531 of 1675 (31.7%) patients with an MIC of ≥1.5 µg/mL experienced treatment failure (odds ratio = 0.72, 95% confidence interval = 0.49-1.04, P = .08). Six studies evaluated 728 patients using the cutoffs of ≤1 and ≥2 µg/mL. A total of 384 patients had isolates with MIC ≤1 µg/mL, 344 had an MIC ≥2 µg/mL. Therapeutic failure occurred in 87 and 102 patients, respectively (odds ratio = 0.61, 95% confidence interval = 0.34-1.10, P = .10). As heterogeneity between the studies was high, a random-effects model was used. Conclusion: Vancomycin MIC may not be an optimal sole indicator of vancomycin treatment failure in MRSA bacteremia.

  11. Pharmacokinetics of furagin, a new nitrofurantoin congener, on human volunteers.

    PubMed

    Männistö, P; Karttunen, P

    1979-06-01

    The human pharmacokinetics of a nitrofurantoin congener furagin was studied after a single oral dose of 200 mg and during a 9-day continuous treatment with a dose of 100 mg t.i.d. The same dose of nitrofurantoin served as a reference medication. In the acute cross-over phase food greatly speeded up and atropine somewhat retarded the absorption of furagin, but the total absorption remained virtually unchanged as judged from the unchanged AUC values. The furagin concentrations in serum remain several hours above the MIC concentrations of many pathogenic bacteria. Despite the high concentrations in serum, the urine levels of furagin were generally lower than those of nitrofurantoin. The 24 hr recoveries in urine were 8--13% for furagin and about 36% for nitrofurantoin. In the prolonged trial furagin was absorbed and excreted in the same way as in the acute trial. On the 9th day the concentrations in serum and urine were higher than on the first day. The urinary concentrations of both furagin and nitrofurantoin always remained well above the MIC values of the most susceptible bacteria. Several volunteers complained of nightly cramps in their calves after taking furagin for some days, otherwise the side effects were minimal.

  12. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    PubMed Central

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  13. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    PubMed

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  14. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations

    PubMed Central

    Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka

    2017-01-01

    Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v/v, which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans, and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N-acetyl-β-glucosaminidase and 14% isolates—α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25–0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity. PMID:28629195

  15. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations.

    PubMed

    Rajkowska, Katarzyna; Otlewska, Anna; Kunicka-Styczyńska, Alina; Krajewska, Agnieszka

    2017-06-19

    Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v / v , which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans , and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N -acetyl-β-glucosaminidase and 14% isolates-α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25-0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity.

  16. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh.

    PubMed

    Dutta, Subarna; Haq, Sabah; Hasan, Mohammad Rokibul; Haq, Jalaluddin Ashraful

    2017-07-20

    Melioidosis an infectious disease, caused by a Gram negative bacterium called Burkholderia pseudomallei, is endemic in Bangladesh. This organism is sensitive to limited number of antimicrobial agents and need prolonged treatment. There is no comprehensive data on the antimicrobial susceptibility profile of B. pseudomallei isolated in Bangladesh over last several years. The present study aimed to determine the antimicrobial susceptibility pattern of B. pseudomallei isolated in a tertiary care hospital of Dhaka city from 2009 to 2015. All B. pseudomallei isolated from melioidosis patients over a period of 7 years (2009-2015) in the Department of Microbiology of a 725-bed tertiary care referral hospital in Dhaka city, Bangladesh were included in the study. B. pseudomallei was identified by Gram stain, culture, specific biochemical tests, serology and PCR using specific primers constructed from 16s rRNA region of B. pseudomallei. Antimicrobial susceptibility to specific agents was determined by disk diffusion and minimum inhibitory concentration methods. A total of 20 isolates of B. pseudomallei which were isolated from patients coming from different geographic locations of Bangladesh were included in the study. All the isolates were uniformly sensitive (100%) to ceftazidime, imipenem, piperacillin-tazobactam, amoxicillin-clavulanic acid and tetracycline by both disk diffusion and MIC methods. Two strains were resistant to trimethoprim-sulfamethoxazole by disk diffusion method but were sensitive by MIC method. The MIC 50 and MIC 90 values of the above antimicrobial agents were almost similar. All the isolates were resistant to amikacin by both MIC and disk diffusion methods. The results of the study suggest that B. pseudomallei prevalent in Bangladesh were still susceptible to all recommended antimicrobial agents used for the treatment of melioidosis. However, regular monitoring is needed to detect any emergence of resistance and shifting of MIC 50 and MIC 90 values.

  17. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Interferometry as a tool for evaluating effects of antimicrobial doses on Mycobacterium bovis growth.

    PubMed

    Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C

    2015-12-01

    Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens.

    PubMed

    Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S

    1989-09-01

    The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.

  20. Chemical Composition and Antibacterial Activity of the Essential Oil of Vitex agnus-castus L. (Lamiaceae).

    PubMed

    Gonçalves, Regiane; Ayres, Vanessa F S; Carvalho, Carlos E; Souza, Maria G M; Guimarães, Anderson C; Corrêa, Geone M; Martins, Carlos H G; Takeara, Renata; Silva, Eliane O; Crotti, Antônio E M

    2017-01-01

    Abnormal multiplication of oral bacteria causes dental caries and dental plaque. These diseases continue to be major public health concerns worldwide, mainly in developing countries. In this study, the chemical composition and antimicrobial activity of the essential oil of Vitex agnus-castus leaves (VAC‒EO) collected in the North of Brazil against a representative panel of cariogenic bacteria were investigated. The antimicrobial activity of VAC-EO was evaluated in terms of its minimum inhibitory concentration (MIC) values by using the broth microdilution method in 96-well microplates. The chemical constituents of VAC-EO were identified by gas chromatography (GC‒FID) and gas chromatography‒mass spectrometry (GC‒MS). VAC‒EO displayed some activity against all the investigated oral pathogens; MIC values ranged from 15.6 to 200 μg/mL. VAC-EO had promising activity against Streptococcus mutans (MIC= 15.6 μg/mL), Lactobacillus casei (MIC= 15.6 μg/mL), and Streptococcus mitis (MIC= 31.2 μg/mL). The compounds 1,8-cineole (23.8%), (E)-β-farnesene (14.6%), (E)-caryophyllene (12.5%), sabinene (11.4%), and α-terpinyl acetate (7.7%) were the major chemical constituents of VAC‒EO. VAC-EO displays antimicrobial activity against cariogenic bacteria. The efficacy of VAC-EO against S. mutans is noteworthy and should be further investigated.

  1. [Sinusal penetration of amoxicillin-clavulanic acid. Formulation 1 g./125 mg., twice daily versus formulation 500 mg./125 mg., three times daily].

    PubMed

    Jehl, F; Klossek, J M; Peynegre, R; Serrano, E; Castillo, L; Bobin, S; Desprez, D; Renault, C; Neel, V; Rouffiac, E; Borie, C

    2002-10-19

    In order to meet the evolution of pneumococcus resistance to beta-lactam antibiotics, a new formulation of amoxicillin (AMX) and clavulanic acid (CA), with twice as much AMX (1 g/125 mg vs. 500 mg/125 mg) was developed for the treatment of acute pneumonia in patients at risk. This formulation can also be used in the treatment of acute maxillary sinusitis using a 1 g/125 mg regimen twice-daily. Compare the sinusal penetration of AMX and CA (1 g/125 mg twice-daily vs. 500 mg/125 mg three times a day) when administered at both regimens to demonstrate equivalent pharmacokinetic and pharmacodynamic behaviour of the former when compared to the latter. Concentrations of AMX and CA were measured in the anterior ethmoid, maxillary, posterior ethmoid sinus and in the middle nasa concha in 62 patients undergoing surgery for nasosinusal polyps. Patients randomised in two groups corresponding to 2 oral regimens, received either 1 g/125 mg twice a day or 500 mg/125 mg three times a day for 4 days. The last dose in both groups was administered 1 h 30, 3, 5 or 8 hrs prior to surgery. Serum samples were taken simultaneously to tissue samples. AMX and CA were measured by high performance liquid chromatography. Exogenous and above all endogenous blood contamination were taken into account with the hematocrit as well as blood and tissue haemoglobin concentrations. Comparisons of tissue concentrations were made for each sampling time, according to values obtained for a specific tissue with both doses on one hand, and on the other to values obtained with a specific dose in different tissues. The calculated pharmacodynamic parameters, which are considered to be predictive for bacteriological and clinical efficacy, result directly from tissue concentrations of AMX. tissue inhibitory quotients (IQtissue = Tissue concentration/MIC). time above MICs for serum and tissue concentrations (T > MIC). As regards AMX, whatever the dose, at 1 h 30 and at 3 hrs, tissue concentrations did not differ significantly whatever the tissue studied (from 1.1 to 2.5 micrograms/g). Conversely, at 5 and 8 hrs, they were greater than after the 1 g/125 mg regimen given twice-daily (0.06-0.7 vs. 0.7-1.8 micrograms/g). If we consider a given dose, the comparison between the various tissues showed identical concentrations in the four tissues studied at each sampling time, except in two cases with the dose of 500 mg/125 mg 3 times a day. T > MIC for serum and tissue showed higher values than those required for AMX/pneumococcus association (40-50%) with, nevertheless, greater tissue values for the 1 g/125 mg dose given twice-daily when MIC was of 1 microgram/ml (40-52% vs. 50-66%). The maximum tissue inhibitory quotients were also greater with the twice-daily 1 g/125 mg dose, when calculated with MIC 50 or 90 of S. Pneumoniae, H. influenzae, M. catarrhalis or S. pyogenes. As for CA, concentrations were equivalent for both doses at each sampling time and greater than those required in vitro during respectively 4 and 5 hours for beta-lactamases H. influenzae and M. catarrhalis. A least an equivalence between both dose regimens was observed, with occasionally a superiority of the twice-daily 1 g/125 mg dose, in terms of pharmacokinetics, tissue penetration and pharmacodynamics for both AMX and CA. This new regimen therefore appears more appropriate for the treatment of acute maxillary sinusitis in adults.

  2. Susceptibility screening of hyphae-forming fungi with a new, easy, and fast inoculum preparation method.

    PubMed

    Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia

    2012-12-01

    In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.

  3. Pharmacokinetics (PK), Pharmacodynamics (PD), and PK-PD Integration of Danofloxacin in Sheep Biological Fluids

    PubMed Central

    Aliabadi, F. Shojaee; Landoni, M. F.; Lees, P.

    2003-01-01

    The fluoroquinolone antimicrobial drug danofloxacin was administered to sheep intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1.25 mg/kg of body weight in a two-period crossover study. The pharmacokinetic properties of danofloxacin in serum, inflamed tissue cage fluid (exudate), and noninflamed tissue cage fluid (transudate) were established by using a tissue cage model. The in vitro and ex vivo activities of danofloxacin in serum, exudate, and transudate against a pathogenic strain of Mannheimia haemolytica were established. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the area under the curve (AUC)/MIC for serum, exudate, and transudate of 60.5, 85.6, and 45.7 h, respectively, after i.v. dosing and 55.9, 77.9, and 49.1 h, respectively, after i.m. dosing. After i.m. dosing, the maximum concentration/MIC ratios for serum, exudate, and transudate were 10.8, 3.0, and 1.6, respectively. The ex vivo growth inhibition data after i.m. dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria. The respective values for serum were 17.8, 20.2, and 28.7 h, and slightly higher values were obtained for transudate and exudate. It is proposed that use of these data might provide a novel approach to the rational design of dosage schedules. PMID:12543670

  4. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.

    PubMed

    Waller, Stefanie Bressan; Madrid, Isabel Martins; Ferraz, Vanny; Picoli, Tony; Cleff, Marlete Brum; de Faria, Renata Osório; Meireles, Mário Carlos Araújo; de Mello, João Roberto Braga

    The study aimed to evaluate the anti-Sporothrix sp. activity of the essential oil of Origanum majorana Linn. (marjoram), its chemical analysis, and its cytotoxic activity. A total of 18 fungal isolates of Sporothrix brasiliensis (n: 17) from humans, dogs and cats, and a standard strain of Sporothrix schenckii (n: 1) were tested using the broth microdilution technique (Clinical and Laboratory Standard Institute - CLSI M27-A3) and the results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). The MIC 50 and MIC 90 of itraconazole against S. brasiliensis were 2μg/mL and 8μg/mL, respectively, and the MFC 50 and MFC 90 were 2μg/mL and >16μg/mL, respectively, with three S. brasiliensis isolates resistant to antifungal. S. schenckii was sensitive at MIC of 1μg/mL and MFC of 8μg/mL. For the oil of O. majorana L., all isolates were susceptible to MIC of ≤2.25-9mg/mL and MFC of ≤2.25-18mg/mL. The MIC 50 and MIC 90 were ≤2.25mg/mL and 4.5mg/mL, respectively, and the MFC 50/90 values were twice more than the MIC. Twenty-two compounds were identified by gas chromatography with a flame ionization detector (CG-FID) and 1,8-cineole and 4-terpineol were the majority. Through the colorimetric (MTT) assay, the toxicity was observed in 70-80% of VERO cells between 0.078 and 5mg/mL. For the first time, the study demonstrated the satisfactory in vitro anti-Sporothrix sp. activity of marjoram oil and further studies are needed to ensure its safe and effective use. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. [Emerging pathogen: Candida kefyr (Kluvyeromyces marxianus)].

    PubMed

    Çuhadar, Tuğba; Kalkancı, Ayşe

    2017-10-01

    In the central microbiology laboratory of Gazi University Hospital Candida kefyr was isolated from different clinical samples as 5.3% in 2016 and in 2017 this rate increased to 9.3% which was nearly two-fold and this has drawn our attention. The aim of this study was to evaluate the special characteristics, antifungal susceptibility and virulence properties of C.keyfr species. Germ tube, corn meal-tween 80 agar morphology and carbohydrate assimilation profiles on ID32C yeast identification system were used for the diagnosis of Candida species. In this study, DNA sequencing was performed using ITS1 and ITS4 primers amplifying fungal gene between 5.8S and 18S regions of rRNA. Antifungal susceptibility was performed using M27A microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). Minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, voriconazole and itraconazole were determined. MIC distribution, MIC50 and MIC90 values and geometric mean (GM) were detected. The existence of virulence factors caseinase, secreted aspartyl proteinase, esterase and phospholipase were investigated in vitro. A total of 865 Candida species were isolated from different clinical samples in the central microbiology laboratory of Gazi University Hospital in 2016. Among them, 46 (5.3%) were C.kefyr. In the first four months of 2017, 30 (9.3%) C.kefyr were identified among 320 Candida isolates. Ten isolates which have shown atypical morphology on corn meal agar were selected. Among these 10 isolates, nine of them were identified as C.kefyr by using ID32C system and DNA sequencing method. Amphotericin B MIC value was 2 µg/ml for one isolate, and fluconazole MIC value was 8 µg/ml for another isolate among 46 isolates. Among the 30 isolates of the year 2017, one of them presented MIC value for fluconazole as 8 µg/ml. No marked antifungal resistance was detected in our isolate group. Caseinase was positive in one C.kefyr isolate, and phospholipase were positive in eight of nine isolates. As a result, the reason of increase in the incidence of this Candida species, which does not show significant resistance and presents mostly phospholipase activity as a virulence factor, should be investigated in more detail.

  6. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor

    PubMed Central

    Jaszek, Magdalena; Stefaniuk, Dawid; Ciszewski, Tomasz; Matuszewski, Łukasz

    2018-01-01

    The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively. PMID:29874240

  7. In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin.

    PubMed

    Evren, Ebru; Yurtcu, Erkan

    2015-07-01

    Limited treatment options in infectious diseases caused by resistant microorganisms created the need to search new approaches. Several herbal extracts are studied for their enormous therapeutic potential. Silymarin extract, from Silybum marianum (milk thistle), is an old and a new remedy for this goal. The purpose of this study is to evaluate the antibacterial and antiadherent effects of silymarin besides biofilm viability activity on standard bacterial strains. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antiadherent/antibiofilm activity, and effects on biofilm viability of silymarin were evaluated against standard bacterial strains. MIC values were observed between 60 and >241 μg/mL (0.25->1 mmol/L). Gram-positive bacteria were inhibited at concentrations between 60 and 120 μg/mL. Gram-negative bacteria were not inhibited by the silymarin concentrations included in this study. MBC values for Gram-positive bacteria were greater than 241 μg/mL. Adherence/biofilm formations were decreased to 15 μg/mL silymarin concentration when compared with silymarin-untreated group. Silymarin reduced the biofilm viabilities to 13 and 46 % at 1 and 0.5 mmol/L concentrations, respectively. We demonstrated that silymarin shows antibacterial and antiadherent/antibiofilm activity against certain standard bacterial strains which may be beneficial when used as a dietary supplement or a drug.

  8. Pharmacodynamics of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2012-09-15

    The pharmacodynamics (PD) of oxytetracycline was investigated against a strain of Mannheimia haemolytica. In vitro measurements, comprising minimum inhibitory concentration (MIC), minimum bactericidal concentration and time-kill curves, were conducted in five matrices; Mueller Hinton Broth (MHB), cation-adjusted MHB (CAMHB) and calf serum, exudate and transudate. MICs were much higher in the biological fluids than in MHB and CAMHB. Ratios of MIC were, serum: CAMHB 19 : 1; exudate:CAMHB 16.1; transudate:CAMHB 14 : 1. Ex vivo data, generated in the tissue cage model of inflammation, demonstrated that oxytetracycline, administered to calves intramuscularly at a dose rate of 20 mg/kg, did not inhibit the growth of M haemolytica in serum, exudate and transudate, even at peak concentration. However, using in vitro susceptibility in CAMHB and in vivo-determined pharmacokinetic (PK) variables, average and minimum oxytetracycline concentrations relative to MIC (C(av)/MIC and C(min)/MIC) predicted achievement of efficacy for approximately 48 hours after dosing. Similar C(av)/MIC and C(min)/MIC data were obtained when oxytetracycline was administered in the presence of carprofen. PK-PD integration of data for oxytetracycline, based on MICs determined in the three biological fluids, suggests that it possesses, at most, limited direct killing activity against M haemolytica. These data raise questions concerning the mechanism(s) of action of oxytetracycline, when administered at clinically recommended dose rates.

  9. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species.

    PubMed

    Pinto, Eugénia; Gonçalves, Maria-José; Cavaleiro, Carlos; Salgueiro, Lígia

    2017-09-22

    The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant's aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts ( Candida spp., Cryptococcus neoformans and Malassezia furfur ) and moulds ( Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans , dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL) and their major compounds in Candida albicans . Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.

  10. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.

    PubMed

    Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan

    2017-06-01

    Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effects of subinhibitory concentrations of costus oil on virulence factor production in Staphylococcus aureus.

    PubMed

    Qiu, J; Wang, J; Luo, H; Du, X; Li, H; Luo, M; Dong, J; Chen, Z; Deng, X

    2011-01-01

    To determine the antimicrobial activity of costus (Saussurea lappa) oil against Staphylococcus aureus, and to evaluate the influence of subinhibitory concentrations of costus oil on virulence-related exoprotein production in staph. aureus. Minimal inhibitory concentrations (MICs) were determined using a broth microdilution method, and the MICs of costus oil against 32 Staph. aureus strains ranged from 0.15 to 0.6 μl ml(-1) . The MIC(50) and MIC(90) were 0.3 and 0.6 μl ml(-1) , respectively. Western blot, haemolytic, tumour necrosis factor (TNF) release and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of costus oil on virulence-associated exoprotein production in Staph. aureus. The data presented here show that costus oil dose dependently decreased the production of α-toxin, toxic shock syndrome toxin 1 (TSST-1) and enterotoxins A and B in both methicillin-sensitive Staph. aureus (MSSA) and methicillin-resistant Staph. aureus (MRSA). Costus oil has potent antimicrobial activity against Staph. aureus, and the production of α-toxin, TSST-1 and enterotoxins A and B in Staph. aureus was decreased by costus oil. The data suggest that costus oil may deserve further investigation for its potential therapeutic value in treating Staph. aureus infections. Furthermore, costus oil could be rationally applied in food products as a novel food preservative both to inhibit the growth of Staph. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  12. Could essential oils of green and black pepper be used as food preservatives?

    PubMed

    Nikolić, Miloš; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Marković, Tatjana; Smiljković, Marija; Soković, Marina

    2015-10-01

    Black and green pepper essential oils were used in this study in order to determine the chemical composition, in vitro antimicrobial activity against food spoilage microorganisms and in situ oils effect on food microorganism, after incorporation in chicken soup, by suggested methodology for calculation of Growth inhibition concentrations (GIC50). Chemical analysis revealed a total of 34 components. The major constituent of black pepper oil was trans-caryophyllene (30.33 %), followed by limonene (12.12 %), while β-pinene (24.42 %), δ(3)-carene (19.72 %), limonene (18.73 %) and α-pinene (10.39 %) were dominant compounds in green pepper oil. Antimicrobial activity was determined by microdilution technique and minimal inhibitory (MIC) and minimal bactericidal/fungicidal concentrations (MBC/MFC) were determined. Green pepper oil showed stronger antibacterial and antifungal activity (MIC 0.50-1.87; MBC 0.63-2.5 mg/ml; MIC 0.07-0.16; MFC 0.13-1.25 mg/ml) against black pepper oil (MIC 0.07-3.75; MBC 0.60-10.00 mg/ml; MIC 0.63-5.00; MFC 1.25-10.00 mg/ml. Oils successfully inhibited the growth of S. aureus in chicken soup in a dose dependent manner. GIC50 values were calculated after 24, 48 and 72 h and were in range of 0.156-0.689 mg/ml. The 50 % inhibitory concentrations (IC50) of EOs were 36.84 and 38.77 mg/ml with in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay respectively. The obtained results revealed that black and green pepper volatiles are efficient in controlling the growth of known food-spoilage microorganisms.

  13. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria

    PubMed Central

    GRAZIANO, Talita Signoreti; CALIL, Caroline Morini; SARTORATTO, Adilson; FRANCO, Gilson César Nobre; GROPPO, Francisco Carlos; COGO-MÜLLER, Karina

    2016-01-01

    ABSTRACT Objective Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. Material and Methods The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. Results The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). Conclusion M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine. PMID:28076463

  14. Biofilm formation in Malassezia pachydermatis strains isolated from dogs decreases susceptibility to ketoconazole and itraconazole.

    PubMed

    Jerzsele, Akos; Gyetvai, Béla; Csere, István; Gálfi, Péter

    2014-12-01

    Malassezia pachydermatis is a commonly isolated yeast in veterinary dermatology that can produce biofilms in vitro and in vivo, lowering its susceptibility to antimicrobial drugs. The aim of this study was to determine and compare the in vitro susceptibility of planktonic cells and biofilms of M. pachydermatis isolates to ketoconazole and itraconazole. The presence of biofilm formation was confirmed by crystal violet staining and absorbance measurement at 595 nm wavelength, and by a scanning electron microscopy method. Cell viability was determined by the Celltiter 96 Aqueous One solution assay containing a water-soluble tetrazolium compound (MTS) with absorbance measurement at 490 nm. Planktonic cell minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of ketoconazole and itraconazole were very low: MIC90 and MFC90 were 0.032 and 0.125 μg/ml for ketoconazole, while 0.063 and 0.25 μg/ml for itraconazole, respectively. Also, the half maximal effective concentrations (EC50) of itraconazole were higher for planktonic cells and biofilms compared to ketoconazole. The EC50 values of ketoconazole were 18-169 times higher and those of itraconazole 13-124 times higher for biofilms than for planktonic cells. Biofilm EC50 levels exceeded MICs 103-2060 times for ketoconazole and 84-1400 times for itraconazole. No significant difference was found between these values of the two substances. In conclusion, biofilms of all examined M. pachydermatis strains were much less susceptible to ketoconazole and itraconazole than their planktonic forms.

  15. In Vitro Pharmacodynamic Activities of ABT-492, a Novel Quinolone, Compared to Those of Levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

    PubMed Central

    Gunderson, Shana M.; Hayes, Robert A.; Quinn, John P.; Danziger, Larry H.

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 μg/ml); β-lactamase-positive and β-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 μg/ml); and β-lactamase-positive and β-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 μg/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin. PMID:14693540

  16. In vitro pharmacodynamic activities of ABT-492, a novel quinolone, compared to those of levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.

    PubMed

    Gunderson, Shana M; Hayes, Robert A; Quinn, John P; Danziger, Larry H

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 micro g/ml); beta-lactamase-positive and beta-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 micro g/ml); and beta-lactamase-positive and beta-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 micro g/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin.

  17. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes

    PubMed Central

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881

  18. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes.

    PubMed

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.

  19. Pharmacokinetic–Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers

    PubMed Central

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2016-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (Cmax), the time when the maximum concentration reached (Tmax), and the area under the concentration-time curve (AUC) were 21.69–31.69 μg/mL, 1.13–1.23 h, and 228.97–444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller–Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid Emax (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0–24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance. PMID:26779495

  20. Isolated cell behavior drives the evolution of antibiotic resistance

    PubMed Central

    Artemova, Tatiana; Gerardin, Ylaine; Dudley, Carmel; Vega, Nicole M; Gore, Jeff

    2015-01-01

    Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single-cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance. PMID:26227664

  1. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant mutants among Quinolones. LVF has better antibacterial effects and stronger capacity for restricting the selection of resistant mutants on ocular bacteria than other antibacterial agents.

  2. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture

    PubMed Central

    2013-01-01

    Background A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture. Methods Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes. Results Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities. Conclusions It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications. PMID:24330547

  3. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis

    PubMed Central

    Pasipanodya, Jotam G.; Denti, Paolo; Sirgel, Frederick; Lesosky, Maia; Gumbo, Tawanda; Meintjes, Graeme; McIlleron, Helen; Wilkinson, Robert J.

    2017-01-01

    Abstract Background. There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods. One hundred patients with pulmonary tuberculosis (65% human immunodeficiency virus coinfected) were intensively sampled to determine rifampicin, isoniazid, and pyrazinamide plasma concentrations after 7–8 weeks of therapy, and PK parameters determined using nonlinear mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 months, and 5–6 months. Minimum inhibitory concentrations (MICs) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 0- to 24-hour area under the curve (AUC0-24), maximum concentration (Cmax), AUC0-24/MIC, Cmax/MIC, and percentage of time that concentrations persisted above the MIC (%TMIC). Results. Twenty-six percent of patients had Cmax of rifampicin <8 mg/L, pyrazinamide <35 mg/L, and isoniazid <3 mg/L. No relationship was found between PK exposures and 2-month culture conversion using multivariate logistic regression after adjusting for MIC. However, MARS identified negative interactions between isoniazid Cmax and rifampicin Cmax/MIC ratio on 2-month culture conversion. If isoniazid Cmax was <4.6 mg/L and rifampicin Cmax/MIC <28, the isoniazid concentration had an antagonistic effect on culture conversion. For patients with isoniazid Cmax >4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions. PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion. PMID:28205671

  4. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains.

    PubMed

    Fratini, Filippo; Mancini, Simone; Turchi, Barbara; Friscia, Elisabetta; Pistelli, Luisa; Giusti, Giulia; Cerri, Domenico

    2017-01-01

    Origanum vulgare (oregano) and Leptospermum scoparium (manuka) were traditionally employed as natural remedies for infected wounds and skin injuries where Staphylococcus aureus is mainly involved. The first aim of this study was to investigate oregano and manuka essential oils (EOs) chemical compositions and evaluate their antibacterial activity (MIC, Minimum Inhibitory Concentration) against fourteen S. aureus wild strains. The second aim was to evaluate the antibacterial activities of oregano and manuka EOs mixed in different combination (FIC, Fractional Inhibitory Concentration) with an improved chequerboard technique. This allowed to avoid the usual uncertainty in the determination of MIC and FIC values and to obtain a more precise interpretation of FIC indexes (FICIs). Moreover, FICIs were discussed on the basis of a novel interpretation method to evaluate the synergistic/antagonistic effect of EOs mixtures. The most representative compounds in oregano EO were Carvacrol (65.93%), p-Cymene (9.33%) and γ-Terpinene (5.25%), while in manuka EO were Leptospermone (31.65%), cis-Calamenene (15.93%) and Flavesone (6.92%). EOs presented MIC values ranging from 1:2048 to 1:4096 v/v and FIC values ranging from 0.125 to 1. According to our interpretation, a synergistic effect (34.68%), a commutative effect (15.32%) and an indifferent effect (50.00%) and no antagonistic effect were observed. Conversely, according to two previously proposed FICI interpretation models, 1.80% synergistic effect could be observed and, respectively, 98.20% indifferent effect or 48.20% additive effect and 50.00% indifferent effect. As practical results, oregano and manuka EOs may be an effective alternative to chemotherapic drugs in staphylococcal infections and useful tools to enhance food security. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils.

    PubMed

    Gucwa, Katarzyna; Milewski, Sławomir; Dymerski, Tomasz; Szweda, Piotr

    2018-05-08

    The antimicrobial activity of plant oils and extracts has been recognized for many years. In this study the activity of Thymus vulgaris , Citrus limonum , Pelargonium graveolens , Cinnamomum cassia , Ocimum basilicum , and Eugenia caryophyllus essential oils (EOs) distributed by Pollena Aroma (Nowy Dwór Mazowiecki, Poland) was investigated against a group of 183 clinical isolates of C. albicans and 76 isolates of C. glabrata . All of the oils exhibited both fungistatic and fungicidal activity toward C. albicans and C. glabrata isolates. The highest activity was observed for cinnamon oil, with MIC (Minimum Inhibitory Concentration) values in the range 0.002⁻0.125% ( v / v ). The MIC values of the rest of the oils were in the range 0.005% (or less) to 2.5% ( v / v ). In most cases MFC (Minimum Fungicidal Concentration) values were equal to MIC or twice as high. Additionally, we examined the mode of action of selected EOs. The effect on cell wall components could not be clearly proved. Three of the tested EOs (thyme, lemon, and clove) affected cell membranes. At the same time, thyme, cinnamon, and clove oil influenced potassium ion efflux, which was not seen in the case of lemon oil. All of the tested oils demonstrated the ability to inhibit the transition of yeast to mycelium form, but the effect was the lowest in the case of cinnamon oil.

  6. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) N.E. Brown: composition, cytotoxicity and antifungal activity.

    PubMed

    Mesa-Arango, Ana Cecilia; Montiel-Ramos, Jehidys; Zapata, Bibiana; Durán, Camilo; Betancur-Galvis, Liliana; Stashenko, Elena

    2009-09-01

    Two essential oils of Lippia alba (Mill.) N.E. Brown (Verbenacea), the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero) was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC) values of 78.7 and 270.8 microg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 microg/mL for A. fumigatus and 39.7 microg/mL for C. krusei). Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 microg/mL for C. krusei and 176.8 microg/mL for A. fumigatus.

  7. The Effect of Polyherbal Medicines Used for the Treatment of Tuberculosis on Other Opportunistic Organisms of Humans Infected with Tuberculosis.

    PubMed

    Famewo, Elizabeth Bosede; Clarke, Anna Maria; Afolayan, Anthony Jide

    2017-10-01

    In many immunocompromised patients, opportunistic bacterial and fungal infections are common. Polyherbal medicines examined in this study are used by the indigenous people of South Africa for the treatment of tuberculosis (TB) and other opportunistic infections associated with TB. To evaluate the antibacterial and antifungal activity of nine polyherbal remedies against four Gram-positive and Gram-negative bacteria respectively and three fungi. Agar dilution method was used to determine the minimum inhibitory concentration (MIC) of the remedies against the organisms. The inhibitory activity of the polyherbal medicines based on the overall MIC revealed that HBfs and FB remedies were the most active remedies against the bacterial isolates at the concentration of 2.5 mg/mL, followed by HBts remedy at 5.0 mg/mL. However, the MIC valves of KWTa, KWTb, KWTc, HBss, EL and AL remedies were higher than 5.0 mg/mL which was the highest concentration used. Only KWTa remedy showed activity against Aspergillus niger and Aspergillus fumigatus with the MIC value of 2.5 mg/mL. While KWTc and HBts had the highest activity at 1.25 mg/mL against Candida albicans , the remaining remedies were active at 2.5 mg/mL. This study revealed that some of these polyherbal formulations have activities against some of the opportunistic bacterial and fungal isolates associated with TB patients. The capability of these remedies to inhibit the organisms is an indication that they are a potential broad-spectrum antimicrobial agent. However, the remedies that are inactive might contain stimulant effects on the immune system. In the Eastern Cape Province of South Africa, no study has been reported on the effect of polyherbal remedies used for the treatment of TB on the opportunistic pathogen. This study therefore revealed that some of the polyherbal medicines possess activity against bacterial and fungal pathogens. Abbreviations used: TB: Tuberculosis; MIC: Minimum Inhibitory Concentration; CFU/ML: Colony Forming Unit Per Mill.

  8. What is the true in vitro potency of oxytetracycline for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida?

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-10-01

    The pharmacodynamics of oxytetracycline was determined for pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Indices of potency were determined for the following: (i) two matrices, broth and pig serum; (ii) five overlapping sets of twofold dilutions; and (iii) a high strength starting culture. For A. pleuropneumoniae, minimum inhibitory concentration (MIC) was similar for the two matrices, but for P. multocida, differences were marked and significantly different. MIC and minimum bactericidal concentration (MBC) serum: broth ratios for A. pleuropneumoniae were 0.83:1 and 1.22:1, respectively, and corresponding values for P. multocida were 22.0:1 and 7.34:1. For mutant prevention concentration (MPC) serum: broth ratios were 0.79:1 (A. pleuropneumoniae) and 20.9:1 (P. multocida). These ratios were corrected for serum protein binding to yield fraction unbound (fu) serum: broth MIC ratios of 0.24:1 (A. pleuropneumoniae) and 6.30:1 (P. multocida). Corresponding fu serum: broth ratios for MPC were almost identical, 0.23:1 and 6.08:1. These corrections for protein binding did not account for potency differences between serum and broth for either species; based on fu serum MICs, potency in serum was approximately fourfold greater than predicted for A. pleuropneumoniae and sixfold smaller than predicted for P. multocida. For both broth and serum and both bacterial species, MICs were also dependent on initial inoculum strength. The killing action of oxytetracycline had the characteristics of codependency for both A. pleuropneumoniae and P. multocida in both growth media. The in vitro potency of oxytetracycline in pig serum is likely to be closer to the in vivo plasma/serum concentration required for efficacy than potency estimated in broths. © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  9. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.

  10. Jacaranda cuspidifolia Mart. (Bignoniaceae) as an antibacterial agent.

    PubMed

    Arruda, Ana Lúcia A; Vieira, Carla J B; Sousa, Daniella G; Oliveira, Regilene F; Castilho, Rachel O

    2011-12-01

    This study evaluated, in vitro, the antimicrobial activity of the hexane extract (JCHE), methanol extract (JCME), and chloroform fraction (JCCF) of bark from Jacaranda cuspidifolia Mart. (Family Bignoniaceae), a Brazilian medicinal plant, traditionally used as anti-syphilis and anti-gonorrhea treatment. The antimicrobial activity was evaluated using the disc diffusion method followed by the determination of minimum inhibitory concentration (MIC) values. JCHE was not active against the bacteria evaluated. JCME presented antibacterial activity against Streptococcus pyogenes, Staphylococcus aureus, and Neisseria gonorrhoeae with MIC values of 16.3 mg/mL, 9.1 mg/mL, and 25.2 mg/mL, respectively. JCCF was active against Staphylococcus epidermidis, S. aureus, Proteus mirabilis, Serratia marcescens, S. pyogenes, Enterobacter aerogenes, and N. gonorrhoeae with MIC values of 18.3 mg/mL, 9.3 mg/mL, 6.3 mg/mL, 6.1 mg/mL, 9.2 mg/mL, 6.2 mg/mL, and 25.2 mg/mL, respectively. Phytochemical analysis of JCME and JCCF gave positive results for saponins, coumarins, flavonoids, tannins, quinones, alkaloids, triterpenes, and steroids. Verbascoside was isolated and identified as a major peak in JCME and JCCF high-performance liquid chromatography fingerprints and might contribute to the observed antimicrobial activity.

  11. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species.

    PubMed

    Lackner, Michaela; de Hoog, G Sybren; Verweij, Paul E; Najafzadeh, Mohammad J; Curfs-Breuker, Ilse; Klaassen, Corné H; Meis, Jacques F

    2012-05-01

    Since the separation of Pseudallescheria boydii and P. apiosperma in 2010, limited data on species-specific susceptibility patterns of these and other species of Pseudallescheria and its anamorph Scedosporium have been reported. This study presents the antifungal susceptibility patterns of members affiliated with both entities. Clinical and environmental isolates (n = 332) from a wide range of sources and origins were identified down to species level and tested according to CLSI M38-A2 against eight antifungal compounds. Whereas P. apiosperma (geometric mean MIC/minimal effective concentration [MEC] values of 0.9, 2.4, 7.4, 16.2, 0.2, 0.8, 1.5, and 6.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) and P. boydii (geometric mean MIC/MEC values of 0.7, 1.3, 5.7, 13.8, 0.5, 1.4, 2.3, and 11.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) had similar susceptibility patterns, those for S. aurantiacum, S. prolificans, and S. dehoogii were different from each other. Voriconazole was the only drug with significant activity against S. aurantiacum isolates. The MIC distributions of all drugs except voriconazole did not show a normal distribution and often showed two subpopulations, making a species-based prediction of antifungal susceptibility difficult. Therefore, antifungal susceptibility testing of all clinical isolates remains essential for targeted antifungal therapy. Voriconazole was the only compound with low MIC values (MIC(90) of ≤ 2 μg/ml) for P. apiosperma and P. boydii. Micafungin and posaconazole showed moderate activity against the majority of Scedosporium strains.

  12. Species-Specific Antifungal Susceptibility Patterns of Scedosporium and Pseudallescheria Species

    PubMed Central

    Lackner, Michaela; de Hoog, G. Sybren; Verweij, Paul E.; Najafzadeh, Mohammad J.; Curfs-Breuker, Ilse; Klaassen, Corné H.

    2012-01-01

    Since the separation of Pseudallescheria boydii and P. apiosperma in 2010, limited data on species-specific susceptibility patterns of these and other species of Pseudallescheria and its anamorph Scedosporium have been reported. This study presents the antifungal susceptibility patterns of members affiliated with both entities. Clinical and environmental isolates (n = 332) from a wide range of sources and origins were identified down to species level and tested according to CLSI M38-A2 against eight antifungal compounds. Whereas P. apiosperma (geometric mean MIC/minimal effective concentration [MEC] values of 0.9, 2.4, 7.4, 16.2, 0.2, 0.8, 1.5, and 6.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) and P. boydii (geometric mean MIC/MEC values of 0.7, 1.3, 5.7, 13.8, 0.5, 1.4, 2.3, and 11.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) had similar susceptibility patterns, those for S. aurantiacum, S. prolificans, and S. dehoogii were different from each other. Voriconazole was the only drug with significant activity against S. aurantiacum isolates. The MIC distributions of all drugs except voriconazole did not show a normal distribution and often showed two subpopulations, making a species-based prediction of antifungal susceptibility difficult. Therefore, antifungal susceptibility testing of all clinical isolates remains essential for targeted antifungal therapy. Voriconazole was the only compound with low MIC values (MIC90 of ≤2 μg/ml) for P. apiosperma and P. boydii. Micafungin and posaconazole showed moderate activity against the majority of Scedosporium strains. PMID:22290955

  13. Synergistic action of starch and honey against Candida albicans in correlation with diastase number

    PubMed Central

    Boukraa, Laïd; Benbarek, Hama; Moussa, Ahmed

    2008-01-01

    To evaluate the synergistic action of starch on the antifungal activity of honey, a comparative method of adding honey with and without starch to culture media was used. Candida albicans has been used to determine the minimum inhibitory concentration (MIC) of five varieties of honey. In a second step, lower concentrations of honey than the MIC were incubated with a set of concentrations of starch added to media to determine the minimum synergistic inhibitory concentration (MSIC). The MIC for the five varieties of honey without starch against C. albicans ranged between 40% and 45% (v/v). When starch was incubated with honey and then added to media, a MIC drop has been noticed with each variety. It ranged between 7% and 25%. A negative correlation has been established between the MIC drop and the diastase number (DN). PMID:24031175

  14. In Vivo Pharmacodynamic Target Assessment of Eravacycline against Escherichia coli in a Murine Thigh Infection Model.

    PubMed

    Zhao, Miao; Lepak, Alexander J; Marchillo, Karen; VanHecker, Jamie; Andes, David R

    2017-07-01

    Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration ( C max ) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC 0-∞ ) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC ( f AUC/MIC) was the PK/PD parameter that best correlated with efficacy ( R 2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean f AUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively. Copyright © 2017 American Society for Microbiology.

  15. In vitro antimicrobial susceptibility of Mycoplasma bovis isolated in Israel from local and imported cattle.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Lysnyansky, Inna

    2009-06-12

    Monitoring of susceptibility to antibiotics in field isolates of pathogenic bovine mycoplasmas is important for appropriate choice of treatment. Our study compared in vitro susceptibility profiles of Mycoplasma bovis clinical strains, isolated during 2005-2007 from Israeli and imported calves. Minimal inhibitory concentration (MIC) values were determined for macrolides by the microbroth dilution test, for aminoglycosides by commercial Etest, and for fluoroquinolones and tetracyclines by both methods. Notably, although correlation between the methods was generally good, it was not possible to determine the MIC endpoint for enrofloxacin-resistant strains (MIC > or =2.5 microg/ml in the microtest) by Etest. Comparison of antibiotic susceptibility profiles between local and imported M. bovis strains revealed that local strains were significantly more resistant to macrolides than most isolates from imported animals, with MIC(50) of 128 microg/ml vs. 2 microg/ml for tilmicosin and 8 microg/ml vs. 1 microg/ml for tylosin, respectively. However, local strains were more susceptible than most imported strains to fluoroquinolones and spectinomycin. Difference in susceptibility to tetracycline, doxycycline and oxytetracycline between local and imported strains was expressed in MIC(90) values for imported strains in the susceptible range compared to intermediate susceptibility for local strains. The marked difference in susceptibility profiles of M. bovis strains isolated from different geographical regions seen in this study emphasizes the necessity for performing of the antimicrobial susceptibility testing periodically and on a regional basis.

  16. Reduced susceptibility to chlorhexidine disinfectant among New Delhi metallo-beta-lactamase-1 positive Enterobacteriaceae and other multidrug-resistant organisms: Report from a tertiary care hospital in Karachi, Pakistan.

    PubMed

    Mal, P B; Farooqi, J; Irfan, S; Hughes, M A; Khan, E

    2016-01-01

    We analysed susceptibility of multidrug-resistant organisms (MDROs) including New Delhi metallo-beta-lactamase-1 positive Enterobacteriaceae to chlorhexidine and compared results to their susceptible counterparts. Susceptibilities of chlorhexidine digluconate in a standard (CHX-S) preparation and two commercial disinfectants containing different CHX concentrations (2% w/v and 4% w/w) were performed. MDROs had narrower range of higher CHX-S minimum inhibitory concentrations (MICs) as compared to pan-sensitive organisms. The MIC values for commercial disinfectants products for MDROs were many folds higher (20-600 times), than CHX-S for in vitro use. Increasing antibiotic resistance among bacterial isolates can be an indirect marker of reduced susceptibility to chlorhexidine in hospital setting.

  17. The Relationship Between Vancomycin Trough Concentrations and AUC/MIC Ratios in Pediatric Patients: A Qualitative Systematic Review.

    PubMed

    Tkachuk, Stacey; Collins, Kyle; Ensom, Mary H H

    2018-04-01

    In adults, the area under the concentration-time curve (AUC) divided by the minimum inhibitory concentration (MIC) is associated with better clinical and bacteriological response to vancomycin in patients with methicillin-resistant Staphylococcus aureus who achieve target AUC/MIC ≥ 400. This target is often extrapolated to pediatric patients despite the lack of similar evidence. The impracticalities of calculating the AUC in practice means vancomycin trough concentrations are used to predict the AUC/MIC. This review aimed to determine the relationship between vancomycin trough concentrations and AUC/MIC in pediatric patients. We searched the MEDLINE and Embase databases, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials using the medical subject heading (MeSH) terms vancomycin and AUC and pediatric* or paediatric*. Articles were included if they were published in English and reported a relationship between vancomycin trough concentrations and AUC/MIC. Of 122 articles retrieved, 11 met the inclusion criteria. One trial reported a relationship between vancomycin trough concentrations, AUC/MIC, and clinical outcomes but was likely underpowered. Five studies found troughs 6-10 mg/l were sufficient to attain an AUC/MIC > 400 in most general hospitalized pediatric patients. One study in patients undergoing cardiothoracic surgery found a trough of 18.4 mg/l achieved an AUC/MIC > 400. Two oncology studies reported troughs ≥ 15 mg/l likely attained an AUC/MIC ≥ 400. In critical care patients: one study found a trough of 9 mg/l did not attain the AUC/MIC target; another found 7 mg/l corresponded to an AUC/MIC of 400. Potential vancomycin targets varied based on the population studied but, for general hospitalized pediatric patients, troughs of 6-10 mg/l are likely sufficient to achieve AUC/MIC ≥ 400. For MIC ≥ 2 mg/l, higher troughs are likely necessary to achieve an AUC/MIC ≥ 400. More research is needed to determine the relationships between vancomycin trough concentrations, AUC/MIC, and clinical outcomes.

  18. Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa.

    PubMed

    Soković, Marina; Ćirić, Ana; Glamočlija, Jasmina; Nikolić, Miloš; van Griensven, Leo J L D

    2014-04-03

    The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  19. Antimicrobial activity of five essential oils from lamiaceae against multidrug-resistant Staphylococcus aureus.

    PubMed

    Kot, Barbara; Wierzchowska, Kamila; Piechota, Małgorzata; Czerniewicz, Paweł; Chrzanowski, Grzegorz

    2018-06-11

    Analysis of Lamiaceae essential oils (EOs) by GC-FID-MS revealed the presence as the major constituents of linalool (16.8%), linalyl acetate (15.7%) in Lavandula angustifolia, menthol (29.0%), menthone (22.7%), menthyl acetate (19.2%) in Mentha x piperita, terpinen-4-ol (27.1%), (E)-sabinene hydrate (12.1%), γ-terpinene (10.0%) in Origanum majorana, α-thujone (19.5%), camphor (19.0%), viridiflorol (13.5%) in Salvia officinalis, thymol (61.9%), p-cymene (10.0%), γ-terpinene (10.0%) in Thymus vulgaris. Based on the MIC and MBC values (0.09-0.78 mg/mL) and ratio MBC/MIC showed that EO from T. vulgaris (TO) had the strong inhibitory and bactericidal effect against multidrug-resistant Staphylococcus aureus. The bacterial cells were total killed by TO at 2MIC concentration after 6 h. The higher concentrations of other EOs were needed to achieve bactericidal effects. The strong bactericidal effect of TO against these bacteria indicates the possibility of topical use of TO but it requires research under clinical conditions.

  20. Determination of antifungal activities in serum samples from mice treated with different antifungal drugs allows detection of an active metabolite of itraconazole.

    PubMed

    Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2006-01-01

    To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.

  1. Key role of hydrogen peroxide in antimicrobial activity of spring, Honeydew maquis and chestnut grove Corsican honeys on Pseudomonas aeruginosa DNA.

    PubMed

    Poli, J-P; Guinoiseau, E; Luciani, A; Yang, Y; Battesti, M-J; Paolini, J; Costa, J; Quilichini, Y; Berti, L; Lorenzi, V

    2018-05-01

    In honeys, several molecules have been known for their antibacterial or wound healing properties. Corsican honeys just began to be tested for their antimicrobial activity with promising results on Pseudomonas aeruginosa. So, identification of active molecules and their mode of action was determined. Hydrogen peroxide concentrations were evaluated and, in parallel, the minimal inhibitory concentrations (MIC) values were performed with and without catalase. More, the quantity of phenolic compounds and ORAC assay were measured. Observation of antibacterial action was done using scanning electron microscopy (SEM) followed by plasmidic DNA extraction. MIC values of chestnut grove and honeydew maquis honeys vary between 7 and 8%, showing a strong antimicrobial capacity, associated with a plasmidic DNA degradation. When catalase is added, MIC values significatively increase (25%) without damaging DNA, proving the importance of H 2 O 2 . This hypothesis is confirmed by SEM micrographies which did not show any morphological damages but a depletion in bacterial population. Although, such low concentrations of H 2 O 2 (between 23 μmol l -1 and 54 μmol l -1 ) cannot explain antimicrobial activity and might be correlated with phenolic compounds concentration. Thus, Corsican honeys seem to induce DNA damage when H 2 O 2 and phenolic compounds act in synergy by a putative pro-oxidant effect. We started to determine the antibacterial efficiency of Corsican chestnut grove and honeydew maquis honeys on Pseudomonas aeruginosa. No morphological alteration of the bacterial surface was observed. Antimicrobial action seems to be related to the synergy between hydrogen peroxide and phenolic compounds. The exerted pro-oxidant activity leads to a degradation of P. aeruginosa plasmidic DNA. This is the first study that investigate the primary antibacterial mechanism of Corsican honeys. © 2018 The Society for Applied Microbiology.

  2. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria.

    PubMed

    Palaniappan, Kavitha; Holley, Richard A

    2010-06-15

    Plant-derived antibacterial compounds may be of value as a novel means for controlling antibiotic resistant zoonotic pathogens which contaminate food animals and their products. Individual activity of natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate (AIT)) and activity when paired with an antibiotic was studied using broth microdilution and checkerboard methods. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interactions between the inhibitors. Bacteria tested were chosen because of their resistance to at least one antibiotic which had a known genetic basis. Substantial susceptibility of these bacteria toward the natural antimicrobials and a considerable reduction in the minimum inhibitory concentrations (MIC's) of the antibiotics were noted when paired combinations of antimicrobial and antibiotic were used. In the interaction study, thymol and carvacrol were found to be highly effective in reducing the resistance of Salmonella Typhimurium SGI 1 (tet A) to ampicillin, tetracycline, penicillin, bacitracin, erythromycin and novobiocin (FIC<0.4) and resistance of Streptococcus pyogenes ermB to erythromycin (FIC<0.5). With Escherichia coli N00 666, thymol and cinnamaldehyde were found to have a similar effect (FIC<0.4) in reducing the MIC's of ampicillin, tetracycline, penicillin, erythromycin and novobiocin. Carvacrol, thymol (FIC<0.3) and cinnamaldehyde (FIC<0.4) were effective against Staphylococcus aureus blaZ and in reducing the MIC's of ampicillin, penicillin and bacitracin. Allyl isothiocyanate (AIT) was effective in reducing the MIC of erythromycin (FIC<0.3) when tested against S. pyogenes. Fewer combinations were found to be synergistic when the decrease in viable population (log DP) was calculated. Together, fractional inhibitory concentrations < or = 0.5 and log DP<-1 indicated synergistic action between four natural antimicrobials and as many as three antibiotics to which these bacteria were normally resistant. Copyright 2010 Elsevier B.V. All rights reserved.

  3. In Vitro Antimicrobial Activity of Razupenem (SMP-601, PTZ601) against Anaerobic Bacteria▿

    PubMed Central

    Tran, Chau Minh; Tanaka, Kaori; Yamagishi, Yuka; Goto, Takatsugu; Mikamo, Hiroshige; Watanabe, Kunitomo

    2011-01-01

    We evaluated the in vitro antianaerobic activity of razupenem (SMP-601, PTZ601), a new parenterally administered carbapenem, against 70 reference strains and 323 clinical isolates. Razupenem exhibited broad-spectrum activity against anaerobes, inhibiting most of the reference strains when used at a concentration of ≤1 μg/ml. Furthermore, it exhibited strong activity, comparable to those of other carbapenems (meropenem and doripenem), against clinically isolated non-fragilis Bacteroides spp. (MIC90s of 2 μg/ml), with MIC90 values of 0.06, 0.03, and 0.5 μg/ml against Prevotella spp., Porphyromonas spp., and Fusobacterium spp., respectively. Clinical isolates of anaerobic Gram-positive cocci, Eggerthella spp., and Clostridium spp. were highly susceptible to razupenem (MIC90s, 0.03 to 1 μg/ml). PMID:21343447

  4. Effectiveness of tilmicosin against Paenibacillus larvae, the causal agent of American Foulbrood disease of honeybees.

    PubMed

    Reynaldi, Francisco J; Albo, Graciela N; Alippi, Adriana M

    2008-11-25

    American Foulbrood (AFB) of honeybees (Apis mellifera L.), caused by the Gram-positive bacterium Paenibacillus larvae is one of the most serious diseases affecting the larval and pupal stages of honeybees (A. mellifera L.). The aim of the present work was to asses the response of 23 strains of P. larvae from diverse geographical origins to tilmicosin, a macrolide antibiotic developed for exclusive use in veterinary medicine, by means of the minimal inhibitory concentration (MIC) and the agar diffusion test (ADT). All the strains tested were highly susceptible to tilmicosin with MIC values ranging between 0.0625 and 0.5 microg ml(-1), and with MIC(50) and MIC(90) values of 0.250 microg ml(-1). The ADT tests results for 23 P. larvae strains tested showed that all were susceptible to tilmicosin with inhibition zones around 15 microg tilmicosin disks ranging between 21 and 50mm in diameter. Oral acute toxicity of tilmicosin was evaluated and the LD(50) values obtained demonstrated that it was virtually non-toxic for adult bees and also resulted non-toxic for larvae when compared with the normal brood mortality. Dosage of 1000 mg a.i. of tilmicosin applied in a 55 g candy resulted in a total suppression of AFB clinical signs in honeybee colonies 60 days after initial treatment. To our knowledge, this is the first report of the effectiveness of tilmicosin against P. larvae both in vitro and in vivo.

  5. Association of macrophage inhibitory cytokine-1 with nutritional status, body composition and bone mineral density in patients with anorexia nervosa: the influence of partial realimentation.

    PubMed

    Dostálová, Ivana; Kaválková, Petra; Papežová, Hana; Domluvilová, Daniela; Zikán, Vít; Haluzík, Martin

    2010-04-23

    Macrophage inhibitory cytokine-1 (MIC-1) is a key inducer of cancer-related anorexia and weight loss. However, its possible role in the etiopathogenesis of nutritional disorders of other etiology such as anorexia nervosa (AN) is currently unknown. We measured fasting serum concentrations of MIC-1 in patients with AN before and after 2-month nutritional treatment and explored its relationship with nutritional status, metabolic and biochemical parameters. Sixteen previously untreated women with AN and twenty-five normal-weight age-matched control women participated in the study. We measured serum concentrations of MIC-1 and leptin by ELISA, free fatty acids by enzymatic colorimetric assay, and biochemical parameters by standard laboratory methods; determined resting energy expenditure by indirect calorimetry; and assessed bone mineral density and body fat content by dual-energy X-ray absorptiometry. ANOVA, unpaired t-test or Mann-Whitney test were used for groups comparison as appropriate. The comparisons of serum MIC-1 levels and other studied parameters in patients with AN before and after partial realimentation were assessed by paired t-test or Wilcoxon Signed Rank Test as appropriate. At baseline, fasting serum MIC-1 concentrations were significantly higher in patients with AN relative to controls. Partial realimentation significantly reduced serum MIC-1 concentrations in patients with AN but it still remained significantly higher compared to control group. In AN group, serum MIC-1 was inversely related to Buzby nutritional risk index, serum insulin-like growth factor-1, serum glucose, serum total protein, serum albumin, and lumbar bone mineral density and it significantly positively correlated with the duration of AN and age. MIC-1 concentrations in AN patients are significantly higher relative to healthy women. Partial realimentation significantly decreased MIC-1 concentration in AN group. Clinical significance of these findings needs to be further clarified.

  6. Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model.

    PubMed

    Odenholt, Inga; Cars, Otto

    2006-11-01

    To compare in an in vitro kinetic model the pharmacodynamics of moxifloxacin and levofloxacin with a concentration-time profile simulating the human free non-protein bound concentrations of 400 mg moxifloxacin intravenous (iv) once daily, 500 mg levofloxacin iv once daily and 750 mg levofloxacin iv once daily against strains of Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli with variable susceptibility to fluoroquinolones. The strains used in the study included S. pneumoniae ATCC 6306 (native strain), S. pneumoniae 19397 (double mutation; gyrA and parC), S. pneumoniae 4241 (single mutation; parC), S. aureus ATCC 13709 (native strain), S. aureus MB5 (single mutation; gyrA), E. coli M12 (single mutation; gyrA), E. coli ATCC 25922 (native strain) and K. pneumoniae ATCC 29655 (native strain). The strains were exposed to moxifloxacin and levofloxacin in an in vitro kinetic model simulating the free human serum concentration-time profile of moxifloxacin 400 mg once daily, levofloxacin 500 mg once daily and 750 mg once daily. Repeated samples were taken regularly during 24 h and viable counts were carried out. A correlation was seen between both the area under the serum concentration curve and MIC (AUC/MIC) and the peak concentration/MIC (Cmax/MIC) versus area under the bactericidal killing curve (AUBKC) or Deltalog0-24 cfu/mL. Compiling all data, an AUC/MIC of approximately 100 and a Cmax/MIC of 10 gave a maximal bactericidal effect for both levofloxacin and moxifloxacin. In accordance with the results from others, our study indicated that a lower AUC/MIC was needed for S. pneumoniae in comparison with the Gram-negative bacteria studied. Moxifloxacin yielded higher AUC/MIC and Cmax/MIC against the investigated Gram-positive bacteria in comparison with levofloxacin 500 mg once daily and 750 mg once daily.

  7. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Goncalves, Maria J; Salgueiro, Ligia; Maxia, Andrea; Lai, Roberta

    2010-04-01

    Isolation of volatile concentrates from leaves, flowers and fruits of Vitex agnus-castus L. have been obtained by supercritical extraction with carbon dioxide. The composition of the volatile concentrates has been analysed by GC/MS. In all plant organs, the extracts are composed chiefly of alpha-pinene, sabinene, 1,8-cineole, alpha-terpinyl acetate, (E)-caryophyllene, (E)-beta-farnesene, bicyclogermacrene, spathulenol and manool. The main difference observed was in the content of sclarene, which was not present in the samples from flowers or fruits. To complete the investigation, a comparison with the hydrodistilled oil has been carried out. The minimal inhibitory concentration (MIC) and the minimal lethal concentration were used to evaluate the antifungal activity of the oils against dermatophyte strains (Trichophyton mentagrophytes, Microsporum canis, T. rubrum, M. gypseum and Epidermophyton floccosum). Antifungal activity of the leaf essential oil was the highest, with MIC values of 0.64 microL mL(-1) for most of the strains.

  8. Comparison of direct sampling and brochoalveolar lavage for determining active drug concentrations in the pulmonary epithelial lining fluid of calves injected with enrofloxacin or tilmicosin.

    PubMed

    Foster, D M; Sylvester, H J; Papich, M G

    2017-12-01

    Antibiotic distribution to interstitial fluid (ISF) and pulmonary epithelial fluid (PELF) was measured and compared to plasma drug concentrations in eight healthy calves. Enrofloxacin (Baytril ® 100) was administered at a dose of 12.5 mg/kg subcutaneously (SC), and tilmicosin (Micotil ® 300) was administered at a dose of 20 mg/kg SC. PELF, sampled by two different methods-bronchoalveolar lavage (BAL) and direct sampling (DS)-plasma, and ISF were collected from each calf and measured for tilmicosin, enrofloxacin and its metabolite ciprofloxacin by HPLC. Pharmacokinetic analysis was performed on the concentrations in each fluid, for each drug. The enrofloxacin/ciprofloxacin concentration as measured by AUC in DS samples was 137 ± 72% higher than in plasma, but in BAL samples, this value was 535 ± 403% (p < .05). The concentrations of tilmicosin in DS and BAL samples exceeded plasma drug concentrations by 567 ± 189% and 776 ± 1138%, respectively. The enrofloxacin/ciprofloxacin concentrations collected by DS were significantly different than those collected by BAL, but the tilmicosin concentrations were not significantly different between the two methods. Concentrations of enrofloxacin/ciprofloxacin exceeded the MIC values for bovine respiratory disease pathogens but tilmicosin did not reach MIC levels for these pathogens in any fluids. © 2017 John Wiley & Sons Ltd.

  9. Antifungal Activity of Apple Cider Vinegar on Candida Species Involved in Denture Stomatitis.

    PubMed

    Mota, Ana Carolina Loureiro Gama; de Castro, Ricardo Dias; de Araújo Oliveira, Julyana; de Oliveira Lima, Edeltrudes

    2015-06-01

    To evaluate the in vitro antifungal activity of apple cider vinegar on Candida spp. involved in denture stomatitis. The microdilution technique was used to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of apple cider vinegar containing 4% maleic acid, and nystatin (control). Further tests of microbial kinetics and inhibition of adherence to acrylic resin were performed testing different concentrations (MIC, MICx2, MICx4) of the products at time intervals of 0, 30, 60, 120 and 180 minutes. A roughness meter was used to measure the changes in surface roughness; color change of the acrylic resin specimens exposed to the test products in different concentrations and time intervals were also evaluated. Apple cider vinegar (4%) showed MIC of 2500 μg/ml and MFC of 2500, 5000, and 10,000 μg/ml depending on the strain tested. Nystatin showed MIC of 3.125 μg/ml and strain-dependent MFC values ranging from 3.125 to 12.5 μg/ml. The microbial kinetic assay showed a statistical difference between apple cider vinegar and nystatin (p < 0.0001). After 30 minutes of exposure, apple cider vinegar showed fungicidal effect at MICx4, whereas nystatin maintained its fungistatic effect. Apple cider vinegar showed greater inhibition of adherence (p < 0.001) compared to control. Apple cider vinegar did not significantly alter the surface roughness of the acrylic resin specimens compared to nystatin (p > 0.05), and both had no influence on their color. Apple cider vinegar showed antifungal properties against Candida spp., thus representing a possible therapeutic alternative for patients with denture stomatitis. © 2014 by the American College of Prosthodontists.

  10. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    PubMed

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  11. Antibacterial activity of endemic Satureja Khuzistanica Jamzad essential oil against oral pathogens

    PubMed Central

    Seghatoleslami, Sogol; Samadi, Nasrin; Salehnia, Ali; Azimi, Shahram

    2009-01-01

    INTRODUCTION: To assess the antibacterial effects of an Iranian endemic essential oil, Satureja Khuzistanica Jamzad (SKJ) when used as an intracanal antiseptic and interappointment medicament. MATERIALS AND METHODS: Antimicrobial activity and minimum inhibition concentrations (MICs) of SKJ essential oil with and without calcium hydroxide (CH) against eleven aerobic, microaerophilic and anaerobic bacteria were assessed. The evaluation was carried out by agar dilution and well diffusion methods. The results were measured and recorded by an independent observer. Data were analyzed statistically using student t-test. RESULTS: The MIC for eight species was recorded in 0.31 mg/mL of essential oil. Pseudomonas aeruginosa with a MIC value of 1.25 mg/mL appeared to be the most resistant bacterium; while only 0.16 mg/mL of essential oil was sufficient to inhibit the growth of Bacillus subtilis and Staphylococcus aureus. The inhibition zone of the antiseptic oil (at 0.31 mg/mL) with E. faecalis in the well diffusion method was 13 mm; this was comparable with 12.5 mm inhibition zone value of the tetracycline disc (30 µg). No synergistic effect was found in combination of essential oil and CH powder. CONCLUSION: SKJ essential oil with the concentration of 0.31 mg/mL is effective against most of oral pathogens including E. faecalis. PMID:23864870

  12. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates.

    PubMed

    Oikeh, Ehigbai I; Omoregie, Ehimwenma S; Oviasogie, Faith E; Oriakhi, Kelly

    2016-01-01

    The search for new antimicrobial compounds is ongoing. Its importance cannot be overemphasized in an era of emerging resistant pathogenic organisms. This study therefore investigated the phytochemical composition and antioxidant and antimicrobial activities of different citrus juice concentrates. Fruit juices of Citrus tangerine (tangerine), Citrus paradisi (grape), Citrus limon (lemon), and Citrus aurantifolia (lime) were evaluated. Antimicrobial activities against five bacterial and three fungal strains were evaluated. The results revealed the presence of alkaloids, flavonoids, steroids, terpenoids, saponins, cardiac glycosides, and reducing sugars in all the juice concentrates. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacities varied with tangerine and grape juices having better scavenging capacities than lemon and lime juices. Grape juice was observed to have a significantly higher (P < 0.05) ferric-reducing antioxidant potential (FRAP) value (364.2 ± 10.25 μmol/L Fe(II)/g of the extract) than the reference antioxidant, ascorbic acid (312.88 ± 5.61 μmol/L). Antimicrobial studies revealed differential antimicrobial activities against different microbial strains. Zones of inhibition ranging from 4 to 26 mm were observed for the antibacterial tests with 0-24 mm for antifungal test. Minimum inhibitory concentrations (MIC) and minimum bacteriostatic concentrations (MBC) for concentrates against bacterial strains ranged from 12.5 to 200 μg/mL. Lemon and lime juice concentrates had lower MIC and MBC values with orange and tangerine having the highest values. Minimum fungicidal concentrations ranged from 50 to 200 μg/mL. The results of this study suggest that these juice concentrates may have beneficial antimicrobial roles that can be exploited in controlling unwanted microbial growth.

  13. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Efficacy of the Clinical Agent VT-1161 against Fluconazole-Sensitive and -Resistant Candida albicans in a Murine Model of Vaginal Candidiasis

    PubMed Central

    Hoekstra, W. J.; Schotzinger, R. J.; Sobel, J. D.; Lilly, E. A.; Fidel, P. L.

    2015-01-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. PMID:26124165

  15. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells.

    PubMed

    Genç, Hatice; Barutca, Banu; Koparal, A Tansu; Özöğüt, Uğurcan; Şahin, Yücel; Suvacı, Ender

    2018-03-01

    Recently, designed platelet shaped micron particles that are composed of nano primary particles, called MicNo (=Micron+naNo) particles, have been developed to exploit the benefits of nano size, while removing the adverse effects of nanoparticles. It has been shown that MicNo-ZnO particles exhibit both micron and nanosized particle characteristics. Although physical and chemical properties of MicNo-ZnO particles have been studied, their biocompatibility has not yet been evaluated. Accordingly, the research objective of this study was to evaluate in vitro cytotoxicity, genotoxicity and phototoxicity behaviors of designed MicNo-ZnO particles over human epidermal keratinocyte (HaCaT) cells. MicNo-ZnO particles exhibit much less cytotoxicity with IC 50 concentrations between 40 and 50μg/ml, genotoxicity above 40μg/ml and lower photo genotoxicity under UVA on HaCaT than the ZnO nanoparticles. Although their chemistries are the same, the source of this difference in toxicity values may be attributed to size differences between the particles that are probably due to their ability to penetrate into the cells. In the present study, the expansive and detailed in vitro toxicity tests show that the biocompatibility of MicNo-ZnO particles is much better than that of the ZnO nanoparticles. Consequently, MicNo-ZnO particles can be considered an important active ingredient alternative for sunscreen applications due to their safer characteristics with respect to ZnO nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of Neisseria gonorrhoeae MICs obtained by Etest and agar dilution for ceftriaxone, cefpodoxime, cefixime and azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-12-01

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.

  17. Mode of action and synergistic effect of valinomycin and cereulide with amphotericin B against Candida albicans and Cryptococcus albidus.

    PubMed

    Makarasen, A; Reukngam, N; Khlaychan, P; Chuysinuan, P; Isobe, M; Techasakul, S

    2018-03-01

    Both valinomycin and cereulide are cyclic depsipeptides and are known K + ion-selective ionophores. Valinomycin and cereulide feature low minimum inhibitory concentration (MIC) values against Candida albicans and Cryptococcus albidus. This study aims at investigating the mode of action and verifying the efficacy of valinomycin or cereulide alone and in combination with amphotericin B (AmB) in vitro against both microorganisms. Based on the results from membrane permeability and fluidity assays for detection of plasma membrane permeabilization and membrane dynamics, the present study demonstrated that valinomycin and cereulide exhibit antifungal activity against C. albicans and C. albidus by interrupting membrane-associated function. The mode of action of both valinomycin and cereulide are similar with that of AmB. Time-kill kinetics assay showed that valinomycin and cereulide exhibit fungistatic activity, whereas AmB features fungicidal activity. Additionally, the combination of compounds between each cyclic peptide and AmB reached maximal fungicidal activity more rapidly than AmB alone. This result corresponded with findings of scanning electron microscopy, fractional inhibitory concentration index and minimum fungicidal concentration (MFC)/MIC ratio, indicating that combinations of the drugs show synergistic effects for inhibiting the growth of these fungal strains. Sorbitol and ergosterol assays showed that both cyclic peptides affected cell wall and membrane components due to increases in MIC value, as observed in medium with sorbitol and ergosterol. Valinomycin and cereulide may promote permeability of fungal cell wall and cell membrane when used in combination with AmB. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. [Pharmacokinetic effects of antibiotics on the development of bacterial resistance particularly in reference to azithromycin].

    PubMed

    Wenisch, C

    2000-01-01

    Antibiotics reduce the mortality from infectious diseases but not the prevalence of these diseases. Use, and often abuse, of antimicrobial agents encourages the evolution of bacteria toward resistance, often resulting in therapeutic failure. There are two factors which influence potential utility of a drug in a specific clinical situation. The first is the measure of potency of the antibiotic for the pathogen in question (minimal inhibitory concentration [MIC], minimal bactericidal concentration [MBC]). The second is whichever relationship between the concentration-time profile and potency of the antibiotic linked most robustly to clinical outcome (time above MIC or MBC [T > MIC or T > MBC]; Peak/MIC or MBC; area under the curve [AUC]/MIC or AUC/MBC). Herein the effects of pharmacokinetics of antimicrobials on the evolution of antimicrobial resistance with particular reference to azithromycin are considered.

  19. Evaluation of enrofloxacin use in koalas (Phascolarctos cinereus) via population pharmacokinetics and Monte Carlo simulation.

    PubMed

    Black, L A; Landersdorfer, C B; Bulitta, J B; Griffith, J E; Govendir, M

    2014-06-01

    Clinically normal koalas (n = 6) received a single dose of intravenous enrofloxacin (10 mg/kg). Serial plasma samples were collected over 24 h, and enrofloxacin concentrations were determined via high-performance liquid chromatography. Population pharmacokinetic modeling was performed in S-ADAPT. The probability of target attainment (PTA) was predicted via Monte Carlo simulations (MCS) using relevant target values (30-300) based on the unbound area under the curve over 24 h divided by the minimum inhibitory concentration (MIC) (fAUC0-24 /MIC), and published subcutaneous data were incorporated (Griffith et al., 2010). A two-compartment disposition model with allometrically scaled clearances (exponent: 0.75) and volumes of distribution (exponent: 1.0) adequately described the disposition of enrofloxacin. For 5.4 kg koalas (average weight), point estimates for total clearance (SE%) were 2.58 L/h (15%), central volume of distribution 0.249 L (14%), and peripheral volume 2.77 L (20%). MCS using a target fAUC0-24 /MIC of 40 predicted highest treatable MICs of 0.0625 mg/L for intravenous dosing and 0.0313 mg/L for subcutaneous dosing of 10 mg/kg enrofloxacin every 24 h. Thus, the frequently used dosage of 10 mg/kg enrofloxacin every 24 h subcutaneously may be appropriate against gram-positive bacteria with MICs ≤ 0.03 mg/L (PTA > 90%), but appears inadequate against gram-negative bacteria and Chlamydiae in koalas. © 2013 John Wiley & Sons Ltd.

  20. Antibiotic susceptibility of Legionella strains isolated from public water sources in Macau and Guangzhou.

    PubMed

    Xiong, Lina; Yan, He; Shi, Lei; Mo, Ziyao

    2016-12-01

    The purpose of this study was to investigate the susceptibility of waterborne strains of Legionella to eight antimicrobials commonly used in legionellosis therapy. The minimum inhibitory concentrations (MICs) of 66 environmental Legionella strains, isolated from fountains and cooling towers of public facilities (hotels, schools, and shopping malls) in Macau and Guangzhou, were tested using the microdilution method in buffered yeast extract broth. The MIC 50 /MIC 90 values for erythromycin, cefotaxime (CTX), doxycycline (DOC), minocycline (MIN), azithromycin, ciprofloxacin, levofloxacin (LEV), and moxifloxacin were 0.125/0.5 mg/L, 4/8 mg/L, 8/16 mg/L, 4/8 mg/L, 0.125/0.5 mg/L, 0.031/0.031 mg/L, 0.031/0.031 mg/L, and 0.031/0.062 mg/L, respectively. Legionella isolates were inhibited by either low concentrations of macrolides and fluoroquinolones, or high concentrations of CTX and tetracycline drugs. LEV was the most effective drug against different Legionella species and serogroups of L. pneumophila isolates. The latter were inhibited in decreasing order by MIN > CTX >DOC, while non-L. pneumophila isolates were inhibited by CTX> MIN >DOC. In this study, we evaluated drug resistance of pathogenic bacteria from the environment. This may help predict the emergence of drug resistance, improve patient outcomes, and reduce hospitalization costs.

  1. Pharmacokinetics of imipenem after intravenous, intramuscular and subcutaneous administration to cats.

    PubMed

    Albarellos, Gabriela A; Denamiel, Graciela A; Montoya, Laura; Quaine, Pamela C; Lupi, Martín P; Landoni, María F

    2013-06-01

    The study describes the pharmacokinetics and predicted efficacy of imipenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to five adult cats at a dose of 5 mg/kg. Susceptibility to imipenem [minimum inhibitory concentration (MIC)] was determined for antimicrobial resistant Escherichia coli (n = 13) and staphylococci (n = 3) isolated from domestic cat infections (urinary system, skin and conjunctiva). Maximum plasma concentrations of imipenem were 13.45 µg/ml (IV), 6.47 µg/ml (IM) and 3.83 µg/ml (SC). Bioavailability was 93.18% (IM) and 107.90% (SC). Elimination half-lives for IV, IM and SC administration were 1.17, 1.44 and 1.55 h, respectively. All tested bacteria were susceptible to imipenem; MIC values were 0.03 µg/ml for Staphylococcus species and <0.25-0.5 µg/ml for E coli. Mean imipenem concentrations remained above a MIC of 0.5 µg/ml for approximately 4 h (IV and IM) and 9 h (SC). Imipenem would be predicted to be effective for the treatment of antimicrobial resistant bacterial infections in cats at a dosage of 5 mg/kg every 6-8 h (IV, IM), or longer for the SC route. However, clinical trials are mandatory to establish its efficacy and proper dosing.

  2. Pharmacokinetics of a long-acting ceftiofur formulation (ceftiofur crystalline free acid) in the ball python (Python regius).

    PubMed

    Adkesson, Michael J; Fernandez-Varon, Emilio; Cox, Sherry; Martín-Jiménez, Tomás

    2011-09-01

    The objective of this study was to determine the pharmacokinetics of a long-acting formulation of ceftiofur crystalline-free acid (CCFA) following intramuscular injection in ball pythons (Python regius). Six adult ball pythons received an injection of CCFA (15 mg/kg) in the epaxial muscles. Blood samples were collected by cardiocentesis immediately prior to and at 0.5, 1, 2, 4, 8, 12, 18, 24, 48, 72, 96, 144, 192, 240, 288, 384, 480, 576, 720, and 864 hr after CCFA administration. Plasma ceftiofur concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis was applied to the data. Maximum plasma concentration (Cmax) was 7.096 +/- 1.95 microg/ml and occurred at (Tmax) 2.17 +/- 0.98 hr. The area under the curve (0 to infinity) for ceftiofur was 74.59 +/- 13.05 microg x h/ml and the elimination half-life associated with the terminal slope of the concentration-time curve was 64.31 +/- 14.2 hr. Mean residence time (0 to infinity) was 46.85 +/- 13.53 hr. CCFA at 15 mg/kg was well tolerated in all the pythons. Minimum inhibitory concentration (MIC) data for bacterial isolates from snakes are not well established. For MIC values of < or =0.1 microg/ml, a single dose of CCFA (15 mg/kg) provides adequate plasma concentrations for at least 5 days in the ball python. For MICs > or =0.5 microg/ml, more frequent dosing or a higher dosage may be required.

  3. What Is the 'Minimum Inhibitory Concentration' (MIC) of Pexiganan Acting on Escherichia coli?-A Cautionary Case Study.

    PubMed

    Jepson, Alys K; Schwarz-Linek, Jana; Ryan, Lloyd; Ryadnov, Maxim G; Poon, Wilson C K

    2016-01-01

    We measured the minimum inhibitory concentration (MIC) of the antimicrobial peptide pexiganan acting on Escherichia coli , and found an intrinsic variability in such measurements. These results led to a detailed study of the effect of pexiganan on the growth curve of E. coli, using a plate reader and manual plating (i.e. time-kill curves). The measured growth curves, together with single-cell observations and peptide depletion assays, suggested that addition of a sub-MIC concentration of pexiganan to a population of this bacterium killed a fraction of the cells, reducing peptide activity during the process, while leaving the remaining cells unaffected. This pharmacodynamic hypothesis suggests a considerable inoculum effect, which we quantified. Our results cast doubt on the use of the MIC as 'a measure of the concentration needed for peptide action' and show how 'coarse-grained' studies at the population level give vital information for the correct planning and interpretation of MIC measurements.

  4. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus

    PubMed Central

    Djenane, Djamel

    2015-01-01

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange (Citrus sinensis L.), lemon (Citrus limonum L.) and bergamot (Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus (S. aureus) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25–0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus (S. pilchardus) experimentally inoculated with S. aureus at a level of 3.5 log10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines. PMID:28231199

  5. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus.

    PubMed

    Djenane, Djamel

    2015-06-05

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange ( Citrus sinensis L.), lemon ( Citrus limonum L.) and bergamot ( Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus ( S . aureus ) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25-0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus ( S . pilchardus ) experimentally inoculated with S. aureus at a level of 3.5 log 10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines.

  6. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.

  7. [Pharmacokinetic/pharmacodynamic analysis of antibiotic therapy in dentistry and stomatology].

    PubMed

    Isla, Arantxazu; Canut, Andrés; Rodríguez-Gascón, Alicia; Labora, Alicia; Ardanza-Trevijano, Bruno; Solinís, María Angeles; Pedraz, José Luis

    2005-03-01

    This study evaluates the efficacy of various antimicrobial treatments for orofacial infections on the basis of pharmacokinetic/pharmacodynamic (PK/PD) criteria. A complete a literature search was undertaken to establish the MIC90 values of the five microorganisms most frequently isolated in odontogenic infections and the pharmacokinetic parameters of 13 antibiotics used in these infections. Pharmacokinetic simulations were then carried out with mean population parameters and efficacy indexes were calculated for the 47 treatment regimens analyzed. For drugs showing time-dependent antibacterial killing, the time above MIC (t > MIC) was calculated. For drugs with concentration-dependent bactericidal activity, the AUC/MIC was calculated. Amoxicillin-clavulanic (500 mg/8 h or 1000 mg/12 h) and clindamycin (300 mg/6 h) in the time-dependent killing group and moxifloxacin (400 mg/24 h) in the concentration-dependent group showed adequate efficacy indexes against the five pathogens considered to be the most commonly implicated in odontogenic infections. The spiramycin plus metronidazole combination, present in the commercial formulation Rhodogyl, did not reach satisfactory PK/PD indexes. PK/PD indexes, which are useful predictors of the potential efficacy of antibacterial therapy, were used with ontogenic infections in the present study. The PK/PD simulations showed that amoxicillin-clavulanic, clindamycin and moxifloxacin were the most suitable antibiotics for this kind of infection. Clinical trials are required to confirm that this methodology is useful in these pathologic processes.

  8. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Diederen, Bram M W; Ijzerman, Ed P F; Den Boer, Jeroen W; Mouton, Johan W

    2013-07-01

    Routine use of disk diffusion tests for detecting antibiotic resistance in Legionella pneumophila has not been described. The goal of this study was to determine the correlation of MIC values and inhibition zone diameter (MDcorr) in clinical L. pneumophila isolates. Inhibition zone diameter of 183 L. pneumophila clinical isolates were determined for ten antimicrobials. Disk diffusion results were correlated with MICs as determined earlier with E-tests. Overall the correlation of MIC values and inhibition zone diameters (MDcorr) of the tested antimicrobials is good, and all antimicrobials showed a WT distribution. Of the tested fluoroquinolones levofloxacin showed the best MDcorr. All macrolides showed a wide MIC distribution and good MDcorr. The MDcorr for cefotaxim, doxycycline and tigecycline was good, while for rifampicin and moxifloxacin, they were not. Overall good correlation between MIC value and disk inhibition zone were found for the fluoroquinolones, macrolides and cefotaxim. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Antimicrobial compounds from Alpinia conchigera.

    PubMed

    Aziz, Ahmad Nazif; Ibrahim, Halijah; Rosmy Syamsir, Devi; Mohtar, Mastura; Vejayan, Jaya; Awang, Khalijah

    2013-02-13

    The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus. The dried and ground pseudostems (0.8kg) and rhizomes (1.0kg) were successively extracted in Soxhlet extractor using n-hexane, dichloromethane (DCM) and methanol. The n-hexane and DCM extracts of the pseudostem and rhizome were subjected to isolation and purification using column chromatography on silica gel using a stepwise gradient system (n-hexane to methanol). Briefly, a serial two fold dilutions of the test materials dissolved in DMSO were prepared prior to addition of 100μl overnight microbial suspension (108 cfu/ml) followed by incubation at 37°C (bacteria) or 26°C (dermatophytes and candida) for 24h. The highest concentration of DMSO remaining after dilution (5%, v/v) caused no inhibition to bacterial/candida/dermatophytes' growth. Antibiotic cycloheximide was used as reference for anticandidal and antidermatophyte comparison while oxacilin was used as reference for antibacterial testing. DMSO served as negative control. Turbidity was taken as indication of growth, thus the lowest concentration which remains clear after macroscopic evaluation was taken as the minimum inhibitory concentration (MIC). The isolation of n-hexane and DCM extracts of the rhizomes and pseudostems of Alpinia conchigera via column chromatography yielded two triterpenes isolated as a mixture of stigmasterol and β-sitosterol: caryophyllene oxide, chavicol acetate 1, p-hydroxy cinnamaldehyde 2, 1'S-1'-acetoxychavicol acetate 3, trans-p-coumaryl diacetate 4, 1'S-1'-acetoxyeugenol acetate 5, 1'-hydroxychavicol acetate 6, p-hydroxycinnamyl acetate 7 and 4-hydroxybenzaldehyde. The DCM extract of the rhizome of Alpinia conchigera indicated potent antifungal activity against Candida albicans, Microsporum canis and Trycophyton rubrum with MIC values of 625μg/ml, 156μg/ml and 156μg/ml, respectively. It also showed significant inhibitory activity with MIC values between 17.88 and 35.75μg/ml against the mutant Staphylococci isolates MSSA, MRSA and Sa7. Amongst the isolated compounds, the lowest inhibition observed were of 1'S-1'-acetoxyeugenol against the dermatophytes (MIC 313μg/ml) followed by trans-p-coumaryl diacetate against both dermatophytes and candida (MIC 625μg/ml). The compound p-hydroxycinnamyl acetate strongly inhibited Staphylococcusaureus strain VISA (MIC 39μg/ml) followed by trans-p-coumaryl diacetate and 1'-hydroxychavicol acetate with MIC value of 156μg/ml. In conclusion, the observed antibacterial, anticandidal and antidermatophyte activity of the extracts and compounds obtained from the rhizome confirm the traditional use of Alpinia cochigera rhizome in the treatment of skin infection. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. In Vitro Evaluation of the Type of Interaction Obtained by the Combination of Terbinafine and Itraconazole, Voriconazole, or Amphotericin B against Dematiaceous Molds▿

    PubMed Central

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Schreiber, Angélica Zaninelli

    2011-01-01

    In vitro associations using the checkerboard microdilution method indicated lower MIC ranges and MIC median values for each drug (terbinafine, itraconazole, voriconazole, and amphotericin B) in association than those obtained for each single drug. Fractional inhibitory concentration index (FIC) results showed 100% synergism in the association of terbinafine with voriconazole, 96.5% in the association of terbinafine with amphotericin B, and 75.9% in the association of terbinafine with itraconazole. Drug combinations may be useful for treatment of dematiaceous mold infections as an alternative treatment to enhance the effectiveness of each drug. PMID:21690288

  11. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    NASA Astrophysics Data System (ADS)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  12. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole

    PubMed Central

    2014-01-01

    Background The purpose of this study was to unveil whether azole antifungals used in agriculture, similar to the clinical azoles used in humans, can evoke resistance among relevant human pathogens like Aspergillus fumigatus, an ubiquitous agent in nature. Additionally, cross-resistance with clinical azoles was investigated. Antifungal susceptibility testing of environmental and clinical isolates of A. fumigatus was performed according to the CLSI M38-A2 protocol. In vitro induction assays were conducted involving daily incubation of susceptible A. fumigatus isolates, at 35°C and 180 rpm, in fresh GYEP broth medium supplemented with Prochloraz (PCZ), a potent agricultural antifungal, for a period of 30 days. Minimal inhibitory concentrations (MIC) of PCZ and clinical azoles were monitored every ten days. In order to assess the stability of the developed MIC, the strains were afterwards sub-cultured for an additional 30 days in the absence of antifungal. Along the in vitro induction process, microscopic and macroscopic cultural observations were registered. Results MIC of PCZ increased 256 times after the initial exposure; cross-resistance to all tested clinical azoles was observed. The new MIC value of agricultural and of clinical azoles maintained stable in the absence of the selective PCZ pressure. PCZ exposure was also associated to morphological colony changes: macroscopically the colonies became mostly white, losing the typical pigmentation; microscopic examination revealed the absence of conidiation. Conclusions PCZ exposure induced Aspergillus fumigatus morphological changes and an evident increase of MIC value to PCZ as well as the development of cross-resistance with posaconazole, itraconazole and voriconazole. PMID:24920078

  13. The pharmacokinetic-pharmacodynamic modeling and cut-off values of tildipirosin against Haemophilus parasuis

    PubMed Central

    Lei, Zhixin; Liu, Qianying; Yang, Bing; Ahmed, Saeed; Cao, Jiyue; He, Qigai

    2018-01-01

    The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research. PMID:29416722

  14. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    PubMed

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  15. In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin

    PubMed Central

    Rakelly de Oliveira, Dayanne; Relison Tintino, Saulo; Morais Braga, Maria Flaviana Bezerra; Boligon, Aline Augusti; Linde Athayde, Margareth; Douglas Melo Coutinho, Henrique; de Menezes, Irwin Rose Alencar; Fachinetto, Roselei

    2015-01-01

    Silymarin is a standardized extract from the dried seeds of the milk thistle (Silybum marianum L. Gaertn.) clinically used as an antihepatotoxic agent. The aim of this study was to investigate the antibacterial and antifungal activity of silymarin and its major constituent (silibinin) against different microbial strains and their modulatory effect on drugs utilized in clinical practice. Silymarin demonstrated antimicrobial activity of little significance against the bacterial strains tested, with MIC (minimum inhibitory concentration) values of 512 µg/mL. Meanwhile, silibinin showed significant activity against Escherichia coli with a MIC of 64 µg/mL. The results for the antifungal activity of silymarin and silibinin demonstrated a MIC of 1024 µg/mL for all strains. Silymarin and silibinin appear to have promising potential, showing synergistic properties when combined with antibacterial drugs, which should prompt further studies along this line. PMID:25866771

  16. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  17. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania.

    PubMed

    Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko

    2018-06-26

    Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.

  18. Balancing vancomycin efficacy and nephrotoxicity: should we be aiming for trough or AUC/MIC?

    PubMed

    Patel, Karisma; Crumby, Ashley S; Maples, Holly D

    2015-04-01

    Sixty years later, the question that still remains is how to appropriately utilize vancomycin in the pediatric population. The Infectious Diseases Society of America published guidelines in 2011 that provide guidance for dosing and monitoring of vancomycin in adults and pediatrics. However, goal vancomycin trough concentrations of 15-20 μg/mL for invasive infections caused by methicillin-resistant Staphylococcus aureus were based primarily on adult pharmacokinetic and pharmacodynamic data that achieved an area under the curve to minimum inhibitory concentration ratio (AUC/MIC) of ≥400. Recent pediatric literature shows that vancomycin trough concentrations needed to achieve the target AUC/MIC are different than the adult goal troughs cited in the guidelines. This paper addresses several thoughts, including the role of vancomycin AUC/MIC in dosing strategies and safety monitoring, consistency in laboratory reporting, and future directions for calculating AUC/MIC in pediatrics.

  19. Plasma concentrations resulting from florfenicol preparations given to pigs in their drinking water.

    PubMed

    Gutiérrez, L; Vargas, D; Ocampo, L; Sumano, H; Martinez, R; Tapia, G

    2011-09-01

    Florfenicol administered through the drinking water has been recommended as a metaphylactic antibacterial drug to control outbreaks of respiratory diseases in pigs caused by strains of Actinobacillus pleuropneumoniae and Pasteurella multocida, yet it is difficult to pinpoint in practice when the drug is given metaphylactically or therapeutically. Further, pigs are likely to reject florfenicol-medicated water, and plasma concentrations of the drug are likely to be marginal for diseases caused by Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The reported minimal inhibitory concentration (MIC) values for these organisms show a breakpoint of 2 to 3 μg/mL. An experiment was conducted during September and October 2009. One hundred twenty healthy crossbred pigs (Landrace-Yorkshire), weighing 23 ± 6.2 kg, were used in this trial. They were randomly assigned to 5 groups, with 3 replicates of 8 animals/group. Two commercial preparations of florfenicol were administered through the drinking water at 2 concentrations (0.01 and 0.015%). Water intake was measured before and after medication, and plasma concentrations of florfenicol were determined by HPLC. Considerable rejection of florfenicol-medicated water was observed. However, plasma florfenicol concentrations were of a range sufficient for a methaphylaxis approach to preventing disease by bacteria, with MIC breakpoints of ≤ 0.25 μg/mL. Decreased efficacy as a metaphylactic medication should be expected for bacteria with MIC >0.25 μg/mL, considering the reported existence of bacteria resistant to florfenicol and the natural resistance of Streptococcus suis or E. coli to this drug.

  20. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values.

    PubMed

    Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico

    2015-09-01

    This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation.

    PubMed

    Bengtsson-Palme, Johan; Larsson, D G Joakim

    2016-01-01

    There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood

    PubMed Central

    Jiang, Jiyang; Thalamuthu, Anbupalam; Ho, Jennifer E.; Mahajan, Anubha; Ek, Weronica E.; Brown, David A.; Breit, Samuel N.; Wang, Thomas J.; Gyllensten, Ulf; Chen, Ming-Huei; Enroth, Stefan; Januzzi, James L.; Lind, Lars; Armstrong, Nicola J.; Kwok, John B.; Schofield, Peter R.; Wen, Wei; Trollor, Julian N.; Johansson, Åsa; Morris, Andrew P.; Vasan, Ramachandran S.; Sachdev, Perminder S.; Mather, Karen A.

    2018-01-01

    Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels. PMID:29628937

  3. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood.

    PubMed

    Jiang, Jiyang; Thalamuthu, Anbupalam; Ho, Jennifer E; Mahajan, Anubha; Ek, Weronica E; Brown, David A; Breit, Samuel N; Wang, Thomas J; Gyllensten, Ulf; Chen, Ming-Huei; Enroth, Stefan; Januzzi, James L; Lind, Lars; Armstrong, Nicola J; Kwok, John B; Schofield, Peter R; Wen, Wei; Trollor, Julian N; Johansson, Åsa; Morris, Andrew P; Vasan, Ramachandran S; Sachdev, Perminder S; Mather, Karen A

    2018-01-01

    Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10 -35 ), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the"COPI-mediated anterograde transport" gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction ( p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels.

  4. Discrepancy in Vancomycin AUC/MIC Ratio Targeted Attainment Based upon the Susceptibility Testing in Staphylococcus aureus.

    PubMed

    Eum, Seenae; Bergsbaken, Robert L; Harvey, Craig L; Warren, J Bryan; Rotschafer, John C

    2016-09-27

    This study demonstrated a statistically significant difference in vancomycin minimum inhibitory concentration (MIC) for Staphylococcus aureus between a common automated system (Vitek 2) and the E-test method in patients with S. aureus bloodstream infections. At an area under the serum concentration time curve (AUC) threshold of 400 mg∙h/L, we would have reached the current Infectious Diseases Society of America (IDSA)/American Society of Health System Pharmacists (ASHP)/Society of Infectious Diseases Pharmacists (SIDP) guideline suggested AUC/MIC target in almost 100% of patients while using the Vitek 2 MIC data; however, we could only generate 40% target attainment while using E-test MIC data ( p < 0.0001). An AUC of 450 mg∙h/L or greater was required to achieve 100% target attainment using either Vitek 2 or E-test MIC results.

  5. Effect of nanoliposomes containing Zataria multiflora Boiss. essential oil on gene expression of Shiga toxin 2 in Escherichia coli O157:H7.

    PubMed

    Khatibi, S A; Misaghi, A; Moosavy, M H; Akhondzadeh Basti, A; Mohamadian, S; Khanjari, A

    2018-02-01

    Enterohaemorrhagic Escherichia coli serotype O157:H7 as a major human pathogen is responsible for food borne outbreaks, bloody diarrhoea, haemorrhagic colitis and haemolytic uraemic syndrome and even death. In this study, the antibacterial activity of the Zataria multiflora essential oil (ZMEO) and nanoliposome-encapsulated ZMEO was evaluated on the pathogenicity of E. coli O157:H7. The minimum inhibitory concentrations (MIC) of essential oil (EO) were determined against the bacterium before and after encapsulation into nanoliposome. Then, the effect of subinhibitory concentrations was evaluated on Shiga toxin 2 (Stx2) production. The effect of free and nanoliposomal EO was also studied on the gene expression of Stx2 by real-time PCR. It was found that inhibitory activity of EO was improved after incorporation into nanoliposomes (P < 0·05). The MIC of free EO against E. coli O157:H7 was 0·03% (v/v), while this value decreased to 0·015%, after encapsulation of EO into nanoliposomes. Furthermore, subinhibitory concentrations of liposomal EO (50 and 75% MIC) had significantly higher inhibitory effect on Stx2 titre than its free form (P < 0·05). Sub-MICs of nanoencapsulated EO also showed a better activity in reduction of Stx2A gene expression than free EO. Using 75% MIC of nanoliposomal EO, the relative transcriptional level of Stx2A gene was decreased from 0·721 to 0·646. The findings of present study suggest that application of nanoliposomes can improve the antibacterial effect of EOs like ZMEO. Due to the enhancement of antimicrobial activity, nanoencapsulation of plant EOs and extracts may increase their commercial application not only in food area but also in the pharmaceutics, cosmetics and health products. © 2017 The Society for Applied Microbiology.

  6. Outcomes with daptomycin in the treatment of Staphylococcus aureus infections with a range of vancomycin MICs

    PubMed Central

    Crompton, Jason A.; North, Donald S.; Yoon, MinJung; Steenbergen, Judith N.; Lamp, Kenneth C.; Forrest, Graeme N.

    2010-01-01

    Objectives Recent recommendations by the Infectious Diseases Society of America for the treatment of Staphylococcus aureus suggest the use of alternative agents when vancomycin MIC values are ≥2 mg/L. This study examines the outcome of patients treated with daptomycin for S. aureus infections with documented vancomycin MICs. Patients and methods All patients with skin, bacteraemia and endocarditis infections due to S. aureus with vancomycin MIC values in CORE 2005–08, a retrospective, multicentre, observational registry, were studied. The outcome (cure, improved, failure or non-evaluable) was the investigator assessment at the end of daptomycin therapy. Success was defined as cure or improved. Results Five hundred and forty-seven clinically evaluable patients were identified with discrete vancomycin MIC values [MIC <2 mg/L: 451 (82%); MIC ≥2 mg/L: 96 (18%)]. The vancomycin MIC groups were well matched for patient characteristics, types of infections, first-line daptomycin use (19%) and prior vancomycin use (58%). Clinical success was reported in 94% of patients. No differences were detected in the daptomycin success rate by the vancomycin MIC group overall or by the infection type. A multivariate logistic regression also failed to identify vancomycin MIC as a predictor of daptomycin failure. Adverse event (AE) rates were not different when analysed by MIC group; both groups had ∼17% of patients with one AE. Conclusions In this diverse population, daptomycin was associated with similar outcomes for patients, regardless of whether the vancomycin MIC was categorized as <2 or ≥2 mg/L. Further studies are warranted. PMID:20554570

  7. In vitro activity of bergamot natural essence and furocoumarin-free and distilled extracts, and their associations with boric acid, against clinical yeast isolates.

    PubMed

    Romano, L; Battaglia, F; Masucci, L; Sanguinetti, M; Posteraro, B; Plotti, G; Zanetti, S; Fadda, G

    2005-01-01

    There is very little information, to date, on the antifungal activity of bergamot oil. In this study, we investigated the in vitro activity of three bergamot oils (natural essence, furocoumarin-free extract and distilled extract) against clinically relevant Candida species. We studied the two derivatives, components of Italian pharmaceutical products, that are supposed to be less toxic than the essential oil. In vitro susceptibility of 40 clinical isolates of Candida spp. (Candida albicans, n=20; Candida glabrata, n=13; Candida krusei, n=4; Candida tropicalis, n=2; Candida parapsilosis, n=1), associated with symptomatic and asymptomatic vulvovaginal candidiasis, was determined using a modification of the NCCLS M27-A2 broth microdilution method. MICs were evaluated for each of the oils alone and combined with sub-inhibitory concentrations of the well-known antiseptic, boric acid. To boric acid, all isolates had MIC values ranging from 0.094% to 0.187% (w/v). At 24 h readings, the MIC(90 )s (for all isolates) were (v/v): 5% for natural essence of bergamot, 2.5% for the furocoumarin-free extract, and 1.25% for the distilled extract. At the 48 h reading, these values increased to >10%, 5% and 2.5%, respectively. At both readings, MIC(90 )s for all oil+boric acid combinations were significantly lower than corresponding values for the oils alone (P <0.05). These data indicate that bergamot oils are active in vitro against Candida spp., suggesting their potential role for the topical treatment of Candida infections.

  8. Drug Penetration Gradients Associated with Acquired Drug Resistance in Tuberculosis Patients.

    PubMed

    Dheda, Keertan; Lenders, Laura; Magombedze, Gesham; Srivastava, Shashikant; Raj, Prithvi; Arning, Erland; Ashcraft, Paula; Bottiglieri, Teodoro; Wainwright, Helen; Pennel, Timothy; Linegar, Anthony; Moodley, Loven; Pooran, Anil; Pasipanodya, Jotam G; Sirgel, Frederick A; van Helden, Paul D; Wakeland, Edward; Warren, Robin M; Gumbo, Tawanda

    2018-06-07

    Acquired resistance is an important driver of multidrug-resistant tuberculosis, even with good treatment adherence. However, exactly what initiates the resistance, and how it arises remains poorly understood. To identify the relationship between drug concentrations and drug susceptibility readouts (MICs) in the tuberculosis cavity. We recruited patients with medically incurable tuberculosis who were undergoing therapeutic lung resection whilst on treatment with the cocktail of second line anti-tuberculosis drugs. On the day of surgery antibiotic concentrations were measured in the blood and at seven pre-specified biopsy sites within each cavity. Mycobacterium tuberculosis was grown from each biopsy site, MICs of each drug identified, and whole genome sequencing performed. Spearman correlation coefficients between drug concentration and MIC were calculated. Fourteen patients treated for a median of 13 (range: 5-31) months were recruited. MICs and drug resistance-associated single nucleotide variants differed between the different geospatial locations within each cavity, and with pretreatment and serial sputum isolates, consistent with ongoing acquisition of resistance. However, pre-treatment sputum MIC had an accuracy of only 49.48% in predicting cavitary MICs. There were large concentration-distance gradients for each antibiotic. The location-specific concentrations inversely correlated with MICs (p<0.05), and therefore acquired resistance. Moreover, pharmacokinetic/pharmacodynamic exposures known to amplify drug-resistant subpopulations were encountered in all positions. These data inform interventional strategies relevant to drug delivery, dosing, and diagnostics to prevent the development of acquired resistance. The role of high intracavitary penetration as a biomarker of antibiotic efficacy, when assessing new regimens, requires clarification.

  9. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena.

    PubMed

    Li, Dan; Zeng, Siyu; He, Miao; Gu, April Z

    2016-03-15

    The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment.

  10. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil.

    PubMed

    Ceylan, Ozgur; Ugur, Aysel

    2015-06-01

    In this study, antimicrobial and antibiofilm activities and the chemical composition of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil was evaluated. The essential oil was obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry. Fourteen compounds were characterized, having as major components thymol (38.31%) and carvacrol (37.95%). Minimum inhibitory concentrations (MICs) of oil and the major components were calculated by serial dilution method, and anti-biofilm effects by microplate biofilm assay against five Gram positive (Staphylococcus aureus MU 38, MU 40, MU 46, MU 47, Stahylococcus epidermidis MU 30) and five Gram negative (Pseudomonas aeruginosa MU 187, MU 188, MU 189, Pseudomonas fluorescens MU 180, MU 181) bacteria. It was found that MICs for essential oil, thymol and carvacrol were between 5 and 50 µl/ml, 0.125-0.5 µg/ml and 0.125-05 µl/ml, respectively. The results showed that doses of MIC produced a greater anti-biofilm influence than 0.5, 0.25 and 0.125 MIC. In the presence of essential oil (MIC), the mean biofilm formation value was equal to 67 ± 5.5% for P. aeruginosa MU 188, and essential oil (MIC) inhibition exceeds 60% for P. aeruginosa biofilms. The results also showed that carvacrol (MIC) was able to induce an inhibition 72.9 ± 4.1% for S.aureus (MU 40) biofilm. In addition, thymol (MIC) showed 68.6 ± 5.3% reduction in biofilm formation of P. fluorescens MU 181. This study demonstrated the antimicrobial and antibiofilm activity of T. sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil and points out the exceptional efficiency of thymol and carvacrol, which could represent candidates in the treatment of Pseudomonas and Staphylococcus biofilms.

  11. Rice hull smoke extract inactivates Salmonella Typhimurium in laboratory media and protects infected mice against mortality

    USDA-ARS?s Scientific Manuscript database

    A recently discovered and characterized rice hull liquid smoke extract was tested for bactericidal activity against Salmonella Typhimurium using the disc-agar method. The Minimum Inhibitory Concentration (MIC) value of rice hull smoke extract was found to be 0.822% (v/v). The in vivo antibacterial a...

  12. Factors influencing the potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    For the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, Minimum Inhibitory Concentration (MIC) of marbofloxacin was determined in recommended broths and pig serum at three inoculum strengths. MICs in both growth matrices increased progressively from low, through medium to high starting inoculum counts, 10 4 , 10 6 and 10 8 CFU/mL, respectively. P. multocida MIC ratios for high:low inocula were 14:4:1 for broth and 28.2:1 for serum. Corresponding MIC ratios for A. pleuropneumoniae were lower, 4.1:1 (broth) and 9.2:1 (serum). MIC high:low ratios were therefore both growth matrix and bacterial species dependent. The effect of alterations to the chemical composition of broths and serum on MIC were also investigated. Neither adjusting broth or serum pH in six increments over the range 7.0 to 8.0 nor increasing calcium and magnesium concentrations of broth in seven incremental steps significantly affected MICs for either organism. In time-kill studies, the killing action of marbofloxacin had the characteristics of concentration dependency against both organisms in both growth matrices. It is concluded that MIC and time-kill data for marbofloxacin, generated in serum, might be preferable to broth data, for predicting dosages of marbofloxacin for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antifungal, Antileishmanial, and Cytotoxicity Activities of Various Extracts of Berberis vulgaris (Berberidaceae) and Its Active Principle Berberine

    PubMed Central

    Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh

    2014-01-01

    In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μg/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μg/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects. PMID:24977052

  14. Antifungal, Antileishmanial, and Cytotoxicity Activities of Various Extracts of Berberis vulgaris (Berberidaceae) and Its Active Principle Berberine.

    PubMed

    Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh

    2014-01-01

    In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6  μ g/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6  μ g/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects.

  15. Determination of the Mutant Selection Window and Evaluation of the Killing of Mycoplasma gallisepticum by Danofloxacin, Doxycycline, Tilmicosin, Tylvalosin and Valnemulin.

    PubMed

    Zhang, Nan; Ye, Xiaomei; Wu, Yuzhi; Huang, Zilong; Gu, Xiaoyan; Cai, Qinren; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong

    2017-01-01

    Mycoplasma gallisepticum is a common etiological cause of a chronic respiratory disease in chickens; its increasing antimicrobial resistance compromises the use of tetracyclines, macrolides and quinolones in the farm environment. Mutant selection window (MSW) determination was used to investigate the propensity for future resistance induction by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. Killing of M. gallisepticum strain S6 by these antimicrobials was also studied by incubating M. gallisepticum into medium containing the compounds at the minimal concentration that inhibits colony formation by 99% (MIC99) and the mutant prevention concentration (MPC). Based on the morphology and colony numbers of M. gallisepticum on agar plates, the four kinds of sera in the order of the applicability for culturing M. gallisepticum were swine serum > horse serum > bovine serum > mixed serum. The MPC/MIC99 values for each agent were as follows: danofloxacin > tilmicosin > tylvalosin > doxycycline > valnemulin. MPC generated more rapid and greater magnitude killing than MIC99 against M. gallisepticum. Under exposure of 105-109 CFU/mL at MPC drug levels, valnemulin had the slowest rate of reduction in viable organisms and danofloxacin had the highest rate of reduction.

  16. Determination of the Mutant Selection Window and Evaluation of the Killing of Mycoplasma gallisepticum by Danofloxacin, Doxycycline, Tilmicosin, Tylvalosin and Valnemulin

    PubMed Central

    Zhang, Nan; Ye, Xiaomei; Wu, Yuzhi; Huang, Zilong; Gu, Xiaoyan; Cai, Qinren; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong

    2017-01-01

    Mycoplasma gallisepticum is a common etiological cause of a chronic respiratory disease in chickens; its increasing antimicrobial resistance compromises the use of tetracyclines, macrolides and quinolones in the farm environment. Mutant selection window (MSW) determination was used to investigate the propensity for future resistance induction by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. Killing of M. gallisepticum strain S6 by these antimicrobials was also studied by incubating M. gallisepticum into medium containing the compounds at the minimal concentration that inhibits colony formation by 99% (MIC99) and the mutant prevention concentration (MPC). Based on the morphology and colony numbers of M. gallisepticum on agar plates, the four kinds of sera in the order of the applicability for culturing M. gallisepticum were swine serum > horse serum > bovine serum > mixed serum. The MPC/MIC99 values for each agent were as follows: danofloxacin > tilmicosin > tylvalosin > doxycycline > valnemulin. MPC generated more rapid and greater magnitude killing than MIC99 against M. gallisepticum. Under exposure of 105–109 CFU/mL at MPC drug levels, valnemulin had the slowest rate of reduction in viable organisms and danofloxacin had the highest rate of reduction. PMID:28052123

  17. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    NASA Astrophysics Data System (ADS)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  18. In vitro activity of chloramphenicol, florfenicol and enrofloxacin against Chlamydia pecorum isolated from koalas (Phascolarctos cinereus).

    PubMed

    Black, L A; Higgins, D P; Govendir, M

    2015-11-01

    To determine the in vitro susceptibilities of koala isolates of Chlamydia pecorum to enrofloxacin and chloramphenicol, which are frequently used to treat koalas with chlamydiosis, and florfenicol, a derivative of chloramphenicol. The in vitro susceptibilities were determined by culturing three stored isolates and seven clinical swabs of C. pecorum. Susceptibility testing was undertaken using cycloheximide-treated buffalo green monkey kidney cells in 96 well microtitre plates. The minimum inhibitory concentrations (MICs) for all isolates were 0.25-0.50 µg/mL (enrofloxacin), 1-2 µg/mL (chloramphenicol), and 1-2 µg/mL (florfenicol). Minimum bactericidal concentration (MBC) values for five isolates were also determined and were within one two-fold dilution of MICs. The MICs and MBCs of these antimicrobials were within ranges previously reported for other chlamydial species. When combined with previously published pharmacokinetic data, the in vitro susceptibility results support chloramphenicol as a more appropriate treatment option than enrofloxacin for koalas with chlamydiosis. The susceptibility results also indicate florfenicol may be an appropriate treatment option for koalas with chlamydiosis, warranting further investigation. © 2015 Australian Veterinary Association.

  19. Comparison of Neisseria gonorrhoeae MICs Obtained by Etest and Agar Dilution for Ceftriaxone, Cefpodoxime, Cefixime and Azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-10-24

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs. © 2013. Published by Elsevier B.V. All rights reserved.

  20. Antifungal activity of Malaysian honey and propolis extracts against pathogens implicated in denture stomatitis

    NASA Astrophysics Data System (ADS)

    Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab

    2016-12-01

    Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.

  1. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae)

    PubMed Central

    2011-01-01

    Background Artocarpus communis is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antimicrobial activities of the methanol extract (ACB) and compounds isolated from the bark of this plant, namely peruvianursenyl acetate C (1), α-amyrenol or viminalol (2), artonin E (4) and 2-[(3,5-dihydroxy)-(Z)-4-(3-methylbut-1-enyl)phenyl]benzofuran-6-ol (5). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The MIC results indicated that ACB as well as compounds 4 and 5 were able to prevent the growth of all tested microbial species. All other compounds showed selective activities. The lowest MIC value of 64 μg/ml for the crude extract was recorded on Staphylococcus aureus ATCC 25922 and Escherichia coli ATCC 8739. The corresponding value of 32 μg/ml was recorded with compounds 4 and 5 on Pseudomonas aeruginosa PA01 and compound 5 on E. coli ATCC 8739, their inhibition effect on P. aeruginosa PA01 being more than that of chloramphenicol used as reference antibiotic. Conclusion The overall results of this study provided supportive data for the use of A. communis as well as some of its constituents for the treatment of infections associated with the studied microorganisms. PMID:21612612

  2. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens.

    PubMed

    Miladi, Hanene; Zmantar, Tarek; Chaabouni, Yassine; Fedhila, Kais; Bakhrouf, Amina; Mahdouani, Kacem; Chaieb, Kamel

    2016-10-01

    In this study thymol (THY) and carvacrol (CAR), two monoterpenic phenol produced by various aromatic plants, was tested for their antibacterial and efflux pump inhibitors potencies against a panel of clinical and foodborne pathogenes. Our results demonstrated a substantial susceptibility of the tested bacteria toward THY and CAR. Especially, THY displayed a strong inhibitory activity (MIC's values ranged from 32 to 64 μg/mL) against the majority of the tested strains compared to CAR. Moreover, a significant reduction in MIC's of TET and benzalkonium chloride (QAC) were noticed when tested in combinations with THY and CAR. Their synergic effect was more significant in the case of THY which resulted a reduction of MIC's values of TET (2-8 fold) and QAC (2-8 fold). We noted also that THY and CAR inhibited the ethidium bromide (EtBr) cell efflux in a concentration-dependent manner. The rate of EtBr accumulation in food-borne pathogen was enhanced with THY and CAR (0, 250 and 500 μg/mL). The lowest concentration causing 50% of EtBr efflux inhibition (IC 50) was noticed in Salmonella enteritidis (1129) at 150 μg/mL of THY and 190 μg/mL of CAR respectively. These findings indicate that THY and CAR may serve as potential sources of efflux pump inhibitor in food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans

    PubMed Central

    Break, Timothy J; Desai, Jigar V; Ferre, Elise M N; Henderson, Christina; Zelazny, Adrian M; Siebenlist, Ulrich; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P; Lionakis, Michail S

    2018-01-01

    Abstract Background Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. Objectives To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. Methods MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1−/− mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. Results Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1−/− mice. Conclusions VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains. PMID:29040636

  4. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  5. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    PubMed

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin.

    PubMed

    Urrutia-Baca, Víctor Hugo; Escamilla-García, Erandi; de la Garza-Ramos, Myriam Angélica; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Urbina-Ríos, Cynthia Sofía

    2018-06-01

    Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log 10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log 10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 μM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.

  7. Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis.

    PubMed

    Waller, Stefanie B; Peter, Cristina M; Hoffmann, Jéssica F; Picoli, Tony; Osório, Luiza da G; Chaves, Fábio; Zani, João L; de Faria, Renata O; de Mello, João R B; Meireles, Mário C A

    2017-04-01

    This study aimed to evaluate the chemical composition and cytotoxic activity of brown Brazilian propolis and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis from animal sporotrichosis. Propolis was acquired commercially and prepared as a hydroalcoholic extract. Chemical analysis was evaluated by liquid chromatography coupled to mass spectrometry of ultra-efficiency. The cell viability was evaluated by MTT test in MDBK cells of 50 to 0.09 μg/mL. For antifungal tests, twenty isolates of Sporothrix brasiliensis from dogs (n = 11) and cats (n = 9) with sporotrichosis were tested to itraconazole (16-0.0313 μg/mL) and to propolis (3.125-0.09 mg/mL) by broth microdilution technique (CLSI M38-A2), adapted to natural products. The results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Itraconazole showed activity between MIC values of 0.25 to greater than 16 μg/mL, and 88.9% (08/09) and 72.7% (08/11) of S. brasiliensis from cats and dogs, respectively, were considered itraconazole-resistant. All Sporothrix brasiliensis were sensitive to brown propolis between MIC values of 0.19-1.56 mg/mL, including the itraconazole-resistant isolates, whereas the MFC values of propolis were from 0.78 to greater than 3.125 mg/mL. Propolis maintained a medium to high cell viability between concentration of 0.78 to 0.09 μg/mL, and p-coumaric acid was the major compound. Brown Brazilian propolis is a promising antifungal candidate against sporotrichosis and more studies need to be undertaken to evaluate its safe use to understand its efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts

    PubMed Central

    Luís, Ângelo; Breitenfeld, Luiza; Ferreira, Susana; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion assay and Minimum Inhibitory Concentration (MIC) value determination. The antibiofilm activity was determined by quantification of total biofilm biomass with crystal violet. Cytotoxicity was evaluated by hemolysis assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: For Gram-positive bacteria, MIC values of H. sericea methanolic extracts ranged between 0.040 and 0.625 mg/mL, whereas the fruits extract yielded the lowest MIC for several strains of microorganisms, namely, S. aureus, B. cereus, L. monocytogenes and clinical methicillin-resistant S. aureus (MRSA). Stems and fruits extract at 2.5 mg/mL effectively eradicated the biofilm of S. aureus ATCC 25923, SA 01/10 and MRSA 12/10. Regarding leaves extract, hemolysis was not observed, and in the case of stems and fruits, hemolysis was verified only for higher concentrations, suggesting its low toxicity. Fruits extract presented no toxic effect to normal human dermal fibroblasts (NHDF) cells however for concentrations of 0.017 and 0.008 mg/mL this extract was able to decrease human breast adenocarcinoma cells (MCF-7) viability in about 60%, as MTT test results had confirmed. This is a clearly demonstrator of the cytotoxicity of this extract against MCF-7 cells. PMID:24914310

  9. Fungicidal efficacy of various honeys against fluconazole-resistant Candida species isolated from HIV+ patients with candidiasis.

    PubMed

    Shokri, H; Sharifzadeh, A

    2017-06-01

    Honey is well known to possess a broad spectrum of activity against medically important organisms. The purpose of this study was to assess the antifungal activity of different honeys against 40 fluconazole (FLU) resistant Candida species, including Candida albicans (C. albicans), Candida glabrata, Candida krusei and Candida tropicalis. Three honey samples were collected from northern (Mazandaran, A), southern (Hormozgan, B) and central (Lorestan, C) regions of Iran. A microdilution technique based on the CLSI, M27-A2 protocol was employed to compare the susceptibility of honeys "A", "B" and "C" against different pathogenic Candida isolates. The results showed that different Candida isolates were resistant to FLU, ranging from 64μg/mL to 512μg/mL. All of the honeys tested had antifungal activities against FLU-resistant Candida species, ranging from 20% to 56.25% (v/v) and 25% to 56.25% (v/v) for minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs), respectively. Honey "A" (MIC: 31.59%, v/v) showed higher anti-Candida activity than honey "B" (MIC: 35.99%, v/v) and honey "C" (MIC: 39.2%, v/v). No statistically significant differences were observed among the mean MIC values of the honey samples (P>0.05). The order of overall susceptibility of Candida species to honey samples were; C. krusei>C. glabrata>C. tropicalis>C. albicans (P>0.05). In addition, the mean MICs of Candida strains isolated from the nail, vagina and oral cavity were 33.68%, 36.44% and 39.89%, respectively, and were not significantly different (P>0.05). Overall, varying susceptibilities to the anti-Candida properties of different honeys were observed with four FLU-resistant species of Candida. Further research is needed to assess the efficacy of honey as an inhibitor of candidal growth in clinical trials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. In Vitro Evaluation of CBR-2092, a Novel Rifamycin-Quinolone Hybrid Antibiotic: Microbiology Profiling Studies with Staphylococci and Streptococci ▿

    PubMed Central

    Robertson, Gregory T.; Bonventre, Eric J.; Doyle, Timothy B.; Du, Qun; Duncan, Leonard; Morris, Timothy W.; Roche, Eric D.; Yan, Dalai; Lynch, A. Simon

    2008-01-01

    We present data from antimicrobial assays performed in vitro that pertain to the potential clinical utility of a novel rifamycin-quinolone hybrid antibiotic, CBR-2092, for the treatment of infections mediated by gram-positive cocci. The MIC90s for CBR-2092 against 300 clinical isolates of staphylococci and streptococci ranged from 0.008 to 0.5 μg/ml. Against Staphylococcus aureus, CBR-2092 exhibited prolonged postantibiotic effects (PAEs) and sub-MIC effects (SMEs), with values of 3.2, 6.5, and >8.5 h determined for the PAE (3× MIC), SME (0.12× MIC), and PAE-SME (3× MIC/0.12× MIC) periods, respectively. Studies of genetically defined mutants of S. aureus indicate that CBR-2092 is not a substrate for the NorA or MepA efflux pumps. In minimal bactericidal concentration and time-kill studies, CBR-2092 exhibited bactericidal activity against staphylococci that was retained against rifampin- or intermediate quinolone-resistant strains, with apparent paradoxical cidal characteristics against rifampin-resistant strains. In spontaneous resistance studies, CBR-2092 exhibited activity consistent with balanced contributions from its composite pharmacophores, with a mutant prevention concentration of 0.12 μg/ml and a resistance frequency of <10−12 determined at 1 μg/ml in agar for S. aureus. Similarly, CBR-2092 suppressed the emergence of preexisting rifamycin resistance in time-kill studies undertaken at a high cell density. In studies of the intracellular killing of S. aureus, CBR-2092 exhibited prolonged bactericidal activity that was superior to the activities of moxifloxacin, rifampin, and a cocktail of moxifloxacin and rifampin. Overall, CBR-2092 exhibited promising activity in a range of antimicrobial assays performed in vitro that pertain to properties relevant to the effective treatment of serious infections mediated by gram-positive cocci. PMID:18443106

  11. Healthcare-associated Staphylococcus aureus Bacteremia in Children: Evidence for Reverse Vancomycin Creep and Impact of Vancomycin Trough Values on Outcome.

    PubMed

    McNeil, J Chase; Kok, Eric Y; Forbes, Andrea R; Lamberth, Linda; Hulten, Kristina G; Vallejo, Jesus G; Mason, Edward O; Kaplan, Sheldon L

    2016-03-01

    Elevated vancomycin minimum inhibitory concentrations (MICs) in Staphylococcus aureus have been associated with worse clinical outcomes in adults. For invasive meticillin-resistant S. aureus (MRSA) infections in adults, the Infectious Diseases Society of America recommends targeting vancomycin serum trough concentrations between 15 and 20 μg/mL. We evaluated trends in vancomycin MICs from healthcare-associated (HCA) S. aureus bacteremia isolates in children in addition to correlating vancomycin serum trough levels with clinical outcomes. Patients and isolates were identified from a prospective S. aureus surveillance study at Texas Children's Hospital (TCH). HCA S. aureus bacteremia isolates from 2003 to 2013 were selected. Vancomycin MICs by E-test were determined and medical records were reviewed. Acute kidney injury (AKI) was defined as doubling of the baseline serum creatinine. Three hundred forty-one isolates met inclusion criteria. We observed a reverse vancomycin creep among MRSA isolates in the study period with a decline in the proportion of isolates with vancomycin MIC ≥ 2 μg/mL (from 32.7% to 5.6%; P < 0.001). However, the proportion of MSSA isolates with MIC ≥ 2 μg/mL increased (from 2.9% to 9%; P = 0.04). Among patients who had vancomycin troughs performed, there was no difference in duration of bacteremia or fever with vancomycin trough >15 versus <15 μg/mL. A vancomycin trough >15 μg/mL was, however, an independent risk factor for AKI. Vancomycin MICs are shifting among HCA S. aureus bacteremia isolates with significant differences between MRSA and MSSA at TCH. Higher vancomycin troughs did not improve outcomes in pediatric HCA S. aureus bacteremia but were associated with increased nephrotoxicity. Further studies are needed to better understand optimal management of children with S. aureus bacteremia.

  12. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli.

    PubMed

    Soumet, C; Fourreau, E; Legrandois, P; Maris, P

    2012-07-06

    Bacterial adaptation to quaternary ammonium compounds (QACs) is mainly documented for benzalkonium chloride (BC) and few data are available for other QACs. The aim of this study was to assess the effects of repeated exposure to different quaternary ammonium compounds (QACs) on the susceptibility and/or resistance of bacteria to other QACs and antibiotics. Escherichia coli strains (n=10) were adapted by daily exposure to increasingly sub-inhibitory concentrations of a QAC for 7 days. Three QACs were studied. Following adaptation, we found similar levels of reduction in susceptibility to QACs with a mean 3-fold increase in the minimum inhibitory concentration (MIC) compared to initial MIC values, whatever the QAC used during adaptation. No significant differences in antibiotic susceptibility were observed between the tested QACs. Antibiotic susceptibility was reduced from 3.5- to 7.5-fold for phenicol compounds, β lactams, and quinolones. Increased MIC was associated with a shift in phenotype from susceptible to resistant for phenicol compounds (florfenicol and chloramphenicol) in 90% of E. coli strains. Regardless of the QAC used for adaptation, exposure to gradually increasing concentrations of this type of disinfectant results in reduced susceptibility to QACs and antibiotics as well as cross-resistance to phenicol compounds in E. coli strains. Extensive use of QACs at sub-inhibitory concentrations may lead to the emergence of antibiotic-resistant bacteria and may represent a public health risk. Published by Elsevier B.V.

  13. Tannic Acid as a Potential Modulator of Norfloxacin Resistance in Staphylococcus Aureus Overexpressing norA.

    PubMed

    Diniz-Silva, Helena Taina; Cirino, Isis Caroline da Silva; Falcão-Silva, Vivyanne Dos Santos; Magnani, Marciane; de Souza, Evandro Leite; Siqueira-Júnior, José P

    2016-01-01

    Tannins have shown inhibitory effects against pathogenic bacteria, and these properties make tannins potential modifying agents in bacterial resistance. The minimum inhibitory concentration (MIC) of tannic acid (TA), gallic acid (GA) and norfloxacin (Nor) against Staphylococcus aureus SA-1119 (NorA-effluxing strain) was determined using broth microdilution tests. To assess the modulation of antibiotic resistance, the MIC of Nor was determined in growth media with or without TA or GA at a subinhibitory concentration (1/4 MIC). The checkerboard method was performed to obtain the fractional inhibitory concentration index (FICI) for the combined application of TA and Nor. TA displayed a weak inhibitory effect (MIC 512 μg/ml) against S. aureus SA-1119, while no inhibitory effect was displayed by GA (MIC >512 μg/ml). However, when TA was tested at a subinhibitory concentration in combination with Nor, the MIC of Nor against S. aureus SA-1119 decreased from 128 to 4 μg/ml (32-fold); this effect was not observed for GA. In the checkerboard assay, the MIC of TA and Nor decreased from 512 to 128 μg/ml (4-fold) and from 128 to 8 μg/ml (16-fold), respectively. The combination of TA and Nor presented an FICI as low as 0.31, which indicates a synergistic interaction. TA is a potential agent for increasing the clinical efficacy of Nor to control resistant S. aureus. © 2016 S. Karger AG, Basel.

  14. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  15. Effectiveness of disinfectants used in cooling towers against Legionella pneumophila.

    PubMed

    García, M T; Pelaz, C

    2008-01-01

    Legionella persists in man-made aquatic installations despite preventive treatments. More information about disinfectants could improve the effectiveness of treatments. This study tests the susceptibility of Legionella pneumophila serogroup (sg) 1 against 8 disinfectants used in cooling tower treatments. We determined the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal effect of sodium hypochlorite (A), hydrogen peroxide with silver nitrate (B), didecyldimethylammonium chloride (C), benzalkonium chloride (D), tributyltetradecylphosphonium chloride (E), tetrahydroxymethylphosphonium sulfide (F), 2,2-dibromonitropropionamide (G) and chloromethylisothiazolone (H) against 28 L. pneumophila sg 1 isolates. MIC and MBC values were equivalent. Bacteria are less susceptible to disinfectants F, B, D and A than to H, E, C and G. All disinfectants induced a bactericidal effect. The effect rate is dose dependent for G, H, F and B; the effect is fast for the rest of disinfectants at any concentration. The bactericidal activity of disinfectants A, G and F depends on the susceptibility test used. All disinfectants have bactericidal activity against L. pneumophila sg 1 at concentrations used in cooling tower treatments. Results depend on the assay for some products.

  16. Occurrence of porphyromonas gingivalis and its antibacterial susceptibility to metronidazole and tetracycline in patients with chronic periodontitis.

    PubMed

    Gamboa, Fredy; Acosta, Adriana; García, Dabeiba-Adriana; Velosa, Juliana; Araya, Natalia; Ledergerber, Roberto

    2014-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative strict anaerobes which are immersed in the subgingival biofilm. Porphyromonas gingivalis, an important periodontal pathogen, is frequently detected in patients with chronic periodontitis. Although isolates of P. gingivalis tend to be susceptible to most antimicrobial agents, relatively little information is available on its in vitro antimicrobial susceptibility. The aim of this study was to determine the frequency of P. gingivalis in patients with chronic periodontitis and to assess antimicrobial susceptibility in terms of minimum inhibitory concentration (MIC) of clinical isolates to metronidazole and tetracycline. A descriptive, observational study was performed including 87 patients with chronic periodontitis. Samples were taken from the periodontal pocket using paper points, which were placed in thioglycollate broth. Samples were incubated for 4 hours at 37°C in anaerobic conditions and finally replated on Wilkins-Chalgren anaerobic agar (Oxoid). Bacteria were identified using the RapIDTMANAII system (Remel) and antimicrobial susceptibility was determined with the M.I.C. Evaluator test (MICE, Oxoid). P. gingivalis was identified in 30 of the 87 patients with chronic periodontitis, which represents a frequency of 34.5%. All 30 isolates (100%) were sensitive to metronidazole, with MIC values ranging from 0015-4ug/ml. Regarding tetracycline, 27 isolates (90%) were sensitive, with MIC values ranging from <0.015 to 4 ug /ml, the remaining three isolates (10%) were resistant to tetracycline with MIC values of 8ug/ ml. There was no statistically significant difference in age, gender, pocket depth, clinical attachment level and severity of periodontitis between the group of patients with chronic periodontitis and P. gingivalis and the group of patients with chronic periodontitis without P. gingivalis. In conclusion, P. gingivalis was found at a frequency of 34.5% in patients with chronic periodontitis and clinical isolates were highly sensitive to metronidazole and tetracycline.

  17. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract.

    PubMed

    Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele

    2015-01-01

    Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens.

  18. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity.

    PubMed

    Jiang, H; Hu, J R; Zhan, W Q; Liu, X

    2009-01-01

    Preliminary studies with the four extracts of Oxytropis falcate Bunge exhibited that the chloroform and ethyl acetate extracts showed stronger antibacterial activities against the nine tested Gram-positive and Gram-negative bacteria. The HPLC-scanned and bioassay-guided fractionation led to the isolation and identification of the main flavonoid compounds, i.e. rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4',beta-trihydroxy-dihydrochalcon. Except 2',4',beta-trihydroxy-dihydrochalcon, four other compounds had good antibacterial activities. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of the four compounds ranged between 125 and 515 microg mL(-1). Staphylococcus aureus was the most susceptible to these compounds, with MIC and MBC values from 125 to 130 microg mL(-1). This is the first report of antibacterial activity in O. falcate Bunge. In this study, evidence to evaluate the biological functions of O. falcate Bunge is provided, which promote the rational use of this herb.

  19. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  20. Mutant prevention concentration and PK-PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves.

    PubMed

    Balaje, R M; Sidhu, P K; Kaur, G; Rampal, S

    2013-12-01

    This study validated the use of mutant prevention concentration (MPC) and pharmacokinetic and pharmacodynamic (PK-PD) modeling approach for optimization of dose regimen of enrofloxacin to contain the emergence of Pasteurella multocida resistance. The PK and PD characteristics of enrofloxacin were investigated in buffalo calves after intramuscular administration at a dose rate of 12 mg/kg. The concentration of enrofloxacin and ciprofloxacin in serum were determined by high-performance liquid chromatography. The serum peak concentration (Cmax), terminal half-life (t1/2K10), volume of distribution (Vd(area)/F) and mean residence time (MRT) of enrofloxacin were 1.89 ± 0.35 μg/ml, 5.14 ± 0.66 h, 5.59 ± 0.99 l/kg/h and 8.52 ± 1.29 h, respectively. The percent metabolite conversion ratio of ciprofloxacin to enrofloxacin was 79. The binding of enrofloxacin to plasma proteins was 11%. The MIC, MBC and MPC for enrofloxacin against P. multocida were 0.05, 0.06 μg/ml and 1.50 μg/ml.In vitro and ex-vivo bactericidal activity of enrofloxacin was concentration dependent. Modeling of ex-vivo growth inhibition data to the sigmoid Emax equation provided AUC24h/MIC values to produce bacteriostatic (19 h), bactericidal (43 h) and bacterial eradication (64 h). PK-PD data in conjunction with MPC and MIC90 data predicted dosage schedules for enrofloxacin that may achieve optimum efficacy in respect of bacteriological and clinical cure and minimize the risk of emergence of resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Novel Pharmacokinetic-Pharmacodynamic Model for Prediction of Outcomes with an Extended-Release Formulation of Ciprofloxacin

    PubMed Central

    Meagher, Alison K.; Forrest, Alan; Dalhoff, Axel; Stass, Heino; Schentag, Jerome J.

    2004-01-01

    The pharmacokinetics of an extended-release (XR) formulation of ciprofloxacin has been compared to that of the immediate-release (IR) product in healthy volunteers. The only significant difference in pharmacokinetic parameters between the two formulations was seen in the rate constant of absorption, which was approximately 50% greater with the IR formulation. The geometric mean plasma ciprofloxacin concentrations were applied to an in vitro pharmacokinetic-pharmacodynamic model exposing three different clinical strains of Escherichia coli (MICs, 0.03, 0.5, and 2.0 mg/liter) to 24 h of simulated concentrations in plasma. A novel mathematical model was derived to describe the time course of bacterial CFU, including capacity-limited replication and first-order rate of bacterial clearance, and to model the effects of ciprofloxacin concentrations on these processes. A “mixture model” was employed which allowed as many as three bacterial subpopulations to describe the total bacterial load at any moment. Comparing the two formulations at equivalent daily doses, the rates and extents of bacterial killing were similar with the IR and XR formulations at MICs of 0.03 and 2.0 mg/liter. At an MIC of 0.5 mg/liter, however, the 1,000-mg/day XR formulation showed a moderate advantage in antibacterial effect: the area under the CFU-time curve was 45% higher for the IR regimen; the nadir log CFU and 24-h log CFU values for the IR regimen were 3.75 and 2.49, respectively; and those for XR were 4.54 and 3.13, respectively. The mathematical model explained the differences in bacterial killing rate for two regimens with identical AUC/MIC ratios. PMID:15155200

  2. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt.

    PubMed

    Salem, Mohamed Z M; Elansary, Hosam O; Ali, Hayssam M; El-Settawy, Ahmed A; Elshikh, Mohamed S; Abdel-Salam, Eslam M; Skalicka-Woźniak, Krystyna

    2018-01-22

    Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC 50  = 5.1 ± 0.1 μg/mL). The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.

  3. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  4. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil.

    PubMed

    Martini, Caroline L; Lange, Carla C; Brito, Maria Avp; Ribeiro, João B; Mendonça, Letícia C; Vaz, Eliana K

    2017-05-01

    This Regional Research Communication describes the characterisation of ampicillin, penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine subclinical mastitis in Minas Gerais State, Brazil. Ninety S. aureus isolates from bovine mastitis exhibiting phenotypic resistance to ampicillin, penicillin and/or tetracycline were selected for this study. The minimum inhibitory concentration (MIC) of each antibiotic was determined using the E-Test® and the production of beta-lactamase was determined by cefinase disks. The resistance genes blaZ, tet(K), tet(L), tet(M), and tet(O) were investigated by PCR in all of the isolates. The MIC results classified 77, 83 and 71% of the isolates as resistant to ampicillin, penicillin and tetracycline, respectively. The MIC50 and MIC90 were, respectively, 1 and 2 µg/ml for ampicillin, 0·5 and 1 µg/ml for penicillin and 32 and 64 µg/ml for tetracycline. Eighty-six per cent of beta-lactamase producing isolates were detected. Of the 90 isolates investigated, 97% amplified blaZ, 84% amplified tet(K), 9% amplified tet(L), 2% amplified tet(M) and 1% amplified tet(O). Seventy-nine isolates (88%) showed blaZ together with at least one tet gene. S. aureus isolates showed high MIC50 and MIC90 values for the three antimicrobials. The blaZ and tet(K) genes were widespread in the herds studied, and most of the isolates harboured blaZ and tet(K) concomitantly.

  5. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles.

    PubMed

    Iatta, Roberta; Puttilli, Maria Rita; Immediato, Davide; Otranto, Domenico; Cafarchia, Claudia

    2017-03-01

    This study aims to evaluate the effect of efflux pump modulators (EPMs) on the minimal inhibitory concentration (MIC) of fluconazole (FLZ) and voriconazole (VOR) in Malassezia furfur and Malassezia pachydermatis. The in vitro efficacy of azoles, in combination with EPMs (ie haloperidol-HAL, promethazine-PTZ and cyclosporine A-CYS), against 21 M. furfur from bloodstream infection patients and 14 M. pachydermatis from the skin of dogs with dermatitis, was assessed using a broth microdilution chequerboard analysis. Data were analysed using the model-fractional inhibitory concentration index (FICI) method. The MIC of FLZ and VOR of Malassezia spp. decreased in the presence of sub-inhibitory concentrations of HAL and/or PTZ. The synergic effect was observed only in strains with FLZ MIC≥128 μg/mL for M. furfur, FLZ MIC≥64 μg/mL for M. pachydermatis and VOR MIC≥4 μg/mL in both Malassezia spp. These results suggest that the drug efflux pumps are involved as defence mechanisms to azole drugs in Malassezia yeast. The synergism might be related to an increased expression of efflux pump genes, eventually resulting in azole resistance phenomena. Finally, the above FLZ and VOR MIC values might be considered the cut-off to discriminate susceptible and resistant strains. © 2016 Blackwell Verlag GmbH.

  6. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    PubMed Central

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-01-01

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems. PMID:29099753

  7. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species.

    PubMed

    Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia

    2009-11-01

    The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

  8. Simple, direct drug susceptibility testing technique for diagnosis of drug-resistant tuberculosis in resource-poor settings.

    PubMed

    Kim, C-K; Joo, Y-T; Lee, E P; Park, Y K; Kim, H-J; Kim, S J

    2013-09-01

    The Korean Institute of Tuberculosis, Seoul, Republic of Korea. To develop a simple, direct drug susceptibility testing (DST) technique using Kudoh-modified Ogawa (KMO) medium. The critical concentrations of isoniazid (INH), rifampicin (RMP), kanamycin (KM) and ofloxacin (OFX) for KMO medium were calibrated by comparing the minimal inhibitory concentrations (MICs) against clinical isolates of Mycobacterium tuberculosis on KMO with those on Löwenstein-Jensen (LJ). The performance of the direct KMO DST technique was evaluated on 186 smear-positive sputum specimens and compared with indirect LJ DST. Agreement of MICs on direct vs. indirect DST was high for INH, RMP and OFX. KM MICs on KMO were ∼10 g/ml higher than those on LJ. The critical concentrations of INH, RMP, OFX and KM for KMO were therefore set at 0.2, 40.0, 2.0, and 40.0 g/ml. The evaluation of direct DST of smear-positive sputum specimens showed 100% agreement with indirect LJ DST for INH and RMP. However, the respective susceptible and resistant predictive values were 98.8% and 100% for OFX, and 100% and 80% for KM. Direct DST using KMO is useful, with clear advantages of a shorter turnaround time, procedural simplicity and low cost compared to indirect DST. It may be most indicated in resource-poor settings for programmatic management of drug-resistant tuberculosis.

  9. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    PubMed

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  10. Benzimidazole-Based Antibacterial Agents Against F. tularensis

    PubMed Central

    Kumar, Kunal; Awasthi, Divya; Lee, Seung-Yub; Cummings, Jason E.; Knudson, Susan E.; Slayden, Richard A.; Ojima, Iwao

    2013-01-01

    Francisella tularensis is a highly virulent pathogenic bacterium. In order to identify novel potential antibacterial agents against F. tularensis, libraries of trisubstituted benzimidazoles were screened against F. tularensis LVS strain. In a preliminary screening assay, remarkably, 23 of 2,5,6- and 2,5,7-trisubstituted benzimidazoles showed excellent activity exhibiting greater than 90 % growth inhibition at 1 µg/mL. Among those hits, 21 compounds showed MIC90 values in the range of 0.35–48.6 µg/mL after accurate MIC determination. In ex-vivo efficacy assays, four of these compounds exhibited 2–3 Log reduction in colony forming units (CFU) per mL at concentrations of 10 and 50 µg/mL. PMID:23623254

  11. Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. latex against selected cariogenic bacteria

    PubMed Central

    Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Garg, Akanksha A.; Thakkar, Arpit M.

    2011-01-01

    In vitro antibacterial potential of the chloroform, ethyl acetate, hexane, methanol and aqueous extracts of Calotropis gigantia (L.) R. Br. was evaluated by using five cariogenic bacteria, Actinomyces viscosus, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus mitis and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The chloroform extracted fraction of latex showed inhibitory effect against S. mutans and L. acidophilus with MIC value of 0.032 and 0.52 mg/mL, respectively. Qualitative investigation on structure elucidation of bioactive compound using IR, NMR and GC–MS techniques revealed the presence of methyl nonanoate, a saturated fatty acid. PMID:23961166

  12. Comparison of clinical categories for Escherichia coli harboring specific qnr and chromosomal-mediated fluoroquinolone resistance determinants according to CLSI and EUCAST.

    PubMed

    Machuca, Jesús; Briales, Alejandra; Díaz-de-Alba, Paula; Martínez-Martínez, Luis; Rodríguez-Martínez, José-Manuel; Pascual, Álvaro

    2016-03-01

    EUCAST breakpoints are more restrictive than those defined by CLSI. This study highlights the discrepancies between CLSI and EUCAST in a well characterized isogenic Escherichia coli collection and their correlations with specific quinolone resistance mechanisms. The greatest number of discrepancies was observed in strains containing 2-4 resistance mechanisms (MIC values on the borderline of clinical resistance). Bearing in mind that quinolones are concentration dependent antimicrobial agents, small changes in MIC may have relevant consequences for treatment outcomes. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. Molecular resistance mechanisms of Mycoplasma agalactiae to macrolides and lincomycin.

    PubMed

    Prats-van der Ham, Miranda; Tatay-Dualde, Juan; de la Fe, Christian; Paterna, Ana; Sánchez, Antonio; Corrales, Juan Carlos; Contreras, Antonio; Gómez-Martín, Ángel

    2017-11-01

    The extensive use of antimicrobials for disease control has caused a remarkable decrease in antimicrobial susceptibility of different animal mycoplasma species, including Mycoplasma agalactiae (M. agalactiae), the main causative agent of contagious agalactia. However, the molecular mechanisms behind M. agalactiae resistance to macrolides and lincomycin have not yet been elucidated. The aim of the present study was to investigate the association between minimum inhibitory concentration (MIC) values of different antimicrobials and mutations in the 23S rRNA gene and ribosomal proteins L4 and L22, analysing both field isolates (n=50) and in vitro selected resistant mutants of M. agalactiae. The obtained MIC results of the studied field isolates demonstrate an increasing development of tylosin resistance in this bacterium, in comparison to previous studies. Interestingly, predicted amino acid changes in L22 (Ser89Leu and Gln90Lys/His) were the first variations observed when MICs of M. agalactiae started to increase (tylosin MIC ≥0.8μg/ml), whereas mutations at positions 2058 or 2059 of domain V of the 23S rRNA gene appeared from MIC values of 1.6μg/ml. These results were consistent in both field isolates and in vitro selected mutants of M. agalactiae. Thus, although in other mycoplasma species resistance to macrolides and lincosamides had been mainly related to mutations in the 23S rRNA gene, this work demonstrates the role of alterations in ribosomal protein L22 in decreased susceptibility of M. agalactiae. Moreover, these mutations can be used as molecular markers to set an interpretative breakpoint of antimicrobial resistance for M. agalactiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance.

    PubMed

    Lollai, S A; Ziccheddu, M; Duprè, I; Piras, D

    2016-10-01

    Mastitis causes economic losses and antimicrobials are frequently used for mastitis treatment. Antimicrobial resistance surveys are still rare in the ovine field and characterization of strains is important in order to acquire information about resistance and for optimization of therapy. Bacterial pathogens recovered in milk samples from mastitis-affected ewes were characterized for resistance to tetracyclines and aminoglycosides, members of which are frequently used antimicrobials in small ruminants. A total of 185 strains of staphylococci, streptococci, and enterococci, common mastitis pathogens, were tested for minimal inhibitory concentration (MIC) to tetracycline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, and for resistance genes by PCR. Effects of different tet genes arrangements on MICs were also investigated. Staphylococci expressed the lowest MIC for tetracycline and tet(K) was the most common gene recovered; tet(M) and tet(O) were also found. Gene content was shown to influence the tetracycline MIC values. Enterococci and streptococci showed higher MICs to tetracyclines and nonsusceptible strains always harboured at least one ribosomal protection gene (MIC above 8 μg ml(-1) ). Streptococci often harboured two or more tet determinants. As regards the resistance to aminoglycosides, staphylococci showed the lowest gentamicin and kanamycin median MIC along with streptomycin high level resistant (HLR) strains (MIC >1024 μg ml(-1) ) all harbouring str gene. The resistance determinant aac(6')-Ie-aph(2″)-Ia was present in few strains. Streptococci were basically nonsusceptible to aminoglycosides but neither HLR isolates nor resistance genes were detected. Enterococci revealed the highest MICs for gentamicin; two str harbouring isolates were shown to be HLR to streptomycin. Evidence was obtained for the circulation of antimicrobial-resistant strains and genes in sheep dairy farming. Tetracycline MIC of 64 μg ml(-1) and high-level resistance were detected for streptomycin (MIC >1024 μg ml(-1) ), so that effectiveness of common treatments may be at risk. © 2016 The Society for Applied Microbiology.

  15. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

    PubMed

    Garvey, E P; Hoekstra, W J; Schotzinger, R J; Sobel, J D; Lilly, E A; Fidel, P L

    2015-09-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: a comparison of 0.5-h and 3-h infusions.

    PubMed

    Lipš, Michal; Siller, Michal; Strojil, Jan; Urbánek, Karel; Balík, Martin; Suchánková, Hana

    2014-10-01

    In critically ill patients, pathophysiological changes alter the pharmacokinetics of antibiotics. Imipenem exhibits primarily time-dependent killing. Its administration by prolonged infusion may increase the time for which its plasma concentration exceeds the minimum inhibitory concentrations (MICs) of suspected pathogens. The objectives of this study were to compare the pharmacokinetic parameters of imipenem administered by standard short infusion (1g imipenem/1g cilastatin over 30min three times daily) and by extended infusion with a reduced total dose (0.5g imipenem/0.5g cilastatin over 3h four times daily) and to compare the target pharmacokinetic/pharmacodynamic indices, namely percentage of the dosing interval for which the free plasma concentration of imipenem exceeds the MIC and 4× MIC (%fT>MIC and %fT>4×MIC) of 0.5, 1, 2 and 4mg/L, for these two regimens in critically ill adult patients with nosocomial pneumonia on Day 2 of empirical antibiotic therapy. The study included 22 patients. Whilst no significant differences were found between both groups for %fT>MIC, %fT>4×MIC was 87.4±12.19%, 68.6±15.08%, 47.31±6.64% and 27.81±9.52% of the 8-h interval in the short infusion group for MICs of 0.5, 1, 2 and 4mg/L, respectively, and 85.15±17.57%, 53.14±27.27%, 13.55±24.47% and 0±0% of the 6-h interval for the extended infusion group. In conclusion, administration of 0.5g of imipenem by a 3-h infusion every 6h does not provide sufficient drug concentrations to treat infections caused by pathogens with a MIC of ≥2mg/L. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Antimycobacterial physalins from Physalis angulata L. (Solanaceae).

    PubMed

    Januário, A H; Filho, E Rodrigues; Pietro, R C L R; Kashima, S; Sato, D N; França, S C

    2002-08-01

    Crude extracts and fractions from aerial parts of Physalis angulata have been bioassayed for antimycobacterial activity. Fraction A1-29-12 containing physalins B, F and D exhibited a minimum inhibitory concentration value (MIC) against Mycobacterium tuberculosis H(37)Rv strain of 32 microg/mL. Purified physalin B and physalin D were also tested showing MIC values against Mycobacterium tuberculosis H(37)Rv strain of > 128 microg/mL and 32 microg/mL respectively, suggesting that physalin D plays a relevant role in the antimycobacterial activity displayed. Structural elucidation of both physalins D and B was based on detailed (13)C and (1)H NMR spectral analysis with the aid of 2D-correlation spectroscopy ((1)H-(1)H, COSY, HSQC and HMBC). The assignment of the (13)C chemical shift for physalin D is reported here for the first time. Copyright 2002 John Wiley & Sons, Ltd.

  18. Inhibitory and bactericidal activities of levofloxacin, ofloxacin, erythromycin, and rifampin used singly and in combination against Legionella pneumophila.

    PubMed Central

    Baltch, A L; Smith, R P; Ritz, W

    1995-01-01

    The susceptibilities of 56 Legionella pneumophila isolates (43 clinical and 15 environmental isolates) to levofloxacin, ofloxacin, erythromycin, and rifampin were studied with buffered charcoal yeast extract (BCYE) agar (inoculum, 10(4) CFU per spot), and the susceptibilities of five isolates were studied with buffered yeast extract (BYE) broth (inoculum, 10(5) CFU/ml). The MICs inhibiting 90% of strains tested on BCYE agar were 0.125, 0.25, 1.0, and < or = 0.004 micrograms/ml for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MICs by the BYE broth dilution method were 1 to 3, 2, 1 to 2, and 1 tube lower than those by the agar dilution method for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MBCs were 1 to 2 tubes higher than the broth dilution MICs for levofloxacin, 1 to 3 tubes higher than the broth dilution MICs for ofloxacin, 1 to 3 tubes higher than the broth dilution MICs for erythromycin, and the same as the broth dilution MICs for rifampin. In kinetic time-kill curve studies, at drug concentrations of 1.0 and 2.0 times the MIC, the most active drugs were levofloxacin and rifampin. At 72 h, concentrations of levofloxacin and rifampin of 2.0 times the MIC demonstrated a bactericidal effect against L. pneumophila. In contrast, at concentrations of 1.0 and 2.0 times the MICs regrowth was observed with ofloxacin and only a gradual decrease in the numbers of CFU per milliliter was observed with erythromycin. Only a minor inhibitory effect was observed with 0.25 or 0.5 time the MICs of all drugs at 24 to 48 h, with regrowth occurring at 72 h. In contrast to erythromycin or ofloxacin plus rifampin at 0.25 time the MICs, only levofloxacin plus rifampin demonstrated synergy. Thus, levofloxacin demonstrated the best inhibitory and bactericidal effects against L. pneumophila when it was studied alone or in a combination with rifampin. PMID:7486896

  19. The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2017-03-01

    The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L -1 , which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.

  20. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens.

    PubMed

    Kavruk, M; Celikbicak, O; Ozalp, V C; Borsa, B A; Hernandez, F J; Bayramoglu, G; Salih, B; Arica, M Y

    2015-05-18

    In this study, we designed aptamer-gated nanocapsules for the specific targeting of cargo to bacteria with controlled release of antibiotics based on aptamer-receptor interactions. Aptamer-gates caused a specific decrease in minimum inhibitory concentration (MIC) values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery.

  1. The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents.

    PubMed

    Al-Bakri, A G; Othman, G; Bustanji, Y

    2009-07-01

    To evaluate the antimicrobial activities of aspirin, EDTA and an aspirin-EDTA (A-EDTA) combination against Pseudomonas aeruginosa, Escherichia coli and Candida albicans in planktonic and biofilm cultures. Minimal inhibitory concentrations (MIC) and minimal biocidal concentrations (MBC) were determined using twofold broth microdilution and viable counting methods, respectively. Aspirin's recorded MIC values ranged from 1.2 to 2.7 mg ml(-1). Checkerboard assay demonstrated a synergism in antimicrobial activity upon combination. Aspirin's minimal biofilm eradication concentration values (MBEC) against the established biofilms ranged between 1.35 and 3.83 mg ml(-1). A complete eradication of bacterial biofilms was achieved after a 4-h treatment with the A-EDTA combination. Both aspirin and EDTA possess broad-spectrum antimicrobial activity for both planktonic and biofilm cultures. Aspirin used at the MBEC for 24 h was successful in eradicating P. aeruginosa, E. coli and C. albicans biofilms established on abiotic surfaces. Moreover, the exposure to the A-EDTA combination (4 h) effected complete bacterial biofilm eradication. There is a continuous need for the discovery of new antimicrobial agents. Aspirin and EDTA are 'nonantibiotic drugs', the combination of which can be used successfully to treat and eradicate biofilms established on abiotic surfaces.

  2. The Anti-Staphylococcus aureus Effect of Combined Echinophora platyloba Essential Oil and Liquid Smoke in Beef

    PubMed Central

    Pilevar, Zahra; Hajimehdipoor, Homa; Shahraz, Farzaneh; Alizadeh, Leyla; Mahmoudzadeh, Maryam

    2017-01-01

    Summary In the current study, the antibacterial effect of Echinophora platyloba essential oil and common liquid smoke (individually and in combination) against Staphylococcus aureus in beef meat samples is investigated. Using an automated microbiological growth analyser and the turbidimetric technique, the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the essential oil and liquid smoke were determined. Anti-S. aureus activity of essential oil and liquid smoke (individually and in combination) was defined by disk diffusion assay, generation time and cell constituent release. Apart from that, the interactions between these two compounds were measured by the checkerboard assay and by calculating the fractional inhibitory concentration (FIC) indices. Related MIC values of essential oil and smoke were found to be 7200 and 5500 mg/L, and MBC values were 8500 and 8000 mg/L, respectively. The conducted organoleptic assay showed that the addition of 0.05 g of essential oil and 0.6 g of liquid smoke to 100 g of meat samples did not have adverse effect on the overall acceptance. Weaker antibacterial effect against Staphylococcus aureus was observed when only Echinophora platyloba essential oil was used than when it was used in combination with liquid smoke. PMID:28559740

  3. An investigation of the bactericidal activity of chlorhexidine digluconateagainst multidrug-resistant hospital isolates.

    PubMed

    Ekizoğlu, Melike; Sağiroğlu, Meral; Kiliç, Ekrem; Hasçelik, Ayşe Gülşen

    2016-04-19

    Hospital infections are among the most prominent medical problems around the world. Using proper biocides in an appropriate way is critically important in overcoming this problem. Several reports have suggested that microorganisms may develop resistance or reduce their susceptibility to biocides, similar to the case with antibiotics. In this study we aimed to determine the antimicrobial activity of chlorhexidine digluconate against clinical isolates. The susceptibility of 120 hospital isolated strains of 7 bacterial genera against chlorhexidine digluconate was determined by agar dilution test, using minimum inhibitory concentration (MIC) values and the EN 1040 Basic Bactericidal Activity Test to determine the bactericidal activity. According to MIC values, Pseudomonas aeruginosa and Stenotrophomonas maltophilia were found to be less susceptible to chlorhexidine digluconate. Quantitative suspension test results showed that 4% chlorhexidine digluconate was effective against antibiotic resistant and susceptible bacteria after 5 min of contact time and can be safely used in our hospital. However, concentrations below 4% chlorhexidine digluconate caused a decrease in bactericidal activity, especially for Staphylococcus aureus and P. aeruginosa. It is crucial to use biocides at appropriate concentrations and to perform surveillance studies to trace resistance or low susceptibility patterns of S. aureus, P. aeruginosa, and other hospital isolates.

  4. In vitro sensitivity of Hungarian Actinobaculum suis strains to selected antimicrobials.

    PubMed

    Biksi, I; Major, Andrea; Fodor, L; Szenci, O; Vetési, F

    2003-01-01

    In vitro antimicrobial sensitivity of 12 Hungarian isolates and the type strain ATCC 33144 of Actinobaculum suis to different antimicrobial compounds was determined both by the agar dilution and by the disc diffusion method. By agar dilution, MIC50 values in the range of 0.05-3.125 micrograms/ml were determined for penicillin, ampicillin, ceftiofur, doxycycline, tylosin, pleuromutilins, chloramphenicol, florfenicol, enrofloxacin and lincomycin. The MIC50 value of oxytetracycline and spectinomycin was 6.25 and 12.5 micrograms/ml, respectively. For ofloxacin, flumequine, neomycin, streptomycin, gentamicin, nalidixic acid, nitrofurantoin and sulphamethoxazole + trimethoprim MIC50 values were in the range of 25-100 micrograms/ml. With the disc diffusion method, all strains were sensitive to penicillin, cephalosporins examined, chloramphenicol and florfenicol, tetracyclines examined, pleuromutilins, lincomycin and tylosin. Variable sensitivity was observed for fluoroquinolones (flumequine, enrofloxacin, ofloxacin), most of the strains were susceptible to marbofloxacin. Almost all strains were resistant to aminoglycosides but most of them were sensitive to spectinomycin. A strong correlation was determined for disc diffusion and MIC results (Spearman's rho 0.789, p < 0001). MIC values of the type strain and MIC50 values of other tested strains did not differ significantly. Few strains showed a partially distinct resistance pattern for erythromycin, lincomycin and ampicillin in both methods.

  5. The in vitro antimicrobial evaluation of commercially essential oils and their combinations against acne.

    PubMed

    Orchard, A; van Vuuren, S F; Viljoen, A; Kamatou, Guy

    2018-03-24

    The study investigated the efficacy of commercial essential oil combinations against the two pathogens responsible for acne with the aim to identify synergy and favourable oils to possibly use in a blend. Antimicrobial activity was assessed using the minimum inhibitory concentration (MIC) assay against Staphylococcus epidermidis (ATCC 2223) and Propionibacterium acnes (ATCC 11827), and the fractional inhibitory concentration index (ΣFIC) was calculated. Combinations displaying synergistic interactions were further investigated at varied ratios and the results plotted on isobolograms. From the 408 combinations investigated, 167 combinations were identified as displaying noteworthy antimicrobial activity (MIC value ≤ 1.00 mg ml -1 ). Thirteen synergistic interactions were observed against S. epidermidis and three synergistic combinations were observed against P. acnes. It was found that not one of the synergistic interactions identified were based on the combinations recommended in the layman's aroma-therapeutic literature. Synergy was evident rather from leads based on antimicrobial activity from previous studies, thus emphasising the importance of scientific validation. Leptospermum scoparium J.R.Forst. and G.Forst (manuka) was the essential oil mostly involved in synergistic interactions (four) against S. epidermidis. Cananga odorata (Lam.) Hook.f. and Thomson (ylang ylang) essential oil was also frequently involved in synergy where synergistic interactions could be observed against both pathogens. The combination with the lowest MIC value against both acne pathogens was and Vetiveria zizanioides Stapf (vetiver) with Cinnamomum verum J.Presl (cinnamon bark) (MIC values 0.19-0.25 mg ml -1 ). Pogostemon patchouli Benth. (patchouli), V. zizanioides, C. verum and Santalum spp. (sandalwood) could be identified as the oils that contributed the most noteworthy antimicrobial activity towards the combinations. The different chemotypes of the essential oils used in the combinations predominantly resulted in similar antimicrobial activity. The investigated essential oil combinations resulted in at least 50% of the combinations displaying noteworthy antimicrobial activity. Most of the synergistic interactions do not necessarily correspond to the recommended aroma-therapeutic literature, which highlights a need for scientific validation of essential oil antimicrobial activity. No antagonism was observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria.

    PubMed

    Laudy, Agnieszka E; Kulińska, Ewa; Tyski, Stefan

    2017-01-11

    The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs), against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC) value determination in the presence of 1 mM MgSO₄. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide) was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100-800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine) tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  7. Assessment of formulas for calculating critical concentration by the agar diffusion method.

    PubMed Central

    Drugeon, H B; Juvin, M E; Caillon, J; Courtieu, A L

    1987-01-01

    The critical concentration of antibiotic was calculated by using the agar diffusion method with disks containing different charges of antibiotic. It is currently possible to use different calculation formulas (based on Fick's law) devised by Cooper and Woodman (the best known) and by Vesterdal. The results obtained with the formulas were compared with the MIC results (obtained by the agar dilution method). A total of 91 strains and two cephalosporins (cefotaxime and ceftriaxone) were studied. The formula of Cooper and Woodman led to critical concentrations that were higher than the MIC, but concentrations obtained with the Vesterdal formula were closer to the MIC. The critical concentration was independent of method parameters (dilution, for example). PMID:3619419

  8. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution.

    PubMed

    Cairns, Johannes; Becks, Lutz; Jalasvuori, Matti; Hiltunen, Teppo

    2017-01-19

    Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  9. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution

    PubMed Central

    2017-01-01

    Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria–phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920385

  10. Chemical Characterization and Cytoprotective Effect of the Hydroethanol Extract from Annona coriacea Mart. (Araticum)

    PubMed Central

    Júnior, José G. A. S.; Coutinho, Henrique D. M.; Boris, Ticiana C. C.; Cristo, Janyketchuly S.; Pereira, Nara L. F.; Figueiredo, Fernando G.; Cunha, Francisco A. B.; Aquino, Pedro E. A.; Nascimento, Polyana A. C.; Mesquita, Francisco J. C.; Moreira, Paulo H. F.; Coutinho, Sáskia T. B.; Souza, Ivon T.; Teixeira, Gabriela C.; Ferreira, Najla M. N.; Farina, Eleonora O.; Torres, Cícero M. G.; Holanda, Vanderlan N.; Pereira, Vandbergue S.; Guedes, Maria I. F.

    2016-01-01

    Introduction: Annona coriacea Mart. (araticum) is a widely distributed tree in the cerrado. Its value is attributed principally to the consumption of its fruit which possesses a large nutritive potential. The objective was to identify the chemical profile and evaluate the antimicrobial and cytoprotective activity of the hydroethanol extract of A. coriacea Mart. (HEAC) leaves against the toxicity of mercury chloride. Materials and Methods: The characterization of components was carried out using high-performance liquid chromatography (HPLC). The minimum inhibitory concentration (MIC) was determined by microdilution method in broth with strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. For evaluation of the modulatory and cytoprotective activity of aminoglycoside antibiotics (gentamicin and amikacin) and mercury chloride (HgCl2), the substances were associated with the HEAC at subinhibitory concentrations (MIC/8). Results and Discussion: The HPLC analysis revealed the presence of flavonoids such as Luteolin (1.84%) and Quercetin (1.19%) in elevated concentrations. The HEAC presented an MIC ≥512 μg/mL and significant antagonistic action in aminoglycosides modulation, and it also showed cytoprotective activity to S. aureus (significance P < 0.0001) and E. coli (significance P < 0.05) bacteria against the mercury chloride heavy metal with significance, this action being attributed to the chelating properties of the flavonoids found in the chemical identification. Conclusions: The results acquired in this study show that the HEAC presents cytoprotective activity over the tested strains in vitro and can also present antagonistic effect when associated with aminoglycosides, reinforcing the necessity of taking caution when combining natural and pharmaceutical products. SUMMARY The hydroalcoholic extract of A. coriacea Mart. presents in vitro cytoprotective activity against the toxic effect of Hg. Abbreviations Used: HPLC-DAD: High-performance liquid chromatography with a diode array detector; MIC: Minimum inhibitory concentration; DMSO: Dimethyl sulfoxide PMID:27695264

  11. In Vitro Activities of Amphotericin B, Terbinafine, and Azole Drugs against Clinical and Environmental Isolates of Aspergillus terreus Sensu Stricto

    PubMed Central

    Fernández, Mariana S.; Rojas, Florencia D.; Cattana, María E.; Sosa, María de los Ángeles; Iovannitti, Cristina A.; Giusiano, Gustavo E.

    2015-01-01

    The antifungal susceptibilities of 40 clinical and environmental isolates of A. terreus sensu stricto to amphotericin B, terbinafine, itraconazole, and voriconazole were determined in accordance with CLSI document M38-A2. All isolates had itraconazole and voriconazole MICs lower than epidemiologic cutoff values, and 5% of the isolates had amphotericin B MICs higher than epidemiologic cutoff values. Terbinafine showed the lowest MICs. No significant differences were found when MICs of clinical and environmental isolates were compared. PMID:25824228

  12. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface

    PubMed Central

    Madeira, Petrus L. B.; Carvalho, Letícia T.; Paschoal, Marco A. B.; de Sousa, Eduardo M.; Moffa, Eduardo B.; da Silva, Marcos A. dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M.

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  13. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface.

    PubMed

    Madeira, Petrus L B; Carvalho, Letícia T; Paschoal, Marco A B; de Sousa, Eduardo M; Moffa, Eduardo B; da Silva, Marcos A Dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use.

  14. Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: An in vitro study.

    PubMed

    Andrade, Verónica; Martínez, Alejandra; Rojas, Ninón; Bello-Toledo, Helia; Flores, Paulo; Sánchez-Sanhueza, Gabriela; Catalán, Alfonso

    2018-05-01

    Interim restorations are occasionally left in the mouth for extended periods and are susceptible to bacterial infiltration. Thus, dental interim cements with antibacterial properties are required. The purpose of this in vitro study was to determine in vitro antibacterial activity against Streptococcus mutans and to compare the diametrical tensile strength (DTSs) of dental interim cement modified with zinc oxide nanoparticles (ZnO-NPs) with that of cement modified with terpenes. Antibacterial properties of ZnO-NPs, terpenes, and dental interim cement modified with ZnO-NPs and cement modified with terpenes against S mutans were tested according to minimum inhibitory concentration (MIC) and direct contact inhibition (DCI). Tensile strength levels were evaluated using DTS. Results were analyzed using the Kolmogorov-Smirnov, ANOVA, and Tamhane tests (α=.05). The MICs of ZnO-NPs and terpenes against S mutans were 61.94 μg/g and 0.25% v/v, respectively. The DCI assay under the cylinders of cement (area of contact with the agar surface) revealed significant bacterial growth inhibition on Temp-Bond NE specimens with ZnO-NPs at MIC of 495.2 μg/g (8× MIC) and with terpenes at MIC 0.999% v/v (4× MIC) (P<.05). The Temp-Bond NE cement cylinder (control group) showed the lowest DTS (1.05 ±0.27 MPa) of all other test groups. In the Zn-NPs group, the greatest increase occurred in the NP8 (8× MIC; 495.2 μg/g) group with a value of 1.50 ±0.23 MPa, a significant increase in DTS compared with the control and terpene groups (P<.05). In the terpene group, the highest increase corresponded to group T2 (2× MIC; 0.4995% v/v) with a value of 1.29 ±0.18 MPa. The addition of terpenes and ZnO-NPs to interim cement showed antibacterial activity when in contact with S. mutans ATCC 25175. Both terpenes and ZnO-NPs antimicrobial agents increased diametral tensile strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Wild-type MIC distributions of four fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical concentrations and available pharmacokinetic and pharmacodynamic data.

    PubMed

    Angeby, K A; Jureen, P; Giske, C G; Chryssanthou, E; Sturegård, E; Nordvall, M; Johansson, A G; Werngren, J; Kahlmeter, G; Hoffner, S E; Schön, T

    2010-05-01

    To describe wild-type distributions of the MIC of fluoroquinolones for Mycobacterium tuberculosis in relation to current critical concentrations used for drug susceptibility testing and pharmacokinetic/pharmacodynamic (PK/PD) data. A 96-stick replicator on Middlebrook 7H10 medium was used to define the MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin for 90 consecutive clinical strains and 24 drug-resistant strains. The MICs were compared with routine BACTEC 460 susceptibility results and with MIC determinations in the BACTEC MGIT 960 system in a subset of strains using ofloxacin as a class representative. PK/PD data for each drug were reviewed in relation to the wild-type MIC distribution. The wild-type MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin were distributed from 0.125 to 1, 0.25 to 1, 0.032 to 0.5 and 0.125 to 0.5 mg/L, respectively. The MIC data correlated well with the BACTEC 960 MGIT and BACTEC 460 results. PD indices were the most favourable for levofloxacin, followed by moxifloxacin, ofloxacin and ciprofloxacin. We propose S (susceptible)

  16. The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis.

    PubMed

    Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui

    2016-01-01

    The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4-72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis.

  17. The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis

    PubMed Central

    Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui

    2016-01-01

    The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4–72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis. PMID:27047487

  18. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  19. Aqueous Humor Penetration and Biological Activity of Moxifloxacin 0.5% Ophthalmic Solution Alone or with Dexamethasone 0.1.

    PubMed

    Gomes, Rachel L R; Viana, Rodrigo Galvão; Melo, Luiz Alberto S; Cruz, Alessandro Carvalho; Suenaga, Eunice Mayumi; Kenyon, Kenneth R; Campos, Mauro

    2017-03-01

    To compare aqueous humor concentrations of topically applied moxifloxacin 0.5% ophthalmic solution alone or in combination with dexamethasone 0.1% and to correlate these concentrations with the minimum inhibitory concentrations (MICs) for common endophthalmitis-causing organisms. Sixty-eight patients undergoing routine phacoemulsification with intraocular lens implantation received either moxifloxacin 0.5% alone or moxifloxacin 0.5% combined with dexamethasone. For both groups, 1 drop of the test solution was instilled 4 times daily 1 day preoperatively and 1 drop 1 h preoperatively. An aqueous humor sample obtained immediately before paracentesis was submitted to high-performance liquid chromatography-tandem mass spectrometry to determine the moxifloxacin concentration. The mean concentrations of moxifloxacin were 986.6 ng/mL in the moxifloxacin with dexamethasone group and 741.3 ng/mL in the moxifloxacin group (P = 0.13). Moxifloxacin concentrations of all samples exceeded the MICs for Staphylococcus epidermidis, S. aureus, and Streptococcus pneumoniae. All samples in the moxifloxacin with dexamethasone group and 94% in the moxifloxacin group achieved the MIC for Enterococcus species. For quinolone-resistant S. aureus, the MIC was achieved in 29% in the moxifloxacin with dexamethasone group and 9% in the moxifloxacin group (P = 0.06). Aqueous humor moxifloxacin concentrations were higher when topically administrated in combination with dexamethasone compared to the moxifloxacin alone. However, this difference was not statistically significant. Nevertheless, the MICs of the most common pathogens associated with endophthalmitis were exceeded in both study groups.

  20. In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease.

    PubMed

    Sweeney, Michael T; Quesnell, Rebecca; Tiwari, Raksha; Lemay, Mary; Watts, Jeffrey L

    2013-01-01

    Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 μg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 μg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.

  1. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany.

    PubMed

    Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M

    2015-03-01

    Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems.

  2. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL -1 NH 4 OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg -1 , respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg -1 ) was higher than I (0.150-2.28μgg -1 ) for all the evaluated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives.

    PubMed

    Cunha, Wilson R; de Matos, Geilton X; Souza, Maria Goreti M; Tozatti, Marcos G; Andrade e Silva, Márcio L; Martins, Carlos H G; da Silva, Rosangela; Da Silva Filho, Ademar A

    2010-02-01

    The methylene chloride extract of Miconia ligustroides (DC.) Naudin (Melastomataceae), the isolated compounds ursolic and oleanolic acids and a mixture of these acids, and ursolic acid derivatives were evaluated against the following microorganisms: Bacillus cereus (ATCC 14579), Vibrio cholerae (ATCC 9458), Salmonella choleraesuis (ATCC 10708), Klebsiella pneumoniae (ATCC 10031), and Streptococcus pneumoniae (ATCC 6305). The microdilution method was used for determination of the minimum inhibitory concentration (MIC) during evaluation of the antibacterial activity. The methylene chloride extract showed no activity against the selected microorganisms. Ursolic acid was active against B. cereus, showing a MIC value of 20 microg/mL. Oleanolic acid was effective against B. cereus and S. pneumoniae with a MIC of 80 microg/mL in both cases. The mixture of triterpenes, ursolic and oleanolic acids, did not enhance the antimicrobial activity. However, the acetyl and methyl ester derivatives, prepared from ursolic acid, increased the inhibitory activity for S. pneumoniae.

  4. Synergistic antibacterial activity of Salvia officinalis and Cichorium intybus extracts and antibiotics.

    PubMed

    Stefanović, Olgica D; Stanojević, Dragana D; Comić, Ljiljana R

    2012-01-01

    Synergistic activity of Salvia officinalis and Cichorium intybus extracts and commonly used antibiotics, amoxicillin and chloramphenicol, were evaluated. Interactions between plant extracts and antibiotics were tested by checkerboard method and interpreted as FIC index. Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and clinical isolates Staphylococcus aureus, Bacillus subtilis, Enterobacter cloacae, Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis were used. Salvia officinalis showed better synergistic capacity than Cichorium intybus. Synergistic interactions were observed between amoxicillin and acetone or ethyl acetate extract of Salvia officinalis and between chloramphenicol and ethyl acetate extract of Salvia officinalis. In the presence of sub-inhibitory concentration (1/4 MIC to 1/32 MIC) of sage extracts, the MIC values of antibiotics were decreased by 2- to 10-fold. Synergism was observed against all test bacteria, except Escherichia coli. The combinations of acetone and ethyl acetate extract from Cichorium intybus and antibiotics resulted in additive and indifferent effects against tested bacteria.

  5. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors.

    PubMed

    Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan

    2017-04-15

    An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of Triclosan-Selected Salmonella enterica Mutants of Eight Serovars Revealed Increased Aminoglycoside Susceptibility and Reduced Growth Rates

    PubMed Central

    Rensch, Ulrike; Klein, Guenter; Kehrenberg, Corinna

    2013-01-01

    The biocide triclosan (TRC) is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC) for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8 - 64-fold higher than MIC values and ranged between 1 - 16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10-10 - 9.9 x 10-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps) for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting decreased susceptibility to triclosan. PMID:24205194

  7. [Antibiotic resistance analysis of Streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital from 2012 to 2014].

    PubMed

    Ge, L L; Han, Z Y; Liu, A H; Zhu, L; Meng, J H

    2017-02-02

    Objective: To investigate the antibiotic resistance status of Streptococcus pneumoniae isolates from hospitalized children in Shanxi Children's Hospital. Method: E-test and Kirby-Bauer methods were applied to determine drug sensitivity of the isolates collected from the body fluid specimens of hospitalized children in Shanxi Children's Hospital from January 2012 to December 2014. The antimicrobial sensitivity and minimum inhibitory concentration (MIC) of Streptococcus pneumoniae to the conventional antibiotics were analyzed, in order to compare the annual trends of non-invasive isolates, while the differentiation of sensitivity from specimens. The comparison of rates was performed by Chi-squared test and Fisher's exact test. Result: A total of 671 isolates of streptococcus pneumoniae were obtained, which could be divided as non-invasive isolates(607), invasive isolates from non-cerebrospinal fluid(non-CSF)(40) and invasive isolates from cerebrospinal fluid(CSF)(24). The antimicrobial sensitivity(isolates(%)) of the 671 isolates were respectively vancomycin 671(100.0%), linezolid 671(100.0%), levofloxacin 665(99.1%), penicillin 595(88.7%), ceftriaxone 516(76.9%), cefotaxime 512(76.3%), sulfamethoxazole-trimethoprin(SMZ-TMP) 103(15.4%), clindamycin 28(4.2%), tetracycline 26(3.9%), erythromycin 12(1.8%). From 2012 to 2014, the susceptibility rates of non-invasive isolates to penicillin every year were 95.0%(96/101), 97.3%(110/113), 87.3%(343/393), respectively, and there was significant difference among the three years(χ(2)=13.266, P <0.05), and the values of MIC(50, )MIC(90) and the maximum values of MIC(mg/L) of penicillin were 0.064, 2.000, 6.000 in 2012, which grew up to 1.000, 3.000, 16.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to ceftriaxone and cefotaxime during these three years, (χ(2)=1.172, 1.198, both P >0.05). On the other hand, the values of MIC(50, )MIC(90) and the maximum value of MIC(mg/L) of ceftriaxone and cefotaxime both increased from 0.500, 2.000, 8.000 in 2012 to 0.750, 4.000, 32.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to the rest antibiotic. Based on the same examining standard of CSF, the antimicrobial sensitivity(isolates(%)) of the non-invasive isolates to ceftriaxone, cefotaxime, SMZ-TMP were respectively 281(46.3%), 278(45.8%), 78(12.9%), were significantly lower than the susceptibility rate of the invasive isolates from non-CSF (28(70%), 28(70%), 14(35%), χ(2)=8.453, 8.817, 15.094, all P <0.012 5), and lower than the invasive isolates from CSF (18(75%), 18(75%), χ(2)=7.631, 7.905, P <0.012 5; 11(45.8%), P =0.001). The sensitivity of the isolates to the rest antibiotics were similar( P >0.05). Conclusion: More than 95.0% strains of the streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital were sensitive to vancomycin, linezolid, levofloxacin, and the susceptibility rate of penicillin, ceftriaxone, cefotaxime were 88.7%, 76.9%, 76.3%. However, less than 20.0% of streptococcus pneumoniae were sensitive to erythromycin, clindamycin, SMZ-TMP and tetracycline. The susceptibility rate of penicillin of non-invasive Streptococcus pneumoniae declined by these years, and the differences to ceftriaxone and cefotaxime can be neglected, but the values of MIC(50, )MIC(90) and the maximum value of MIC of all were linearly rising. The susceptibility rate of antibiotics to ceftriaxone and cefotaxime of the non-invasive isolates was lower than the invasive isolates.

  8. Effect of quinolones and other antimicrobial agents on cell-associated Legionella pneumophila.

    PubMed Central

    Havlichek, D; Saravolatz, L; Pohlod, D

    1987-01-01

    We evaluated the in vitro susceptibility of Legionella pneumophila ATCC 33152 (serogroup I) to 13 antibiotics alone and in combination with rifampin (0.1 mg/liter) by three methods. Extracellular susceptibility was determined by MIC determinations and time kill curves in buffered yeast extract broth, while intracellular susceptibility was determined by peripheral human monocytes in RPMI 1640 culture medium. Antibiotic concentrations equal to or greater than the broth dilution MIC inhibited or killed L. pneumophila by the time kill method, except this was not the case for trimethoprim-sulfamethoxazole. Antibiotic concentrations below the broth dilution MIC did not inhibit Legionella growth. The only antibiotic-rifampin combinations which produced improved killing of L. pneumophila by the time kill method were those in which the logarithmic growth of L. pneumophila occurred during the experiment (rosoxacin, amifloxacin, cinoxacin, trimethoprim-sulfamethoxazole, clindamycin, and doxycycline). Neither direct MICs nor time kill curve assays accurately predicted intracellular L. pneumophila susceptibility. Rifampin, erythromycin, ciprofloxacin, rosoxacin, enoxacin, amifloxacin, gentamicin, clindamycin, and doxycycline all inhibited intracellular L. pneumophila growth at readily achievable concentrations in serum. Cefoxitin and thienamycin showed no inhibition of growth, although they were present extracellularly at concentrations that were 20 to 1,000 times their broth dilution MICs. Clindamycin was the only antibiotic that was able to inhibit intracellular L. pneumophila growth at an extracellular concentration below its MIC. The gentamicin (5 mg/liter)-rifampin combination was the only antibiotic-rifampin combination which demonstrated decreased cell-associated Legionella survival in this model of in vitro susceptibility. PMID:3435101

  9. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum.

    PubMed

    Abdullah; Asghar, Ali; Butt, Masood Sadiq; Shahid, Muhammad; Huang, Qingrong

    2017-07-01

    Spices are well known for their taste and flavor imparting properties. Green cardamom ( Elletaria cardamomum ), a herb spice belongs to family Zingiberaceae . In current study, GC-MS analysis of green cardamom essential oil (CEO) resulted in identification of twenty-six compounds with α -terpinyl acetate (38.4%), 1,8-cineole (28.71%), linalool acetate (8.42%), sabinene (5.21%), and linalool (3.97%) as major bioactive components. Present study also described the antimicrobial properties like zone of inhibition, minimum inhibitory concentration against microbial strains with special emphasis on quorum sensing inhibition. Disk diffusion assay showed that C. albicans and S. mutans were the most sensitive microorganisms followed by S. aureus , L. monocytogenes , B. cereus and S. typhimurium sensor strains, respectively. Whilst P. aeruginosa was found most resistant strain as CEO did not inhibited its growth. The minimum inhibitory concentration (MIC) values of CEO against tested strains were 10 ± 0.00 mg/mL against S. typhimurium , S. aureus and 5 ± 0.00 mg/mL against S. mutans , C. albicans strains, respectively. Regarding quorum sensing inhibition the tested concentrations 0.625 and 0.313 mg/mL of CEO inhibited violacein production with very little effect on growth of C. violaceum . Conclusively, study proved that quorum sensing inhibition values of CEO were much lower compared to MIC revealed values. Hence, cardamom bioactive constituents can effectively be used to develop novel antimicrobial drugs against conventional antibiotics.

  10. In vitro activity of a polyhexanide-betaine solution against high-risk clones of multidrug-resistant nosocomial pathogens.

    PubMed

    López-Rojas, Rafael; Fernández-Cuenca, Felipe; Serrano-Rocha, Lara; Pascual, Álvaro

    2017-01-01

    To determine the in vitro activity of a polyhexanide-betaine solution against collection strains and multidrug-resistant (MDR) nosocomial isolates, including high-risk clones. We studied of 8 ATCC and 21 MDR clinical strains of Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, including the multiresistant high-risk clones. The MICs and MBCs of a 0.1% polyhexanide-0.1% betaine solution were determined by microdilution. For each species, strains with the highest MICs were selected for further experiments. The dilution-neutralization test (PrEN 12054) was performed by incubating bacterial inocula of 10 6 CFU/mL for 1min with undiluted 0.1% polyhexanide-betaine solution. The CFUs were counted after neutralization. Growth curves and time-kill curves at concentrations of 0.25, 1, 4, and 8×MIC, were performed. MICs of recovered strains were determined when regrowth was observed in time-kill studies after 24h of incubation. Strains with reduced susceptibility were selected by serial passage on plates with increasing concentrations of polyhexanide-betaine, and MICs were determined. Polyhexanide-betaine MIC range was 0.5-8mg/L. MBCs equalled or were 1 dilution higher than MICs. The dilution-neutralization method showed total inoculum clearance of all strains. In time-kill curves, no regrowth was observed at 4×MIC, except for S. aureus (8×MIC). Increased MICs were not observed in time-kill curves, or after serial passages after exposure to polyhexanide-betaine. Polyhexanide-betaine presented bactericidal activity against all MDR clinical isolates tested, including high-risk clones, at significantly lower concentrations and time of activity than those commercially used. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study

    PubMed Central

    Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash

    2015-01-01

    Objective: In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Materials and methods: Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Results: Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. Conclusion: This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts. PMID:26101754

  12. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study.

    PubMed

    Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash

    2015-01-01

    In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts.

  13. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    PubMed

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  14. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  15. Revisiting the susceptibility testing of Mycobacterium tuberculosis to ethionamide in solid culture medium.

    PubMed

    Lakshmi, Rajagopalan; Ramachandran, Ranjani; Kumar, D Ravi; Sundar, A Syam; Radhika, G; Rahman, Fathima; Selvakumar, N; Kumar, Vanaja

    2015-11-01

    Increase in the isolation of drug resistant phenotypes of Mycobacterium tuberculosis necessitates accuracy in the testing methodology. Critical concentration defining resistance for ethionamide (ETO), needs re-evaluation in accordance with the current scenario. Thus, re-evaluation of conventional minimum inhibitory concentration (MIC) and proportion sensitivity testing (PST) methods for ETO was done to identify the ideal breakpoint concentration defining resistance. Isolates of M. tuberculosis (n=235) from new and treated patients were subjected to conventional MIC and PST methods for ETO following standard operating procedures. With breakpoint concentration set at 114 and 156 µg/ml, an increase in specificity was observed whereas sensitivity was high with 80 µg/ml as breakpoint concentration. Errors due to false resistant and susceptible isolates were least at 80 µg/ml concentration. Performance parameters at 80 µg/ml breakpoint concentration indicated significant association between PST and MIC methods.

  16. Optimal timing of oral fosfomycin administration for pre-prostate biopsy prophylaxis.

    PubMed

    Rhodes, Nathaniel J; Gardiner, Bradley J; Neely, Michael N; Grayson, M Lindsay; Ellis, Andrew G; Lawrentschuk, Nathan; Frauman, Albert G; Maxwell, Kelly M; Zembower, Teresa R; Scheetz, Marc H

    2015-07-01

    As the optimal administration time for fosfomycin peri-procedural prophylaxis is unclear, we sought to determine optimal administration times for fosfomycin peri-procedural prophylaxis. Plasma, peripheral zone and transition zone fosfomycin concentrations were obtained from 26 subjects undergoing transurethral resection of the prostate (TURP), following a single oral dose of 3 g of fosfomycin. Population pharmacokinetic modelling was completed with the Nonparametric Adaptive Grid (NPAG) algorithm (Pmetrics package for R), with a four-compartment model. Plasma and tissue concentrations were simulated during the first 24 h post-dose, comparing these with EUCAST susceptibility breakpoints for Escherichia coli, a common uropathogen. Non-compartmental-determined pharmacokinetic values in our population were similar to those reported in the package insert. Predicted plasma concentrations rapidly increased after the first hour, giving more than 90% population coverage for organisms with an MIC ≤4 mg/L over the first 12 h post-dose. Organisms with higher MICs fared much worse, with organisms at the EUCAST breakpoint being covered for <10% of the population at any time. Transitional zone prostate concentrations exceeded 4 mg/L for 90% of the population between hours 1 and 9. Peripheral zone prostate concentrations were much lower and only exceeded 4 mg/L for 70% of the population between hours 1 and 4. Until more precise plasma and tissue data are available, we recommend that fosfomycin prophylaxis be given 1-4 h prior to prostate biopsy. We do not recommend fosfomycin prophylaxis for subjects with known organisms with MICs >4 mg/L. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Antibacterial activity of Thai herbal extracts on acne involved microorganism.

    PubMed

    Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P

    2010-04-01

    Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.

  18. Antimycobacterial potency and cytotoxicity study of three medicinal plants.

    PubMed

    Tsouh Fokou, Patrick Valere; Appiah-Opong, Regina; Yeboah-Manu, Dorothy; Kissi-Twum, Abena Adomah; Yamthe, Lauve Rachel Tchokouaha; Mokale Kognou, Aristide Laurel; Addo, Phyllis; Boyom, Fabrice Fekam; Nyarko, Alexander Kwadwo

    2016-12-01

    Mycobacterial infections including tuberculosis, leprosy, and buruli ulcer are among the most prevalent, debilitating, and deadly tropical diseases, especially in Sub-Saharan Africa. The development of drug resistance to the currently available drugs and the poor compliance emphasize the need for new chemotherapeutic agents. This study was designed to evaluate the in vitro activity of Cleistopholis patens, Annona reticulata, and Greenwayodendron suaveolens against Mycobacterium smegmatis. The safety on normal liver cells was also assessed. The crude extracts, fractions, and subfractions were tested against M. smegmatis and for cell cytotoxicity on WRL-68, normal human hepatocyte using microdilution resazurin-based assays. The phytochemical screening was performed using standard methods. Most of the extracts, fractions, and subfractions inhibited the growth of M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 6.25μg/mL to 125μg/mL. The subfractions P12 and P29 from G. suaveolens twig were more potent with MIC values of 6.25μg/mL and 25μg/mL, respectively. Fruit crude extract and root CH 2 Cl 2 fraction from A. reticulata also showed activity with MIC values of 50μg/mL and 25μg/mL, respectively. Crude extracts from the twig and stem bark of C. patens displayed inhibition at MIC values of 125μg/mL and 100μg/mL, respectively. Majority of active extracts showed no cell cytotoxicity, except the extract from C. patens with IC 50 ranging from 41.40μg/mL to 93.78μg/mL. The chemical investigation of the promising extracts revealed the presence of phenols, alkaloids, glycosides, triterpenes, and acetogenins. The results achieved from this preliminary antimycobacterial drug discovery study supported the traditional claims of C. patens, A. reticulata, and G. suaveolens in the treatment of mycobacterial infections. Meanwhile, further fractionation is required to characterize the active ingredients. Copyright © 2016.

  19. Process Analysis of Variables for Standardization of Antifungal Susceptibility Testing of Nonfermentative Yeasts ▿

    PubMed Central

    Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel

    2011-01-01

    Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438

  20. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844

  1. Association Between In Vitro Susceptibility to Natamycin and Voriconazole and Clinical Outcomes in Fungal Keratitis

    PubMed Central

    Sun, Catherine Q.; Lalitha, Prajna; Prajna, N. Venkatesh; Karpagam, Rajarathinam; Geetha, Manoharan; O’Brien, Kieran S.; Oldenburg, Catherine E.; Ray, Kathryn J.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2014-01-01

    Purpose To assess the association between minimum inhibitory concentration (MIC) and clinical outcomes in a fungal keratitis clinical trial. Design Experimental study using data from a randomized comparative trial. Participants Of the 323 patients enrolled in the trial, we were able to obtain MIC values from 221 patients with monocular fungal keratitis. Methods The Mycotic Ulcer Treatment Trial I (MUTT I) was a randomized, double-masked clinical trial comparing clinical outcomes of monotherapy with topical natamycin versus voriconazole for the treatment of fungal keratitis. Speciation and determination of MIC to natamycin and voriconazole were performed according to Clinical and Laboratory Standards Institute guidelines. The relationship between MIC and clinical outcome was assessed. Main Outcome Measures The primary outcome was 3-month best spectacle-corrected visual acuity. Secondary outcomes included 3-month infiltrate/scar size, corneal perforation and/or therapeutic penetrating keratoplasty (TPK), and time to re-epithelialization. Results A 2-fold increase in MIC was associated with a larger 3-month infiltrate/scar size (0.21 mm, 95% confidence interval [CI] 0.10–0.31, P <0.001) and increased odds of perforation (odds ratio [OR] 1.32, 95% CI 1.04–1.69, P=0.02). No correlation was found between MIC and 3-month visual acuity. For natamycin-treated cases, an association was found between higher natamycin MIC with larger 3-month infiltrate/scar size (0.29 mm, 95% CI 0.15–0.43, P<0.001) and increased perforations (OR 2.41, 95% CI 1.46–3.97, P<0.001). Among voriconazole-treated cases, the voriconazole MIC did not correlate with any of the measured outcomes in the study. Conclusion Decreased susceptibility to natamycin was associated with increased infiltrate/scar size and increased odds of perforation. There was no association between susceptibility to voriconazole and outcome. PMID:24746358

  2. Association between in vitro susceptibility to natamycin and voriconazole and clinical outcomes in fungal keratitis.

    PubMed

    Sun, Catherine Q; Lalitha, Prajna; Prajna, N Venkatesh; Karpagam, Rajarathinam; Geetha, Manoharan; O'Brien, Kieran S; Oldenburg, Catherine E; Ray, Kathryn J; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2014-08-01

    To assess the association between minimum inhibitory concentration (MIC) and clinical outcomes in a fungal keratitis clinical trial. Experimental study using data from a randomized comparative trial. Of the 323 patients enrolled in the trial, we were able to obtain MIC values from 221 patients with monocular fungal keratitis. The Mycotic Ulcer Treatment Trial I was a randomized, double-masked clinical trial comparing clinical outcomes of monotherapy with topical natamycin versus voriconazole for the treatment of fungal keratitis. Speciation and determination of MIC to natamycin and voriconazole were performed according to Clinical and Laboratory Standards Institute guidelines. The relationship between MIC and clinical outcome was assessed. The primary outcome was 3-month best spectacle-corrected visual acuity. Secondary outcomes included 3-month infiltrate or scar size; corneal perforation and/or therapeutic penetrating keratoplasty; and time to re-epithelialization. A 2-fold increase in MIC was associated with a larger 3-month infiltrate or scar size (0.21 mm; 95% confidence interval [CI], 0.10-0.31; P < 0.001) and increased odds of perforation (odds ratio, 1.32; 95% CI, 1.04-1.69; P = 0.02). No correlation was found between MIC and 3-month visual acuity. For natamycin-treated cases, an association was found between higher natamycin MIC with larger 3-month infiltrate or scar size (0.29 mm; 95% CI, 0.15-0.43; P < 0.001) and increased perforations (odds ratio, 2.41; 95% CI, 1.46-3.97; P < 0.001). Among voriconazole-treated cases, the voriconazole MIC did not correlate with any of the measured outcomes in the study. Decreased susceptibility to natamycin was associated with increased infiltrate or scar size and increased odds of perforation. There was no association between susceptibility to voriconazole and outcome. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. In vitro effects of Salvia officinalis L. essential oil on Candida albicans

    PubMed Central

    Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit

    2013-01-01

    Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301

  4. Susceptibility of vancomycin-resistant and -sensitive Enterococcus faecium obtained from Danish hospitals to benzalkonium chloride, chlorhexidine and hydrogen peroxide biocides.

    PubMed

    Alotaibi, Sulaiman M I; Ayibiekea, Alafate; Pedersen, Annemette Frøling; Jakobsen, Lotte; Pinholt, Mette; Gumpert, Heidi; Hammerum, Anette M; Westh, Henrik; Ingmer, Hanne

    2017-12-01

    In Danish hospitals, the number of infections caused by vancomycin-resistant Enterococcus faecium (VRE faecium) has dramatically increased in recent years. Hospital disinfectants are essential in eliminating pathogenic microorganisms, and reduced susceptibility may contribute to hospital-associated infections. We have addressed whether clinical VRE faecium display decreased biocide susceptibility when compared to vancomycin-sensitive Enterococcus faecium (VSE faecium) isolates. In total 12 VSE faecium and 37 VRE faecium isolates obtained from Danish hospitals over an extended time period were tested for susceptibility towards three commonly applied biocides, namely benzalkonium chloride, chlorhexidine and hydrogen peroxide. For benzalkonium chloride, 89 % of VRE faecium strains had a minimal inhibitory concentration (MIC) of 8 mg l -1 , whereas for VSE faecium, only 25 % of the strains had an MIC of 8 mg l -1 . For chlorhexidine, the MIC of 95 % of VRE faecium strains was 4 mg l -1 or higher, while only 33 % of VSE faecium strains displayed MIC values at the same level. In contrast, both VRE and VSE faecium displayed equal susceptibility to hydrogen peroxide, but a higher minimal bactericidal concentration (MBC) was found for the former. The efflux activity was also assessed, and this was generally higher for the VRE faecium strains compared to VSE faecium. VRE faecium from Danish hospitals demonstrated decreased susceptibility towards benzalkonium chloride and chlorhexidine compared to VSE faecium, where the use of chlorhexidine is particularly heavy in the hospital environment. These findings suggest that biocide tolerance may characterize VRE faecium isolated in Danish hospitals.

  5. CHEMICAL CHARACTERIZATION AND EVALUATION OF ANTIBACTERIAL, ANTIFUNGAL, ANTIMYCOBACTERIAL, AND CYTOTOXIC ACTIVITIES OF Talinum paniculatum

    PubMed Central

    REIS, Luis F.C. DOS; CERDEIRA, Cláudio D.; PAULA, Bruno F. DE; da SILVA, Jeferson J.; COELHO, Luiz F.L.; SILVA, Marcelo A.; MARQUES, Vanessa B.B.; CHAVASCO, Jorge K.; ALVES-DA-SILVA, Geraldo

    2015-01-01

    SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteusand Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosis and Mycobacterium bovis as well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatum showed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans. PMID:26603226

  6. Effect of Ottoman Viper (Montivipera xanthina (Gray, 1849)) Venom on Various Cancer Cells and on Microorganisms.

    PubMed

    Yalcın, Husniye Tansel; Ozen, Mehmet Ozgün; Gocmen, Bayram; Nalbantsoy, Ayse

    2014-01-01

    Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 μg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 μg/ml and minimal fungicidal concentration, 62.5 μg/ml) and S. aureus (MIC, 31.25 μg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.

  7. Preliminary antifungal activity assay of selected chlorine-containing derivatives of xanthone and phenoxyethyl amines.

    PubMed

    Klesiewicz, Karolina; Żelaszczyk, Dorota; Trojanowska, Danuta; Bogusz, Bożena; Małek, Marianna; Waszkielewicz, Anna; Szkaradek, Natalia; Karczewska, Elżbieta; Marona, Henryk; Budak, Alicja

    2018-06-20

    The aim of this study was to preliminary evaluate antifungal activity diverse group of chlorine-containing xanthone and phenoxyethyl amine derivatives - and to select most promising compounds for further studies. The antifungal efficacy of 16 compounds was tested with qualitative and quantitative methods against both reference and clinical strains of dermatophytes, moulds and yeasts. The disc-diffusion method has demonstrated that from 16 tested compounds, 7 possess good antifungal activity against dermatophytes and/or moulds while none of them has shown good efficacy against yeasts or bacterial strains. The most active compounds (2, 4, 10, 11, 12, 15, 16) were tested quantitatively by broth dilution method to obtain MIC values. The MIC values against dermatophytes ranged from 8 to 64 μg/mL. Compound 2 was the most active one against dermatophytes (MIC 50 and MIC 90 were 8 μg/mL). The MIC values for moulds ranged from 16 to 256 μg/mL. Compound 4 was the most active one against moulds, with MIC 50 and MIC 90 values amounting to 32 μg/mL. Among the tested compounds, compound 4 (derivative of xanthone) was the most active one and expressed good antifungal efficacy against clinical strains of dermatophytes and moulds. However, another xanthone derivative (compound 2) was the most active and selective against dermatophytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil.

    PubMed

    Zuzarte, M; Vale-Silva, L; Gonçalves, M J; Cavaleiro, C; Vaz, S; Canhoto, J; Pinto, E; Salgueiro, L

    2012-07-01

    This study evaluates the antifungal activity and mechanism of action of a new chemotype of Lavandula multifida from Portugal. The essential oil was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), and the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of the oil and its major compounds were determined against several pathogenic fungi responsible for candidosis, meningitis, dermatophytosis, and aspergillosis. The influence of the oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide (PI) and FUN-1 staining of C. albicans cells by flow cytometry. The essential oil was characterized by high contents of monoterpenes, with carvacrol and cis-β-ocimene being the main constituents. The oil was more effective against dermatophytes and Cryptococcus neoformans, with MIC and MLC values of 0.16 μL/mL and 0.32 μL/mL, respectively. The oil was further shown to completely inhibit filamentation in C. albicans at concentrations below the respective MIC (0.08 μL/mL), with cis-β-ocimene being the main compound responsible for this inhibition (0.02 μL/mL). The flow cytometry results suggest a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. L. multifida essential oil may be useful in complementary therapy to treat disseminated candidosis, since the inhibition of filamentation alone appears to be sufficient to treat this type of infection.

  9. In vitro antibacterial activity of ethanolic extract of Morus alba leaf against periodontal pathogens.

    PubMed

    Gunjal, Shilpa; Ankola, Anil V; Bhat, Kishore

    2015-01-01

    Antibiotic resistance is a major problem with inadvertent usage. Thus, there is a need to search for new antimicrobial agents of herbal origin to combat antibiotic resistance. One such plant is Morus alba which has a long history of medicinal use in traditional Chinese medicine. To compare the antibacterial activity of ethanolic extract of M. alba leaves with chlorhexidine gluconate against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. Experimental in vitro study. Crude extract from the leaves of M. alba were prepared by Soxhlet extraction method by using ethanol as a solvent. Minimum inhibitory concentration (MIC) of the extract was assessed against A. actinomycetemcomitans, P. gingivalis and T. forsythia, and compared with that of chlorhexidine gluconate by broth dilution method. P. gingivalis was the most sensitive organism against the M. alba extract with an MIC value of 1.95 mg/ml; while T. forsythia and P. gingivalis both were most sensitive organisms against chlorhexidine gluconate with MIC values of 0.00781 mg/ml. M. alba possess good antibacterial activity against A. actinomycetemcomitans, P. gingivalis and T. forsythia and thus would be beneficial for the prevention and treatment of periodontal disease. However, chlorhexidine gluconate was found to be more effective when compared to M. alba.

  10. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  11. Standardization of Cassia spectabilis with respect to authenticity, assay and chemical constituent analysis.

    PubMed

    Torey, Angeline; Sasidharan, Sreenivasan; Yeng, Chen; Latha, Lachimanan Yoga

    2010-05-10

    Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.

  12. Triclosan resistant bacteria in sewage effluent and cross-resistance to antibiotics.

    PubMed

    Coetzee, I; Bezuidenhout, C C; Bezuidenhout, J J

    2017-09-01

    The purpose of this study was to identify triclosan tolerant heterotrophic plate count (HPC) bacteria from sewage effluent and to determine cross-resistance to antibiotics. R2 agar supplemented with triclosan was utilised to isolate triclosan resistant bacteria and 16S rRNA gene sequencing was conducted to identify the isolates. Minimum inhibitory concentrations (MICs) of organisms were determined at selected concentrations of triclosan and cross-resistance to various antibiotics was performed. High-performance liquid chromatography was conducted to quantify levels of triclosan in sewage water. Forty-four HPC were isolated and identified as the five main genera, namely, Bacillus, Pseudomonas, Enterococcus, Brevibacillus and Paenibacillus. MIC values of these isolates ranged from 0.125 mg/L to >1 mg/L of triclosan, while combination of antimicrobials indicated synergism or antagonism. Levels of triclosan within the wastewater treatment plant (WWTP) ranged between 0.026 and 1.488 ppb. Triclosan concentrations were reduced by the WWTP, but small concentrations enter receiving freshwater bodies. Results presented indicate that these levels are sufficient to maintain triclosan resistant bacteria under controlled conditions. Further studies are thus needed into the impact of this scenario on such natural receiving water bodies.

  13. Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: an in vitro study.

    PubMed

    Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang

    2015-01-01

    Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  14. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens.

    PubMed

    Caiaffa, Karina Sampaio; Massunari, Loiane; Danelon, Marcelle; Abuna, Gabriel Flores; Bedran, Telma Blanca Lombardo; Santos-Filho, Norival Alves; Spolidorio, Denise Madalena Palomari; Vizoto, Natalia Leal; Cilli, Eduardo Maffud; Duque, Cristiane

    2017-11-01

    This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1C V and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml -1 , respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.

  15. Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents.

    PubMed

    Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P; Yang, Hanjing; Hoffman, Robert M; Salih, Anya; Miller, Jeffrey H

    2011-03-01

    Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.

  16. [Activity of butenafine against ocular pathogenic filamentous fungi in vitro].

    PubMed

    Xu, Yan; Pang, Guang-ren; Zhao, Dong-qing; Gao, Chuan-wen; Zhou, Lu-tan; Sun, Sheng-tao; Wang, Bing-liang; Chen, Zu-ji

    2010-01-01

    To investigate antifungal activity of butenafine in comparison with that of natamycin, amphotericin B and fluconazole against ocular pathogenic filamentous fungi in vitro. It was an experimental study. Susceptibility tests were performed against 260 isolates of ocular pathogenic filamentous fungi by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute (CLSI) M38-A document. The isolates included Fusarium spp. (136), Aspergillus spp. (98), Alternaria alternata (9), Curvularia lunata (3), and unusual ocular pathogens (14). Final concentration ranged from 0.008 to 16.000 mg/L for butenafine, from 0.031 to 16.000 mg/L for amphotericin B and natamycin, and from 0.5 to 256.0 mg/L for fluconazole. Following incubation at 35 degrees C for 48 h, minimal inhibitory concentration (MIC) was determined according to the CLSI M38-A document. For amphotericin B and natamycin, the MIC was defined as the lowest drug concentration that prevented any discernible growth. For butenafine and fluconazole, the MIC was defined as the lowest concentration in which an approximately 75% reduction compared to the growth of the control was observed. Candida parapsilosis ATCC22019 was used as quality control strains to validated the results. Mean MIC and MIC range, the MIC at which 50% of the isolates tested were inhibited (MIC(50)) and the MIC at which 90% of the isolates tested were inhibited (MIC(90)), were provided for all the isolates tested by using descriptive statistical analysis with the statistical SPSS package (version 13.0). MIC(90) of butenafine, natamycin, amphotericin B and fluconazole were 4, 8, 2 and 512 mg/L for Fusarium spp., respectively; 0.063, 32.000, 2.000 and 256.000 mg/L for Aspergillus spp., respectively; 0.5, 8.0, 2.0 and 128.0 mg/L for Alternaria alternate, respectively; 0.125, 2.000, 0.500 and 4.000 mg/L for Curvularia lunata, respectively; and 1, 4, 1 and 256 mg/L for unusual ocular pathogens, respectively. Butenafine exhibits potent antifungal activity against a wide variety of ocular pathogenic fungi, especially for Aspergillus spp., Alternaria alternata, Curvularia lunata, and some unusual ocular pathogens and may have a role in future studies of antifungal eye drops and treating fungal keratitis.

  17. Pharmacokinetic Monitoring Of Vancomycin In Cystic Fibrosis: Is It Time To Move Past Trough Concentrations?

    PubMed

    Fusco, Nicholas M; Prescott, William A; Meaney, Calvin J

    2018-05-04

    A correlation between vancomycin trough concentrations (VTC) and area under the curve (AUC) to minimum inhibitory concentration (MIC) ratio (AUC/MIC) has not been established in children/adolescents with cystic fibrosis (CF). The primary objective of this study was to determine the correlation between measured VTCs and AUC/MIC using population-based pharmacokinetics. A retrospective cohort study of children/adolescents diagnosed with CF, age 6 to < 18 years, treated with vancomycin (VAN) for methicillin-resistant Staphylococcus aureus (MRSA) infection was conducted. The relationship between final VTCs and calculated AUC/MIC, using models established by Le et al and Stockmann et al, was assessed using Pearson and Spearman correlations. All tests were two-tailed with alpha set at 0.05. Thirty children/adolescents, age 7 to 17 years (median age 15 [IQR 9-17] years), were included. The mean final VAN dose was 58.03±18.58 mg/kg/day and the median final VTC was 12.6 (11-13.6) mg/L. The mean AUC/MIC was 355.34±138.46 (Le model) versus 426.79±178.92 (Stockmann model) (p=0.089). No correlation existed between VTCs and AUC/MIC using either the model by Le (r=0.140, p=0.461) or Stockmann (r=0.115; p=0.564). Using the Stockmann model: VAN dose (mg/kg/dose) was found to have a strong positive correlation with AUC (r=0.8874, p<0.0001) and AUC/MIC (r=0.7877, p<0.0001). VTCs did not correlate with AUC or AUC/MIC. Further research is needed to determine which estimate of VAN treatment efficacy is most appropriate for children and adolescents with CF infected with MRSA.

  18. Are Vancomycin Trough Concentrations of 15 to 20 mg/L Associated With Increased Attainment of an AUC/MIC ≥ 400 in Patients With Presumed MRSA Infection?

    PubMed

    Hale, Cory M; Seabury, Robert W; Steele, Jeffrey M; Darko, William; Miller, Christopher D

    2017-06-01

    To determine whether there is an association between higher vancomycin trough concentrations and attainment of a calculated area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ≥400. A retrospective analysis was conducted among vancomycin-treated adult patients with a positive methicillin-resistant Staphylococcus aureus (MRSA) culture. Attainment of a calculated AUC/MIC ≥400 was compared between patients with troughs in the reference range of 15 to 20 mg/L and those with troughs in the following ranges: <10, 10 to 14.9, and >20 mg/L. Nephrotoxicity was assessed as a secondary outcome based on corrected average vancomycin troughs over 10 days of treatment. Overall, 226 patients were reviewed and 100 included. Relative to troughs ≥10, patients with vancomycin troughs <10 mg/L were 73% less likely to attain an AUC/MIC ≥400 (odds ratio [OR] 0.27, 95% confidence interval [CI]: 0.01-0.75). No difference was found in the attainment of an AUC/MIC ≥400 in patients with troughs of 10 to 14.9 mg/L and >20 mg/L when compared to patients with troughs of 15 to 20 mg/L. The mean corrected average vancomycin trough was higher in patients developing nephrotoxicity compared to those who did not (19.5 vs 14.5 mg/L, P < .001). Achieving vancomycin serum trough concentrations of 15 to 20 mg/L did not result in an increased attainment of the AUC/MIC target relative to troughs of 10 to 14.9 mg/L but may increase nephrotoxicity risk.

  19. RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria

    PubMed Central

    Buyck, Julien M.; Peyrusson, Frédéric

    2015-01-01

    The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species. PMID:26014952

  20. Synthesis and Evaluation of Antimicrobial Activity of [R₄W₄K]-Levofloxacin and [R₄W₄K]-Levofloxacin-Q Conjugates.

    PubMed

    Riahifard, Neda; Tavakoli, Kathy; Yamaki, Jason; Parang, Keykavous; Tiwari, Rakesh

    2017-06-08

    The development of a new class of antibiotics to fight bacterial resistance is a time-consuming effort associated with high-cost and commercial risks. Thus, modification, conjugation or combination of existing antibiotics to enhance their efficacy is a suitable strategy. We have previously reported that the amphiphilic cyclic peptide [R₄W₄] had antibacterial activity with a minimum inhibitory concentration (MIC) of 2.97 µg/mL against Methicillin-resistant Staphylococcus aureus (MRSA). Herein, we hypothesized that conjugation or combination of the amphiphilic cyclic peptide [R₄W₄] with levofloxacin or levofloxacin-Q could improve the antibacterial activity of levofloxacin and levofloxacin-Q. Fmoc/tBu solid-phase chemistry was employed to synthesize conjugates of [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin. The carboxylic acid group of levofloxacin or levofloxacin-Q was conjugated with the amino group of β-alanine attached to lysine in the presence of 2-(1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and N , N -diisopropylethylamine (DIPEA) for 3 h to afford the products. Antibacterial assays were conducted to determine the potency of conjugates [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin against MRSA and Klebsiella pneumoniae . Although levofloxacin-Q was inactive even at a concentration of 128 µg/mL, [R₄W₄K]-levofloxacin-Q conjugate and the corresponding physical mixture showed MIC values of 8 µg/mL and 32 µg/mL against MRSA and Klebsiella pneumonia , respectively, possibly due to the activity of the peptide. On the other hand, [R₄W₄K]-levofloxacin conjugate (MIC = 32 µg/mL and MIC = 128 µg/mL) and the physical mixture (MIC = 8 µg/mL and 32 µg/mL) was less active than levofloxacin (MIC = 2 µg/mL and 4 = µg/mL) against MRSA and Klebsiella pneumoniae , respectively. The data showed that the conjugation of levofloxacin with [R₄W₄K] significantly reduced the antibacterial activity compared to the parent analogs, while [R₄W₄K]-levofloxacin-Q conjugate was more significantly potent than levofloxacin-Q alone.

  1. Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation.

    PubMed

    Sevillano, David; Calvo, Almudena; Giménez, María-José; Alou, Luis; Aguilar, Lorenzo; Valero, Eva; Carcas, Antonio; Prieto, José

    2004-12-01

    To investigate the bactericidal activity against Streptococcus pneumoniae of simulated amoxicillin serum concentrations obtained in humans after 2000/125 mg sustained-release (SR) and 875/125 mg co-amoxiclav administered twice and three times a day, respectively. An in vitro computerized pharmacodynamic simulation was carried out and colony counts were determined over 24 h. Ten strains non-susceptible to amoxicillin (four of them exhibiting an MIC of 4 mg/L, five strains with an MIC of 8 mg/L and one strain with an MIC of 16 mg/L) were used. With amoxicillin 2000 mg, an initial inoculum reduction >99.99% was obtained for strains with an MIC of 4 mg/L, > or =99% for strains with an MIC of 8 mg/L and 70.6% for the strain with an MIC of 16 mg/L at 24 h sampling time. At this sampling time, no reduction of initial inocula was obtained with amoxicillin 875 mg/8 h for two of the four strains with an MIC of 4 mg/L, three of the five strains with an MIC of 8 mg/L or for the strain with an MIC of 16 mg/L. The new co-amoxiclav 2000/125 mg SR formulation appears to offer advantages versus previous formulations with respect to bactericidal activity against current amoxicillin non-susceptible strains.

  2. Supercritical CO₂ extraction of volatile oils from Sardinian Foeniculum vulgare ssp. vulgare (Apiaceae): chemical composition and biological activity.

    PubMed

    Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Marongiu, Bruno; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2014-01-01

    This article reports the results on the composition and antifungal effect of volatile extracts obtained from the aerial parts of Sardinian wild fennel (Foeniculum vulgare Mill.), by supercritical fluid extraction (SFE) and by hydrodistillation (HD). The extracts were analysed by gas chromatography-mass spectrometry for qualitative composition and gas chromatography-flame ionisation detector to establish the percentage of constituents. The main components were fenchone (7.1% vs. 8.8%), estragole (34.9% vs. 42.6%) and (E)-anethole (24.6% vs. 43.4%) in the SFE and HD extract, respectively. Minimum inhibitory concentrations (MICs) were measured according to the reference Clinical and Laboratory Standards Institute (CLSI) broth macrodilution protocols. Minimum lethal concentrations were determined by subsequent subculturing of the same cell suspensions in solid medium. The essential oil was more active against Candida albicans, whereas the supercritical fluid extract possesses higher activity against Candida guillermondii and Cryptococcus neoformans, with MIC values of 0.32 μL/mL.

  3. The Essential Oil from Origanum vulgare L. and Its Individual Constituents Carvacrol and Thymol Enhance the Effect of Tetracycline against Staphylococcus aureus.

    PubMed

    Cirino, Isis Caroline S; Menezes-Silva, Suellen Maria P; Silva, Helena Tainá D; de Souza, Evandro Leite; Siqueira-Júnior, José P

    2014-01-01

    In an ongoing project to evaluate essential oils as modulators of antibiotic resistance, the essential oil from Origanum vulgare L. (OVEO), as well as its individual constituents carvacrol (CAR) and thymol (THY), were investigated using Staphylococcus aureus strains possessing efflux mechanisms of resistance to norfloxacin, erythromycin and tetracycline. The minimum inhibitory concentration (MIC) values of the antibiotics were determined by agar dilution method, in the absence and in the presence of subinhibitory concentrations of OVEO, CAR or THY. Along with relevant antistaphylococcal activity, OVEO, CAR and THY modulated the activity of tetracycline, i.e. in combination with antibiotics a reduction in the MIC was observed (up to fourfold). The results presented here represent, as far as we know, the first report of OVEO, CAR and THY as putative efflux pump inhibitors. Broadly, these findings indicate that essential oils could serve as potential sources of compounds capable of modulating drug resistance. © 2015 S. Karger AG, Basel.

  4. The effect of tigecycline and ertapenem against clinical isolates of Brucella melitensis detected by E-test on different media.

    PubMed

    Tanyel, E; Coban, A Y; Fisgin, N Tasdelen; Tulek, N

    2010-01-01

    In this study, in vitro activity of tigecycline (TIG) and ertapenem (ERT) against clinical isolates of Brucella melitensis and the effect of different media on in vitro test results were investigated. The in vitro effects of TIG and ERT to 38 B. melitensis isolates were comparatively investigated in brucella agar and 5% sheep blood agar. MIC value of ERT was 0.032 μg/mL in 23 of 38 and 20 of 38 isolates on blood and brucella agar, respectively. Minimum inhibitory concentration values of TIG were substantially different ranging between 0.064-0.25 μg/mL on blood agar. However, MIC values of TIG were similar on brucella agar with 0.25 μg/mL in 15 of 38 isolates and 0.5 μg/mL in 10 of 38 isolates. In conclusion, although ERT and TIG were effective against B. melitensis isolates in vitro, further studies are needed in order to determine the use of these novel drugs in treatment of brucellosis.

  5. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6')Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011.

    PubMed

    George, Jaimee; Halami, Prakash Motiram

    2017-10-01

    The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6')Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6')Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015.

    PubMed

    Karlowsky, James A; Kazmierczak, Krystyna M; de Jonge, Boudewijn L M; Hackel, Meredith A; Sahm, Daniel F; Bradford, Patricia A

    2017-09-01

    The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae , a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae ( n = 51,352) and Pseudomonas aeruginosa ( n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC 90 s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates ( n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC 90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC 90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates ( n = 452), MIC 90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae , for which there are few treatment options. Copyright © 2017 American Society for Microbiology.

  7. In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015

    PubMed Central

    Karlowsky, James A.; de Jonge, Boudewijn L. M.; Hackel, Meredith A.; Sahm, Daniel F.

    2017-01-01

    ABSTRACT The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae, a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae (n = 51,352) and Pseudomonas aeruginosa (n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC90s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates (n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates (n = 452), MIC90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae, for which there are few treatment options. PMID:28630192

  8. Milk and serum concentration of ceftiofur following intramammary infusion in goats.

    PubMed

    Garrett, E F; Dirikolu, L; Grover, G S

    2015-12-01

    Five dairy goats were used to determine the milk and serum concentrations along with elimination characteristics of ceftiofur following intramammary administration. One udder half of each goat was infused twice with 125 mg ceftiofur with a 24-h interval between infusions. Milk samples were collected at 1, 2, 8, and 12 h after the last infusion and then every 12 h for a total of 7 days. Blood was collected from each animal at 3, 8, 12, and 24 h after infusion and then every 24 h for 6 days. Following a washout period of 1 week, the experiment was repeated using the opposite udder half. The elimination half-life of ceftiofur from the mammary gland was 4.7 h. The concentration of ceftiofur was greater than published MIC90 values for Staphylococcus spp. bacteria for 24 h. Ceftiofur was absorbed into systemic circulation from the mammary gland. The maximum concentration was 552 ng/mL at 3 h after infusion, and the serum elimination half-life was 10 h. Intramammary infusion of 125 mg ceftiofur every 24 h can be expected to maintain drug concentration in milk above published MIC90 for Staphylococcus spp. © 2015 John Wiley & Sons Ltd.

  9. Comparative in vitro study of the antimicrobial activities of different commercial antibiotic products of vancomycin

    PubMed Central

    2011-01-01

    Background One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Methods Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. Results The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. Conclusions All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents. PMID:21777438

  10. Comparative in vitro study of the antimicrobial activities of different commercial antibiotic products of vancomycin.

    PubMed

    Diaz, Jorge A; Silva, Edelberto; Arias, Maria J; Garzón, María

    2011-07-21

    One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents.

  11. Antibacterial secotirucallane triterpenes from the stem bark of Pseudocedrela kotschyi.

    PubMed

    Mambou, Christèle Sorèle; Nono, Raymond Ngansop; Chouna, Jean Rodolphe; Tamokou, Jean-de-Dieu; Nkeng-Efouet-Alango, Pépin; Sewald, Norbert

    2018-04-25

    The antibacterial-guided investigation of the stem bark extract of Pseudocedrela kotschyi led to the isolation of a new secotirucallane triterpene derivative: 4-hydroxy-3,4-secotirucalla-7,24-dien-3,21-dioic acid (1), together with the known one: 3,4-secotirucalla-4(28),7,24-trien-3,21-dioic acid (2) and 3-methyl ester 3,4-secotirucalla-4(28),7,24-trien-3,21-dioic (3). The structures of the isolated compounds were elucidated on the basis of extensive 1D- and 2D-NMR spectroscopy. Extracts, fractions and compounds (1-3) were tested in vitro for antibacterial activity against two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus ATCC 25923), and two Gram negative bacteria (Escherichia coli S2(1) and Pseudomonas aeruginosa). The MeOH extract and the Hex/CH2Cl2 (70:30) fraction showed significant levels of activity (MIC=64- 256 μg/mL) compared with the two reference drugs [ciprofloxacin: MIC (0.5-1 μg/mL) and amoxicillin: MIC (1-128 μg/mL)]. Moreover, the compound 2 isolated from this Hex/CH2Cl2 (70:30) fraction had the greatest potential value against S. aureus, E. coli and P. aeruginosa, with minimum inhibitory concentrations (MIC) ranging from 4-16 μg/mL.

  12. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia.

    PubMed

    Lulekal, E; Rondevaldova, J; Bernaskova, E; Cepkova, J; Asfaw, Z; Kelbessa, E; Kokoska, L; Van Damme, P

    2014-05-01

    Traditional medicinal plants have long been used in Ethiopia to treat human and livestock ailments. Despite a well-documented rich tradition of medicinal plant use in the country, their direct antimicrobial effects are still poorly known. To investigate the antimicrobial activity of 19 medicinal plant species that were selected based on the ethnobotanical information on their traditional use to treat infectious diseases in Ankober District. About 23 different ethanol extracts of plants obtained by maceration of various parts of 19 medicinal plant species were studied for potential antimicrobial activity using a broth microdilution method against Bacillus cereus, Bacteroides fragilis, Candida albicans, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Plant extracts from Embelia schimperi Vatke (Myrsinaceae) showed the strongest antibacterial activity with a minimum inhibitory concentration (MIC) value of 64 µg/ml against B. cereus, L. monocytogenes, and S. pyogenes. Growth inhibitory activities were also observed for extracts of Ocimum lamiifolium Hochst. (Lamiaceae) against S. pyogenes, and those of Rubus steudneri Schweinf. (Rosaceae) against S. epidermidis at an MIC value of 128 µg/ml. Generally, 74% of ethanol extracts (17 extracts) showed antimicrobial activity against one or more of the microbial strains tested at an MIC value of 512 µg/ml or below. Results confirm the antimicrobial role of traditional medicinal plants of Ankober and warrant further investigations on promising medicinal plant species so as to isolate and characterise chemicals responsible for the observed strong antimicrobial activities.

  13. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.

    PubMed

    Yiğit, D; Yiğit, N; Mavi, A

    2009-04-01

    The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.

  14. In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.

    PubMed

    Inouye, S; Uchida, K; Yamaguchi, H

    2001-05-01

    The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.

  15. Chemical Characterization and Anti-Oomycete Activity of Laureliopsis philippianna Essential Oils against Saprolegnia parasitica and S. australis.

    PubMed

    Madrid, Alejandro; Godoy, Patricio; González, Sebastián; Zaror, Luis; Moller, Alejandra; Werner, Enrique; Cuellar, Mauricio; Villena, Joan; Montenegro, Iván

    2015-05-05

    Laureliopsis philippiana (Looser) R. Schodde (Monimiaceae) is a native tree widespread in the forest areas in the south of Chile and Argentina, known for its medicinal properties and excellent wood. The aim of this study was to evaluate the chemical composition of L. philippiana leaf and bark essential oils (EOs) using gas chromatography-mass spectrometry (GC-MS), and to quantify its anti-oomycete activity, specifically against Saprolegnia parasitica and S. australis. Only six components were identified in leaf EO, 96.92% of which are phenylpropanoids and 3.08% are terpenes. As for bark EO, 29 components were identified, representing 67.61% for phenylpropanoids and 32.39% for terpenes. Leaf EO was characterized mainly by safrole (96.92%) and β-phellandrene (1.80%). Bark EO was characterized mainly by isosafrole (30.07%), safrole (24.41%), eucalyptol (13.89%), methyleugenol (7.12%), and eugenol (6.01%). Bark EO has the most promising anti-Saprolegnia activity, with a minimum inhibition concentration (MIC) value of 30.0 µg/mL against mycelia growth and a minimum fungicidal concentration (MFC) value of 50.0 μg/mL against spores; for leaf EO, the MIC and MFC values are 100 and 125 µg/mL, respectively. These findings demonstrate that bark EO has potential to be developed as a remedy for the control of Saprolegnia spp. in aquaculture.

  16. Susceptibility of Legionella spp. to mycinamicin I and II and other macrolide antibiotics: effects of media composition and origin of organisms.

    PubMed Central

    Edelstein, P H; Pasiecznik, K A; Yasui, V K; Meyer, R D

    1982-01-01

    Thirty-three strains of Legionella spp., 29 of which were L. pneumophila, were tested for their susceptibilities to erythromycin (EM), rosaramicin, tylosin, mycinamicin I (Sch-27897), and mycinamicin II (Sch-27896). Testing was performed using an agar dilution method with two different types of media: buffered charcoal yeast extract medium supplemented with 0.1% alpha-ketoglutarate (BCYE alpha) and filter-sterilized yeast extract medium with 0.1% alpha-ketoglutarate (BYE alpha). The minimal inhibitory concentrations (MICs) of the drugs tested relative to the MICs of erythromycin were: rosaramicin, MIC approximately equal to 0.2 EM MIC; tylosin, MIC approximately equal to 2 EM MIC; mycinamicin I, MIC approximately equal to 0.5 EM MIC; and mycinamicin II, MIC approximately equal to EM MIC. Both types of media caused equivalent partial inactivation of the macrolides which was apparently due entirely to pH effect. MICs on BCYE alpha were one to five times more than those observed on BYE alpha; this may be due to poorer growth on BYE alpha. PMID:7125633

  17. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates.

    PubMed

    Bogdan, Maja; Drenjancevic, Domagoj; Harsanji Drenjancevic, Ivana; Bedenic, Branka; Zujic Atalic, Vlasta; Talapko, Jasminka; Vukovic, Dubravka

    2018-02-01

    The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.

  18. Extracellular DNA Impedes the Transport of Vancomycin in Staphylococcus epidermidis Biofilms Preexposed to Subinhibitory Concentrations of Vancomycin

    PubMed Central

    Tseng, Boo Shan; Howlin, Robert P.; Deacon, Jill; Wharton, Julian A.; Thurner, Philipp J.; Gilmore, Brendan F.; Parsek, Matthew R.; Stoodley, Paul

    2014-01-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. PMID:25267673

  19. Cefazolin potency against methicillin-resistant Staphylococcus aureus: a microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections.

    PubMed

    Nicolau, David P; Silberg, Barry N

    2017-01-01

    Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections.

  20. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against Pathogenic Oral Bacteria.

    PubMed

    Azizan, Nuramirah; Mohd Said, Shahida; Zainal Abidin, Zamirah; Jantan, Ibrahim

    2017-12-05

    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis , Streptococcus mutans , Streptococcus mitis , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis and Fusobacterium nucleatum . Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea . The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.

  1. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    NASA Astrophysics Data System (ADS)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  2. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq

    PubMed Central

    Al-Bayati, Firas A.; Al-Mola, Hassan F.

    2008-01-01

    Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138

  3. Activity of selected essential oils on spoiling fungi cultured from Marzolino cheese.

    PubMed

    Nardoni, Simona; D'Ascenzi, Carlo; Caracciolo, Irene; Mannaioni, Gaia; Papini, Roberto Amerigo; Pistelli, Luisa; Najar, Basma; Mancianti, Francesca

    2018-06-20

    Microscopic fungi can be present on a variety of foodstuff, including cheese. They can be responsible for fungal spoilage, causing sensory changes making food unacceptable for human consumption, and posing severe health concerns. Furthermore, some of these organisms are able to resist antimicrobial preservatives provided for by law. Antifungal activity of 15 chemically defined EOs, alone and in mixture, were checked by a microdilution test against isolates of Penicillium funiculosum and Mucor racemosus cultured from rinds of Marzolino, a typical Italian fresh pecorino cheese. Origanum vulgare yielded the lowest MIC values, followed by Salvia sclarea, Ocimum basilicum and Cymbopogon citratus, while Citrus paradisi and Citrus limon were not active. All mixtures showed antifungal activity at lower concentration with respect to MIC values of each EO component, when not in combination. This study is the first to describe the setting up of EOs mixtures to limit spoiling moulds.

  4. Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus.

    PubMed

    Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong

    2014-09-01

    Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.

  5. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    PubMed Central

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-01-01

    Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). Conclusion: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm. PMID:27517903

  6. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species.

    PubMed

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; Dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-08-09

    The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.

  7. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues.

    PubMed

    Srivastava, Ritika; Gupta, Sunil K; Naaz, Farha; Singh, Anuradha; Singh, Vishal K; Verma, Rajesh; Singh, Nidhi; Singh, Ramendra K

    2018-05-24

    A series of 2-Cl-benzimidazole derivatives was synthesized and assessed for antibacterial activity. Antibacterial results indicated that compounds 2d, 2e, 3a, 3b, 3c, 4d and 4e showed promising activity against B. cerus, S. aureus and P. aeruginosa (MIC: 6.2 μg/mL) and excellent efficacy against E. coli (MIC: 3.1 μg/mL). Furthermore, compounds 3d and 3e displayed better activity (MIC: 3.1 μg/mL) than the reference drugs chloramphenicol and cycloheximide against gram positive and gram negative bacterial strains. The compounds 3d-e also showed better activity than the reference drug paromomycin against B. cerus and P. aeruginosa and showed similar inhibition pattern against S. aureus and E. coli. (MIC: 3.1 μg/mL). Studies on fractional inhibitory concentration (FIC) determination of compounds 1a-e, 2a-c, 4a-c and the reference antibiotic via combination approach revealed a synergistic effect as the MIC values were lowered up to 1 / 8 th to 1 / 33 rd of the original MIC. In-vitro cytotoxicity study indicated that 2-Cl-benzimidazole derivatives showed less toxicity than the reference used against PBM, CEM and Vero cell lines. Docking studies and MD simulations of compounds on bacterial protein (eubacterial ribosomal decoding A site, PDB: 1j7t) have been conducted to find the possible mode of action of the molecules. In silico ADMET evaluations of compounds 3d and 3e showed promising results comparable to the reference drugs used in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A multicentre study of meticillin-resistant Staphylococcus aureus in acute bacterial skin and skin-structure infections in China: susceptibility to ceftaroline and molecular epidemiology.

    PubMed

    Zhang, Hui; Xiao, Meng; Kong, Fanrong; O'Sullivan, Matthew V N; Mao, Lei-Li; Zhao, Hao-Ran; Zhao, Ying; Wang, He; Xu, Ying-Chun

    2015-04-01

    Ceftaroline is a novel cephalosporin with activity against Gram-positive organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The objective of this study was to investigate the susceptibility to ceftaroline of hospital-associated MRSA (HA-MRSA) isolates causing acute bacterial skin and skin-structure infections (ABSSSIs) in China and to examine their relationship by genotyping. A total of 251 HA-MRSA isolates causing ABSSSIs were collected from a multicentre study involving 56 hospitals in 38 large cities across 26 provinces in mainland China. All isolates were characterised by multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, spa typing and detection of the Panton-Valentine leukocidin locus (lukS-PV and lukF-PV). Minimum inhibitory concentrations (MICs) of 14 antimicrobial agents, including ceftaroline, were determined by broth microdilution and were interpreted using Clinical and Laboratory Standards Institute breakpoints. The ceftaroline MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were 1 μg/mL and 2 μg/mL, respectively; 33.5% (n=84) of the isolates studied were ceftaroline-non-susceptible, with MICs of 2 μg/mL, but no isolate exhibited ceftaroline resistance (MIC>2 μg/mL). All of the ceftaroline-non-susceptible isolates belonged to the predominant HA-MRSA clones: 95.2% (n=80) from MLST clonal complex 8 (CC8), with the remaining 4.8% (n=4) from CC5. The high rate of non-susceptibility to ceftaroline amongst HA-MRSA causing ABSSSIs in China is concerning. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl)acetohydrazones as potential antibacterial agents.

    PubMed

    El-Kilany, Yeldez; Nahas, Nariman M; Al-Ghamdi, Mariam A; Badawy, Mohamed E I; El Ashry, El Sayed H

    2015-01-01

    Ethyl (benzimidazol-1-yl)acetate was subjected to hydrazinolysis with hydrazine hydrate to give (benzimidazol-1-yl)acetohydrazide. The latter was reacted with various aromatic aldehydes to give the respective arylidene (1H-benzimidazol-1-yl)acetohydrazones. Solutions of the prepared hydrazones were found to contain two geometric isomers. Similarly (2-methyl-benzimidazol-1-yl)acetohydrazide was reacted with various aldehydes to give the corresponding hydrazones. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens (A. tumefaciens), Erwinia carotovora (E. carotovora), Corynebacterium fascians (C. fascians) and Pseudomonas solanacearum (P. solanacearum). MIC result demonstrated that salicylaldehyde(1H-benzimidazol-1-yl)acetohydrazone (4) was the most active compound (MIC = 20, 35, 25 and 30 mg/L against A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively). Quantitative structure activity relationship (QSAR) investigation using Hansch analysis was applied to find out the correlation between antibacterial activity and physicochemical properties. Various physicochemical descriptors and experimentally determined MIC values for different microorganisms were used as independent and dependent variables, respectively. pMICs of the compounds exhibited good correlation (r = 0.983, 0.914, 0.960 and 0.958 for A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively) with the prediction made by the model. QSAR study revealed that the hydrophobic parameter (ClogP), the aqueous solubility (LogS), calculated molar refractivity, topological polar surface area and hydrogen bond acceptor were found to have overall significant correlation with antibacterial activity. The statistical results of training set, correlation coefficient (r and r (2)), the ratio between regression and residual variances (f, Fisher's statistic), the standard error of estimates and significant (s) gave reliability to the prediction of molecules with activity using QSAR models. However, QSAR equations derived for the MIC values against the tested bacteria showed negative contribution of molecular mass.

  10. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    NASA Technical Reports Server (NTRS)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control (normal gravity) MIC values will be generated by simultaneous inoculation and incubation of a second set of test cards in a laboratory at the launch site. This procedure can provide a safe and compact experiment that should yield new information on the affects of microgravity on the biological activities of various classes of antibiotics.

  11. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: results of Asia-Pacific surveillance from the COMPACT II study.

    PubMed

    Kiratisin, Pattarachai; Chongthaleong, Anan; Tan, Thean Yen; Lagamayo, Evelina; Roberts, Sally; Garcia, Jemelyn; Davies, Todd

    2012-04-01

    Resistance rates amongst Gram-negative pathogens are increasing in the Asia-Pacific region. The Comparative Activity of Carbapenem Testing (COMPACT) II study surveyed the carbapenem susceptibility and minimum inhibitory concentrations (MICs) of doripenem, imipenem and meropenem against 1260 major Gram-negative pathogens isolated from hospitalised patients at 20 centres in five Asia-Pacific countries (New Zealand, the Philippines, Singapore, Thailand and Vietnam) during 2010. Pseudomonas aeruginosa (n=625), Enterobacteriaceae (n=500), and other Gram-negative pathogens including Acinetobacter baumannii (n=135) were collected from patients with bloodstream infection (32.2%), nosocomial pneumonia including ventilator-associated pneumonia (58.1%), and complicated intra-abdominal infection (9.7%), with 36.7% being isolated from patients in an Intensive Care Unit. As high as 29.8% of P. aeruginosa and 73.0% of A. baumannii isolates were not susceptible to at least a carbapenem, whereas the majority of Enterobacteriaceae (97.2%) were susceptible to all carbapenems. Respective MIC(50)/MIC(90) values (MICs for 50% and 90% of the organisms, respectively) of doripenem, imipenem and meropenem were: 0.38/8, 1.5/32 and 0.38/16 mg/L for P. aeruginosa; 0.023/0.094, 0.25/0.5 and 0.032/0.094 mg/L for Enterobacteriaceae; and 32/64, 32/128 and 32/64 mg/L for A. baumannii. Doripenem and meropenem had comparable activity against P. aeruginosa, both being more active than imipenem. All carbapenems were highly potent against Enterobacteriaceae, although imipenem demonstrated higher MIC values than doripenem and meropenem. The three carbapenems showed less activity against A. baumannii. The high prevalence of carbapenem resistance amongst important nosocomial pathogens (P. aeruginosa and A. baumannii) warrants rigorous infection control measures and appropriate antimicrobial use in the Asia-Pacific region. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. In vitro activity of two amphotericin B formulations against Malassezia furfur strains recovered from patients with bloodstream infections.

    PubMed

    Iatta, Roberta; Immediato, Davide; Montagna, Maria Teresa; Otranto, Domenico; Cafarchia, Claudia

    2015-04-01

    Although guidelines for the treatment of Malassezia furfur fungemia are not yet defined, clinical data suggest that amphotericin B (AmB) is effective for treating systemic infections. In the absence of clinical breakpoints for Malassezia yeasts, epidemiological cut-off values (ECVs) are useful to discriminate between isolates with and without drug resistance. This study aimed to compare the distribution of minimal inhibitory concentration (MIC) and the ECVs for AmB of both deoxycholate (d-AmB) and liposomal (l-AmB) formulations of M. furfur isolates. The 84 M. furfur strains analyzed, which included 56 from blood, sterile sites and catheters, and 28 from skin, were isolated from patients with bloodstream infections. MICs were determined by the modified broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI). The l-AmB MIC and the ECVs were two-fold lower than those of d-AmB and a lower l-AmB mean MIC value was found for blood isolates than from skin. The ECVs for l-AmB and d-AmB were 8 mg/l and 32 mg/l, respectively. Three strains (3.6%) showed l-AmB MIC higher than ECV (MIC > 8 mg/l) of which two were isolated from the catheter tip of patients treated with micafugin, l-Amb and fluconazole, and one from skin. The results showed that the l-AmB might be employed for assessing the in vitro antifungal susceptibility of M. furfur by a modified CLSI protocol and that ECVs might be useful for detecting the emergence of resistance. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. In vitro Antibacterial Activity of Ocimum suave Essential Oils against Uropathogens Isolated from Patients in Selected Hospitals in Bushenyi District, Uganda

    PubMed Central

    Tibyangye, Julius; Okech, Matilda Angela; Nyabayo, Josephat Maniga; Nakavuma, Jessica Lukanga

    2015-01-01

    Aims To determine antibacterial activity of Ocimum suave essential oils against bacterial uropathogens. Study Design A cross sectional and experimental study. Place and Duration of Study Six selected hospitals in Bushenyi District, Uganda between June 2012 and July 2013. Methodology Clean catch midstream urine samples were collected and inoculated on Cystine Lysine Electrolyte Deficient (CLED) agar. The plates were incubated at 37°C for 24hrs to 48hrs. The O. suave essential oils were extracted by hydrodistillation of leaves for 4hrs using a Clevenger apparatus. The oil was collected and dried over anhydrous sodium sulphate (Na2SO4) and kept at 4°C till further use. The antimicrobial activity of O. suave essential oils against isolates was determined by agar well method. The MIC of O. suave essential oil extract was carried out by microbroth dilution method. Results Of the three hundred (300) midstream urine samples collected, 67(22.33%) had significant bacterial growth. Escherichia coli is the most common isolate (61.19%, n = 41). The essential oil from O. suave showed activity against isolates of E. coli, K. pneumoniae, S. aureus, E. feacalis, M. morganii, Citrobacter species, Enterobacter species and P. aeruginosa with mean zone of inhibition (ZI) ranging from 10–22 mm. The essential oils had no inhibitory activity on Acinetobacter species. The minimum inhibitory concentration (MIC) for O. suave essential oils ranged from 0.78 to 22 μg/ml. This study showed that O. suave essential oils had MIC value of 0.78 μg/ml against S. aureus and MIC values ranging from 3 to 22 μg/ml against the other tested isolates. Conclusion The most common uropathogen was E. coli (61.19% n = 41). O. suave essential oils exhibited antibacterial activity against majority of the uropathogens, except Acinetobacter species, mean ZI of 10–22 mm and MIC of 0.78 – 22 μg/ml. PMID:26120574

  14. Prevalence, genetic relatedness and antibiotic resistance of hospital-acquired clostridium difficile PCR ribotype 018 strains.

    PubMed

    Seo, Mi-Ran; Kim, Jieun; Lee, Yangsoon; Lim, Dong-Gyun; Pai, Hyunjoo

    2018-05-01

    Clostridium difficile infection (CDI) is a major healthcare-associated infection. The aim of this study was to investigate the genetic relatedness of the endemic C. difficile PCR ribotype 018 strains in an institution and changes to their characteristics during a five-year period. A total of 207 isolates from inpatients at Hanyang University Hospital from 2009 to 2013 were analysed using multilocus variable-number tandem-repeat analysis (MLVA). Minimum inhibitory concentrations (MICs) of several antibiotics were determined. In total, 204 (98.6%) were genetically related, with a summed tandem-repeat distance (STRD) ≤ 10. Minimum-spanning-tree analysis identified 78 MLVA types, categorized into six clonal complexes (CCs). The largest cluster, CC-I, included 51 MLVA types from 148 isolates (71.5%) and the second largest cluster, CC-II, included 10 MLVA types from 36 isolates (17.4%). Resistance rates for antibiotics were: clindamycin (CLI), 97.6%; moxifloxacin (MXF), 98.6%; vancomycin (VAN), 1.4%; and rifaximin (RFX), 8.2%. All isolates were susceptible to piperacillin/tazobactam (TZP) and metronidazole (MTZ). Comparing the MICs of antibiotics for the isolates each year from 2009 to 2013, MICs of antibiotics that promote CDI, such as CLI, MXF, TZP and RFX, increased over the five-year period (P-value by Kruskal-Wallis test: < 0.0001, <0.0001, <0.0001, and <0.0001 respectively); however, MICs of VAN or MTZ, antibiotics for treatment of CDI, did not increase or decreased over the same time period (P-value by Kruskal-Wallis test: 0.166, <0.0001). C. difficile RT018 isolates in a tertiary hospital over a five-year period presented a close clonal relationship. MICs of antibiotics promoting CDI increased with this clonal expansion. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  15. Population Pharmacokinetic Analysis of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Healthy Subjects, Subjects with Various Degrees of Renal Function, and Patients with Complicated Urinary Tract Infection or Acute Uncomplicated Pyelonephritis.

    PubMed

    Kawaguchi, Nao; Katsube, Takayuki; Echols, Roger; Wajima, Toshihiro

    2018-02-01

    Cefiderocol, a novel parenteral siderophore cephalosporin, exhibits potent efficacy against most Gram-negative bacteria, including carbapenem-resistant strains. The aim of this study was to perform a population pharmacokinetic (PK) analysis based on plasma cefiderocol concentrations in healthy subjects, subjects with various degrees of renal function, and patients with complicated urinary tract infection (cUTI) or acute uncomplicated pyelonephritis (AUP) caused by Gram-negative pathogens and to calculate the fraction of the time during the dosing interval where the free drug concentration in plasma exceeds the MIC ( fT MIC ). Population PK models were developed with three renal function markers, body surface area-adjusted estimated glomerular filtration rate (eGFR), absolute eGFR, and creatinine clearance, on the basis of 2,571 plasma concentrations from 91 subjects without infection and 238 patients with infection. The population PK models with each renal function marker adequately described the plasma cefiderocol concentrations. Clear relationships of total clearance (CL) to all renal function markers were observed. Body weight and disease status (with or without infection) were also significant covariates. The CL in patients with infection was 26% higher than that in subjects without infection. The fT MIC values were more than 75% in all patients (and were 100% in most patients), suggesting that a sufficient exposure to cefiderocol was provided by the tested dose regimens (2 g every 8 h as the standard dose regimen) for the treatment of cUTI or AUP caused by Gram-negative pathogens. Copyright © 2018 Kawaguchi et al.

  16. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur.

    PubMed

    Vinciguerra, Vittorio; Rojas, Florencia; Tedesco, Viviana; Giusiano, Gustavo; Angiolella, Letizia

    2018-05-04

    The composition of the essential oils (EOs) of O. vulgare L. EO and T. vulgaris EO, were analyzed by GC and GC-MS. Antifungal activities of the EOs and its main component, carvacrol, were evaluated against 27 clinical isolates of Malassezia furfur. Minimum inhibitory concentrations (MICs) were measured according to the broth microdilution protocols by Clinical and Laboratory Standards Institute (CLSI) modified for Malassezia spp. EOs and carvacrol showed low MIC values ranged 450-900 μg/ml against M. furfur. No differences in EOs antifungal activity were observed in sensitive to resistant fluconazole isolates. The antifungal activity obtained showed O. vulgare EO, T. vulgaris EO and carvacrol, their compound, as potential antimicrobial agents against M. furfur, yeast associated with human mycoses.

  17. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes.

    PubMed

    Salinas-Salazar, Carmen; Hernández-Brenes, Carmen; Rodríguez-Sánchez, Dariana Graciela; Castillo, Elena Cristina; Navarro-Silva, Jesús Manuel; Pacheco, Adriana

    2017-01-01

    High standards regarding Listeria monocytogenes control and consumer demands for food products without synthetic additives represent a challenge to food industry. We determined the antilisterial properties of an enriched acetogenin extract (EAE) from avocado seed, compared it to two commercial antimicrobials (one enriched in avocado acetogenins), and tested purified molecules. Acetogenin composition in pulp and seed of Hass avocado was quantified. EAE were obtained by two sequential centrifuge partition chromatography separations and molecules purified by preparative chromatography and quantified by HPLC-MS-TOF and HPLC-PDA. Avocado seed extracts which are the following two: 1) EAE and 2) the commercially available antimicrobial Avosafe®, presented similar inhibition zones and chemical profiles. Minimum inhibitory concentration (MIC) values of extracts and two isolated acetogenins varied between 7.8 and 15.6 mg/L, were effective at 37 and 4 °C, and showed a bactericidal effect probably caused by increased membrane permeability and lytic effects, evidenced by flow cytometry at 10 and 100× MIC. Activity was comparable to Mirenat®. Most potent acetogenins were Persenone C (5) and A (6), and AcO-avocadenyne (1), the latter exclusively present in seed. Common features of bioactive molecules were the acetyl moiety and multiple unsaturations (2 to 3) in the aliphatic chain, some persenones also featured a trans-enone group. Seeds contained 1.6 times higher levels of acetogenins than pulp (5048.1 ± 575.5 and 3107.0 ± 207.2 mg/kg fresh weight, respectively), and total content in pulp was 199 to 398 times higher than MIC values. Therefore, acetogenin levels potentially consumed by humans are higher than inhibitory concentrations. Results document properties of avocado seed acetogenins as natural antilisterial food additives. © 2016 Institute of Food Technologists®.

  18. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro.

    PubMed

    Sule, Abubakar; Ahmed, Qamar Uddin; Latip, Jalifah; Samah, Othman Abd; Omar, Muhammad Nor; Umar, Abdulrashid; Dogarai, Bashar Bello S

    2012-07-01

    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.

  19. Antifungal activity directed toward the Cell wall by 2-cyclohexylidenhydrazo-4-phenyl-thiazole against Candida albicans.

    PubMed

    de Sa, Nivea Pereira; Possa, Ana Paula; Perez, Pilar; Ferreira, Jaqueline Maria Siqueira; Fonseca, Nayara Cristina; Lino, Cleudiomar Inacio; Cruz, Lana Barreto; de Oliveira, Renata Barbosa; Rosa, Carlos Augusto; Borelli, Beatriz Martins; Mylonakis, Eleftherios; Fuchs, Beth Burgwyn; Johann, Susana

    2018-05-30

    Background The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. Objectives Investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2-cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. Methods The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. Results CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated the cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. Conclusions In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods

    PubMed Central

    Abreu, D. P. B.; Almeida-Paes, R.; Brilhante, R. S. N.; Chakrabarti, A.; Córdoba, S.; Gonzalez, G. M.; Guarro, J.; Johnson, E. M.; Kidd, S. E.; Pereira, S. A.; Rozental, S.; Szeszs, M. W.; Ballesté Alaniz, R.; Bonifaz, A.; Bonfietti, L. X.; Borba-Santos, L. P.; Capilla, J.; Colombo, A. L.; Dolande, M.; Isla, M. G.; Melhem, M. S. C.; Mesa-Arango, A. C.; Oliveira, M. M. E.; Panizo, M. M.; Pires de Camargo, Z.; Zancope-Oliveira, R. M.; Turnidge, J.

    2017-01-01

    ABSTRACT Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 μg/ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy. PMID:28739796

  1. [Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from animals to ofloxacin and commonly used antimicrobial agents].

    PubMed

    Takahashi, I; Yoshida, T; Higashide, Y; Sakano, T

    1990-01-01

    Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from chickens, pigs and cattle to ofloxacin (OFLX) and commonly used antimicrobial agents were investigated. 1. E. coli (28 isolates) demonstrated the highest level of susceptibility of OFLX (MIC 0.10-0.39 micrograms/ml for all the isolates) among all the test drugs. Commonly used antimicrobial agents to which these isolates responded with relatively high susceptibilities (MIC50 0.78-6.25 micrograms/ml) included oxolinic acid (OXA), ampicillin (ABPC), kanamycin (KM) and chloramphenicol (CP) with their MIC50 values in the increasing order as above. Drugs to which these isolates responded with moderate to weak susceptibilities (MIC50 25 approximately greater than 800 micrograms/ml) were doxycycline (DOXY), streptomycin (SM), spectinomycin (SPCM) and sulfadimethoxine (SDMX) in the increasing order of MIC50. E. coli isolates with resistances to all the test drugs other than OFLX and OXA amounted to 7.1-57.1% of the isolates examined and 20 isolates (71.4%) in total. 2. Susceptibilities to OFLX and 4 existing pyridonecarboxylic acid derivatives of E. coli (48 samples) isolated recently from diarrheal pigs were compared. When evaluated in terms of MIC50, the values of OFLX and norfloxacin were both 0.10 micrograms/ml. The values increased by differences of 0.39-3.13 micrograms/ml in an order of OXA, pipemidic acid and nalidixic acid. 3. Salmonella (28 isolates) demonstrated the highest level of susceptibility to OFLX (MIC 0.20-0.39 micrograms/ml for all the isolates) among all the test drugs. The drugs to which these isolates responded with relatively high to moderate susceptibilities (MIC50 0.78-12.5 micrograms/ml) included ABPC, OXA, DOXY, KM, CP and SM with their MIC50 values increasing in this order. The drugs to which the isolates responded with low susceptibilities (MIC50 above 100 micrograms/ml) were SPCM and SDMX. Of all the 28 Salmonella isolates tested, 7.1-32.1% were resistant to all the test drugs other than OFLX and OXA. These resistant isolates amounted to a total of 12 isolates (42.9%). 4. S. aureus (28 isolates) were highly susceptible to OFLX (MIC50 and MIC90 were both 0.78 micrograms/ml). Commonly used antimicrobial agents to which the isolates responded with high to relatively high susceptibilities (MIC50 0.10-6.25 micrograms/ml) were, in the increasing order of MIC50: DOXY, ABPC, tylosin, tiamulin, KM, OXA and CP. Drugs with moderate to low bacterial susceptibilities (MIC50 12.5-100 microns/ml) were SD, SDMX and SPCM. Isolates resistant to all the test drugs except OFLX and SDMX amounted to 3.6-50% of the 28 isolates examined and they totalled 20 isolates (71.4%).(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  3. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.

    PubMed

    Romulo, Andreas; Zuhud, Ervizal A M; Rondevaldova, Johana; Kokoska, Ladislav

    2018-12-01

    In many regions of Indonesia, there are numerous traditional herbal preparations for treatment of infectious diseases. However, their antimicrobial potential has been poorly studied by modern laboratory methods. This study investigates in vitro antimicrobial activity of 49 ethanol extracts from 37 plant species used in Indonesian traditional medicine for treatment against Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The plants were collected from the Biopharmaca collection garden, Bogor, Indonesia. The plant material was dried, finely grounded, extracted using ethanol, concentrated, and the dried residue was dissolved in 100% DMSO. Antimicrobial activity was determined in terms of a minimum inhibitory concentration (MIC) using a broth microdilution method in 96-well microplates. The extract of Orthosiphon aristatus (Blume) Miq. (Lamiaceae) leaf produced the strongest antimicrobial effect, inhibiting the growth of C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL), E. faecalis (MIC 256 μg/mL) and P. aeruginosa (MIC 256 μg/mL). The leaf extract of Woodfordia floribunda Salisb. (Lythraceae) also exhibited significant effect against C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL) and E. faecalis (MIC 256 μg/mL). Rotheca serrata (L.) Steane & Mabb. (Lamiaceae) leaf extract inhibited the growth of S. aureus (MIC 256 µg/mL) and C. albicans (MIC 256 µg/mL). The leaf extract of O. aristatus and W. floribunda exhibited a significant anti-candidal effect. Therefore, both of these plants can serve as prospective source materials for the development of new anti-candidal agents.

  4. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).

  5. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    PubMed

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at the concentration of 10 μg/ml against MMP-9. Additionally, MMP-9 was significantly inhibited by terchebulin with IC 50 value of 6.7 μM. To the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study. Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and MMP-9 enzyme that would make them promising natural preference for preventing and treating periodontal diseases.

  6. Mutant prevention concentrations of four carbapenems against gram-negative rods.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C

    2010-06-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ss-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to > or =16. The MPC/MIC ratios for beta-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 microg/ml) than those for ss-lactamase-negative strains.

  7. "Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves".

    PubMed

    Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A

    2018-02-08

    Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.

  8. Antimicrobial effect of sour pomegranate sauce on Escherichia coli O157:H7 and Staphylococcus aureus.

    PubMed

    Kışla, Duygu; Karabıyıklı, Şeniz

    2013-05-01

    Pomegranate sauce is one of the most popular pomegranate products produced in Turkey. This study was conducted to determine the minimum inhibitory concentrations (MICs) of both traditional and commercial sour pomegranate sauce samples on Staphylococcus aureus (ATCC 25923) and Escherichia coli O157:H7 (ATCC 43895). The initial microflora of the pomegranate sauce samples was determined by performing the enumerations of total aerobic mesophilic bacteria, yeast and mold, S. aureus, E. coli, and the determination of Salmonella spp. MIC tests were applied to the neutralized and the original (unneutralized) sour pomegranate sauce samples in order to put forth the inhibition effect depending on low pH value. It was found that inhibitory effect of the traditional and the commercial samples, except one sample, on pathogens was not only due to the acidity of the products. The results of MIC tests indicated that although both traditional and commercial samples showed a considerable inhibitory effect on test microorganisms, the traditional pomegranate sauce samples were more effective than the commercial ones. © 2013 Institute of Food Technologists®

  9. Relevant role of efflux pumps in high levels of rifaximin resistance in Escherichia coli clinical isolates.

    PubMed

    Gomes, C; Ruiz, L; Pons, M J; Ochoa, T J; Ruiz, J

    2013-09-01

    Enteropathogens have shown a high level of resistance against commonly used antibacterial drugs in Peru and it is necessary to explore alternative treatments. The aim of this study was to analyse the in vitro activity of rifaximin against diarrhoeagenic and commensal Escherichia coli in children less than 2 years of age. The minimal inhibitory concentration (MIC) to rifampicin and rifaximin was determined for 210 strains in the presence and absence of phenyl-arginine-β-naphthylamide (PAβN) and the mechanisms of resistance were investigated. The MIC levels ranged between 8 and >256 mg/litre and the predominant mechanism of resistance to rifaximin was the efflux pumps inhibited by PAβN in 95.2% of the isolates. The present MIC values are higher than those observed in other studies. Efflux pumps inhibited by PAβN were the cause of the rifaximin resistance in the majority of cases and suggest the presence of an environmental selective pressure. Consequently, rifaximin should be used with caution in the treatment of diarrhoea in Peru.

  10. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles.

    PubMed

    De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon

    2017-06-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.

  11. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles

    PubMed Central

    De Silva, B.C.J.; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.

    2017-01-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila, A. caviae, Citrobacter freundii, Salmonella enterica, Edwardsiella tarda, Pseudomonas aeruginosa, and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa. MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla, C. freundii, P. mirabilis, and S. enterica. Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO. PMID:28747972

  12. Antibacterial and synergistic effects of the n-BuOH fraction of Sophora flavescens root against oral bacteria.

    PubMed

    Lee, Kyung-Yeol; Cha, Su-Mi; Choi, Sung-Mi; Cha, Jeong-Dan

    2017-01-01

    The antibacterial activity of an extract and several fractions of Sophora flavescens (S. flavescens) root alone and in combination with antibiotics against oral bacteria was investigated by checkerboard assay and time-kill assay. The minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values for all examined bacteria were 0.313-2.5/0.625-2.5 μg/mL for the n-BuOH fraction, 0.625-5/1.25-10 μg/mL for the EtOAc fraction, 0.25-8/0.25-16 μg/mL for ampicillin, 0.5-256/1-512 μg/mL for gentamicin, 0.008-32/0.016-64 μg/mL for erythromycin, and 0.25-64/0.5-128 μg/mL for vancomycin. The n-butanol (n-BuOH) and ethyl acetate (EtOAc) fractions exhibited stronger antibacterial activity against oral bacteria than other fractions and extracts. The MICs and MBCs were reduced to between one half and one quarter when the n-BuOH and EtOAc fractions were combined with antibiotics. After 24 h of incubation, combination of 1/2 MIC of the n-BuOH fraction with antibiotics increased the degree of bactericidal activity. The present results suggest that n-BuOH and EtOAc extracts of S. flavescens root might be applicable as new natural antimicrobial agents against oral pathogens.

  13. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq.

    PubMed

    Al-Bayati, Firas A

    2009-06-12

    Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6-125.0 microg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 microg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 microg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1-18.5 mm; MIC: 125.0). The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation.

  14. Stem bark extract and fraction of Persea americana (Mill.) exhibits bactericidal activities against strains of bacillus cereus associated with food poisoning.

    PubMed

    Akinpelu, David A; Aiyegoro, Olayinka A; Akinpelu, Oluseun F; Okoh, Anthony I

    2014-12-30

    The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL-12.5 mg/mL and 1.25-10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract's butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.

  15. In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections.

    PubMed

    Isnard, Christophe; Dhalluin, Anne; Malandain, Damasie; Bruey, Quentin; Auzou, Michel; Michon, Jocelyn; Giard, Jean-Christophe; Guérin, François; Cattoir, Vincent

    2018-02-05

    Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC 50/90 , 0.25/0.5μg/mL) and 98% were susceptible to ceftobiprole (MIC 50/90 , 0.5/1μg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC 50/90 values at 0.06/0.25μg/mL and 0.25/1μg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  16. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish.

    PubMed

    Huang, Yidan; Michael, Geovana Brenner; Becker, Roswitha; Kaspar, Heike; Mankertz, Joachim; Schwarz, Stefan; Runge, Martin; Steinhagen, Dieter

    2014-07-16

    Enteric red-mouth disease, caused by Yersinia ruckeri, is an important disease in rainbow trout aquaculture. Antimicrobial agents are frequently used in aquaculture, thereby causing a selective pressure on bacteria from aquatic organisms under which they may develop resistance to antimicrobial agents. In this study, the distribution of minimal inhibitory concentrations (MICs) of antimicrobial agents for 83 clinical and non-clinical epidemiologically unrelated Y. ruckeri isolates from north west Germany was determined. Antimicrobial susceptibility was conducted by broth microdilution at 22 ± 2°C for 24, 28 and 48 h. Incubation for 24h at 22 ± 2°C appeared to be suitable for susceptibility testing of Y. ruckeri. In contrast to other antimicrobial agents tested, enrofloxacin and nalidixic acid showed a bimodal distribution of MICs, with one subpopulation showing lower MICs for enrofloxacin (0.008-0.015 μg/mL) and nalidixic acid (0.25-0.5 μg/mL) and another subpopulation exhibiting elevated MICs of 0.06-0.25 and 8-64 μg/mL, respectively. Isolates showing elevated MICs revealed single amino acid substitutions in the quinolone resistance-determining region (QRDR) of the GyrA protein at positions 83 (Ser83-Arg or -Ile) or 87 (Asn87-Tyr), which raised the MIC values 8- to 32-fold for enrofloxacin or 32- to 128-fold for nalidixic acid. An isolate showing elevated MICs for sulfonamides and trimethoprim harbored a ∼ 8.9 kb plasmid, which carried the genes sul2, strB and a dfrA14 gene cassette integrated into the strA gene. These observations showed that Y. ruckeri isolates were able to develop mutations that reduce their susceptibility to (fluoro)quinolones and to acquire plasmid-borne resistance genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer.

    PubMed

    Gholami, Mitra; Mohammadi, Rashin; Arzanlou, Mohsen; Akbari Dourbash, Fakhraddin; Kouhsari, Ebrahim; Majidi, Gharib; Mohseni, Seyed Mohsen; Nazari, Shahram

    2017-06-05

    Nano-scale dendrimers are synthetic macromolecules that frequently used in medical and health field. Traditional anibiotics are induce bacterial resistence so there is an urgent need for novel antibacterial drug invention. In the present study seventh generation poly (amidoamine) (PAMAM-G7) dendrimer was synthesized and its antibacterial activities were evaluated against representative Gram- negative and Gram-positive bacteria. PAMAM-G7 was synthesized with divergent growth method. The structural and surface of PAMAM-G7 were investigated by transmission electron microscopy, scanning electron microscope and fourier transform infrared. Pseudomonas. aeruginosa (n = 15), E. coli (n = 15), Acinetobacter baumanni (n = 15), Shigella dysenteriae (n = 15), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Staphylococcus aureus (n = 15) and Bacillus subtilis (n = 10) have been used for antibacterial activity assay. Additionally, representative standard strains for each bacterium were included. Minimum Inhibitory Concentration (MIC) was determined using microdilution method. Subsequently, Minimum Bactericidal Concentration (MBC) was determined by sub-culturing each of the no growth wells onto Mueller Hinton agar medium. The cytotoxicity of PAMAM-G7 dendrimer were evaluated in HCT116 and NIH 3 T3 cells by MTT assay. The average size of each particle was approximately 20 nm. PAMAM-G7 was potentially to inhibit both Gram positive and gram negative growth. The MIC50 and MIC90 values were determined to be 2-4 μg/ml and 4-8 μg/ml, respectively. The MBC50 and MBC90 values were found to be 64-256 μg/ml and 128-256 μg/ml, respectively. The cytotoxity effect of dendrimer on HCT116 and NIH 3 T3 cells is dependent upon exposure time to and concentration of dendrimers. The most reduction (44.63 and 43%) in cell viability for HCT116 and NIH 3 T3 cells was observed at the highest concentration, 0.85 μM after 72 h treatmentm, respectively. This study we conclude that PAMAM-G7 dendrimer could be a potential candidate as a novel antibacterial agent.

  18. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    PubMed

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium.

    PubMed

    Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian

    2017-01-01

    Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.

  20. New N-phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity.

    PubMed

    Durcik, Martina; Lovison, Denise; Skok, Žiga; Durante Cruz, Cristina; Tammela, Päivi; Tomašič, Tihomir; Benedetto Tiz, Davide; Draskovits, Gábor; Nyerges, Ákos; Pál, Csaba; Ilaš, Janez; Peterlin Mašič, Lucija; Kikelj, Danijel; Zidar, Nace

    2018-06-25

    The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC 50 values against DNA gyrase, and submicromolar IC 50 values against topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compound in the series has an IC 50 value of 13 nM against E. coli gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative 11a, with an IC 50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 μM against Enterococcus faecalis, and 3.13 μM against wild type S. aureus, methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) is 4.6 μM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration

    PubMed Central

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N.; Liu, Yongge

    2016-01-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. PMID:26976868

  2. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  3. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs.

    PubMed

    Callens, Bénédicte F; Haesebrouck, Freddy; Maes, Dominiek; Butaye, Patrick; Dewulf, Jeroen; Boyen, Filip

    2013-04-01

    Streptococcus suis (S. suis) has often been reported as an important swine pathogen and is considered as a new emerging zoonotic agent. Consequently, it is important to be informed on its susceptibility to antimicrobial agents. In the current study, the Minimum Inhibitory Concentration (MIC) population distribution of nine antimicrobial agents has been determined for nasal S. suis strains, isolated from healthy pigs at the end of the fattening period from 50 closed or semiclosed pig herds. The aim of the study was to report resistance based on both clinical breakpoints (clinical resistance percentage) and epidemiological cutoff values (non-wild-type percentage). Non-wild-type percentages were high for tetracycline (98%), lincomycin (92%), tilmicosin (72%), erythromycin (70%), tylosin (66%), and low for florfenicol (0%) and enrofloxacin (0.3%). Clinical resistance percentages were high for tetracycline (95%), erythromycin (66%), tylosin (66%), and low for florfenicol (0.3%) and enrofloxacin (0.3%). For tiamulin, for which no clinical breakpoint is available, 57% of the isolates did not belong to the wild-type population. Clinical resistance and non-wild-type percentages differed substantially for penicillin. Only 1% of the tested S. suis strains was considered as clinically resistant, whereas 47% of the strains showed acquired resistance when epidemiological cutoff values were used. In conclusion, MIC values for penicillin are gradually increasing, compared to previous reports, although pigs infected with strains showing higher MICs may still respond to treatment with penicillin. The high rate of acquired resistance against tiamulin has not been reported before. Results from this study clearly demonstrate that the use of different interpretive criteria contributes to the extent of differences in reported antimicrobial resistance results. The early detection of small changes in the MIC population distribution of isolates, while clinical failure may not yet be observed, provides the opportunity to implement appropriate risk management steps.

  4. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?

    PubMed

    Roberts, Jason A; Paul, Sanjoy K; Akova, Murat; Bassetti, Matteo; De Waele, Jan J; Dimopoulos, George; Kaukonen, Kirsi-Maija; Koulenti, Despoina; Martin, Claude; Montravers, Philippe; Rello, Jordi; Rhodes, Andrew; Starr, Therese; Wallis, Steven C; Lipman, Jeffrey

    2014-04-01

    Morbidity and mortality for critically ill patients with infections remains a global healthcare problem. We aimed to determine whether β-lactam antibiotic dosing in critically ill patients achieves concentrations associated with maximal activity and whether antibiotic concentrations affect patient outcome. This was a prospective, multinational pharmacokinetic point-prevalence study including 8 β-lactam antibiotics. Two blood samples were taken from each patient during a single dosing interval. The primary pharmacokinetic/pharmacodynamic targets were free antibiotic concentrations above the minimum inhibitory concentration (MIC) of the pathogen at both 50% (50% f T>MIC) and 100% (100% f T>MIC) of the dosing interval. We used skewed logistic regression to describe the effect of antibiotic exposure on patient outcome. We included 384 patients (361 evaluable patients) across 68 hospitals. The median age was 61 (interquartile range [IQR], 48-73) years, the median Acute Physiology and Chronic Health Evaluation II score was 18 (IQR, 14-24), and 65% of patients were male. Of the 248 patients treated for infection, 16% did not achieve 50% f T>MIC and these patients were 32% less likely to have a positive clinical outcome (odds ratio [OR], 0.68; P = .009). Positive clinical outcome was associated with increasing 50% f T>MIC and 100% f T>MIC ratios (OR, 1.02 and 1.56, respectively; P < .03), with significant interaction with sickness severity status. Infected critically ill patients may have adverse outcomes as a result of inadeqaute antibiotic exposure; a paradigm change to more personalized antibiotic dosing may be necessary to improve outcomes for these most seriously ill patients.

  5. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model.

    PubMed

    Zhang, Bingxu; Gu, Xiaoyan; Li, Yafei; Li, Xiaohong; Gu, Mengxiao; Zhang, Nan; Shen, Xiangguang; Ding, Huanzhong

    2014-12-16

    The resistance of cephalosporins is significantly serious in veterinary clinic. In order to inhibit the bacterial resistance production, the mutant selection window (MSW) hypothesis with Escherichia coli (E. coli) ATCC 25922 exposed to cefquinome in an animal tissue-cage model was investigated. Localized infection with E. coli was established in piglets, and the infected animals were administrated intramuscularly with various doses and intervals of cefquinome to provide antibiotic concentrations below the MIC99, between the MIC99 and the mutant prevention concentration (MPC), and above the MPC. E. coli lost susceptibility when drug concentrations fluctuated between the lower and upper boundaries of the window, which defined in vitro as the MIC99 (0.06 μg/mL) and the MPC (0.16 μg/mL) respectively. For PK/PD parameters, there were no mutant selection enrichment when T>MIC99 was ≤ 25% or T>MPC was ≥ 50% of administration interval. When T>MIC99 was > 25% and T>MPC was <50% of administration interval, resistance selection was observed. When AUC24 h/MIC99 and AUC24 h/MPC were considered, the mutant selection window extended from 32.84 h to 125.64 h and from 12.83 h to 49.09 h, respectively. These findings demonstrate that the MSW exists in vivo for time-dependent antimicrobial agents, and its boundaries fit well with those determined in vitro. Maintenance of antimicrobial concentrations above the MPC for > 50% of administration interval is a straightforward way to restrict the acquisition of resistance in this tissue cage model. This situation was achieved with daily intramuscular doses of 1 mg cefquinome/kg body weight.

  6. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    PubMed

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC values were lowest for Lactobacillus acidophilus (MIC 25 mg/ml, MBC 50 mg/ml) and Streptococcus oralis (MIC 50 mg/ml, MBC 100 mg/ml). Mangosteen pericarp extract had a higher zone of inhibition against the tested microorganisms which suggests its potent antibacterial action against cariogenic organisms. However, further analytical studies are needed to isolate the key molecules of mangosteen pericarp, to explore its anticariogenic therapeutic potential on gram negative oral microorganisms.

  7. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics

    PubMed Central

    AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen

    2018-01-01

    Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368

  8. Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains

    PubMed Central

    Assadian, Ojan; Wehse, Katrin; Hübner, Nils-Olaf; Koburger, Torsten; Bagel, Simone; Jethon, Frank; Kramer, Axel

    2011-01-01

    Background: An in-vitro study was conducted investigating the antimicrobial efficacy of polihexanide and triclosan against clinical isolates and reference laboratory strains of Staphylococcus aureus and Escherichia coli. Methods: The minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC) were determined following DIN 58940-81 using a micro-dilution assay and a quantitative suspension test following EN 1040. Polihexanide was tested in polyethylene glycol 4000, triclosan in aqueous solutions. Results: Against all tested strains the MIC of polihexanide ranged between 1–2 µg/mL. For triclosan the MICs varied depending on strains ranging between 0.5 µg/mL for the reference strains and 64 µg/mL for two clinical isolates. A logRF >5 without and logRF >3 with 0.2% albumin burden was achieved at 0.6 µg/mL triclosan. One exception was S. aureus strain H-5-24, where a triclosan concentration of 0.6 µg/mL required 1 minute without and 10 minutes with albumin burden to achieve the same logRFs. Polihexanide achieved a logRF >5 without and logRF >3 with albumin burden at a concentration of 0.6 µg/mL within 30 sec. The exception was the North-German epidemic MRSA strain, were an application time of 5 minutes was required. Conclusion: The clinical isolates of E. coli generally showed higher MICs against triclosan, both in the micro-dilution assay as well in the quantitative suspension test than comparable reference laboratory strains. For polihexanide and triclosan strain dependant susceptibility was shown. However, both antimicrobial compounds are effective when used in concentrations common in practice. PMID:22242087

  9. Acorenone B: AChE and BChE Inhibitor as a Major Compound of the Essential Oil Distilled from the Ecuadorian Species Niphogeton dissecta (Benth.) J.F. Macbr.

    PubMed

    Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio

    2017-10-31

    This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(-)-β-pinene was 86.9:13.1, while the one of (+)/(-)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC 50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC 50 values of 40.8 μg/mL and 10.9 μg/mL, respectively.

  10. Acorenone B: AChE and BChE Inhibitor as a Major Compound of the Essential Oil Distilled from the Ecuadorian Species Niphogeton dissecta (Benth.) J.F. Macbr

    PubMed Central

    Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio

    2017-01-01

    This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(−)-β-pinene was 86.9:13.1, while the one of (+)/(−)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC50 values of 40.8 μg/mL and 10.9 μg/mL, respectively. PMID:29088082

  11. Bioassay Guided Fractionation of an Anti-Methicillin-Resistant Staphylococcus aureus Flavonoid From Bromus inermis Leyss Inflorescences

    PubMed Central

    Aliahmadi, Atousa; Mirzajani, Fateme; Ghassempour, Alireza; Sonboli, Ali

    2014-01-01

    Background: Plants are considered as promising sources of new antibacterial agents as well as bioassay guided fractionation. Objectives: In the present work, the antibacterial properties, especially against methicillin-resistant Staphylococcus aureus (MRSA), of Bromus inermis inflorescence was studied, using the bioassay guided fractionation as well as the bio-autographic method. Materials and Methods: The plant organic extract was prepared via maceration in methanol, followed by the fractionation using n-hexane. The extracts were subjected for minimum inhibitory concentrations (MICs) against some human pathogenic bacteria via standard broth micro-dilution assay. Thereafter, a bio-autographical method was applied using the high performance thin layer chromatography (HPTLC) coupled with agar overlay assays for the primary characterization and identification of bioactive substance (s). Results: Through the bioassay guided fractionation method, the greatest antibacterial activities were related to the n-hexane extract. It was also revealed that the effective anti-MRSA agent of the assessed plant was a relatively polar substance with an MIC value of about 8 μg/mL against the tested MRSA strain (in comparison with the MIC value of 32 μg/mL for chloramphenicol). Conclusions: As a result of the full range UV-Vis scanning of the responsible band in the HPTLC experiments (200-700 nm), the flavonoid was the most imaginable natural compound. PMID:25741430

  12. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.

    PubMed

    Peixoto, Larissa Rangel; Rosalen, Pedro Luiz; Ferreira, Gabriela Lacet Silva; Freires, Irlan Almeida; de Carvalho, Fabíola Galbiatti; Castellano, Lúcio Roberto; de Castro, Ricardo Dias

    2017-01-01

    The present study demonstrated the antifungal potential of the chemically characterized essential oil (EO) of Laurus nobilis L. (bay laurel) against Candida spp. biofilm adhesion and formation, and further established its mode of action on C. albicans. L. nobilis EO was obtained and tested for its minimum inhibitory and fungicidal concentrations (MIC/MFC) against Candida spp., as well as for interaction with cell wall biosynthesis and membrane ionic permeability. Then we evaluated its effects on the adhesion, formation, and reduction of 48hC. albicans biofilms. The EO phytochemical profile was determined by gas chromatography coupled to mass spectrometry (GC/MS). The MIC and MFC values of the EO ranged from (250 to 500) μg/mL. The MIC values increased in the presence of sorbitol (osmotic protector) and ergosterol, which indicates that the EO may affect cell wall biosynthesis and membrane ionic permeability, respectively. At 2 MIC the EO disrupted initial adhesion of C. albicans biofilms (p<0.05) and affected biofilm formation with no difference compared to nystatin (p>0.05). When applied for 1min, every 8h, for 24h and 48h, the EO reduced the amount of C. albicans mature biofilm with no difference in relation to nystatin (p>0.05). The phytochemical analysis identified isoeugenol as the major compound (53.49%) in the sample. L. nobilis EO has antifungal activity probably due to monoterpenes and sesquiterpenes in its composition. This EO may affect cell wall biosynthesis and membrane permeability, and showed deleterious effects against C. albicans biofilms. Copyright © 2016. Published by Elsevier Ltd.

  13. Susceptibility Testing of Extensively Drug-Resistant and Pre-Extensively Drug-Resistant Mycobacterium tuberculosis against Levofloxacin, Linezolid, and Amoxicillin-Clavulanate

    PubMed Central

    Ahmed, Imran; Jabeen, Kauser; Inayat, Raunaq

    2013-01-01

    Pakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR) Mycobacterium tuberculosis against LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC. M. tuberculosis H37Rv was used as a control strain. A total of 102 M. tuberculosis isolates (XDR, n = 59; pre-XDR, n = 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases. PMID:23507286

  14. Susceptibility testing of extensively drug-resistant and pre-extensively drug-resistant Mycobacterium tuberculosis against levofloxacin, linezolid, and amoxicillin-clavulanate.

    PubMed

    Ahmed, Imran; Jabeen, Kauser; Inayat, Raunaq; Hasan, Rumina

    2013-06-01

    Pakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR) Mycobacterium tuberculosis against LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC. M. tuberculosis H37Rv was used as a control strain. A total of 102 M. tuberculosis isolates (XDR, n = 59; pre-XDR, n = 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases.

  15. Wild-type MIC distribution and epidemiological cut-off values in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Ijzerman, Ed P F; den Boer, Jeroen W; Mouton, Johan W; Diederen, Bram M W

    2012-01-01

    The purpose of this study was to establish wild-type (WT) distributions and determine the epidemiological cut-off values (ECOFF) in clinical L. pneumophila serogroup 1 isolates for 10 antimicrobials commonly used for the treatment of Legionella infections using a method feasible in a routine clinical laboratory. MICs of 183 clinical L. pneumophila serogroup 1 isolates, collected as part of an outbreak detection program, were tested using E-test methodology on buffered charcoal yeast extract agar supplemented with α-ketoglutarate (BCYE-α). The MICs were read after 2 days of incubation at 35 °C with increased humidity and without CO(2). ECOFFs were determined according to EUCAST methodology and expressed as WT ≤ X mg/L. All antimicrobials showed a WT distribution, although the width varied from 2 two-fold dilutions to 8 dilutions, depending on antibiotic class. The ECOFFs determined were 1.0 mg/L for ciprofloxacin, 0.50 mg/L for levofloxacin, 1.0 mg/L for moxifloxacin, 1.0 mg/L for erythromycin, 1.0 mg/L for azithromycin, 0.50 mg/L for clarithromycin, 1.0 mg/L for cefotaxime, 0.032 mg/L for rifampicin, 16 mg/L for tigecycline, and 8 mg/L for doxycycline. All isolates were inhibited by low concentrations of the fluoroquinolones and macrolides tested, with somewhat higher MICs for the fluoroquinolones. Rifampicin was found to be the most active against L. pneumophila isolates in vitro. These data can be used as a reference for the detection of resistance in clinical L. pneumophila isolates and as a setting of clinical breakpoints. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Accuracy of Sensititre YeastOne Echinocandins Epidemiological Cut-off Values for Identification of FKS mutant Candida albicans and Candida glabrata: A Ten Year National Survey of the Fungal Infection Network of Switzerland (FUNGINOS).

    PubMed

    Kritikos, A; Neofytos, D; Khanna, N; Schreiber, P W; Boggian, K; Bille, J; Schrenzel, J; Mühlethaler, K; Zbinden, R; Bruderer, T; Goldenberger, D; Pfyffer, G; Conen, A; Van Delden, C; Zimmerli, S; Sanglard, D; Bachmann, D; Marchetti, O; Lamoth, F

    2018-06-14

    Echinocandins represent the first-line treatment of candidemia. Acquired echinocandin resistance is mainly observed among Candida albicans and glabrata and is associated with FKS hotspot mutations. The commercial Sensititre YeastOne TM (SYO) kit is widely used for antifungal susceptibility testing, but interpretive clinical breakpoints are not well defined. We determined echinocandins epidemiological cut-off values (ECV) for C. albicans/glabrata tested by SYO and assessed their ability to identify FKS mutants in a national survey of candidemia. Bloodstream isolates of C. albicans and C. glabrata were collected in 25 Swiss hospitals from 2004 to 2013 and tested by SYO. FKS hotspot sequencing was performed for isolates with a minimal inhibitory concentration (MIC) ≥ECV for any echinocandin. 1277 C. albicans and 347 C. glabrata were included. ECV 97.5% [μg/ml] of caspofungin, anidulafungin and micafungin were 0.12, 0.06, 0.03 for C. albicans, and 0.25, 0.12, 0.03 for C. glabrata. FKS hotspot sequencing was performed for 70 isolates. No mutation was found in the 52 "limit wild-type" isolates (MIC=ECV for ≥1 echinocandin). Among the 18 "non wild-type" isolates (MIC>ECV for ≥1 echinocandin), FKS mutations were recovered in the only two isolates with MIC>ECV for all 3 echinocandins, but not in those exhibiting a "non wild-type" phenotype for only one or two echinocandins. This 10-year nationwide survey showed that the rate of echinocandin resistance among C. albicans and C. glabrata remains low in Switzerland despite increased echinocandin use. SYO-ECV could discriminate FKS mutants from wild-type isolates tested by SYO in this population. Copyright © 2018. Published by Elsevier Ltd.

  17. EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.

    PubMed

    Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W

    2016-01-01

    The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The susceptibility (MIC) of anaerobes was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. Inoculum contained 10(5) CFU per spot was cultured with Steers replicator upon the surface of agar with various tea tree oil concentrations or without oil (anaerobes growth control). Incubation the plates was performed in anaerobic jars under anaerobic conditions at 37 degrees C for 48 h. MIC was defined as the lowest concentrations of the essential oil completely inhibiting growth of anaerobic bacteria. Test results indicate, that among Gram-negative bacteria the most sensitive to essential oil were strains of Veillonella and Porphyromonas species. Essential oil in low concentrations (MIC in the range of = 0.12 - 0.5 mg/mL) inhibited growth of accordingly 80% and 68% strains. The least sensitive were strains of the genus Tannerella, Parabacteroides and Dialister (MIC 1.0 - 2.0 mg/mL). In the case of Gram-positive anaerobic bacteria the tea tree oil was the most active to strains of cocci of the genus Anaerococcus and Ruminococcus (MIC in range = 0.12 - 0.5 mg/mL) or strains of rods of the genus Eubacterium and Eggerthella (MIC = 0.25 mg/mL). Among Gram-positive rods the least sensitive were the strains of the genus Bifidobacterium ( MIC = 2.0 mg/mL). The tea tree oil was more active to Gram-positive than to Gram-negative anaerobic bacteria.

  18. Minimum inhibitory concentration and killing properties of rifampicin against canine Staphylococcus pseudintermedius isolates from dogs in the southeast USA.

    PubMed

    Ho, Karen K; Conley, Austin C; Kennis, Robert A; Hathcock, Terri L; Boothe, Dawn M; White, Amelia G

    2018-05-29

    Meticillin-resistant (MR) staphylococcal pyoderma in dogs has led to increased use of alternate antibiotics such as rifampicin (RFP). However, little information exists regarding its pharmacodynamics in MR Staphylococcus pseudintermedius. To determine the minimum inhibitory concentration (MIC) and killing properties of RFP for canine Staphylococcus pseudintermedius isolates. The MIC of RFP was determined using the ETEST ® for 50 meticillin-susceptible (MS) and 50 MR S. pseudintermedius isolates collected from dogs. From these isolates, two MS isolates (RFP MIC of 0.003 and 0.008 μg/mL, respectively) and two MR isolates (RFP MIC of 0.003 and 0.012 μg/mL, respectively) were subjected to time-kill studies. Mueller-Hinton broth was supplemented with RFP at 0, 0.5, 1, 2, 4, 8, 16 and 32 times the MIC for 0, 2, 4, 10, 16 and 24 h. The number of viable colony forming units in each sample was determined using a commercial luciferase assay kit. The MIC 50 and MIC 90 were the same for MS and MR isolates, at 0.004 μg/mL and 0.008 μg/mL, respectively. Rifampicin kill curves were not indicative of concentration-dependency, suggesting time-dependent activity. Two isolates (MS 0.003 and 0.008 μg/mL) exhibited bacteriostatic activity, whereas two others (MR 0.003 and 0.012 μg/mL) exhibited bactericidal activity. This study demonstrated that MS and MR S. pseudintermedius isolates were equally susceptible to rifampicin and that dosing intervals should be designed for time-dependent efficacy. These data can support pharmacokinetic studies of RFP in dogs with susceptible infections caused by S. pseudintermedius. © 2018 ESVD and ACVD.

  19. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    USDA-ARS?s Scientific Manuscript database

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  20. Cefazolin potency against methicillin-resistant Staphylococcus aureus: a microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections

    PubMed Central

    Nicolau, David P; Silberg, Barry N

    2017-01-01

    Introduction Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. Materials and methods We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. Results The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. Conclusion The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections. PMID:28794647

  1. In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans

    PubMed Central

    Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven

    2012-01-01

    Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424

  2. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids.

    PubMed

    Babii, C; Bahrin, L G; Neagu, A-N; Gostin, I; Mihasan, M; Birsa, L M; Stefan, M

    2016-03-01

    This study reports on the inhibitory and bactericidal properties of a new synthetized flavonoid. Tricyclic flavonoid 1 has been synthesized through a two-step reaction sequence. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Also DNA fragmentation assay, fluorescence microscopy and SEM were used to study the mechanism of action. Our tested flavonoid displayed a strong antimicrobial activity with MIC and MBC values as low as 0·24 μg ml(-1) against Staphylococcus aureus and 3·9 μg ml(-1) against Escherichia coli. Flavonoid 1 displayed antimicrobial properties, causing not only the inhibition of bacterial growth, but also killing bacterial cells. The mechanism of action is related to the impairment of the cell membrane integrity and to cell agglutination. Tricyclic flavonoid 1 was found to have a stronger antibacterial effect at lower concentrations than those described in the earlier reports. Based on the strong antimicrobial activity observed, this new tricyclic flavonoid has a good potential for the design of new antimicrobial agents. © 2016 The Society for Applied Microbiology.

  3. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent the selection of resistant Staphylococcus aureus in an in vitro dynamic model.

    PubMed

    Firsov, Alexander A; Vostrov, Sergey N; Lubenko, Irene Yu; Arzamastsev, Alexander P; Portnoy, Yury A; Zinner, Stephen H

    2004-07-01

    To compare the kinetics of killing/regrowth of differentially susceptible clinical isolates of Staphylococcus aureus exposed to ABT492 and levofloxacin and to explore their relative abilities to prevent the selection of resistant mutants. Three clinical isolates of S. aureus--including two ciprofloxacin-susceptible S. aureus, 201 and 480--and a ciprofloxacin-resistant S. aureus 866, were exposed to clinically achievable ratios of area under the curve (AUC) to MIC in a dynamic model that simulated human pharmacokinetics of ABT492 (400 mg) and levofloxacin (500 mg) as a single dose. In addition, S. aureus 201 was exposed to single and multiple doses of ABT492 and levofloxacin (both once daily for 3 days) over wide ranges of 24 h AUC/MIC (AUC24/MIC) including clinically achievable AUC24/MIC ratios. With each isolate, ABT492 at clinically achievable AUC/MICs produced greater anti-staphylococcal effects than levofloxacin. Areas between the control growth and the time--kill curves (ABBC in single dose simulations and the sum of ABBCs determined after the first, second and third dosing in multiple dose simulations--ABBC(1+2+3)) were higher with ABT492 than levofloxacin. Moreover, at comparable AUC/MICs and AUC24/MICs, the maximal reductions in the starting inoculum of ABT492-exposed S. aureus were more pronounced than with levofloxacin. Loss in susceptibility of S. aureus 201 exposed to ABT492 or levofloxacin depended on the simulated AUC24/MIC. Although the maximal increase in MIC (MICfinal) related to its initial value (MICinitial) was seen at a higher AUC24/MIC ratio of ABT492 (120 h) than levofloxacin (50 h), similar AUC24/MICs (240 and 200 h, respectively) were protective against the selection of resistant S. aureus. These threshold values are readily achievable with 400 mg ABT492 (AUC24/MIC 870 h) but not with 500 mg levofloxacin (AUC24/MIC 70 h). Overall, these findings predict greater efficacy of clinically achievable AUC/MIC (or AUC24/MIC) of ABT492 both in terms of the anti-staphylococcal effect and prevention of the selection of resistant mutants.

  4. Reevaluation of interpretive criteria for Haemophilus influenzae by using meropenem (10-microgram), imipenem (10-microgram), and ampicillin (2- and 10-microgram) disks.

    PubMed Central

    Zerva, L; Biedenbach, D J; Jones, R N

    1996-01-01

    A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892

  5. Comparison of Spectrophotometric and Visual Readings of NCCLS Method and Evaluation of a Colorimetric Method Based on Reduction of a Soluble Tetrazolium Salt, 2,3-Bis {2-Methoxy-4-Nitro-5-[(Sulfenylamino) Carbonyl]-2H- Tetrazolium-Hydroxide}, for Antifungal Susceptibility Testing of Aspergillus Species

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Bouman, Bianca A.; Donnelly, Peter J.; Verweij, Paul E.

    2001-01-01

    The susceptibilities of 25 clinical isolates of various Aspergillus species (Aspergillus fumigatus, A. flavus, A. terreus, A. ustus, and A. nidulans) to itraconazole (ITC) and amphotericin B (AMB) were determined using the standard proposed by NCCLS for antifungal susceptibility testing of filamentous fungi, a modification of this method using spectrophotometric readings, and a colorimetric method using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT). Five MIC end points for ITC (MIC-0, no visible growth or ≤5% the growth control value [GC]; MIC-1, slight growth or 6 to 25% the GC; MIC-2, prominent reduction in growth or 26 to 50% the GC; MIC-3, slight reduction in growth or 51 to 75% the GC; and MIC-4, no reduction in growth or 76 to 100% the GC) and one for AMB (MIC-0) were determined visually by four observers and spectrophotometrically. The intraexperimental (between the observers) and interexperimental (between the experiments) levels of agreement of the NCCLS and XTT methods exceeded 95% for MIC-0 of AMB and MIC-0 and MIC-1 of ITC. The MIC-2 of ITC showed lower reproducibility, although spectrophotometric reading and/or incubation for 48 h increased the interexperimental reproducibility from 85 to >93%. Between visual and spectrophotometric readings, high levels of agreement were found for AMB (≈97%) and MIC-1 (≈92%) and MIC-2 (≈88%) of ITC. Poor agreement was found for MIC-0 of ITC (51% after 24 h), since the spectrophotometric readings resulted in higher MIC-0 values than the visual readings. The agreement was increased to 98% by shifting the threshold level of MIC-0 from 5 to 10% relative optical density and by establishing an optical density of greater than 0.1 for the GC as the validation criterion. No statistically significant differences were found between the NCCLS method and the XTT method, with the levels of agreement exceeding 97% for MIC-0 of AMB and 83% for MIC-0, MIC-1, and MIC-2 of ITC. The XTT method and spectrophotometric readings can increase the sensitivity and the precision, respectively, of in vitro susceptibility testing of Aspergillus species. PMID:11724829

  6. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.

  7. Bactericidal activity and post-antibiotic effect of ozenoxacin against Propionibacterium acnes.

    PubMed

    Kanayama, Shoji; Okamoto, Kazuaki; Ikeda, Fumiaki; Ishii, Ritsuko; Matsumoto, Tatsumi; Hayashi, Naoki; Gotoh, Naomasa

    2017-06-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, is used for the treatment of acne vulgaris in Japan. We investigated bactericidal activity and post-antibiotic effect (PAE) of ozenoxacin against Propionibacterium acnes, a major causative bacterium of acne vulgaris. The minimum inhibitory concentrations (MICs) of ozenoxacin against 3 levofloxacin-susceptible strains (MIC of levofloxacin; ≤4 μg/mL) and 3 levofloxacin-resistant strains (MIC of levofloxacin; ≥8 μg/mL) ranged from 0.03 to 0.06 μg/mL and from 0.25 to 0.5 μg/mL, respectively. These MICs of ozenoxacin were almost the same or lower than nadifloxacin and clindamycin. The minimum bactericidal concentrations (MBCs) of ozenoxacin against the levofloxacin-susceptible and -resistant strains were from 0.06 to 8 μg/mL and from 0.5 to 4 μg/mL, respectively. These MBCs were lower than those of nadifloxacin and clindamycin. In time-kill assay, ozenoxacin at 1/4, 1 and 4 times the respective MIC against both levofloxacin-susceptible and -resistant strains showed a concentration-dependent bactericidal activity. Ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains showed more potent and more rapid onset of bactericidal activity compared to nadifloxacin and clindamycin at 4 times the respective MICs. The PAEs of ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains were from 3.3 to 17.1 h, which were almost the same or longer than nadifloxacin and clindamycin. In contrast, the PAEs were hardly induced by any antimicrobial agents against the levofloxacin-resistant strains. The present findings suggest that ozenoxacin has a potent bactericidal activity against both levofloxacin-susceptible and -resistant P. acnes, and a long-lasting PAE against levofloxacin-susceptible P. acnes. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin.

    PubMed

    Doroshenko, Natalya; Tseng, Boo Shan; Howlin, Robert P; Deacon, Jill; Wharton, Julian A; Thurner, Philipp J; Gilmore, Brendan F; Parsek, Matthew R; Stoodley, Paul

    2014-12-01

    Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin

    PubMed Central

    Kim, Doo; Kordick, Dorsey; Divers, Thomas

    2006-01-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05-6.25 µg/ml and 6.25-25.0 µg/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05-0.39 µg/ml and 0.20-0.78 µg/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05-0.39 µg/ml and 0.05-0.39 µg/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (≥100 µg/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (≤0.01 µg/ml). PMID:17106227

  10. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  11. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  12. High-level penicillin resistance and penicillin-gentamicin synergy in Enterococcus faecium.

    PubMed Central

    Torres, C; Tenorio, C; Lantero, M; Gastañares, M J; Baquero, F

    1993-01-01

    Thirty-seven Enterococcus faecium strains with different levels of penicillin susceptibility were studied in time-kill experiments with a fixed concentration (5 micrograms/ml) of gentamicin combined with different penicillin concentrations (6 to 600 micrograms/ml). Synergy was defined as a relative decrease in counts of greater than 2 log10 CFU per milliliter after 24 h of incubation when the combination of the antibiotics was compared with its most active component alone. The minimal synergistic penicillin concentrations found were 6 micrograms/ml for 16 of 16 strains for which penicillin MICs were < or = 25 micrograms/ml, 20 to 100 micrograms/ml for 14 of 17 strains for which penicillin MICs were 50 to 200 micrograms/ml, and 200 to 500 micrograms/ml for 4 of 4 strains for which MICs penicillin were > 200 micrograms/ml. Penicillin-gentamicin synergy was observed even in high-level penicillin-resistant E. faecium strains at penicillin concentrations close to one-half the penicillin MIC. The possibility of treating infections caused by high-level penicillin-resistant E. faecium strains with penicillin-gentamicin combinations in particular cases may depend on the penicillin levels attainable in vivo. PMID:8285628

  13. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data.

    PubMed

    Burgess, David S; Hall, Ronald G

    2007-07-01

    Until the 2002 approval of levofloxacin 750 mg QD, ciprofloxacin was the fluoroquinolone of choice against Pseudomonas aeruginosa infections. This study evaluated the AUC:MIC ratios for ciprofloxacin 400 mg BID and TID and levofloxacin 750 mg QD, all administered intravenously, against P. aeruginosa using a Monte Carlo simulation. Pharmacokinetic data for ciprofloxacin and levofloxacin and 2002 MIC distributions against P. aeruginosa were obtained from studies in healthy volunteers published in the peer-reviewed literature. Pharmacokinetic studies of each agent were identified by separate MEDLINE searches combining the MeSH heading pharmacokinetics with the generic name of the antimicrobial. Only human studies published in English between 1990 and 2001 were included. Included studies also had to meet 3 minimum criteria: evaluation of clinically relevant dosing regimens, use of rigorous study methods, and provision of mean (SD) values for the pharmacokinetic parameters of interest. When multiple studies met these criteria, a single study was selected for each antimicrobial regimen. Pharmacodynamic analysis was performed using a Monte Carlo simulation of 10,000 patients by integrating the pharmacokinetic parameters, their variability, and 2002 MIC distributions for each antimicrobial regimen. The probability of target attainment was determined for each regimen for an AUC:MIC ratio from 0 to 300. A > or =90% probability of target attainment was considered satisfactory. For ciprofloxacin 400 mg TID and levofloxacin 750 mg QD, the AUC:MIC ratio at the corresponding 2002 Clinical Laboratory Standards Institute break points of 1 and 2 microg/mL were 33 and 34, respectively. The probabilities of target attainment for a free AUC:MIC ratio >90 (equivalent to a total AUC:MIC ratio > or =125) were 47% for ciprofloxacin 400 mg BID, 54% for ciprofloxacin 400 mg TID, and 48% for levofloxacin 750 mg QD. When pharmacokinetic data from healthy volunteers and 2002 MIC data were used, none of the simulated fluoroquinolone regimens achieved a high likelihood of target attainment against P. aeruginosa.

  14. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    PubMed

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.

  15. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    PubMed Central

    2010-01-01

    Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections. PMID:20128889

  16. Minimum inhibitory concentration distribution in environmental Legionella spp. isolates.

    PubMed

    Sandalakis, Vassilios; Chochlakis, Dimosthenis; Goniotakis, Ioannis; Tselentis, Yannis; Psaroulaki, Anna

    2014-12-01

    In Greece standard tests are performed in the watering and cooling systems of hotels' units either as part of the surveillance scheme or following human infection. The purpose of this study was to establish the minimum inhibitory concentration (MIC) distributions of environmental Legionella isolates for six antimicrobials commonly used for the treatment of Legionella infections, by MIC-test methodology. Water samples were collected from 2004 to 2011 from 124 hotels from the four prefectures of Crete (Greece). Sixty-eight (68) Legionella isolates, comprising L. pneumophila serogroups 1, 2, 3, 5, 6, 8, 12, 13, 15, L. anisa, L. rubrilucens, L. maceachernii, L. quinlivanii, L. oakridgensis, and L. taurinensis, were included in the study. MIC-tests were performed on buffered charcoal yeast extract with α-ketoglutarate, L-cysteine, and ferric pyrophosphate. The MICs were read after 2 days of incubation at 36 ± 1 °C at 2.5% CO2. A large distribution in MICs was recorded for each species and each antibiotic tested. Rifampicin proved to be the most potent antibiotic regardless of the Legionella spp.; tetracycline appeared to have the least activity on our environmental isolates. The MIC-test approach is an easy, although not so cost-effective, way to determine MICs in Legionella spp. These data should be kept in mind especially since these Legionella species may cause human disease.

  17. [Identification of filamentous fungi isolated from clinical samples by two different methods and their susceptibility results].

    PubMed

    Direkel, Sahin; Otağ, Feza; Aslan, Gönül; Ulger, Mahmut; Emekdaş, Gürol

    2012-01-01

    Molds are widely distributed in nature. Aspergillus spp. represent the most frequently observed causative agents, however less frequent pathogens Fusarium, Scedosporium and Zygomycetes have also been considered the most important causes of morbidity and mortality in profoundly immunosuppressed hosts. The aims of this study were to identify filamentous fungi isolated from clinical specimens by conventional and molecular methods, and to detect their antifungal susceptibilities. A total of 6742 clinical specimens obtained from hospitalized patients at critical units of Mersin University Medical Faculty Hospital and sent to our laboratory between April 2008-January 2010 were included in the study. The isolates were identified by classical mycological methods and polymerase chain reaction-based DNA sequencing. Susceptibilities to fluconazole and voriconazole were tested by disk diffusion method and to fluconazole, voriconazole, amfoterisin B, caspofungin and posaconazole by E-test. Filamentous fungi were isolated from 71 (1.05%) samples (13 sputum, 4 wound, 4 peritoneal fluid, 3 extrenal ear discharge, 3 abscess and one of each cerebrospinal fluid, blood, tissue biopsy, nasal swab and conjunctival swab) which belonged to 32 patients (13 female, 19 male; age range 7 months-77 years, mean age: 46.6 years). Of the patients 62.3% presented one or more risk factors such as chronic renal failure (n= 8), chronic obstructive lung disease (n= 6), malignancy (n= 6), diabetes mellitus (n= 5) and peripheral vascular disease (n= 5). Of the isolates six were identified as Aspergillus niger, six as Aspergillus flavus, five as Aspergillus fumigatus, four as Aspergillus terreus, five as Fusarium spp., two as Bipolaris spp., and one of each as Acremonium spp., Aurebasidium spp., Mucor spp., and Scedosporium spp. By conventional methods. Three isolates exhibited different identities by DNA sequencing. All Aspergillus isolates were correctly identified at species level by both methods, Other fungi were identified at genus level by conventional methods and at species level by DNA sequencing. Fluconazole minimum inhibitory concentration (MIC) values were determined as > 256 mg/L in all strains, except Scedosporium; voriconazole MIC values were < 0.38 mg/L in all Aspergillus spp. Caspofungin MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and Bipolaris strains and ≤ 0.006-0.125 mg/L in all Aspergillus isolates, In three strains (Fusarium equiseti, Cylindrocarpon lichenicola and Rhizopus oryzae) posaconazole minimum inhibitory concentration (MIC) values were > 32 mg/L, however it was < 1.5 mg/L, for the other strains. Amphotericin B MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and all A.terreus strains and < 2 mg/L for the others. E-test and disk diffusion test results were compatible with each other for all the antifungal agents tested. In conclusion, the identification of filamentous fungi such as Aspergillus and Fusarium spp. is easily and reliably achieved by conventional methods. Since the rate of invasive fungal infections is increasing currently, filamentous molds should be searched especially in the clinical specimens of immunocompromised patients for accurate and prompt diagnosis of such infections and to decrease the related mortality risk.

  18. Association of the clinical efficacy of vancomycin with the novel pharmacokinetic parameter area under the trough level (AUTL) in elderly patients with hospital-acquired pneumonia.

    PubMed

    Fukumori, S; Tsuji, Y; Mizoguchi, A; Kasai, H; Ishibashi, T; Iwamura, N; To, H

    2016-08-01

    The pharmacokinetic-pharmacodynamic parameter that best predicts the efficacy of vancomycin is the ratio of the area under the concentration versus time curve (AUC) to the minimum inhibitory concentration (MIC). A 24-h AUC (AUC24 )/MIC ratio ≥ 400 was recommended in an American consensus review, but vancomycin treatment occasionally fails despite maintenance of AUC24 /MIC ≥ 400. We evaluated the association between clinical efficacy of vancomycin and two novel pharmacokinetic parameters, the 'area under the trough level' (AUTL) and the 'area above the trough level' (AATL), in hospitalized elderly patients with methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. The subjects were hospitalized elderly patients who were administered vancomycin for treatment of MRSA pneumonia between 2006 and 2012 at Sasebo Chuo Hospital (Nagasaki, Japan). Pharmacokinetic parameters of vancomycin were estimated for each patient by Bayesian analysis using population pharmacokinetic parameters for Japanese patients. Based on the patient-specific parameters thus obtained, AUC24 values were calculated as the vancomycin dosage divided by vancomycin clearance. AUTL was calculated as the trough serum concentration multiplied by 24 h, whereas AATL was calculated by subtracting AUTL from AUC24 . Logistic regression analysis demonstrated that efficacy of vancomycin was more strongly associated with AUTL than AUC24 . The optimal cut-off value of AUTL was 331 μg∙h/mL, which means that the optimal cut-off value of the trough serum concentration was 13·8 μg/mL. Efficacy of vancomycin was associated with AUTL, a novel pharmacokinetic parameter. Determining the target AUTL or trough concentration may enhance the efficacy of vancomycin therapy in elderly patients with MRSA pneumonia. Given that nephrotoxicity may increase with a Ctrough in excess of 15 μg/mL, this level should ideally not be exceeded. © 2016 John Wiley & Sons Ltd.

  19. In vitro activity of Tedizolid phosphate against multidrug-resistant Streptococcus pneumoniae isolates from Asian countries.

    PubMed

    Baek, Jin Yang; Kang, Cheol-In; Kim, So Hyun; Ko, Kwan Soo; Chung, Doo Ryeon; Peck, Kyong Ran; Hsueh, Po-Ren; Thamlikitkul, Visanu; So, Thomas Man-Kit; Lee, Nam Yong; Song, Jae-Hoon

    2016-06-01

    Tedizolid phosphate is a second-generation oxazolidinone prodrug that is potential activity against a wide range of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, penicillin-resistant streptococci, and vancomycin-resistant enterococci. The in vitro activity of tedizolid and other comparator agents against multidrug-resistant (MDR) pneumococci from various Asian countries were evaluated. Of the S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 8 Asian countries (Korea, Taiwan, Thailand, Hong Kong, Vietnam, Malaysia, Philippines, and Sri Lanka), 104 isolates of MDR pneumococci were included in this study. Antimicrobial susceptibility testing for 18 antimicrobial agents was performed by broth microdilution method. Tedizolid was highly active against pneumococci. All isolates tested were inhibited at a tedizolid minimum inhibitory concentration (MIC) value of ≤0.25μg/ml (ranged from ≤0.03μg/ml to 0.25μg/ml). The MIC50 and MIC90 of tedizolid against MDR pneumococci were both 0.12μg/ml, while MIC50 and MIC90 of linezolid were 0.5μg/ml and 1μg/ml, respectively. In addition, tedizolid maintained the activity against S. pneumoniae regardless of the extensively drug-resistant (XDR) phenotype of the isolates. The activity of tedizolid was excellent against all types of MDR pneumococci, exhibiting and maintaining at least 4-fold-greater potency compared to linezolid, regardless of resistance phenotypes to other commonly utilized agents. Tedizolid has the potential to be an agent to treat infections caused by MDR pneumococci in the Asia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points. PMID:26872361

  1. Mutant Prevention Concentrations of Four Carbapenems against Gram-Negative Rods▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C.

    2010-01-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains. PMID:20308376

  2. Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn.

    PubMed

    Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima

    2011-10-01

    To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).

  3. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms.

    PubMed

    Dosler, Sibel; Mataraci, Emel

    2013-11-01

    Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.

    PubMed

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K

    2014-11-01

    Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents

    PubMed Central

    Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.

    2014-01-01

    Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645

  6. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.

    PubMed

    Hamed, Selwan; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Youssef, Tareq

    2017-08-01

    The fast progression of nanotechnology has led to novel therapeutic interventions. Antimicrobial activities of silver nanoparticles (Ag NPs) were tested against standard ATCC strains of Staphylococcus aureus (ATCC 9144), Escherichia coli (O157:H7), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028) in addition to 60 clinical isolates collected from cancer patients. Antimicrobial activity was tested by disk diffusion method and MIC values for Ag NPs alone and in combination with N-acetylcysteine (NAC) against tested pathogens were determined by broth microdilution method. Ag NPs showed a robust antimicrobial activity against all tested pathogens and NAC substantially enhanced the antimicrobial activity of Ag NPs against all tested pathogens. Synergism between Ag NPs and NAC has been confirmed by checkerboard assay. The effect of Ag NPs on tested pathogens was further scrutinized by Transmission Electron Microscope (TEM) which showed disruption of cell wall in both bacteria and fungi. Ag NPs abrogated the activity of respiratory chain dehydrogenase of all tested pathogens and released muramic acid content from S. aureus in culture. The cytotoxic effect of Ag NPs alone and in combination with NAC was examined using human HepG2 cells and this revealed no cytotoxicity at MIC values of Ag NPs and interestingly, NAC reduced the cytotoxic effect of Ag NPs at concentrations higher than their MIC values. Taken together, Ag NPs have robust antimicrobial activity and NAC substantially enhances their antimicrobial activities against MDR pathogens which would provide a novel safe, effective, and inexpensive therapeutic approach to control the prevalence of MDR pathogens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gonococcal infections in Austria: a long-term observation of prevalence and resistance profiles from 1999 to 2014.

    PubMed

    Stary, Angelika; Heller-Vitouch, Claudia; Binder, Michael; Geusau, Alexandra; Stary, Georg; Rappersberger, Klemens; Komericki, Peter; Hoepfl, Reinhard; Haller, Maria

    2015-11-01

    The increase in minimum inhibitory concentrations (MICs) of cephalosporins for Neisseria gonorrhoeae has given rise to concerns regarding potentially untreatable gonococcal infections. The goal was to ascertain the prevalence of gonorrhea in a Viennese patient group and determine resistance patterns. Another objective was to evaluate resistance profiles and MIC values of gonococcal isolates in an Austria-wide surveillance project. From 1999 to 2014, 350,000 individuals were tested for gonococci at the Viennese Outpatient Clinic. In addition, from 2010 to 2014, the MICs of recommended antibiotics was determined in 3,584 gonococcal isolates, initially by agar dilution and breakpoint determination, and, from 2012 onwards, by Etest®. During the observation period, the prevalence of gonorrhea increased eightfold, with a significantly greater number of quinolone, penicillin, and tetracycline- resistant strains. In gonococcal strains isolated from across Austria, there was an increase in cefixime and ceftriaxone MICs toward breakpoints. Twenty-one isolates showed cefixime resistance, and while there was an increase in azithromycin resistance from 0.9 % (2013) to 3.2 % (2014), no resistance to ceftriaxone was observed. Currently, there is no imminent risk of untreatable gonorrhea in Austria. However, continuing the use of gonococcal cultures as a diagnostic tool for establishing resistance profiles is essential in order to monitor trends in the development of Neisseria (N.) gonorrhoeae resistance. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  8. Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria.

    PubMed

    Nguyen, Hoa Thi; Yu, Nan Hee; Park, Ae Ran; Park, Hae Woong; Kim, In Seon; Kim, Jin-Cheol

    2017-10-28

    This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of 250 μg/ml. Among the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol layer displayed the activity with an MIC value of 125 μg/ml against Xap. An antibacterial fraction was obtained from P. nil seeds by repeated column chromatography and identified as pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration values against the five bacteria were 125-500 μg/ml for the n-butanol layer and 31.25-125 μg/ml for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of bacterial leaf spot, with a control value of 87.5% at 500 μg/ml. In addition, pharbitin strongly reduced the development of bacterial wilt on tomato seedlings by 97.4% at 250 μg/ml, 7 days after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an alternative biopesticide for the control of plant diseases caused by R. solanacearum and Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against phytopathogenic bacteria.

  9. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women.

    PubMed

    Moore, A G; Brown, D A; Fairlie, W D; Bauskin, A R; Brown, P K; Munier, M L; Russell, P K; Salamonsen, L A; Wallace, E M; Breit, S N

    2000-12-01

    Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta. A sensitive sandwich enzyme-linked immunosorbent assay for the quantification of MIC-1 was developed and used to examine the role of this cytokine in pregnancy. High levels of MIC-1 are present in the sera of pregnant women. The level rises substantially with progress of gestation. MIC-1 can also be detected, in large amounts, in amniotic fluid and placental extracts. In addition, the BeWo placental trophoblastic cell line was found to constitutively express the MIC-1 transcript and secrete large amounts of MIC-1. These findings suggest that the placental trophoblast is a major source of the MIC-1 present in maternal serum and amniotic fluid. We suggest that MIC-1 may promote fetal survival by suppressing the production of maternally derived proinflammatory cytokines within the uterus.

  10. Anti-Candida activity of fluoxetine alone and combined with fluconazole: a synergistic action against fluconazole-resistant strains.

    PubMed

    Oliveira, Ana S; Gaspar, Carlos A; Palmeira-de-Oliveira, Rita; Martinez-de-Oliveira, José; Palmeira-de-Oliveira, Ana

    2014-07-01

    The purpose of this work was to determine the antimicrobial activity of fluoxetine, alone and combined with fluconazole, against 29 Candida strains isolated from patients with vulvovaginal candidiasis. MIC and minimum lethal concentration values ranged from 9.8 to 625 μg/ml for all strains tested. The combination of fluconazole with fluoxetine resulted in synergistic activity against six Candida strains, with fractional inhibitory index (FIX) values between 0.15 and 0.31. An indifferent effect was found for the remaining strains, with FIX values between 0.63 and 1. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Development and Validation of Limited-Sampling Strategies for Predicting Amoxicillin Pharmacokinetic and Pharmacodynamic Parameters

    PubMed Central

    Suarez-Kurtz, Guilherme; Ribeiro, Frederico Mota; Vicente, Flávio L.; Struchiner, Claudio J.

    2001-01-01

    Amoxicillin plasma concentrations (n = 1,152) obtained from 48 healthy subjects in two bioequivalence studies were used to develop limited-sampling strategy (LSS) models for estimating the area under the concentration-time curve (AUC), the maximum concentration of drug in plasma (Cmax), and the time interval of concentration above MIC susceptibility breakpoints in plasma (T>MIC). Each subject received 500-mg amoxicillin, as reference and test capsules or suspensions, and plasma concentrations were measured by a validated microbiological assay. Linear regression analysis and a “jack-knife” procedure revealed that three-point LSS models accurately estimated (R2, 0.92; precision, <5.8%) the AUC from 0 h to infinity (AUC0-∞) of amoxicillin for the four formulations tested. Validation tests indicated that a three-point LSS model (1, 2, and 5 h) developed for the reference capsule formulation predicts the following accurately (R2, 0.94 to 0.99): (i) the individual AUC0-∞ for the test capsule formulation in the same subjects, (ii) the individual AUC0-∞ for both reference and test suspensions in 24 other subjects, and (iii) the average AUC0-∞ following single oral doses (250 to 1,000 mg) of various amoxicillin formulations in 11 previously published studies. A linear regression equation was derived, using the same sampling time points of the LSS model for the AUC0-∞, but using different coefficients and intercept, for estimating Cmax. Bioequivalence assessments based on LSS-derived AUC0-∞'s and Cmax's provided results similar to those obtained using the original values for these parameters. Finally, two-point LSS models (R2 = 0.86 to 0.95) were developed for T>MICs of 0.25 or 2.0 μg/ml, which are representative of microorganisms susceptible and resistant to amoxicillin. PMID:11600352

  12. Posaconazole in Human Serum: a Greater Pharmacodynamic Effect than Predicted by the Non-Protein-Bound Serum Concentration ▿

    PubMed Central

    Lignell, Anders; Löwdin, Elisabeth; Cars, Otto; Chryssanthou, Erja; Sjölin, Jan

    2011-01-01

    It is generally accepted that only the unbound fraction of a drug is pharmacologically active. Posaconazole is an antifungal agent with a protein binding of 98 to 99%. Taking into account the degree of protein binding, plasma levels in patients, and MIC levels of susceptible strains, it can be assumed that the free concentration of posaconazole sometimes will be too low to exert the expected antifungal effect. The aim was therefore to test the activity of posaconazole in serum in comparison with that of the calculated unbound concentrations in protein-free media. Significant differences (P < 0.05) from the serum control were found at serum concentrations of posaconazole of 1.0 and 0.10 mg/liter, with calculated free concentrations corresponding to 1× MIC and 0.1× MIC, respectively, against one Candida lusitaniae strain selected for proof of principle. In RPMI 1640, the corresponding calculated unbound concentration of 0.015 mg/liter resulted in a significant effect, whereas that of 0.0015 mg/liter did not. Also, against seven additional Candida strains tested, there was an effect of the low posaconazole concentration in serum, in contrast to the results in RPMI 1640. Fluconazole, a low-grade-protein-bound antifungal, was used for comparison at corresponding concentrations in serum and RPMI 1640. No effect was observed at the serum concentration, resulting in a calculated unbound concentration of 0.1× MIC. In summary, there was a substantially greater pharmacodynamic effect of posaconazole in human serum than could be predicted by the non-protein-bound serum concentration. A flux from serum protein-bound to fungal lanosterol 14α-demethylase-bound posaconazole is suggested. PMID:21502622

  13. Pharmacodynamic analysis of ceftriaxone, gatifloxacin,and levofloxacin against Streptococcus pneumoniae with the use of Monte Carlo simulation.

    PubMed

    Frei, Christopher R; Burgess, David S

    2005-09-01

    To evaluate the pharmacodynamics of four intravenous antimicrobial regimens-ceftriaxone 1 g, gatifloxacin 400 mg, levofloxacin 500 mg, and levofloxacin 750 mg, each every 24 hours-against recent Streptococcus pneumoniae isolates. Pharmacodynamic analysis using Monte Carlo simulation. The Surveillance Network (TSN) 2002 database. Streptococcus pneumoniae isolates (7866 isolates) were stratified according to penicillin susceptibilities as follows: susceptible (4593), intermediate (1986), and resistant (1287). Risk analysis software was used to simulate 10,000 patients by integrating published pharmacokinetic parameters, their variability, and minimum inhibitory concentration (MIC) distributions from the TSN database. Probability of target attainment was determined for percentage of time above the MIC (%T > MIC) from 0-100% for ceftriaxone and area under the concentration-time curve (AUC):MIC ratio from 0-150 for the fluoroquinolones. For ceftriaxone, probability of target attainment remained 90% or greater against the three isolate groups until a %T > MIC of 70% or greater, and it remained 90% or greater against susceptible and intermediate isolates over the entire interval (%T > MIC 0-100%). For levofloxacin 500 mg, probability of target attainment was 90% at an AUC:MIC < or = 30, but the curve declined sharply with further increases in pharmacodynamic target. Levofloxacin 750 mg achieved a probability of target attainment of 99% at an AUC:MIC ratio < or = 30; the probability remained approximately 90% until a target of 70 or greater, when it declined steeply. Gatifloxacin demonstrated a high probability (99%) of target attainment at an AUC:MIC ratio < or = 30, and it remained above 90% until a target of 70. Ceftriaxone maintained high probability of target attainment over a broad range of pharmacodynamic targets regardless of penicillin susceptibility (%T > MIC 0-60%). Levofloxacin 500 mg maintained high probability of target attainment for AUC:MIC ratios 0-30; whereas, levofloxacin 750 mg and gatifloxacin maintained high probability of target attainment for AUC:MIC ratios 0-60. Rate of decline in the pharmacodynamic curve was most pronounced for the two levofloxacin regimens and more gradual for gatifloxacin and ceftriaxone.

  14. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils

    PubMed Central

    Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz

    2016-01-01

    This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638

  15. Comparison of automated and traditional minimum inhibitory concentration procedures for microbiological cosmetic preservatives.

    PubMed

    Lenczewski, M E; McGavin, S T; VanDyke, K

    1996-01-01

    Minimum inhibitory concentration (MIC) is used to test resistance of microorganisms against antibiotics and to test cosmetic preservatives. This research expanded traditional MIC with automation and application of colorimetric endpoint MIC. All experiments included common cosmetic preservatives and microorganisms used in testing preservative efficacy. An autodilutor using three 96-well microtiter plates processed 6 preservatives against 1 microorganism in 15 min. The unique tip design made it possible to accurately deliver viscous test materials that cannot be dispensed accurately with vacuum or fluid-filled systems. Tetrazolium violet, a redox indicator, provided a visual color change from clear to purple at the MIC. Optimum concentration of tetrazolium violet was 0.01% with addition of 0.2% glucose to Mueller-Hinton broth for both gram-positive and gram-negative bacteria. The colorimetric endpoint was evident after 24 h from previously cryogenically stored organisms that were thawed before use and after 4 h for 18-24 h broth cultures subcultured from agar plates. The autodilutor accurately pipetted viscous cosmetic products such as hand lotion and shampoo, which cannot be pipetted with a traditional micropipetter.

  16. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae

    DOE PAGES

    Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley; ...

    2018-01-11

    Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less

  17. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley

    Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less

  18. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration.

    PubMed

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N; Liu, Yongge; Matsumoto, Makoto; Geiter, Lawrence

    2016-06-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. In vitro and in vivo anti-MRSA activities of nosokomycins.

    PubMed

    Uchida, Ryuji; Hanaki, Hideaki; Matsui, Hidenori; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Iwatsuki, Masato; Kim, Yong Pil; Tomoda, Hiroshi

    2014-12-01

    The anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of nosokomycins A to D discovered in the silkworm-MRSA infection screening was investigated. The minimum inhibitory concentration (MIC) values of nosokomycins for authentic MRSA and S. aureus strains were calculated to be 0.06 to 2.0 μg/mL. They also showed potent inhibitory activity against 54 clinically isolated MRSA strains. Furthermore, nosokomycin A proved effective in the mouse-MRSA infection model.

  20. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

Top