Helbling, Damian E; Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E
2014-02-01
The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations.
Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate
Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.
1971-01-01
The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579
Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew
2008-01-17
The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.
Continuous ethanol production from cheese whey fermentation by Candida pseudotropicalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1997-12-01
Three pilot-scale continuous mix reactors of 5-L volume each were used to study the effects of retention time (18--42 hours) and initial substrate concentration (50--150 g/L) on the cell yield, lactose consumption, and maximum ethanol concentration during continuous fermentation of cheese whey using the yeast Candida pseudotropicalis. A microaeration rate of 480 mL/min and a nutrient supplement (yeast extract) concentration of 0.1% vol/vol were used. The results indicated that the dissolved oxygen concentration, temperature, cell concentration, lactose utilization rate, and ethanol concentration were affected by hydraulic retention time and initial substrate concentration. The highest cell concentration of 5.46 g/L andmore » the highest ethanol concentration of 57.96 g/L (with a maximum ethanol yield of 99.6% from the theoretical yield) were achieved at the 42-hour hydraulic retention time and the 150 g/L initial substrate concentration, whereas the highest cell yield was observed at the 50 g/L initial substrate concentration and the 36-hour hydraulic retention time. Lactose utilizations of 98, 91, and 83% were obtained with 50, 100, and 150 g/L initial substrate concentrations at the 42-hour hydraulic retention time. A pH control system was found unnecessary.« less
Strontium-90 concentration factors of lake plankton, macrophytes, and substrates.
Kalnina, Z; Polikarpov, G
1969-06-27
The ratio of concentration of strontium-90 in living and inert lake components to that in lake water (concentration factors) was determined for plankton, macrophytes, and substrates in eutrophic, mesotropric-eutrophic, and dystrophic Latgalian lakes. Concentration factors of strontium-90 in aquatic organisms and substrates are higher in a dystrophic lake than in the other types.
Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel
2017-01-01
The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.
Stojan, Jure
2013-03-25
Cholinesterases do not follow the Michaelis-Menten kinetics. In the past, many reaction schemes were suggested to explain their complex interactions during the substrate turnover. Covalent catalysis was recognized very early and therefore, double intermediate traditional reaction scheme for the hydrolysis of good substrates at low concentrations was postulated. However, at intermediate and high substrate concentrations homotropic pseudocooperative effects take place in all cholinesterases, due to the nature of their buried active center. In this study, the significance and usefulness of experimental data obtained at low substrate concentrations, where only one substrate molecule accesses the active site at a time, are to be specified for the overall mechanistic evaluations. Indeed, different interpretations are expected when data are processed with equations derived from different reaction schemes. Consequently, the scheme with two substrate binding sites which comprises the structurally evidenced fully occupied active site as ultimate cause for substantially decreased cholinesterase activity at extremely high substrate concentrations is considered here. A special emphasis is put on butyrylcholinesterase, the enzyme with the largest active site among cholinesterases, where the pseudocooperative effects appear at much higher concentrations than in acetylcholinesterases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
2017-01-01
The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10–20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution. PMID:28678884
[Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].
Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao
2009-04-15
The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.
Gao, Yingning; Roberts, Christopher C; Toop, Aaron; Chang, Chia-En A; Wheeldon, Ian
2016-08-03
Understanding and controlling the molecular interactions between enzyme substrates and DNA nanostructures has important implications in the advancement of enzyme-DNA technologies as solutions in biocatalysis. Such hybrid nanostructures can be used to create enzyme systems with enhanced catalysis by controlling the local chemical and physical environments and the spatial organization of enzymes. Here we have used molecular simulations with corresponding experiments to describe a mechanism of enhanced catalysis due to locally increased substrate concentrations. With a series of DNA nanostructures conjugated to horseradish peroxidase, we show that binding interactions between substrates and the DNA structures can increase local substrate concentrations. Increased local substrate concentrations in HRP(DNA) nanostructures resulted in 2.9- and 2.4-fold decreases in the apparent Michaelis constants of tetramethylbenzidine and 4-aminophenol, substrates of HRP with tunable binding interactions to DNA nanostructures with dissociation constants in the micromolar range. Molecular simulations and kinetic analysis also revealed that increased local substrate concentrations enhanced the rates of substrate association. Identification of the mechanism of increased local concentration of substrates in close proximity to enzymes and their active sites adds to our understanding of nanostructured biocatalysis from which we can develop guidelines for enhancing catalysis in rationally designed systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Catalytic Function of Enzymes.
ERIC Educational Resources Information Center
Splittgerber, Allan G.
1985-01-01
Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, C.L.; Adriano, D.C.
Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among themore » ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate.« less
Patra, A K; Yu, Z
2015-07-01
To investigate the effect of garlic oil (G), nitrate (N), saponin (S) and their combinations supplemented to different forage to concentrate substrates on methanogenesis, fermentation, diversity and abundances of bacteria and Archaea in vitro. The study was conducted in an 8 × 2 factorial design with eight treatments and two substrates using mixed ruminal batch cultures obtained. Quillaja S (0·6 g l(-1) ), N (5 mmol l(-1) ) and G (0·27 g l(-1) ) were used separately or in binary and tertiary combinations. The two substrates contained grass hay and a dairy concentrate mixture at a 70 : 30 (high-forage substrate) ratio or a 30 : 70 (high-concentrate substrate) ratio. Ruminal fermentation and cellulolytic bacterial populations were affected by interaction between substrate and anti-methanogenic compounds. The inhibitor combinations decreased the methane production additively regardless of substrate. For the high-concentrate substrate, S decreased methane production to a greater extent, so did G and N individually for the high-forage substrate. Feed degradability and total volatile fatty acid (VFA) concentrations were not decreased by any of the treatments. Fibre degradability was actually improved by N+S for the high-forage substrate. VFA concentrations and profiles were affected differently by different anti-methanogenic inhibitors and their combinations. All treatments inhibited the growth of Archaea, but the effect on Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens varied. The results suggest that substrate influences the efficacy of these inhibitors when they are used separately, but in combinations, they can lower methanogenesis additively without much influence from the substrate. The presented research provided evidence that binary and tertiary combination of garlic oil, nitrate and saponin can lower the methane production additively without adversely impacting rumen fermentation and degradability, and forage to concentrate ratio does not change the above effects. These anti-methanogenic inhibitors in combination may have practical application to mitigate methane emission from ruminants. © 2015 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Tice, Ryan C.; Kim, Younggy
2014-12-01
Excessive amounts of ammonia are known to inhibit exoelectrogenic activities in microbial fuel cells (MFCs). However, the threshold ammonia concentration that triggers toxic effects is not consistent among literature papers, indicating that ammonia inhibition can be affected by other operational factors. Here, we examined the effect of substrate concentration and feed frequency on the capacity of exoelectrogenic bacteria to resist against ammonia inhibition. The high substrate condition (2 g L-1 sodium acetate, 2-day feed) maintained high electricity generation (between 1.1 and 1.9 W m-2) for total ammonia concentration up to 4000 mg-N L-1. The less frequent feed condition (2 g L-1 sodium acetate, 6-day feed) and the low substrate condition (0.67 g L-1 sodium acetate, 2-day feed) resulted in substantial decreases in electricity generation at total ammonia concentration of 2500 and 3000 mg-N L-1, respectively. It was determined that the power density curve serves as a better indicator than continuously monitored electric current for predicting ammonia inhibition in MFCs. The chemical oxygen demand (COD) removal gradually decreased at high ammonia concentration even without ammonia inhibition in electricity generation. The experimental results demonstrated that high substrate concentration and frequent feed substantially enhance the capacity of exoelectrogenic bacteria to resist against ammonia inhibition.
Sharma, Yogesh; Li, Baikun
2010-03-01
The wastewaters consist of diverse types of organic substrates that can be used as the carbon sources for power generation. To explore the utilization of some of these organics, the electricity generation from three substrates (acetate, ethanol, and glucose) was examined over a concentration range of 0.5-35 mM in single-chamber microbial fuel cells (SCMFCs). The power density generated from glucose was the highest at 401 mW/m(2) followed by acetate and ethanol at 368 mW/m(2) and 302 mW/m(2), respectively. The voltage increased with substrate concentration of 0.5-20mM, but significantly decreased at high substrate concentrations of 20-35 mM. Kinetic analysis indicated that the inhibition in the ethanol-fed MFCs was the highest at the concentration of 35 mM, while inhibition in glucose-fed MFCs was the lowest at the concentration of 20mM. These were in accordance with the extents of voltage decrease at high substrate concentration. Moreover, the effect of the distance between anode and cathode on voltage generation was also investigated. The reduction of the electrode distance by 33% in the glucose-fed MFCs reduced the internal resistance by 73% and led to 20% increase in voltage generation. Published by Elsevier Ltd.
Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.
Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang
2018-02-01
Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.
Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H
2000-04-14
For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A
2015-08-01
Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.
The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; ...
2014-10-21
Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less
Koutrotsios, Georgios; Danezis, Georgios P; Georgiou, Constantinos A; Zervakis, Georgios I
2018-04-20
Concentrations of 16 rare earth elements (REEs) and two actinides were determined for the first time both in cultivated mushrooms and in their production substrates by inductively coupled plasma mass spectroscopy. Moreover, the effect of REEs on cultivation parameters and composition of the final product was assessed, together with their potential use for authentication purposes. The concentrations of REEs varied greatly among seven cultivation substrates and correlated with measurements in Cyclocybe cylindracea mushrooms; no such correlation was established in Pleurotus ostreatus. Reduction of hemicellulose, cellulose, and lignin in substrates during P. ostreatus cultivation was positively correlated with REE concentrations, which also affected the production performance depending on the species examined. In all cases, a negative correlation was established between bioconcentration factors (BCF) in mushrooms and REE content in substrates, while the effect of substrate composition on BCF values varied according to the element studied. The estimated daily intake values of REEs through mushroom consumption was at much lower levels than those reported as potentially harmful for human health. The content of REEs in cultivation substrates and in mushrooms revealed that the bioaccumulation of elements differed in each fungus. The nature/origin of substrates seemed to affect the concentration of REEs in mushrooms to a considerable extent. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan
2015-05-19
The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1983-01-01
Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.
NASA Astrophysics Data System (ADS)
Rahmani, Nanik; Jannah, Alifah Mafatikhul; Lisdiyanti, Puspita; Prasetya, Bambang; Yopi
2017-11-01
The optimizations of enzymatic hydrolysis to produce of xylo-oligosaccharides (XOs) from three different lignocellulosic biomasses were investigated. Sugarcane bagasse, oil palm empty fruit bunch, and rice straw contain rich hemicelluloses especially hetero-xylan which can be hydrolyzes by endo-xylanase enzyme. Enzymatic hydrolysis of sugarcane bagasse by endo-xylanase from Kitasatospora sp. was optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 4 % substrate concentrations, while oil palm empty fruit bunchwas optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 5 % substrate concentrations, and rice straw was optimum at 40 °C temperature hydrolysis using 16 U of enzyme concentrations and 4 % substrate concentrations. The hydrolysis products were analyzed by TLC and HPLC. The main product hydrolysis for sugarcane bagasse, oil palm empty fruit bunch and rice straw are xylobiose.
Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc
Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.
1979-01-01
Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R
2014-09-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.
2018-01-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing
2016-10-01
The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Substrate Cooperativity in Marine Luciferases
Tzertzinis, George; Schildkraut, Ezra; Schildkraut, Ira
2012-01-01
Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences of these enzyme responses are discussed. PMID:22768230
Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.
Kazemi, M; Biria, D; Rismani-Yazdi, H
2015-05-21
Bio-electrosynthesis is one of the significant developments in reverse microbial fuel cell technology which is potentially capable of creating organic compounds by combining CO2 with H2O. Accordingly, the main objective in the current study was to present a model of microbial electrosynthesis for producing organic compounds (acetate) based on direct conduction of electrons in biofilms. The proposed model enjoys a high degree of rigor because it can predict variations in the substrate concentration, electrical potential, current density and the thickness of the biofilm. Additionally, coulombic efficiency was investigated as a function of substrate concentration and cathode potential. For a system containing CO2 as the substrate and Sporomusa ovata as the biofilm forming microorganism, an increase in the substrate concentration at a constant potential can lead to a decrease in coulombic efficiency as well as an increase in current density and biofilm thickness. On the other hand, an increase in the surface cathodic voltage at a constant substrate concentration may result in an increase in the coulombic efficiency and a decrease in the current density. The maximum coulombic efficiency was revealed to be 75% at a substrate concentration of 0.025 mmol cm(-3) and 55% at a surface cathodic voltage of -0.3 V producing a high range of acetate production by creating an optimal state in the concentration and potential intervals. Finally, the validity of the model was verified by comparing the obtained results with related experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
Comparison of metabolic substrates in alligators and several birds of prey.
Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J
2014-08-01
On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin resistance and gluconeogenesis-induced high plasma glucose concentrations during periods of fasting in birds of prey. Copyright © 2014 Elsevier GmbH. All rights reserved.
Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.
Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P
2015-12-02
Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Serment, Amélie; Giger-Reverdin, Sylvie; Schmidely, Philippe; Dhumez, Ophélie; Broudiscou, Laurent P; Sauvant, Daniel
2016-01-15
In vitro techniques are used to predict ruminant feedstuff values or characterise rumen fermentation. As the results are influenced by several factors, such as the relative effects of inocula and substrates, this study aimed to examine in vitro incubation of two total mixed rations (substrates) differing in their proportion of concentrate [low (L): 350 g kg(-1) vs. high (H): 700 g kg(-1)] incubated in inocula provided by goats fed either a L or a H diet. Gas production and composition in carbon dioxide (CO2), methane (CH4 ) and hydrogen (H2), volatile fatty acids (VFAs), soluble carbohydrates (SCs) and ammonia (NH3) concentrations, and pH of the fermentation fluid were measured. In comparison with the L inoculum and L substrate, the H ones produced more CO2 and CH4 gas, which led to higher SCs and VFA concentrations, and lower acetate-to-propionate ratio and NH3 concentration, with a predominant effect of the inoculum. The effects of the inocula and of the substrates were additive using donor animals adapted to the diets. © 2015 Society of Chemical Industry.
Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17.
Hua, Fei; Wang, Hong Qi; Li, Yi; Zhao, Yi Cun
2013-12-01
The trans-membrane transport of hydrocarbons is an important and complex aspect of the process of biodegradation of hydrocarbons by microorganisms. The mechanism of transport of (14)C n-octadecane by Pseudomonas sp. DG17, an alkane-degrading bacterium, was studied by the addition of ATP inhibitors and different substrate concentrations. When the concentration of n-octadecane was higher than 4.54 μmol/L, the transport of (14)C n-octadecane was driven by a facilitated passive mechanism following the intra/extra substrate concentration gradient. However, when the cells were grown with a low concentration of the substrate, the cellular accumulation of n-octadecane, an energy-dependent process, was dramatically decreased by the presence of ATP inhibitors, and n-octadecane accumulation continually increased against its concentration gradient. Furthermore, the presence of non-labeled alkanes blocked (14)C n-octadecane transport only in the induced cells, and the trans-membrane transport of n-octadecane was specific with an apparent dissociation constant K t of 11.27 μmol/L and V max of 0.96 μmol/min/mg protein. The results indicated that the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17 was related to the substrate concentration and ATP.
Methods and devices for high-throughput dielectrophoretic concentration
Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen
2010-02-23
Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
Concentration-Dependent Patterns of Leucine Incorporation by Coastal Picoplankton
Alonso, Cecilia; Pernthaler, Jakob
2006-01-01
Coastal pelagic environments are believed to feature concentration gradients of dissolved organic carbon at a microscale, and they are characterized by pronounced seasonal differences in substrate availability for the heterotrophic picoplankton. Microbial taxa that coexist in such habitats might thus differ in their ability to incorporate substrates at various concentrations. We investigated the incorporation patterns of leucine in four microbial lineages from the coastal North Sea at concentrations between 0.1 and 100 nM before and during a spring phytoplankton bloom. Community bulk incorporation rates and the fraction of leucine-incorporating cells in the different populations were analyzed. Significantly fewer bacterial cells incorporated the amino acid before (13 to 35%) than during (23 to 47%) the bloom at all but the highest concentration. The incorporation rate per active cell in the prebloom situation was constant above 0.1 nM added leucine, whereas it increased steeply with substrate concentration during the bloom. At both time points, a high proportion of members of the Roseobacter clade incorporated leucine at all concentrations (55 to 80% and 86 to 94%, respectively). In contrast, the fractions of leucine-incorporating cells increased substantially with substrate availability in bacteria from the SAR86 clade (8 to 31%) and from DE cluster 2 of the Flavobacteria-Sphingobacteria (14 to 33%). The incorporation patterns of marine Euryarchaeota were between these extremes (30 to 56% and 48 to 70%, respectively). Our results suggest that the contribution of microbial taxa to the turnover of particular substrates may be concentration dependent. This may help us to understand the specific niches of coexisting populations that appear to compete for the same resources. PMID:16517664
Defect studies of thin ZnO films prepared by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.
2014-04-01
Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.
Adsorption of goethite onto quartz and kaolinite
Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.
1984-01-01
The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.
Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus
2014-09-01
Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P <0. 01). The mass fractions of NO, N20 and N2 emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P < 0.01). The results indicated that carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated that organic fertilizer should not be applied to nitrate-rich paddy soils prior to or during flooding so as to mitigate greenhouse gases emissions.
A cellular glass substrate solar concentrator
NASA Technical Reports Server (NTRS)
Bedard, R.; Bell, D.
1980-01-01
The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2001-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
[Research on the preparative method of Arctigenin].
Zhang, Li-Ying; Yang, Yi-Shun; Zhang, Tong; Ding, Yue; Cai, Zhen-Zhen; Tao, Jian-Sheng
2012-03-01
To research on the preparation of Arctigenin in vitro. Took enzyme concentration, time course and substrate concentration as investigation factors, used Box-Behnken design-response surface methodology to optimize the enzyme hydrolysis path of Arctigenin. The best operational path for Arctigenin was as follows: the temperature was 50 degrees C, pH was 4.8, enzyme concentration was 0.44 U/mL, time course was 46.81 min, substrate concentration was 0.29 mg/mL, the conversion rate was 90.94%. This research can be regarded as a referencein preparing Arctigenin in vitro.
Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates
Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min
1988-01-01
Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715
Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo
2018-01-01
Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2000-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai
2013-01-01
The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng
2018-01-01
Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.
Toward nanomolar detection by NMR through SABRE hyperpolarization.
Eshuis, Nan; Hermkens, Niels; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2014-02-19
SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (μM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 μM in a single scan.
Method of accurate thickness measurement of boron carbide coating on copper foil
Lacy, Jeffrey L.; Regmi, Murari
2017-11-07
A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.
Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tango, M.S.A.; Ghaly, A.E.
1999-12-01
A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less
Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.
Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu
2017-08-24
Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms.
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Dahnum, Deliana; Amaliyah, Nur
2017-11-01
Simultaneous Saccharification Fermentation (SSF) of palm oil (Elaeis guineensis) empty fruit bunch (EFB) pulp were investigated as a part of ethanol production process. SSF was investigated by observing the effect of substrate loading variation in range 10-20%w, cellulase loading 5-30 FPU/gr substrate and yeast addition 1-2%v to the ethanol yield. Mathematical model for describing the effects of these three variables to the ethanol yield were developed using Response Surface Methodology-Cheminformatics (RSM-CI). The model gave acceptable accuracy in predicting ethanol yield for Simultaneous Saccharification and Fermentation (SSF) with coefficient of determination (R2) 0.8899. Model validation based on data from previous study gave (R2) 0.7942 which was acceptable for using this model for trend prediction analysis. Trend prediction analysis based on model prediction yield showed that SSF gave trend for higher yield when the process was operated in high enzyme concentration and low substrate concentration. On the other hand, even SHF model showed better yield will be obtained if operated in lower substrate concentration, it still possible to operate in higher substrate concentration with slightly lower yield. Opportunity provided by SHF to operate in high loading substrate make it preferable option for application in commercial scale.
NASA Astrophysics Data System (ADS)
Lim, Jae-Won; Mimura, Kouji; Isshiki, Minoru
2004-12-01
Glow discharge mass spectrometry (GDMS) was used to analyze a Ta target and Ta films for trace impurities. The Ta films were deposited on Si (100) substrate at substrate bias voltages of 0 V and -125 V using a non-mass separated ion beam deposition system. Although both Ta films were contaminated by impurities during the deposition, the Ta film deposited at a substrate bias voltage of -125 V showed lower impurity content than the Ta film deposited without the substrate bias voltage, which means that applying a negative bias voltage to the substrate decreased the total concentration of impurities. Furthermore, the concentration change of individual impurities in the Ta film is related to their ionization ratio in the argon discharge plasma. Considering the effect of the ionization potential of an individual impurity on the ionization ratio, purification by applying a negative bias voltage to the substrate results from Penning ionization and an ionization mechanism proposed in this study, as well as from the difference between the kinetic energies of Ta neutral atoms and Ta+ ions accelerated toward the substrate with/without a negative substrate bias voltage.
Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P
2011-08-01
To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K
2016-01-01
Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of Metallic Indium Concentration on the Properties of Indium Oxide Thin Films
NASA Astrophysics Data System (ADS)
Kalkan, N.
2016-10-01
Current-voltage characteristics of indium-embedded indium oxide thin films (600-850 Å), with Ag electrodes approximately 1000 Å thick, prepared by reactive evaporation of pure metallic indium in partial air pressure have been studied for substrate temperatures between 50 and 125°C. The optical properties of these films have also been investigated as a function of metallic indium concentration and substrate temperature. I-V characteristics of all the samples are non-ohmic, independent of metallic indium concentration. The conductivity of the films increases but the optical transmission decreases with increasing metallic indium concentration. Metallic indium concentration was found to be an important parameter affecting the film properties. Furthermore, two possible conduction mechanisms are proposed.
Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.
Edelson, J; McMullen, J P
1976-09-01
Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.
Peng, Sikan; Liang, Da-Wei; Diao, Peng; Liu, Yanyan; Lan, Fei; Yang, Yuhan; Lu, Shanfu; Xiang, Yan
2013-05-01
Understanding the electron-transfer mechanism and kinetic characteristics of bioanodes is greatly significant to enhance the electron-generating efficiencies in bioelectrochemical systems (BESs). A Nernst-ping-pong model is proposed here to investigate the kinetics and biochemical processes of bioanodes in a microbial electrolysis cell. This model can accurately describe the effects of the substrate (including substrate inhibition) and the anode potential on the current of bioanodes. Results show that the half-wave potential positively shifts as the substrate concentration increases, indicating that the rate-determining steps of anodic processes change from substrate oxidation to intracellular electron transport reaction. The anode potential has negligible effects on the enzymatic catalysis of anodic microbes in the range of -0.25 V to +0.1 V vs. a saturated calomel electrode. It turns out that to reduce the anodic energy loss caused by overpotential, higher substrate concentrations are preferred, if the substrate do not significantly and adversely affect the output current. Copyright © 2013 Elsevier Ltd. All rights reserved.
Substrate mass transfer: analytical approach for immobilized enzyme reactions
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Saibavani, T. N.
2018-04-01
In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.
Kirby, Brian J; Hasselbrink, Ernest F
2004-01-01
This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.
2015-08-01
CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.
NASA Astrophysics Data System (ADS)
Giebink, Noel; Wiederrecht, Gary; Wasielewski, Michael
2011-03-01
Luminescent concentrators (LSCs) were developed over three decades ago as a simple route to obtain high concentration ratio for photovoltaic cells without tracking the sun. In principle, high concentration ratios 100 are possible for commonly used chromophores. In practice, however, there is typically an overlap between the chromophore absorption and emission spectra that, although small, ultimately leads to unacceptable reabsorption losses, limiting the concentration ratio to ~ 10 and hence the utility of LSCs to date. We introduce a simple, all-optical means of avoiding reabsorption loss by ``resonance shifting'' from a bilayer cavity that consists of an absorber/emitter waveguide lying upon a low refractive index layer supported by a transparent substrate. Emission is evanescently coupled into the substrate at sharply defined angles and hence, by varying the cavity thickness over the device area, the original absorption resonance can be avoided at each bounce, allowing for extremely low propagation loss to the substrate edges and hence an increase in the optical concentration ratio. We validate this concept for absorber/emitter layers composed of both a typical luminescent polymer and inorganic semiconductor nanocrystals, demonstrating near-lossless propagation in each case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suski, T.; Litwin-Staszewska, E.; Piotrzkowski, R.
We demonstrate that relatively small GaN substrate misorientation can strongly change hole carrier concentration in Mg doped GaN layers grown by metalorganic vapor phase epitaxy. In this work intentionally misoriented GaN substrates (up to 2 deg. with respect to ideal <0001> plane) were employed. An increase in the hole carrier concentration to the level above 10{sup 18} cm{sup -3} and a decrease in GaN:Mg resistivity below 1 {omega} cm were achieved. Using secondary ion mass spectroscopy we found that Mg incorporation does not change with varying misorientation angle. This finding suggests that the compensation rate, i.e., a decrease in unintentionalmore » donor density, is responsible for the observed increase in the hole concentration. Analysis of the temperature dependence of electrical transport confirms this interpretation.« less
High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.
Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E
2014-11-01
In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14 ± 0.01 h(-1) ). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33 ± 0.02 h(-1) ) obtained at the lowest external resistance (100 Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic efficiencies rapidly increased due to decreased, and not constant, removal rates of substrate by non-exoelectrogens. These results show that higher current densities (lower resistances) redirect a greater percentage of substrate into current generation, enabling large increase in CEs with increased current densities. Biotechnol. Bioeng. 2014;111: 2163-2169. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Gharasoo, Mehdi; Centler, Florian; Van Cappellen, Philippe; Wick, Lukas Y; Thullner, Martin
2015-05-05
Microbial degradation is an important process in many environments controlling for instance the cycling of nutrients or the biodegradation of contaminants. At high substrate concentrations toxic effects may inhibit the degradation process. Bioavailability limitations of a degradable substrate can therefore either improve the overall dynamics of degradation by softening the contaminant toxicity effects to microorganisms, or slow down the biodegradation by reducing the microbial access to the substrate. Many studies on biodegradation kinetics of a self-inhibitive substrate have mainly focused on physiological responses of the bacteria to substrate concentration levels without considering the substrate bioavailability limitations rising from different geophysical and geochemical dynamics at pore-scale. In this regard, the role of bioavailability effects on the kinetics of self-inhibiting substrates is poorly understood. In this study, we theoretically analyze this role and assess the interactions between self-inhibition and mass transfer-limitations using analytical/numerical solutions, and show the findings practical relevance for a simple model scenario. Although individually self-inhibition and mass-transfer limitations negatively impact biodegradation, their combined effect may enhance biodegradation rates above a concentration threshold. To our knowledge, this is the first theoretical study describing the cumulative effects of the two mechanisms together.
Introducing Michaelis-Menten Kinetics through Simulation
ERIC Educational Resources Information Center
Halkides, Christopher J.; Herman, Russell
2007-01-01
We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…
Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment
USDA-ARS?s Scientific Manuscript database
Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...
Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach
USDA-ARS?s Scientific Manuscript database
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat; black peat; and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were trans...
Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.
Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul
2010-11-01
Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.
Smith, D R; Ponce, C H; Dilorenzo, N; Quinn, M J; May, M L; MacDonald, J C; Luebbe, M K; Bondurant, R G; Galyean, M L
2013-06-01
Three studies were designed to evaluate effects of wet distillers grains with solubles (WDGS) on health and performance of newly received beef cattle, in vitro gas production, molar proportions and total concentrations of VFA, and IVDMD. In Exp. 1 and 2, 219 (BW = 209 kg, SE = 2.2 kg; Exp. 1) and 200 beef steers (BW = 186 kg, SE = 3.2 kg; Exp. 2) were used in randomized complete block design receiving studies. The 4 dietary treatments (DM basis) were a 65% concentrate, steam-flaked corn (SFC)-based receiving diet without WDGS (CON) or diets that contained 12.5, 25.0, or 37.5% WDGS. There were no differences among the 4 receiving diets in BW (P ≥ 0.61), ADG (P ≥ 0.75), DMI (P ≥ 0.27), and G:F (P ≥ 0.35), or in the proportion of cattle treated for morbidity from bovine respiratory disease in either of the 2 experiments. In Exp. 3, in vitro methods were used to determine the effects of WDGS on IVDMD, total gas production, and molar proportions and total concentrations of VFA. Substrates used for the incubations contained the same major components as the diets used in Exp. 1, with ruminal fluid obtained from steers fed a 60% concentrate diet. Total gas production was less (P = 0.03) for the average of the 3 WDGS substrates than for CON, with a linear decrease (P = 0.01) in total gas production as WDGS concentration increased in the substrates. In contrast to gas production, IVDMD was greater for the average of the 3 WDGS concentrations vs. CON (P ≤ 0.05) at 6 and 12 h and increased (P ≤ 0.02) with increasing WDGS concentration at 6 (linear and quadratic) and 12 h (linear) of incubation. At 48 h, there was a quadratic effect (P = 0.05) on IVDMD, with the greatest value for 25% WDGS. Molar proportion of butyrate increased linearly (P < 0.01) as the concentration of WDGS increased in the substrate, and the average of the 3 substrates containing WDGS had a greater proportion of butyrate (P = 0.03) than CON. Performance data from Exp. 1 and 2 indicate that including WDGS in the SFC-based diets for newly received cattle can be an effective at concentrations up to 37.5% of the DM. In vivo measurements are needed to corroborate the in vitro fermentation changes noted with addition of WDGS.
Guzmán-Rodríguez, Francisco; Alatorre-Santamaría, Sergio; Gómez-Ruiz, Lorena; Rodríguez-Serrano, Gabriela; García-Garibay, Mariano; Cruz-Guerrero, Alma
2018-05-02
Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).
Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin
2016-06-01
As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the final ethanol concentration was increased with a high ethanol yield and lower byproduct concentrations.
Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate
Huang, M. L.; Yang, F.
2014-01-01
The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359
Hari, Ananda Rao; Venkidusamy, Krishnaveni; Katuri, Krishna P.; Bagchi, Samik; Saikaly, Pascal E.
2017-01-01
Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m2), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m2; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m2), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m2; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor’s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its possible role in maintaining functional stability of MECs fed with low and high concentrations of acetate and propionate. Taken together, these results provide new insights on the microbial community dynamics and its correlation to performance in MECs fed with different concentrations of acetate and propionate, which are important volatile fatty acids in wastewater. PMID:28775719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com; Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad; Ahmed, Naser M., E-mail: naser@usm.my
The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution formore » 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.« less
[Enzymatic conversion of tetradecanol in heterogenous phase by yeast-alcohol dehydrogenase].
Rothe, U; Schöpp, W; Aurich, H
1976-01-01
Alcohol dehydrogenase from yeast converts long-chain primary alcohols not only in the dissolved state, but also at the surface of undissolved particles. Tetradecanol beads with a defined surface can be produced and employed as model substrate. The reaction rate was determined by the proton release accomplished in the reaction. The initial reaction rate depends on the enzyme concentration. The relation is nonlinear (vi = k-[e]0,4); the numerical value of the exponent (n = 0.4) argues in favour of a reaction occurring at the interface. The Lineweaver-Burk plots become linear if the substrate concentrations are based on the molar surface concentrations of the particles. The pH optimum for the reaction at the surface is displaced by 0.25 pH units towards the alkaline region (compared with ethanol as substrate). The activation energy of the reaction with tetradecanol beads as substrate is 30% lower than that for the ethanol oxydation.
NASA Astrophysics Data System (ADS)
Zhang, Han; Li, Ji-Xue; Jin, Ai-Zi; Zhang, Ze
2001-11-01
A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850°C and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.
Development of composite facets for the surface of a space-based solar dynamic concentrator
NASA Technical Reports Server (NTRS)
Ayers, Schuyler R.; Morel, Donald E.; Sanborn, James A.
1986-01-01
An account is given of the composite fabrication techniques envisioned for the production of mirror-quality substrates furnishing the specular reflectance required for the NASA Space Station's solar dynamic concentrator energy system. The candidate materials were graphite fiber-reinforced glass, aluminum, and polymer matrices whose surfaces would be coated with thin metal layers and with atomic oxygen degradation-inhibiting protective coatings to obtain the desired mirror surface. Graphite-epoxy mirror substrate samples have been found to perform satisfactorily for the required concentrator lifetime.
NASA Astrophysics Data System (ADS)
Yokoyama, Moe; Yamada, Kenji; Nishimura, Takahiro; Kido, Michiko; Jeong, Hieyong; Ohno, Yuko
2015-03-01
Therapeutic drug monitoring (TDM) contributes to safe and effective pharmacotherapy in clinical fields. A simple, rapid, low-cost, and minimally-invasive drug measurement method attracts much interest for point-of-care TDM. Tear fluids can be collected minimally-invasively compared to blood sampling and there is a correlation between a drug concentration in tears and that in bloods. Surface enhanced Raman spectroscopy (SERS) with paper-based substrate is useful for point-of-care TDM owing to inexpensiveness and high-sensitivity. Paper is also a safe tear collection tool. Then we are studying on a paper-based SERS of tear specimen for point-of-care TDM. In this paper, to improve sensitivity in measuring drug concentration in tear fluids, we fabricated a SERS substrate by coating gold nano-rods on a paper substrate and evaluated whether the fabricated substrate can enhance Raman scattering. Sodium phenobarbital (PB), an anti-convulsant agent, was used as a target. In experiment, the fabricated substrate indicated the lower detection limit of PB in a solution than a plain paper substrate. This result showed the potential of the paper based SERS substrate to measure drug concentration in tears simply and inexpensively.
NASA Technical Reports Server (NTRS)
Lieberman, M. M.; Lanyi, J. K.
1972-01-01
The effect of salt on the activity, stability, and allosteric properties of catabolic threonine deaminase from Halobacterium cutirubrum was studied. The enzyme exhibits sigmoidal kinetics with the substrate, threonine. The Hill slope is 1.55 at pH 10. The enzyme is activated by ADP at low substrate concentrations. In the presence of this effector, sigmoidal kinetics are no longer observed. At pH 10, in the absence of ADP, enzyme activity increases with increasing NaCl concentration from 0 to 4 M.
Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings
NASA Astrophysics Data System (ADS)
Alizadeh, S.; Zahedi-Amiri, G.; Savaghebi-Firoozabadi, G.; Etemad, V.; Shirvany, A.; Shirmardi, M.
2012-07-01
To investigate the effect of amended substrates on cadmium uptake by one-year old poplar rooted cuttings a pot culture was carried out. Pots were filled with three substrates. Four treatments of Cd supply including were organized. The results showed that higher biomass productions in substrates A and B compare to substrate C, led to an increase total Cd uptake two times more than that in substrate C, at 150 mg kg-1 concentration. Meanwhile maximum total uptake occurred in substrate B at 100 mg kg-1 concentration. Using synthetic chelators such as ethylenediaminetetraacetic acid in order to achieve high removal rate led to increased environmental impacts while they are not expected when such environmental friendly approaches are applied.
NASA Astrophysics Data System (ADS)
Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei
2017-10-01
Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.
Reeves, Gregory T; Narang, Atul; Pilyugin, Sergei S
2004-01-21
The growth of mixed microbial cultures on mixtures of substrates is a problem of fundamental biological interest. In the last two decades, several unstructured models of mixed-substrate growth have been studied. It is well known, however, that the growth patterns in mixed-substrate environments are dictated by the enzymes that catalyse the transport of substrates into the cell. We have shown previously that a model taking due account of transport enzymes captures and explains all the observed patterns of growth of a single species on two substitutable substrates (J. Theor. Biol. 190 (1998) 241). Here, we extend the model to study the steady states of growth of two species on two substitutable substrates. The model is analysed to determine the conditions for existence and stability of the various steady states. Simulations are performed to determine the flow rates and feed concentrations at which both species coexist. We show that if the interaction between the two species is purely competitive, then at any given flow rate, coexistence is possible only if the ratio of the two feed concentrations lies within a certain interval; excessive supply of either one of the two substrates leads to annihilation of one of the species. This result simplifies the construction of the operating diagram for purely competing species. This is because the two-dimensional surface that bounds the flow rates and feed concentrations at which both species coexist has a particularly simple geometry: It is completely determined by only two coordinates, the flow rate and the ratio of the two feed concentrations. We also study commensalistic interactions between the two species by assuming that one of the species excretes a product that can support the growth of the other species. We show that such interactions enhance the coexistence region.
He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng
2016-11-01
Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua
2010-01-01
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.
Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures.
Asato, Caitlin M; Gonzalez-Estrella, Jorge; Jerke, Amber C; Bang, Sookie S; Stone, James J; Gilcrease, Patrick C
2016-09-01
Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics study of palm oil hydrolysis using immobilized lipase Candida rugosa in packed bed reactor.
Min, C S; Bhatia, S; Kamaruddin, A H
1999-01-01
Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
Karmakar, Moumita; Ray, Rina Rani
2011-01-01
The production cost of β-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of β-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum β-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source. PMID:21687577
High free carrier concentration in p-GaN grown on AlN substrates
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mita, Seiji; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Tweedie, James; Bryan, Isaac; Bryan, Zachary; Kirste, Ronny; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko
2017-07-01
A high free hole concentration in III-nitrides is important for next generation optoelectronic and high power electronic devices. The free hole concentration exceeding 1018 cm-3 and resistivity as low as 0.7 Ω cm are reported for p-GaN layers grown by metalorganic vapor phase epitaxy on single crystal AlN substrates. Temperature dependent Hall measurements confirmed a much lower activation energy, 60-80 mV, for p-GaN grown on AlN as compared to sapphire substrates; the lowering of the activation energy was due to screening of Coulomb potential by free carriers. It is also shown that a higher doping density (more than 5 × 1019 cm-3) can be achieved in p-GaN/AlN without the onset of self-compensation.
Effect of pH and nitrite concentration on nitrite oxidation rate.
Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J
2011-10-01
The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cornelisse, C J; Hermens, W T; Joe, M T; Duijndam, W A; van Duijn, P
1976-11-01
A numerical method was developed for computing the steady-state concentration gradient of a diffusible enzyme reaction product in a membrane-limited compartment of a simplified theoretical cell model. In cytochemical enzyme reactions proceeding according to the metal-capture principle, the local concentration of the primary reaction product is an important factor in the onset of the precipitation process and in the distribution of the final reaction product. The following variables were incorporated into the model: enzyme activity, substrate concentration, Km, diffusion coefficient of substrate and product, particle radius and cell radius. The method was applied to lysosomal acid phosphatase. Numerical values for the variables were estimated from experimental data in the literature. The results show that the calculated phosphate concentrations inside lysosomes are several orders of magnitude lower than the critical concentrations for efficient phosphate capture found in a previous experimental model study. Reasons for this apparent discrepancy are discussed.
Soil Nitrification and N2O Production: the connection with N concentration and Soil Water Content
NASA Astrophysics Data System (ADS)
Zhu-Barker, X.; Horwath, W. R.
2016-12-01
The development of mitigation strategies to reduce nitrous oxide (N2O) emission from soils is dependent on explicating the biophysical factors affecting different N2O production pathways. Ammonia oxidation and heterotrophic denitrification are the main pathways of N2O production, depending on soil conditions such as soil moisture content, oxygen (O2) content and N substrate. Many researchers have reported that N2O production increased as substrate concentration and soil moisture content increased. However, less understood is how N fertilizer concentration and moisture content interact to affect N2O production pathways. To investigate interaction and its effect on O2 consumption, we incubated three agricultural soils (clay, sandy loam, and peat) with different concentrations of (NH4)2SO4 (0-1000 µg N g-1) under 50 %, 75%, and 100% of water holding capacity. All treatments received 15N -KNO3 to bring the concentrations of NO3-_N in soils to 50 mg kg-1 soil and the NO3- pool to an enrichment of 10 atom% 15N. In all soils, the total amount of O2 consumption and N2O production increased as soil ammonical N concentration increased. The increased soil moisture significantly promoted N2O production in sandy loam and clay loam soils, compared to the peat soil. These results indicate that N2O production increased as substrate concentration increased likely due to the onset of O2 limitation caused by ammonia oxidation.
Modeling degradation and failure of Ni-Cr-Al overlay coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Heckel, R. W.
1984-01-01
Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.
Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E
2003-07-01
This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.
Trace copper measurements and electrical effects in LPE HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.
1996-08-01
Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.
Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna
2015-01-01
The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.
Thin film concentrator panel development
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1982-01-01
The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.
NASA Astrophysics Data System (ADS)
Li, Ruoping; Yang, Jingliang; Han, Junhe; Liu, Junhui; Huang, Mingju
2017-04-01
A Raman method employing silver nanoparticle (Ag NP) monolayer film as Surface-enhanced Raman Scattering (SERS) substrate was presented to rapidly detect melamine in milk. The Ag NPs with 80 nm diameter were modified by polyvinylpyrrolidone to improve their uniformity and chemical stability. The treatment procedure of liquid milk required only addition of acetic acid and centrifugation, and required time is less than 15 min. The Ag NP monolayer film significantly enhanced Raman signal from melamine and allowed experimentally reproducible determination of the melamine concentration. A good linear relationship (R2=0.994) between the concentration and Raman peak intensity of melamine at 681 cm-1 was obtained for melamine concentrations between 0.10 mg L-1 and 5.00 mg L-1. This implies that this method can detect melamine concentrations below 1.0 mg L-1, the concentration currently considered unsafe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.
Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less
Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.
2015-01-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138
Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W
2015-10-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Some characteristics of fructose 1,6-diphosphatase activity in rat liver
NASA Technical Reports Server (NTRS)
Ashman, P. U.; Lampkin, S. L.; Dillon, L.; Parks, R.
1974-01-01
A reliable assay for hepatic fructose 1,6-diphosphatase in the rat was developed. It was found that the greatest enzymic activity and highest protein levels were eluted from the colored portion of the homogenate. When the substrate concentration was 0.01M, the enzyme had optimal activity when incubated with 0.01M MgSO4 for 10 min. at 37 C in 0.05M Tris-HC1 buffer, pH 7.5. Specificity for the substrate, fructose 1,6-diphosphate, was obtained at substrate concentration of 0.01M.
Process for manufacture of inertial confinement fusion targets and resulting product
Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.
1982-01-01
An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, L.G.; Carriera, L.H.
1983-05-24
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, Lars G.; Carriera, Laura H.
1983-01-01
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
Sandu, Ion; Fleaca, Claudiu Teodor
2011-06-15
The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Villaroel, Erica; Silva-Agredo, Javier; Petrier, Christian; Taborda, Gonzalo; Torres-Palma, Ricardo A
2014-09-01
This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20-60 W), initial ACP concentration (33-1323 μmol L(-1)) and pH (3-12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry's law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L(-1)), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative measurement of protein digestion in simulated gastric fluid.
Herman, Rod A; Korjagin, Valerie A; Schafer, Barry W
2005-04-01
The digestibility of novel proteins in simulated gastric fluid is considered to be an indicator of reduced risk of allergenic potential in food, and estimates of digestibility for transgenic proteins expressed in crops are required for making a human-health risk assessment by regulatory authorities. The estimation of first-order rate constants for digestion under conditions of low substrate concentration was explored for two protein substrates (azocoll and DQ-ovalbumin). Data conformed to first-order kinetics, and half-lives were relatively insensitive to significant variations in both substrate and pepsin concentration when high purity pepsin preparations were used. Estimation of digestion efficiency using densitometric measurements of relative protein concentration based on SDS-PAGE corroborated digestion estimates based on measurements of dye or fluorescence release from the labeled substrates. The suitability of first-order rate constants for estimating the efficiency of the pepsin digestion of novel proteins is discussed. Results further support a kinetic approach as appropriate for comparing the digestibility of proteins in simulated gastric fluid.
Regulation of ATP production: dependence on calcium concentration and respiratory state.
Fink, Brian D; Bai, Fan; Yu, Liping; Sivitz, William I
2017-08-01
Nanomolar free calcium enhances oxidative phosphorylation. However, the effects over a broad concentration range, at different respiratory states, or on specific energy substrates are less clear. We examined the action of varying [Ca 2+ ] over respiratory states ranging 4 to 3 on skeletal muscle mitochondrial respiration, potential, ATP production, and H 2 O 2 production using ADP recycling to clamp external [ADP]. Calcium at 450 nM enhanced respiration in mitochondria energized by the complex I substrates, glutamate/malate (but not succinate), at [ADP] of 4-256 µM, but more substantially at intermediate respiratory states and not at all at state 4. Using varied [Ca 2+ ], we found that the stimulatory effects on respiration and ATP production were most prominent at nanomolar concentrations, but inhibitory at 10 µM or higher. ATP production decreased more than respiration at 10 µM calcium. However, potential continued to increase up to 10 µM; suggesting a calcium-induced inability to utilize potential for phosphorylation independent of opening of the mitochondrial permeability transition pore (MTP). This effect of 10 µM calcium was confirmed by direct determination of ATP production over a range of potential created by differing substrate concentrations. Consistent with past reports, nanomolar [Ca 2+ ] had a stimulatory effect on utilization of potential for phosphorylation. Increasing [Ca 2+ ] was positively and continuously associated with H 2 O 2 production. In summary, the stimulatory effect of calcium on mitochondrial function is substrate dependent and most prominent over intermediate respiratory states. Calcium stimulates or inhibits utilization of potential for phosphorylation dependent on concentration with inhibition at higher concentration independent of MTP opening.
Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.
2016-03-01
Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.
Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J
2006-01-01
Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production.
NASA Technical Reports Server (NTRS)
Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.
1991-01-01
Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.
Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy
ERIC Educational Resources Information Center
Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed
2005-01-01
The effect of substrate concentration on the rate of enzymatic reaction was investigated and typical Michaelis-Mentin kinetics was observed during the first week. The first order reaction at relatively low concentrations of ethanol and the pseudo zero-order reaction at high concentrations of ethanol were emphasized.
Growth of single crystal silicon carbide by halide chemical vapor deposition
NASA Astrophysics Data System (ADS)
Fanton, Mark A.
The goal of this thesis is to understand relationships between the major process variables and the growth rate, doping, and defect density of SiC grown by halide chemical vapor deposition (HCVD). Specifically this work addresses the maximum C/Si ratios that can be utilized for single crystal SiC growth by providing a thermodynamic model for determining the boundary between single crystal growth and SiC+C mixed phase growth in the Si-C-Cl-H system. SiC epitaxial layers ranging from 50--200microm thick were grown at temperatures near 2000°C on 6H and 4H-SiC substrates at rates up to 250microm/hr. Experimental trends in the growth rate as a function of precursor flow rates and temperature closely match those expected from thermodynamic equilibrium in a closed system. The equilibrium model can be used to predict the trends in growth rate with the changes in precursor flow rates as well as the boundary between deposition of pure SiC and deposition of a mixture of SiC and C. Calculation of the boundary position in terms of the SiCl 4 and CH4 concentrations provides an upper limit on the C/Si ratio that can be achieved for any given set of crystal growth conditions. The model can be adjusted for changes in temperature, pressure, and chlorine concentration as well. The boundary between phase pure and mixed phase growth was experimentally shown to be very abrupt, thereby providing a well defined window for Si-rich and C-rich growth conditions. Growth of SiC epitaxial layers by HCVD under both Si-rich and C-rich conditions generally yielded the same trends in dopant incorporation as those observed in conventional silane-based CVD processes. Nitrogen incorporation was highest on the C-face of 4H-SiC substrates but could be reduced to concentrations as low as 1x1015 atoms/cm3 at C/Si ratios greater than 1. Residual B concentrations were slightly higher for epitaxial layers grown on the Si-face of substrates. However, changes in the C/Si ratio had no effect on B incorporation at concentrations on the order of 1x10 15 atoms/cm3. No significant trends in structural quality or defect density were evident as the C/Si ratio was varied from 0.72 to 1.81. Structural quality and defect density were more closely related to substrate off-cut and polarity. The highest quality crystals were grown on the C-face of 4° off-axis substrates as measured by HRXRD rocking curves. Growth on on-axis substrates was most successful on the C-face, although the x-ray rocking curves were nearly twice as wide as those on off-axis substrates. Etch pit densities obtained by KOH etching layers grown on Si-face substrates were closely related to the defect density of the substrate not the C/Si ratio. Thick p-type layers with B or Al dopant concentrations on the order of 1019 atoms/cm3 were readily achieved with the HCVD process. Trimethylaluminum and BCl3 were successfully employed as dopant sources. Aluminum incorporation was sensitive to both the substrate surface polarity and the C/Si ratio employed for growth. Dopant concentrations were maximized under C-rich growth conditions on the Si-face of SiC substrates. Boron incorporation was insensitive to both the surface polarity of the substrate and the C/Si used for layer growth even though B appears to favor incorporation on Si lattice sites. Boron acceptors in HCVD grown SiC are not passivated by H to any significant extent based on a comparison of net acceptor concentrations and B doping concentrations. In addition, the lattice parameters epitaxial layers doped with B at concentrations on the order of 1019 atoms/cm3 showed no change as a function of B concentration. This was in contrast to the lattice parameter decrease as expected from a comparison between the size of the Si and B atoms. The HCVD process has demonstrated an order of magnitude higher growth rates than conventional SiC CVD and while providing control over the C/Si ratio. This allows the user to directly influence dopant incorporation and growth morphology. However, this control should also permit several other material properties to be tailored. (Abstract shortened by UMI.)
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
Frenzel, S.A.
1988-01-01
Physical, chemical, and biological characteristics of the Boise River were examined from October 1987 to March 1988 to determine whether trace elements in effluents from two Boise wastewater treatment facilities were detrimental to aquatic communities. Cadmium, chromium, hexavalent chromium, cyanide, lead, nickel, and silver concentrations in the Boise River were less than or near analytical detection levels and were less than chronic toxicity criteria when detectable. Arsenic, copper, and zinc were detected in concentrations less than chronic toxicity criteria. Concentrations of trace elements in bottom material generally were small and could not be attributed to effluents from wastewater treatment facilities. From October to December 1987, mean density of benthic invertebrates colonizing artificial substrates was from 6,100 individuals/substrate downstream from the West Boise wastewater treatment facility to 14,000 individuals per substrate downstream from the Lander Street wastewater treatment facility. From January to March 1988 , mean density of benthic invertebrates colonizing artificial substrates was from 7,100 individuals per substrate downstream from the West Boise facility to 10,000 individuals per substrate near Star. Insect communities upstream and downstream from the wastewater treatment facilities were strongly associated, and coeffients of community loss indicated that effluents had benign enriching effects. Distribution of mayflies indicates that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.
Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces
NASA Astrophysics Data System (ADS)
Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne
2012-11-01
In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic repulsion between the multilayered polymer coils which results in breakdown of the layer.
Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol
1980-10-12
Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose
Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F
2012-01-01
Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.
Devés, R; Krupka, R M
1987-01-01
The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.
Advanced solar concentrator mass production, operation, and maintenance cost assessment
NASA Technical Reports Server (NTRS)
Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.
1981-01-01
The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.
Dikshit, Pritam Kumar; Moholkar, Vijayanand S
2016-09-01
The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Micromotors Powered by Enzyme Catalysis.
Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman
2015-12-09
Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.
Kamba, Keisuke; Nagata, Takashi; Katahira, Masato
2018-01-31
APOBEC3G (A3G), an anti-human immunodeficiency virus 1 factor, deaminates cytidines. We examined deamination of two cytidines located separately on substrate ssDNA by the C-terminal domain (CTD) of A3G using real-time NMR monitoring. The deamination preference between the two cytidines was lost when either the substrate or non-substrate ssDNA concentration increased. When the non-substrate ssDNA concentration increased, the deamination activity first increased, but then decreased. This indicates that even a single domain, A3G-CTD, undergoes intersegmental transfer for a target search.
Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan
2010-07-20
The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.
Zhao, Jing; Westerholm, Maria; Qiao, Wei; Yin, Dongmin; Bi, Shaojie; Jiang, Mengmeng; Dong, Renjie
2018-05-01
The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques
NASA Astrophysics Data System (ADS)
Fouad, Moharram; Bhargava, Renu
2018-05-01
A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.
NASA Astrophysics Data System (ADS)
Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.
2018-01-01
Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.
NASA Astrophysics Data System (ADS)
Oikawa, Noriko; Bae, Albert; Amselem, Gabriel; Bodenschatz, Eberhard
2010-03-01
In the absence of nutrients, Dictyostelium discoideum cells enter a developmental cycle--they signal each other, aggregate, and ultimately form fruiting bodies. During the signaling stage, the cells relay waves of cyclic adenosine 3',5' monophosphate (cAMP). We observed a transition from spiral to circular patterns in the signaling wave, depending on the agar concentration of the substrate. In this talk we will present the changes in the times for the onset of signaling and synchronization versus agar concentration, as measured by spectral entropy. We also will discuss the origin of these effects.
Ghosh, J P; Taylor, K E; Bewtra, J K; Biswas, N
2008-04-01
The potential use of laccase (SP-504) in an advanced oxidation-based treatment technology to remove 2,4-dimethylphenol (DMP) from water was investigated with and without the additive, polyethylene glycol (PEG). The DMP concentration was varied between 1.0 and 5.0 mM. The optimization of pH and enzyme concentration in the presence and absence of PEG was carried out. All experiments were carried out in continuously stirred reactors for 3h at room temperature. The reaction was initiated by adding enzyme to the reaction mixture. For more than 95% removal of DMP, the presence of PEG reduced the inactivation of enzyme so that the required enzyme concentrations were reduced by about 2-fold compared to the same reactions in the absence of PEG. Finally, the PEG concentrations were optimized to obtain the minimum dose required. For higher substrate concentrations, the availability of oxygen was insufficient in achieving 95% or more removal. Therefore, the effect of increasing dissolved oxygen at higher substrate concentration was investigated. The laccase studied was capable of efficiently removing DMP at very low enzyme concentrations and hence shows great potential for cost-effective industrial applications.
Effect of graphite oxide solution concentration on the properties of multilayer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, Marjoni Imamora Ali; Yap, Chi Chin; Awang, Rozidawati
2013-11-27
This paper reports the influence of graphite oxide (GO) solution concentration on the optical and electrical properties of multilayer graphene (MLG) films. Graphene oxide (GrO) films were deposited on the glass substrates by spin coating aqueous solutions of GO with different concentrations (7, 8, 9, 10 and 11 mg/ml). The GrO films were then thermally reduced at temperature of 500°C in argon flow for half an hour to form MLG films. Both the transmittance and sheet resistance decreased with the GO concentration from 8 mg/ml to 9 mg/ml, possibly due to thicker and uniform coverage of MLG over the substrate.more » However, the transmittance and sheet resistance increased rapidly as the GO concentration reached 11 mg/ml, which can be attributed to poor film quality. The MLG film obtained at concentration of 10 mg/ml showed the highest transmittance/sheet resistance ratio with 69 % transmittance and sheet resistance of 292 ± 63 kΩ/sq. The optimum MLG film was utilized as counter electrode in dye sensitized solar cells based on ZnO nanorods.« less
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?
Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A.
2015-01-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. PMID:26253668
NASA Astrophysics Data System (ADS)
Chamuah, Nabadweep; Chetia, Lakhi; Zahan, Nashrat; Dutta, Sibasish; Ahmed, Gazi A.; Nath, Pabitra
2017-05-01
Naturally occurring photonic crystal structures play an important role in different fields of application. Herein, we exploit the periodic pore pattern of a diatom frustule and demonstrate surface-enhanced Raman scattering (SERS) using its structure as a template for the SERS substrate. Gold nanoparticles (AuNPs) were initially allowed to self-assemble on the surface and inside the pores of the diatoms. The enhancement in the localized surface plasmon resonance (LSPR) field magnitude for the assembled AuNPs on the diatom frustule were studied using simulation software. For the proposed SERS substrate, an average field enhancement of the order of 108 magnitude was observed. We demonstrate the operation of the designed substrate for the detection and quantification of Raman signals from two Raman active samples, namely malachite green (MG) and fluoride concentrations in drinking water. Using the proposed SERS substrate, an MG concentration as low as 1 nM with a relative standard deviation (RSD) of 7.57% and a fluoride concentration of 100 nM with an RSD of 17.26% could be measured with the Raman spectrometer. We envision that the proposed technique could emerge as an inexpensive alternative fabrication method of SERS substrates which can produce an enhanced LSPR field magnitude and scatter intense Raman signals from Raman active samples.
Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren
2015-12-01
Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.
Rehm, Markus; Huber, Heinrich J; Dussmann, Heiko; Prehn, Jochen H M
2006-01-01
Activation of effector caspases is a final step during apoptosis. Single-cell imaging studies have demonstrated that this process may occur as a rapid, all-or-none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome-dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase-3-dependent feedback signalling and the X-linked-inhibitor-of-apoptosis-protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single-cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all-or-none response, with concentrations as high as 0.15 μM enabling, but concentrations >0.30 μM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo. PMID:16932741
Singh, Divya; Chaudhury, Srabanti
2017-04-14
We study the temporal fluctuations in catalytic rates for single enzyme reactions undergoing slow transitions between two active states. We use a first passage time distribution formalism to obtain the closed-form analytical expressions of the mean reaction time and the randomness parameter for reaction schemes where conformational fluctuations are present between two free enzyme conformers. Our studies confirm that the sole presence of free enzyme fluctuations yields a non Michaelis-Menten equation and can lead to dynamic cooperativity. The randomness parameter, which is a measure of the dynamic disorder in the system, converges to unity at a high substrate concentration. If slow fluctuations are present between the enzyme-substrate conformers (off-pathway mechanism), dynamic disorder is present at a high substrate concentration. Our results confirm that the dynamic disorder at a high substrate concentration is determined only by the slow fluctuations between the enzyme-substrate conformers and the randomness parameter is greater than unity. Slow conformational fluctuations between free enzymes are responsible for the emergence of dynamic cooperativity in single enzymes. Our theoretical findings are well supported by comparison with experimental data on the single enzyme beta-galactosidase.
Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.
Bouzier-Sore, Anne-Karine; Voisin, Pierre; Canioni, Paul; Magistretti, Pierre J; Pellerin, Luc
2003-11-01
The authors investigated concomitant lactate and glucose metabolism in primary neuronal cultures using 13C- and 1H-NMR spectroscopy. Neurons were incubated in a medium containing either [1-13C]glucose and different unlabeled lactate concentrations, or unlabeled glucose and different [3-13C]lactate concentrations. Overall, 13C-NMR spectra of cellular extracts showed that more 13C was incorporated into glutamate when lactate was the enriched substrate. Glutamate 13C-enrichment was also found to be much higher in lactate-labeled than in glucose-labeled conditions. When glucose and lactate concentrations were identical (5.5 mmol/L), relative contributions of glucose and lactate to neuronal oxidative metabolism amounted to 21% and 79%, respectively. Results clearly indicate that when neurons are in the presence of both glucose and lactate, they preferentially use lactate as their main oxidative substrate.
Miao, J.; Barnhart, M.C.; Brunson, E.L.; Hardesty, D.K.; Ingersoll, C.G.; Wang, N.
2010-01-01
Acute 96-h ammonia toxicity to three-month-old juvenile mussels (Lampsilis siliquoidea) was evaluated in four treatments (water-only, water-only with feeding, water and soil, and water and sand) using an exposure unit designed to maintain consistent pH and ammonia concentrations in overlying water and in pore water surrounding the substrates. Median effect concentrations (EC50s) for total ammonia nitrogen in the four treatments ranged from 5.6 to 7.7mg/L and median lethal concentrations (LC50s) ranged from 7.0 to 11mg/L at a mean pH of 8.4. Similar EC50s or LC50s with overlapping 95% confidence intervals among treatments indicated no influence of substrate on the response of mussels in acute exposures to ammonia. ?? 2010 SETAC.
Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.
Lisboa, Maria Sol; Lansing, Stephanie
2014-07-01
Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.
Tapia, Y; Eymar, E; Gárate, A; Masaguer, A
2013-05-01
To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.
Magneto-optic evaluation of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate
NASA Astrophysics Data System (ADS)
Balasubramanian, Srinath; Panmand, Rajendra; Kumar, Ganapathy; Mahajan, Satish M.; Kale, Bharat B.
2016-03-01
This paper presents a prima facie study of the magneto-optic response of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate investigated by MOKE. The concentrations of the iron oxide nanoparticles in the films were varied from 8.6% to 21.5% and showed a linear increase in film thicknesses. As the concentration of the iron oxide nanoparticles were increased, the samples changed from a net-like morphology to a crystalline morphology. Magnetization reversals in the lower concentration samples were asymmetric with the reversals for the ascending and descending branch of the hysteresis loop occurring on the same side. The asymmetry in the magnetization reversal was attributed to the angle between the antiferromagnetic easy axis and the external magnetic field. With increase in concentration, an improvement in the magneto-optic response was observed with the magnetization reversal occurring via coherent rotation for both ascending and descending branches of the hysteresis loop. The changes in the magneto-optic behavior for the samples with higher concentrations is attributed to the strong exchange interactions and changes in the shape of the nanoparticles. Sensitivity studies performed on the samples showed an increased magneto-optic sensitivity to changes in magnetic field for samples of higher concentration. The high sensitivity of these samples could be exploited in magneto-optic sensors. Nanoparticles on a quartz substrate could find applications in bio-medicine due to their bio-compatibility.
Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che
2008-08-01
Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.
NASA Technical Reports Server (NTRS)
Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.
1992-01-01
The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.
Michel-Cuello, Christian; Ortiz-Cerda, Imelda; Moreno-Vilet, Lorena; Grajales-Lagunes, Alicia; Moscosa-Santillán, Mario; Bonnin, Johanne; González-Chávez, Marco Martín; Ruiz-Cabrera, Miguel
2012-01-01
Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60°C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P < 0.01). The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars. PMID:22629216
Apparatus to collect, classify, concentrate, and characterize gas-borne particles
Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.
2003-12-16
An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.
Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M
2010-09-01
Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.
Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C
2015-06-01
Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com
2016-07-06
p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobo, R.; Revah, S.; Viveros-Garcia, T.
An analysis of the local processes occurring in a trickle-bed bioreactor (TBB) with a first-order bioreaction shows that the identification of the TBB operating regime requires knowledge of the substrate concentration in the liquid phase. If the substrate liquid concentration is close to 0, the rate-controlling step is mass transfer at the gas-liquid interface; when it is close to the value in equilibrium with the gas phase, the controlling step is the phenomena occurring in the biofilm, CS{sub 2} removal rate data obtained in a TBB with a Thiobacilii consortia biofilm are analyzed to obtain the mass transfer and kineticmore » parameters, and to show that the bioreactor operates in a regime mainly controlled by mass transfer. A TBB model with two experimentally determined parameters is developed and used to show how the bioreactor size depends on the rate-limiting step, the absorption factor, the substrate fractional conversion, and on the gas and liquid contact pattern. Under certain conditions, the TBB size is independent of the flowing phases` contact pattern. The model effectively describes substrate gas and liquid concentration data for mass transfer and biodegradation rate controlled processes.« less
NASA Astrophysics Data System (ADS)
Perez-Mayen, Leonardo; Oliva, Jorge; Salas, P.; de La Rosa, Elder
2016-06-01
This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the interaction of glucose with albumin, and the appropriate separation distance between the glucose molecules and gold nanoparticles. The presence of such peptide conjugates was confirmed by FTIR spectra. Thus, our results suggest that our SERS substrates can be useful for the detection of very low concentrations of glucose, which is important for the diagnosis of diabetes in the field of medicine.This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the interaction of glucose with albumin, and the appropriate separation distance between the glucose molecules and gold nanoparticles. The presence of such peptide conjugates was confirmed by FTIR spectra. Thus, our results suggest that our SERS substrates can be useful for the detection of very low concentrations of glucose, which is important for the diagnosis of diabetes in the field of medicine. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00163g
Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging
Savolainen, Heli; Cantore, Mariangela; van de Steeg, Evita; Colabufo, Nicola A.; Elsinga, Philip H.; Windhorst, Albert D.
2017-01-01
Positron emission tomography (PET) imaging of P-glycoprotein (P-gp) in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer´s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro assays where these tracers are characterized, are usually performed at micromolar concentration, causing often discrepant in vivo and in vitro data. We had in vivo rodent PET data of [11C]verapamil, (R)-N-[18F]fluoroethylverapamil, (R)-O-[18F]fluoroethyl-norverapamil, [18F]MC225 and [18F]MC224 and we included also two new molecules [18F]MC198 and [18F]KE64 in this study. To improve the predictive value of in vitro assays, we labeled all the tracers with tritium and performed bidirectional substrate transport assay in MDCKII-MDR1 cells at three different concentrations (0.01, 1 and 50 µM) and also inhibition assay with P-gp inhibitors. As a comparison, we used non-radioactive molecules in transport assay in Caco-2 cells at a concentration of 10 µM and in calcein-AM inhibition assay in MDCKII-MDR1 cells. All the P-gp substrates were transported dose-dependently. At the highest concentration (50 µM), P-gp was saturated in a similar way as after treatment with P-gp inhibitors. Best in vivo correlation was obtained with the bidirectional transport assay at a concentration of 0.01 µM. One micromolar concentration in a transport assay or calcein-AM assay alone is not sufficient for correct in vivo prediction of substrate P-gp PET ligands. PMID:29036881
Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors.
Wijeyekoon, Suren; Carere, Carlo R; West, Mark; Nath, Shresta; Gapes, Daniel
2018-09-01
Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.
Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M
2018-02-12
Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.
Vacancies in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru
The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less
Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.
2014-01-01
Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25–38 days) with ECMO received [2-13C]lactate, [2,4,6,8-13C4]octanoate (medium-chain fatty acid), and [U-13C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg−1·h−1) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning. PMID:24531815
Kajimoto, Masaki; Priddy, Colleen M O'Kelly; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Portman, Michael A
2014-04-15
Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25-38 days) with ECMO received [2-(13)C]lactate, [2,4,6,8-(13)C4]octanoate (medium-chain fatty acid), and [U-(13)C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg(-1)·h(-1)) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning.
Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
Bradshaw, Patrick C; Pfeiffer, Douglas R
2013-12-01
When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.
Technology development of fabrication techniques for advanced solar dynamic concentrators
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1991-01-01
The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.
NASA Astrophysics Data System (ADS)
Kong, Lingwei; Wang, Lu; Zhang, Yi; Mei, Rongwu; Zhang, Yu
2018-06-01
In this study, a new coupling system of biological filter bed and subsurface-flow constructed wetland based on the self-ventilation network was proposed, and the comparative pollutant removal efficiency at low and high influent concentration of the pilot coupling system with different substrates configurations were investigated. The study found that: The comparison system (b) had better removal rates than that of the original system (a), and the removal rate when treating low influent concentration was 74.10%, 94.14%, 73.57% and 69.53%, while in high influent concentration case was 81.30%, 90.28%, 88.57% and 75.36% for CODCr , NH4+ -N, TN and TP, respectively. The removal of the above main water indexes of the comparison system (b) promoted by 11.00%, 11.55%, 2.69% and 8.09% respectively in low influent concentration case and 4.20%, 9.20%, 7.66% and 13.61% respectively in high influent concentration case when comparing to the original system (a), which showed that the optimized configuration of various kinds of substrates was significant and was more beneficial to the degradation and removal of pollutants. The adsorption and interception function of substrates in the constructed wetland was the main way of phosphorus removal. The function of self-ventilation ensured the amount of DO in the coupling system, making the phosphorus removal was less affected comparing to structure of traditional wetland.
Chiney, Manoj S; Menon, Rajeev M; Bueno, Orlando F; Tong, Bo; Salem, Ahmed Hamed
2018-09-01
1. Venetoclax is a novel, small molecule B-cell lymphoma-2 (BCL-2) inhibitor that has demonstrated clinical efficacy in a variety of haematological malignancies. Since venetoclax is an inhibitor of P glycoprotein (P-gp) transporter, a study was conducted in healthy, female volunteers to evaluate the effect of venetoclax on the pharmacokinetics of digoxin, a P-gp probe substrate. 2. Volunteers received a single oral dose of digoxin (0.5 mg) with or without a single oral dose of venetoclax (100 mg). Serial blood samples were obtained for pharmacokinetic assessments of digoxin and venetoclax and serial urine samples were obtained for measurement of digoxin concentrations. Safety was assessed throughout the study. 3. Coadministration of digoxin and venetoclax increased digoxin maximum observed plasma concentration (C max ) by 35% and area under the plasma-concentration time curve (AUC 0-∞) by 9%. Digoxin half-life, renal clearance and the fraction excreted unchanged in urine remained relatively similar. The results of this study indicate that venetoclax can increase the concentrations of P-gp substrates. Narrow therapeutic index P-gp substrates should be administered six hours prior to venetoclax to minimise the potential interaction.
Rapid detection of salmonella using SERS with silver nano-substrate
NASA Astrophysics Data System (ADS)
Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.
2011-06-01
Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.
Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn
2016-01-01
An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h. PMID:27603922
NASA Astrophysics Data System (ADS)
Hu, Cheng-Yu; Nakatani, Katsutoshi; Kawai, Hiroji; Ao, Jin-Ping; Ohno, Yasuo
To improve the high voltage performance of AlGaN/GaN heterojunction field effect transistors (HFETs), we have fabricated AlGaN/GaN HFETs with p-GaN epi-layer on sapphire substrate with an ohmic contact to the p-GaN (p-sub HFET). Substrate bias dependent threshold voltage variation (VT-VSUB) was used to directly determine the doping concentration profile in the buffer layer. This VT-VSUB method was developed from Si MOSFET. For HFETs, the insulator is formed by epitaxially grown and heterogeneous semiconductor layer while for Si MOSFETs the insulator is amorphous SiO2. Except that HFETs have higher channel mobility due to the epitaxial insulator/semiconductor interface, HFETs and Si MOSFETs are basically the same in the respect of device physics. Based on these considerations, the feasibility of this VT-VSUB method for AlGaN/GaN HFETs was discussed. In the end, the buffer layer doping concentration was measured to be 2 × 1017cm-3, p-type, which is well consistent with the Mg concentration obtained from secondary ion mass spectroscopy (SIMS) measurement.
Biohydrogen Production from Pineapple Waste: Effect of Substrate Concentration and Acid Pretreatment
NASA Astrophysics Data System (ADS)
Cahyari, K.; Putri, A. M.; Oktaviani, E. D.; Hidayat, M. A.; Norajsha, J. D.
2018-05-01
Biohydrogen is the ultimate choice of energy carrier in future due to its superior qualities such as fewer greenhouse gases emission, high energy density (142 kJ/gram), and high energy conversion using a fuel cell. Production of biohydrogen from organic waste e.g. pineapple waste offers a simultaneous solution for renewable energy production and waste management. It is estimated that pineapple cultivation in Indonesia generated more than 1 million ton/year comprising of rotten pineapple fruit, leaves, and stems. Majority of this waste is dumped into landfill area without any treatments which lead to many environmental problems. This research was meant to investigate the utilization of pineapple waste i.e. peel and the core of pineapple fruit and leaves to produce biohydrogen through mesophilic dark fermentation (30°C, 1 atm, pH 5.0). Effect of dilute acid treatment and substrate concentration was particularly investigated in these experiments. Peel and core of pineapple waste were subjected to fermentation at 3 various substrate concentration i.e. 8.8, 17.6 and 26.4-gram VS/liter. Meanwhile, pineapple leaves were pretreated using dilute acid (H2SO4) at 0.2, 0.3 and 0.4 N and followed by dark fermentation. Results show that the highest yield of biohydrogen was obtained at a substrate concentration of 26.4-gram VS/liter both for peel and core of the waste. Pretreatment using dilute acid (H2SO4) 0.3 N might improve fermentation process with a higher yield at 0.8 ml/gram VS. Hydrogen percentage in biogas produced during fermentation process was in the range between 5 – 32% of volume ratio. In summary, it is possible to utilize pineapple waste for production of biohydrogen at an optimum substrate concentration of 26.4-gram VS/liter and acid pretreatment (H2SO4) of 0.3 N.
Mpenyana-Monyatsi, Lizzy; Mthombeni, Nomcebo H.; Onyango, Maurice S.; Momba, Maggy N. B.
2012-01-01
The contamination of groundwater sources by pathogenic bacteria poses a public health concern to communities who depend totally on this water supply. In the present study, potentially low-cost filter materials coated with silver nanoparticles were developed for the disinfection of groundwater. Silver nanoparticles were deposited on zeolite, sand, fibreglass, anion and cation resin substrates in various concentrations (0.01 mM, 0.03 mM, 0.05 mM and 0.1 mM) of AgNO3. These substrates were characterised by SEM, EDS, TEM, particle size distribution and XRD analyses. In the first phase, the five substrates coated with various concentrations of AgNO3 were tested against E. coli spiked in synthetic water to determine the best loading concentration that could remove pathogenic bacteria completely from test water. The results revealed that all filters were able to decrease the concentration of E. coli from synthetic water, with a higher removal efficiency achieved at 0.1 mM (21–100%) and a lower efficiency at 0.01 mM (7–50%) concentrations. The cation resin-silver nanoparticle filter was found to remove this pathogenic bacterium at the highest rate, namely 100%. In the second phase, only the best performing concentration of 0.1 mM was considered and tested against presumptive E. coli, S. typhimurium, S. dysenteriae and V. cholerae from groundwater. The results revealed the highest bacteria removal efficiency by the Ag/cation resin filter with complete (100%) removal of all targeted bacteria and the lowest by the Ag/zeolite filter with an 8% to 67% removal rate. This study therefore suggests that the filter system with Ag/cation resin substrate can be used as a potential alternative cost-effective filter for the disinfection of groundwater and production of safe drinking water. PMID:22470290
A model of extracellular enzymes in free-living microbes: which strategy pays off?
Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A
2015-11-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee
2018-01-01
A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.
Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.
Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan
2017-06-03
Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.
NASA Technical Reports Server (NTRS)
Bell, D. M.; Bedard, R. J., Jr.
1981-01-01
The prototype fabrication of a lightweight, high-quality cellular glass substrate reflective panel for use in an advanced point-focusing solar concentrator was completed. The reflective panel is a gore shaped segment of an 11-m paraboloidal dish. The overall concentrator design and the design of the reflective panels are described. prototype-specific panel design modifications are discussed and the fabrication approach and procedure outlined.
Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.
Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook
2012-01-01
In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.
Influence of substrate exposure history on biodegradation in a porous medium
NASA Astrophysics Data System (ADS)
Park, J.; Chen, Y.-M.; Kukor, J. J.; Abriola, L. M.
2001-10-01
This study investigates the influence of fluctuating toluene concentrations on aerobic toluene degradation in a sandy porous medium colonized with Ralstonia pickettii PKO1. Column effluent toluene concentrations were found to increase after a temporary decrease in influent toluene concentration. Subsequent examination of the spatial gradient of toluene degradative activity in the column suggested that the observed increase in effluent toluene concentrations was attributable to an adverse effect of toluene limitation on the biodegradative activity of attached cells. The traditional Michaelis-Menten-type biodegradation equation associated with batch-measured Vmax (2.26 mg toluene/mg living cell/day) and KS (1.20 mg toluene/l) of nonstarved cells was unable to predict the observed toluene breakthrough behavior when the column had been previously exposed to no-toluene conditions. An alternative modeling approach was developed based upon the assumptions that (i) degradative activity was completely deactivated within the no-toluene exposure period (53.5 h) and (ii) a lag-phase was present prior to the subsequent reactivation of degradative activity in previously toluene-starved cells. These assumptions were independently verified by batch microbial investigations, and the modified model provided a good fit to the same observed toluene breakthrough curve. Application of single lag-time and threshold concentration values, however, failed to predict observed toluene breakthrough under different toluene exposure conditions. Results of this experimental and modeling investigation suggested that substrate exposure history, including the length of the starvation period and the level of substrate concentration, affected the induction of biodegradation in the porous medium.
NASA Astrophysics Data System (ADS)
Zumbach, Volker; Schäfer, Jörg; Tobai, Jens; Ridder, Michael; Dreier, Thomas; Schaich, Thomas; Wolfrum, Jürgen; Ruf, Bernhard; Behrendt, Frank; Deutschman, Olaf; Warnatz, Jürgen
1997-10-01
A joint investigation has been undertaken of the gas-phase chemistry taking place in a hot-filament chemical vapor-deposition (HFCVD) process for diamond synthesis on silica surfaces by a detailed comparison of numerical modeling and experimental results. Molecular beam sampling using quadrupole mass spectroscopy and resonance-enhanced multiphoton ionization time of flight mass spectroscopy (REMPI-TOF-MS) has been used to determine absolute concentrations of stable hydrocarbons and radicals. Resulting species of a CH4/H2, a CH4/D2 (both 0.5%/99.5%) and a C2H2/H2 (0.25%/99.75%) feedgas mixture were investigated for varying filament and substrate temperatures. Spatially resolved temperature profiles at various substrate temperatures, obtained from coherent anti-Stokes Raman spectroscopy (CARS) of hydrogen, are used as input parameters for the numerical code to reproduce hydrogen atom, methyl radical, methane, acetylene, and ethylene concentration profiles in the boundary layer of the substrate. In addition, the concentration of vibrationally excited hydrogen is determined by CARS. Results reveal only qualitative agreement between measured data and simulations, concerning concentrations of stable species and radicals probed near the surface, on filament and substrate temperature dependence, respectively. Hydrogen and deuterium experiments show similar behaviour for all species. In the case of CH4 as feedgas the model describes measured concentration profiles of CH3, CH4, and C2H2 qualitatively well. Large differences between model and experiment occur for hydrogen atoms (factor of 2) and C2H4 (factor of 3). For acetylene as feedgas the model is not able to give any predictions because no conversion of C2H2 is seen in the model in contrast to the experiment.
Agarwal, A K
1976-12-15
Trehalase from the salivary glands and the midgut of Sesamia inferens showed optimum activity at pH 5.8, and at temperatures of 50 and 60 degrees C respectively. The increase in the incubation period, enzyme concentration, and substrate concentration respectively increased the end-product, the hydrolysis, and the rate of hydrolysis of the substrate. Dialysis did not affect, tryptophan accelerated, and other amino acids and end-product inhibited the enzyme activity.
Rola, Kaja; Osyczka, Piotr; Kafel, Alina
2016-02-01
Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes.
MINERALIZATION OF MTBE WITH VARIOUS PRIMARY SUBSTRATES
Five specialized bioreactors have been operated for over a year to evaluate the biodegradability of the fuel oxygenate methyl-t-butyl -t-butyl ether (MTBE) under difference substrate/co-substrate conditions. One bioreactor has been fed MTBE at an influent concentration of 150 ...
Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors.
de Hoog, H M; Nallani, M; Cornelissen, J J L M; Rowan, A E; Nolte, R J M; Arends, I W C E
2009-11-21
The encapsulation of chloroperoxidase from Caldariomyces fumago (CPO) in block copolymer polymersomes is reported. Fluorescence and electron microscopy show that when the encapsulating conditions favour self-assembly of the block copolymer, the enzyme is incorporated with concentrations that are 50 times higher than the enzyme concentration before encapsulation. The oxidation of two substrates by the encapsulated enzyme was studied: i) pyrogallol, a common substrate used to assay CPO enzymatic activity and ii) thioanisole, of which the product, (R)-methyl phenyl sulfoxide, is an important pharmaceutical intermediate. The CPO-loaded polymersomes showed distinct reactivity towards these substrates. While the oxidation of pyrogallol was limited by diffusion of the substrate into the polymersome, the rate-limiting step for the oxidation of thioansiole was the turnover by the enzyme.
Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert
2005-11-01
We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.
Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda
2017-07-01
Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.
Aerobic biological treatment of leachates from municipal solid waste landfill.
Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M
2004-01-01
The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).
Photoreflectance measurements of unintentional impurity concentrations in undoped GaAs
NASA Astrophysics Data System (ADS)
Sydor, Michael; Angelo, James; Mitchel, William; Haas, T. W.; Yen, Ming-Yuan
1989-07-01
Modulated photoreflectance is used to measure the unintentional impurity concentrations in undoped epitaxial GaAs. A photoreflectance signal above the band gap spreads with the unintentional impurity concentrations and shows well-defined Franz-Keldysh peaks whose separation provide a good measure of the current carrier concentrations. In samples less than 3-micron thick, a photoreflectance signal at the band edge contains a substrate-epilayer interface effect which precludes the analysis of the data by using the customary third derivative functional fits for low electric fields.
Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates
Owens, Peter; Phillipson, Nigel; Perumal, Jayakumar; O’Connor, Gerard M.; Olivo, Malini
2015-01-01
In this paper we describe a method for the determination of protein concentration using Surface Enhanced Raman Resonance Scattering (SERRS) immunoassays. We use two different Raman active linkers, 4-aminothiophenol and 6-mercaptopurine, to bind to a high sensitivity SERS substrate and investigate the influence of varying concentrations of p53 and EGFR on the Raman spectra. Perturbations in the spectra are due to the influence of protein–antibody binding on Raman linker molecules and are attributed to small changes in localised mechanical stress, which are enhanced by SERRS. These influences are greatest for peaks due to the C-S functional group and the Full Width Half Maximum (FWHM) was found to be inversely proportional to protein concentration. PMID:26516922
NASA Astrophysics Data System (ADS)
Zainal, S.; Musa, M.; Idris, J.; Hamid, K. H. Ku
2018-05-01
The purpose of this research are to recovery of pancreatic lipase inhibitor and to study the effect of using different concentration of substrate and reaction time on pancreatic lipase inhibitor. In this research, Aquilaria subintegra mature and fresh leaves was used as a sample. The research was conducted by using hydro-distillation with different concentrations, which are 100 µM, 200 µM and 300 µM and reaction times from 20, 40 and 60 minutes were studied. Based on the results obtained for the samples of phenol, flavonoid, gallic acid and quercetin were 49.30 µg/ml, 314.33 µg/ml, 12.94 µg/ml, and 5.15 µg/ml, respectively.
NASA Astrophysics Data System (ADS)
Friend, James; Yeo, Leslie; Li, Haiyan
2007-11-01
A rapid particle concentration method in sessile droplets and confined fluid chambers has been developed using asymmetric surface wave propagation on a substrate upon which the droplet is placed. Nanometre-order vibration induced along the substrate at frequencies from 8 to 125 MHz generate a combination of forces upon suspended particles and the fluid droplet itself via diffraction to provide localized agglomeration of nanoparticles into microstructures, followed by rapid collection of the microstructures to a single point at the centre of the droplet in about 2 to 30 seconds. This is far faster than other currently available particle concentration mechanisms due to the large convective velocities achieved using the device. The ability to control the collection via surface wave power and the effect of scale on the collection time and scheme of agglomeration are explained via a physical model, verified using fluorescent polystyrene particles from 20 nm to 45 microns in diameter. The usefulness of the method for bioparticles is illustrated through rapid concentration of yeast and mouse mesenchymal stem cells which remain viable and functional after concentration.
Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki
2017-03-01
Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.
NASA Astrophysics Data System (ADS)
Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid
2018-03-01
Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.
NASA Astrophysics Data System (ADS)
Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro
2017-07-01
Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.
Akobi, Chinaza; Hafez, Hisham; Nakhla, George
2016-12-01
This study evaluated the impact of furfural (a furan derivative) on hydrogen production rates and yields at initial substrate-to-microorganism ratios (S°/X°) of 4, 2, 1, and 0.5gCOD/gVSS and furfural concentrations of 4, 2, 1, and 0.5g/L. Fermentation studies were carried out in batches using synthetic lignocellulosic hydrolysate as substrate and mesophilic anaerobic digester sludge as seed. Contrary to other literature studies where furfural was inhibitory, this study showed that furfural concentrations of up to 1g/L enhanced hydrogen production with yields as high as 19% from the control (batch without furfural). Plots of hydrogen yields against gfurfural/gsugars and hydrogen yields versus gfurfural/gbiomass showed negative linear correlation indicating that these parameters influence biohydrogen production. Regression analysis indicated that gfurfural/gsugars initial exerted a greater effect on the degree of inhibition of hydrogen production than gfurfural/gVSS final . Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Kai; Escola Casas, Monica; Ooi, Gordon T H; Kaarsholm, Kamilla M S; Bester, Kai; Andersen, Henrik R
2017-05-01
The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were increasing with increased humic acid concentrations. At the highest humic acid concentration (30mgC/L), the biodegradation rate constants were four times higher than the biodegradation rate constants without added humic acid. This shows that the presence of complex substrate stimulates degradation via a co-metabolism-like mechanism and competitive inhibition does not occur. Increases of rate constant per mgC/L are tentatively calculated. Copyright © 2017 Elsevier GmbH. All rights reserved.
Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota.
Lin, Chiu-Yue; Lay, Chyi-How; Sung, I-Yuan; Sen, Biswarup; Chen, Chin-Chao
2017-10-01
The cultivation of mushrooms generates large amounts of waste polypropylene bags stuffed with wood flour and bacterial nutrients that makes the mushroom waste (MW) a potential feedstock for anaerobic bioH 2 fermentation. MW indigenous bacteria were enriched using thermophilic temperature (55°C) for use as the seed inoculum without any external seeding. The peak hydrogen production rate (6.84 mmol H 2 /L-d) was obtained with cultivation pH 8 and substrate concentration of 60 g MW/L in batch fermentation. Hydrogen production yield (HY) is pH and substrate concentration dependent with an HY decline occurring at pH and substrate concentration increasing from pH 8 to 10 and 60 to 80 g MW/L, respectively. The fermentation bioH 2 production from MW is in an acetate-type metabolic path. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.
Wang, Tao; Sun, Jibin; Yuan, Jingqi
2015-04-01
This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.
Gelain, Lucas; da Cruz Pradella, José Geraldo; da Costa, Aline Carvalho
2015-12-01
A mathematical model to describe the kinetics of enzyme production by the filamentous fungus Trichoderma harzianum P49P11 was developed using a low cost substrate as main carbon source (pretreated sugarcane bagasse). The model describes the cell growth, variation of substrate concentration and production of three kinds of enzymes (cellulases, beta-glucosidase and xylanase) in different sugarcane bagasse concentrations (5; 10; 20; 30; 40 gL(-1)). The 10 gL(-1) concentration was used to validate the model and the other to parameter estimation. The model for enzyme production has terms implicitly representing induction and repression. Substrate variation was represented by a simple degradation rate. The models seem to represent well the kinetics with a good fit for the majority of the assays. Validation results indicate that the models are adequate to represent the kinetics for a biotechnological process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patra, Amlan Kumar; Yu, Zhongtang
2013-07-01
Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but TMP tended to increase due to increasing bicarbonate concentration. Although total VFA concentration and molar percentage of butyrate were unchanged, the molar percentage of acetate, and acetate-to-propionate ratio decreased, whereas the molar percentage of propionate increased quadratically with increasing bicarbonate concentration. This study demonstrated for the first time that headspace composition, especially CO2 content, and bicarbonate concentration in media could significantly influence gas and methane production, and rumen fermentation in gas production techniques. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates.
Andersen, Rokhsana J; Brask, Jesper
2016-06-01
Three racemic fluorogenic triglycerides are synthesized and evaluated as lipase assay substrates. The presented synthesis route goes through a key triglyceride intermediate which can be chemoselectively functionalized with a wide range of different probes. Hence the substrate can be tailor-made for a specific assay, or focus can be on low cost in larger scale for applications in high-throughput screening (HTS) assays. In the specific examples, TG-ED, TG-FD and TG-F2 are assembled with the Edans-Dabcyl or the fluorescein-Dabcyl FRET pair, or relying on fluorescein self-quenching, respectively. Proof-of-concept assays allowed determination of 1st order kinetic parameters (kcat/KM) of 460s(-1)M(-1), 59s(-1)M(-1) and 346s(-1)M(-1), respectively, for the three substrates. Commercially available EnzChek lipase substrate provided 204s(-1)M(-1). Substrate concentration was identified as a critical parameter, with measured reaction rates decreasing at higher concentrations when intermolecular quenching becomes significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pilsner, B. H.
1985-01-01
The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.
Weisser, K; Schloos, J
1991-10-09
The relationship between serum angiotensin converting enzyme (ACE) activity and concentration of the ACE inhibitor enalaprilat was determined in vitro in the presence of different concentrations (S = 4-200 mM) of the substrate Hip-Gly-Gly. From Henderson plots, a competitive tight-binding relationship between enalaprilat and serum ACE was found yielding a value of approximately 5 nM for serum ACE concentration (Et) and an inhibition constant (Ki) for enalaprilat of approximately 0.1 nM. A plot of reaction velocity (Vi) versus total inhibitor concentration (It) exhibited a non-parallel shift of the inhibition curve to the right with increasing S. This was reflected by apparent Hill coefficients greater than 1 when the commonly used inhibitory sigmoid concentration-effect model (Emax model) was applied to the data. Slopes greater than 1 were obviously due to discrepancies between the free inhibitor concentration (If) present in the assay and It plotted on the abscissa and could, therefore, be indicators of tight-binding conditions. Thus, the sigmoid Emax model leads to an overestimation of Ki. Therefore, a modification of the inhibitory sigmoid Emax model (called "Emax tight model") was applied, which accounts for the depletion of If by binding, refers to It and allows estimation of the parameters Et and IC50f (free concentration of inhibitor when 50% inhibition occurs) using non-linear regression analysis. This model could describe the non-symmetrical shape of the inhibition curves and the results for Ki and Et correlated very well with those derived from the Henderson plots. The latter findings confirm that the degree of ACE inhibition measured in vitro is, in fact, dependent on the concentration of substrate and enzyme present in the assay. This is of importance not only for the correct evaluation of Ki but also for the interpretation of the time course of serum ACE inhibition measured ex vivo. The non-linear model has some advantages over the linear Henderson equation: it is directly applicable without conversion of the data and avoids the stochastic dependency of the variables, allowing non-linear regression of all data points contributing with the same weight.
Chronobiology, endocrinology, and energy- and food-reward homeostasis.
Gonnissen, H K J; Hulshof, T; Westerterp-Plantenga, M S
2013-05-01
Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.
Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben
2010-01-01
We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866
MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.
2014-04-01
Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.
Emperle, Max; Rajavelu, Arumugam; Reinhardt, Richard; Jurkowska, Renata Z; Jeltsch, Albert
2014-10-24
The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Manoj, Kelath Murali; Parashar, Abhinav; Venkatachalam, Avanthika; Goyal, Sahil; Satyalipsu; Singh, Preeti Gunjan; Gade, Sudeep K; Periyasami, Kalaiselvi; Jacob, Reeba Susan; Sardar, Debosmita; Singh, Shanikant; Kumar, Rajan; Gideon, Daniel A
2016-06-01
Peroxidations mediated by heme-enzymes have been traditionally studied under a single-site (heme distal pocket), non-sequential (ping-pong), two-substrates binding scheme of Michaelis-Menten paradigm. We had reported unusual modulations of peroxidase and P450 reaction outcomes and explained it invoking diffusible reactive species [Manoj, 2006; Manoj et al., 2010; Andrew et al., 2011, Parashar et al., 2014 & Venkatachalam et al., 2016]. A systematic investigation of specific product formation rates was undertaken to probe the hypothesis that involvement of diffusible reactive species could explain undefined substrate specificities and maverick modulations (sponsored by additives) of heme-enzymes. When the rate of specific product formation was studied as a function of reactants' concentration or environmental conditions, we noted marked deviations from normal profiles. We report that heme-enzyme mediated peroxidations of various substrates are inhibited (or activated) by sub-equivalent concentrations of diverse redox-active additives and this is owing to multiple redox equilibriums in the milieu. At low enzyme and peroxide concentrations, the enzyme is seen to recycle via a one-electron (oxidase) cycle, which does not require the substrate to access the heme centre. Schemes are provided that explain the complex mechanistic cycle, kinetics & stoichiometry. It is not obligatory for an inhibitor or substrate to interact with the heme centre for influencing overall catalysis. Roles of diffusible reactive species explain catalytic outcomes at low enzyme and reactant concentrations. The current work highlights the scope/importance of redox enzyme reactions that could occur "out of the active site" in biological or in situ systems. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Yeast Acid Phosphatase in a Student Laboratory.
ERIC Educational Resources Information Center
Barbaric, Sloeodan; Ries, Blanka
1988-01-01
Examines the influence of enzyme and substrate concentrations, pH, temperature, and inhibitors on catalytic activity. Follows the influence of different phosphate concentrations in the growth medium on enzyme activity. Studies regulation of enzyme synthesis by repression. Includes methodology for six experiments. (MVL)
Process for the fermentative production of acetone, butanol and ethanol
Glassner, David A.; Jain, Mahendra K.; Datta, Rathin
1991-01-01
A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.
Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.
2015-01-01
Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837
Pei, Donghui; Xie, Han; Song, Haihai; Xu, Heng; Wu, Yumeng
2015-02-01
Lentinus edodes is one of the most popular edible mushrooms in the market. However, it contains heavy metals that are poisonous to humans even at trace concentrations. The concentrations and bioconcentration factors of five heavy metals in cultivated L. edodes in Chengdu were studied, and the potential health risks to local residents associated with the cultivated L. edodes consumption were evaluated. Total concentrations of cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), and mercury were determined in the fruiting bodies and the substrate from three agricultural areas. Fruiting bodies samples were collected at different growing times (2, 4, 6, and 8 days). The bioconcentration factors of heavy metals from the substrate to the fruiting bodies were estimated, and the potential health risks of local L. edodes were assessed. Because antioxidant enzymes can resist the creation of reactive oxygen species and defend against heavy metals, the activities of three antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) in the fruiting bodies were also determined. A gradual change in heavy metal concentrations occurred across the growing time of the fruiting bodies. Cd transferred from the substrate to the fruiting bodies in larger concentrations than did Pb, Cr, and As. However, Chengdu residents were not exposed to significant health risks associated with consumption of local L. edodes. Nevertheless, more attention should be focused on children because of their higher sensitivity to metal pollutants.
Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi
2018-02-01
1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.
Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.
Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai
2017-09-01
To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.
A study of monoamine oxidase activity in fetal membranes.
Sekizawa, A; Ishikawa, H; Morimoto, T; Hirose, K; Suzuki, A; Saito, H; Yanaihara, T; Arai, Y; Oguchi, K
1996-05-01
To study the role of decidual monoamine oxidase (MAO)-A and -B activities before delivery, the relationship between MAO activity in fetal membranes and catecholamine (CA) concentration in amniotic fluid (AF) was determined. Fetal membranes and AF were obtained at the time of elective Cesarean section (CS group, n = 11) and Cesarean section due to fetal distress without labor pains (FD group, n = 5). MAO-A and -B activities were radiometrically measured using 14C-5-hydroxytriptamine for MAO-A substrate and 14C-benzylamine for MAO-B substrate. CA concentrations in AF were measured by high performance liquid chromatograph with an electro-chemical detector. Both MAO-A and -B activities in decidua obtained from CS were significantly lower than those obtained from FD. Both norepinephrine (NE) and epinephrine (EP) concentrations were significantly lower in the CS group than the FD group. A significant positive correlation between decidual MAO-A activity and NE concentration in AF was observed. No significant correlation was observed between MAO-B activity and the concentration of NE in AF. There was no correlation between EP concentrations and MAO activities. These results suggest that CA concentration in AF may be related to the activity of MAO in fetal membranes, determined by certain physiological processes during pregnancy. It has been suggested that metabolism of monoamines in fetal membranes also plays an important role in reducing monoamine influx into maternal myometrium from the AF.
Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu
2017-08-01
In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.
Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.
Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand
2017-05-01
Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.
Single-molecule imaging at high fluorophore concentrations by local activation of dye
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.
Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less
Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii
NASA Astrophysics Data System (ADS)
Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili
2013-05-01
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
Biohydrogen production from lactose: influence of substrate and nitrogen concentration.
Moreno, R; Fierro, J; Fernández, C; Cuetos, M J; Gómez, X
2015-01-01
Hydrogen produced from renewable sources may be considered the energy vector of the future. However, reducing process costs is imperative in order to achieve this goal. In the present research, the effect of nitrogen (N), initial pH and substrate content for starting up the dark fermentative process was studied using the response surface methodology. Anaerobic digested dried sludge (biosolid pellets) was used as the inoculum. Synthetic wastewater was used as the substrate in batch reactors. A decrease in H2 production was observed with the increase in N and lactose concentrations. This drop was considerably greater when the concentration of lactose was at its lower level. Although the increase in lactose concentration results in a lower H2 production, the effect of N on the response is attenuated at higher levels of lactose. On the other hand, the effect of initial pH on the fermentation system was not significant. The evaluation on the process under semi-continuous conditions was performed using anaerobic sequencing batch reactors (ASBRs). The process was evaluated at different C/N ratios using synthetic wastewater. Results showed higher hydrogen yields with the gradual decrease in nitrogen content. The addition of cheese whey to the ASBR resulted in a H2 production rate of 0.18 L H2 L(-1) d(-1).
Single-molecule imaging at high fluorophore concentrations by local activation of dye
Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; ...
2015-02-17
Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less
Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.
Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic
2018-06-05
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng
2015-01-01
This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.
NASA Astrophysics Data System (ADS)
Jin, Q.; Zheng, Z.; Zhu, C.
2006-12-01
Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the NABIR program, DOE, under grant No. DE-FG02-04ER63740 to CZ. We thank J. Istok, David Watson, and Philip Jardine for their help. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DOE.
Anaerobic monodigestion of poultry manure: determination of operational parameters for CSTR.
Chamy, R; León, C; Vivanco, E; Poirrier, P; Ramos, C
2012-01-01
In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH(3)-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH(4)(+)) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m(3)d. Higher TS and NH(4)(+) concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO(3)) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m(3)(CH4)/m(3)(R)d is achieved.
Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).
Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer
2011-12-15
Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations <900 mg kg(-1) only <10% of the poplar leaf area showed signs of toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.
NASA Technical Reports Server (NTRS)
1980-01-01
The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.
Evaluation of cotton stalk hydrolysate for xylitol production.
Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent
2016-07-03
Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.
Electron concentration in highly resistive GaN substrates co-doped with Si, C, and Fe
NASA Astrophysics Data System (ADS)
Tokuda, Hirokuni; Suzuki, Kosuke; Asubar, Joel T.; Kuzuhara, Masaaki
2018-07-01
Electron concentration in highly resistive GaN substrates with intentional iron (Fe) dopants as well as unintentionally incorporated silicon (Si) and carbon (C) dopants has been investigated. Si, C, and Fe atomic concentrations were 2 × 1017, 1 × 1016, and 1 × 1019 cm‑3, respectively as measured by secondary ion mass spectroscopy (SIMS). Temperature dependence of current–voltage (I–V) characteristics revealed that the resistivity (ρ) was 3.8 × 109 Ω cm at 300 K and monotonously decreased to 3.1 × 104 Ω cm at 570 K, giving an activation energy of 0.63 eV. Electron concentration (n) was modeled using analytical equation assuming three impurity levels of Si donor, C and Fe acceptors. The n of 5.0 × 107 and 3.1 × 1012 cm‑3 at 300 and 570 K, respectively, with an effective activation energy of 0.60 eV, were derived based on the model. These calculated electron concentration values are in good agreement with the experimental results. In addition, quantitatively analyzed results revealed that around 2 orders of magnitude reduction of n is expected by increasing doping concentration of Fe from 1.0 × 1018 to 1.0 × 1020 cm‑3.
Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao
2013-01-01
Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.
USDA-ARS?s Scientific Manuscript database
Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...
High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method
NASA Astrophysics Data System (ADS)
Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.
2015-11-01
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.
LUSH-based SPR sensor for the detection of alcohols and pheromone
NASA Astrophysics Data System (ADS)
Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok
2013-05-01
Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.
Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L
2010-11-01
An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).
Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot.
Teng, Fei; Zhu, Qunyan; Wang, Yalei; Du, Juan; Lu, Nan
2018-03-01
Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI TOF MS) has become one of the most important analytical methods due to its less interference at low molecular weight range. However, it is still a challenge to obtain a good reproducibility of SALDI TOF MS because of the inhomogeneous distribution of analyte molecules induced by coffee ring effect. We propose a universal and reliable method to eliminate the coffee ring effect by concentrating all the analyte molecules within the laser spot. This method exhibits an excellent reproducibility of spot-to-spot and substrate-to-substrate, and the relative standard deviations (RSDs) for different concentrations are lower than 12.6%. It also performs good linear dependency (R 2 > 0.98) in the log-log plot with the concentration range of 1nM to 1μM, and the limit of detection for R6G is down to 1fmol. Copyright © 2017 Elsevier B.V. All rights reserved.
Dikshit, Pritam Kumar; Padhi, Susant Kumar; Moholkar, Vijayanand S
2017-11-01
In present study, statistical optimization of biodiesel-derived crude glycerol fermentation to DHA by immobilized G. oxydans cells over polyurethane foam is reported. Effect of DHA (product) inhibition on crude glycerol fermentation was analyzed using conventional biokinetic models and new model that accounts for both substrate and product inhibition. Optimum values of fermentation parameters were: pH=4.7, temperature=31°C, initial substrate concentration=20g/L. At optimum conditions, DHA yield was 89% (17.83g/L). Effect of product inhibition on fermentation was trivial for DHA concentrations ≤30g/L. At higher concentrations (≥50g/L), kinetics and yield of fermentation showed marked reduction with sharp drop in V max and K S values. Inhibition effect was more pronounced for immobilized cells due to restricted transport of fermentation mixture across polyurethane foam. Retention of fermentation mixture in immobilized matrix resulted in higher localized DHA concentration that possibly enhanced inhibition effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate
ERIC Educational Resources Information Center
Meany, J. E.
2007-01-01
Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…
Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna
2018-04-01
Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.
NASA Astrophysics Data System (ADS)
Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.
2018-05-01
The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.
Molahid, Verma Loretta M; Mohd Kusin, Faradiella; Madzin, Zafira
2018-01-12
The potential of selected materials in treating metal-rich acid mine drainage (AMD) has been investigated in a series of batch experiment. The efficiencies of both single and mixed substrates under two conditions i.e. low- and high-concentration solutions containing heavy metals were evaluated. Synthetic metal-containing AMD was used in the experiments treated using spent mushroom compost (SMC), ochre, steel slag (SS), and limestone. Different ratios of treatment materials were incorporated in the substrate mix and were tested in an anoxic condition. In the batch test, physicochemical parameters (pH, redox potential, total dissolved solids, conductivity, and Ca concentration) and heavy metals (Fe, Mn, Pb, Zn, and Al) were analysed. The mixed substrates have shown satisfactory performance in increasing pH with increasing Ca concentration and removing metals. It has been found that SS and ochre played an important role in the treatment of AMD. The results showed that the mixed substrates SM1 (i.e. 10% SMC mixed with 20% ochre, 30% steel slag, and 40% limestone) and SM2 (i.e. 20% SMC mixed with 30% ochre, 40% steel slag, and 10% limestone) were effective in increasing the pH from as low as 3.5-8.09, and removing heavy metals with more than 90% removal efficiencies.
Winkler, Mari-K H; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I P
2017-01-01
The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
Composition for forming an optically transparent, superhydrophobic coating
Simpson, John T.; Lewis, Linda A.
2015-12-29
A composition for producing an optically clear, well bonded superhydrophobic coating includes a plurality of hydrophobic particles comprising an average particle size of about 200 nm or less, a binder at a binder concentration of from about 0.1 wt. % to about 0.5 wt. %, and a solvent. The hydrophobic particles may be present in the composition at a particle concentration of from about 0.1 wt. % to about 1 wt. %. An optically transparent, superhydrophobic surface includes a substrate, a plurality of hydrophobic particles having an average particle size of about 200 nm or less dispersed over the substrate, and a discontinuous binder layer bonding the hydrophobic particles to the substrate, where the hydrophobic particles and the binder layer form an optically transparent, superhydrophobic coating.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David
2016-08-23
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul
2013-09-17
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
Leclercq-Perlat, Marie-Noëlle; Buono, Frédéric; Lambert, Denis; Latrille, Eric; Spinnler, Henry-Eric; Corrieu, Georges
2004-08-01
A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were correlated with the environmental conditions, with proteolytic products and with carbon substrate assimilation. NH3 diffusion from surface to the cheese core during ripening was highly suspected. Interaction phenomena between microorganisms are discussed.
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...
2014-11-04
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
NASA Astrophysics Data System (ADS)
Mane, A. A.; Suryawanshi, M. P.; Kim, J. H.; Moholkar, A. V.
2017-05-01
The V2O5 nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl3) solution of different concentrations. The effect of solution concentration on the physicochemical and NO2 gas sensing properties of sprayed V2O5 nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V2O5 having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V2O5. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO2 gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO2 gas on the V2O5 nanorods is discussed.
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Gangola, Manu P; Khedikar, Yogendra P; Gaur, Pooran M; Båga, Monica; Chibbar, Ravindra N
2013-05-22
To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea ( Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60-3.59 g/100 g) and stachyose (0.18-2.38 g/100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25-0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs.
Pick, Frances M.; Bray, R. C.
1969-01-01
The origin of the Rapid molybdenum electron-paramagnetic-resonance signals, which are obtained on reducing xanthine oxidase with purine or with xanthine, and whose parameters were measured by Bray & Vänngård (1969), was studied. It is concluded that these signals represent complexes of reduced enzyme with substrate molecules. Xanthine forms one complex at high concentrations and a different one at low concentrations. Purine forms a complex indistinguishable from the low-concentration xanthine complex. There are indications that some other substrates also form complexes, but uric acid, a reaction product, does not appear to do so. The possible significance of the complexes in the catalytic cycle of the enzyme is discussed and it is suggested that they represent substrate molecules bound at the reduced active site, waiting their turn to react there, when the enzyme has been reoxidized. Support for this role for the complexes was deduced from experiments in which frozen samples of enzyme–xanthine mixtures, prepared by the rapid-freezing method, were warmed until the signals began to change. Under these conditions an increase in amplitude of the Very Rapid signal took place. Data bearing on the origin of the Slow molybdenum signal are also discussed. This signal disappears only slowly in the presence of oxygen, and its appearance rate is unaffected by change in the concentration of dithionite. It is concluded that, like other signals from the enzyme, it is due to Mov but that a slow change of ligand takes place before it is seen. The Slow species, like the Rapid, seems capable of forming complexes with purines. PMID:4310056
Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2015-05-19
Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.
NASA Astrophysics Data System (ADS)
Oshurkova, V.; Kholodov, A. L.; Spektor, V.; Sherbakova, V.; Rivkina, E.
2014-12-01
Biogeochemical and microbiological investigations of methane distribution and origin in Northeastern Arctic permafrost sediments indicated that microbial methane production was observed in situ in thawed and permanently frozen deposits (Rivkina et al., 2007). To check the hypothesis about the correlation between permafrost ground type and quantity of methane, produced by microorganisms, the samples from deposits of thermokarst depression (alas), Yedoma and fluvial deposits of Kolyma floodplain for gas measurements and microbiological study were collected and the experiment with anaerobic incubation was conducted. Gas analysis indicated that alas and floodplain samples were characterized by high methane concentrations whereas Yedoma samples had only traces of methane. Two media with different substrates were prepared anaerobically for incubation. First medium contained sucrose as a substrate for hydrolytic microflora and the second one contained acetate as a substrate for methanogens. Two samples from alas, one sample from Yedoma and one from floodplain were placed in anaerobic bottles and media under gas mixture (N2, CO2 and H2) were added. The bottles were incubated for 2 weeks at room temperature. The results of the experiment showed that there was the increase of methane concentrations in the bottles with Yedoma and Floodplain samples to 52-60 and 67-90 %, respectively, from initial concentrations in contrast with Alas sample inoculated bottles. At the same time the concentration of methane in control bottles, which did not include substrates, increased to 15-19%. Current research is a part of NSF funded project "The Polaris".
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Qing; Li, Jingguo; Zhou, Zhengzhong; Xie, Jianping; Lee, Jim Yang
2016-01-01
Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity. PMID:26796675
Zinn, K E; Hernot, D C; Fastinger, N D; Karr-Lilienthal, L K; Bechtel, P J; Swanson, K S; Fahey, G C
2009-08-01
An experiment was conducted to analytically define several novel fish substrates and determine the effects of feeding diets containing these substrates on total tract nutrient digestibilities and on immune status of senior dogs. The control diet contained poultry by-product meal while test diets contained 20% milt meal (MM), pink salmon hydrolysate (PSH) and white fish meal (WFM) added at the expense of poultry by-product meal. Concentrations of lymphocytes positive for CD3, CD4, CD8 and CD21 cell-surface markers and immunoglobulin concentrations were measured. Gene expression of cytokines tumour necrosis factor (TNF)-, interleukin (IL)-6, interferon (IFN)-, IL-10 and transforming growth factor (TGF)-β was determined by quantitative real-time polymerase chain reaction. Major compositional differences were noted among fish substrates but apparent nutrient digestibility coefficients and immune indices were not affected by treatment. Fish protein substrates were found to be effective substitutes for poultry by-product meal, providing diets of high nutritive value for senior dogs.
Palmgren, M S; Lee, L S
1986-01-01
Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472
Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X
2011-02-01
Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mosier-Boss, P A; Lieberman, S H
2003-09-01
The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.
Gautam, Bal K; Henderson, Gregg
2011-12-01
The uptake and potential transfer of chlorantraniliprole and fipronil by the Formosan subterranean termite, Coptotermes formosanus Shiraki, was investigated in the laboratory by using donor-recipient model bioassays. Two different types of substrates, sandy loam soil (18.6% organic matter) and sand (0.19% organic matter), were used to evaluate how these treated substrates impact the direct mortality and transfer efficiency of the two nonrepellent termiticides tested at different concentrations. Chlorantraniliprole exhibited a more delayed mortality on termites than fipronil in sand. In soil, chlorantraniliprole did not cause higher mortality to either donor or recipient termite at any of the tested concentrations during a 21-d test period when compared with controls. Compared with the controls, a greater number of donors died in the soil treated with fipronil at 14 h postinteraction, and higher death of recipients occurred at 21 d but only in the 60-ppm concentration tested. Our data showed that chlorantraniliprole performed best in substrate with low organic matter against
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittl, J.A.; DeLayre, J.; Ingwall, J.S.
1987-09-22
Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate formore » V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.« less
Plant/soil concentration ratios of SSWRa for contrasting sites around an active U mine-mill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, S.A.; Whicker, F.W.
Concentrations of 226Ra were determined in native vegetation and underlying substrate (soil and tailings) at various sites around a conventional open-pit, acid leach U production operation in Wyoming. Plant/soil concentration ratios (CRs) for 226Ra were estimated for various sites, including weathered tailings; a tailings impoundment shoreline; downwind from exposed tailings; a mine overburden reclamation area; and several background locations. Radium-226 concentrations for vegetation and substrate and CR values from the perturbed sites were elevated above background. The highest vegetation concentration (1.3 Bq g-1) was found in a grass which had invaded exposed, weathered tailings. Levels of 226Ra in soil andmore » vegetation and CR values decreased with distance from the tailings impoundment edge. CR values varied significantly among sites, but few differences were found between plant species groups. The observed CR values ranged from 0.07 at the background and reclamation areas to 0.4 downwind from the tailings area. Average CR values for plants growing on exposed tailings and within one meter from the impoundment edge were 0.15 and 0.3, respectively. CR values of 226Ra for plants on tailings substrates were comparatively low in contrast to other radionuclides in the U chain. We speculate that in the case of sulfuric acid leached tailings-derived material, 226Ra is sequestered as sulfate, which is highly insoluble relative to the sulfates of the other elements (e.g., U and Th) resulting in reduced availability for plant uptake.« less
Lightweight solar concentrator structures, phase 2
NASA Technical Reports Server (NTRS)
Williams, Brian E.; Kaplan, Richard B.
1993-01-01
This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.
USDA-ARS?s Scientific Manuscript database
Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble P in the soil solution. Multiple competing reactions are operating to regulate the solution-phase concentration of P-containing organic substrates and the released phosphate...
Benazzi, F; Gernaey, K V; Jeppsson, U; Katebi, R
2007-08-01
In this paper, a new approach for on-line monitoring and detection of abnormal readily biodegradable substrate (S(s)) and slowly biodegradable substrate (X(s)) concentrations, for example due to input of toxic loads from the sewer, or due to influent substrate shock load, is proposed. Considering that measurements of S(s) and X(s) concentrations are not available in real wastewater treatment plants, the S(s) / X(s) software sensor can activate an alarm with a response time of about 60 and 90 minutes, respectively, based on the dissolved oxygen measurement. The software sensor implementation is based on an extended Kalman filter observer and disturbances are modelled using fast Fourier transform and spectrum analyses. Three case studies are described. The first one illustrates the fast and accurate convergence of the extended Kalman filter algorithm, which is achieved in less than 2 hours. Furthermore, the difficulties of estimating X(s) when off-line analysis is not available are depicted, and the S(s) / X(s) software sensor performances when no measurements of S(s) and X(s) are available are illustrated. Estimation problems related to the death-regeneration concept of the activated sludge model no.1 and possible application of the software sensor in wastewater monitoring are discussed.
Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings
NASA Astrophysics Data System (ADS)
Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.
2017-08-01
A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.
NASA Astrophysics Data System (ADS)
Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.
2013-11-01
Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.
Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP.
She, Zonglian; Xie, Tian; Zhu, Yingjie; Li, Leilei; Tang, Gaifeng; Huang, Jian
2012-11-30
Four biodegradability tests (BOD(5)/COD ratio, production of carbon dioxide, relative oxygen uptake rate and relative enzymatic activity) were used to determine the aerobic biodegradability of 3-nitrophenol (3-NP), 2,4-dinitrophenol (2,4-DNP) and 2,6-dinitrophenol (2,6-DNP). Furthermore, biodegradation kinetics of the compounds was investigated in sequencing batch reactors both in the presence of glucose (co-substrate) and with nitrophenol as the sole carbon source. Among the three tested compounds, 3-NP showed the best biodegradability while 2,6-DNP was the most difficult to be biodegraded. The Haldane equation was applied to the kinetic test data of the nitrophenols. The kinetic constants are as follows: the maximum specific degradation rate (K(max)), the saturation constants (K(S)) and the inhibition constants (K(I)) were in the range of 0.005-2.98 mg(mgSS d)(-1), 1.5-51.9 mg L(-1) and 1.8-95.8 mg L(-1), respectively. The presence of glucose enhanced the degradation of the nitrophenols at low glucose concentrations. The degradation of 3-NP was found to be accelerated with the increasing of glucose concentrations from 0 to 660 mg L(-1). At high (1320-2000 mg L(-1)) glucose concentrations, the degradation rate of 3-NP was reduced and the K(max) of 3-NP was even lower than the value obtained in the absence of glucose, suggesting that high concentrations of co-substrate could inhibit 3-NP biodegradation. At 2,4-DNP concentration of 30 mg L(-1), the K(max) of 2,4-DNP with glucose as co-substrate was about 30 times the value with 2,4-DNP as sole substrate. 2,6-DNP preformed high toxicity in the case of sole carbon source degradation and the kinetic data was hardly obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.
Ahlers, J
1975-01-01
1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995
Creating "hotels" for cells by electrospinning honeycomb-like polymeric structures.
Liang, T; Mahalingam, S; Edirisinghe, M
2013-10-01
It is well established that three-dimensional honeycomb-like nanofibrous structures enhance cell activity. In this work, we report that electrospun polymer nanofibres self-assemble into three-dimensional honeycomb-like structures. The underlying mechanism is studied by varying the polymer solution concentration, collecting substrates and working distance. The polymer solution concentration has a significant effect on the size of the electrospun nanofibres. The collection substrate and working distance affect the electric field strength, the evaporation of solvent and the discharging of nanofibres and consequently these two had a significant influence on the self-assembly of nanofibres. © 2013.
Sbarciog, M; Moreno, J A; Vande Wouwer, A
2014-01-01
This paper presents the estimation of the unknown states and inputs of an anaerobic digestion system characterized by a two-step reaction model. The estimation is based on the measurement of the two substrate concentrations and of the outflow rate of biogas and relies on the use of an observer, consisting of three parts. The first is a generalized super-twisting observer, which estimates a linear combination of the two input concentrations. The second is an asymptotic observer, which provides one of the two biomass concentrations, whereas the third is a super-twisting observer for one of the input concentrations and the second biomass concentration.
Properties of GaN grown on sapphire substrates
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Debnam, W. J.; Fripp, A. L.
1978-01-01
Epitaxial growth of GaN on sapphire substrates using an open-tube growth furnace has been carried out to study the effects of substrate orientation and transfer gas upon the properties of the layers. It has been found that for the (0001) substrates, surface appearance was virtually independent of carrier gas and of doping levels. For the (1(-1)02) substrates surface faceting was greatly reduced when He was used as a transfer gas as opposed to H2. Faceting was also reduced when the GaN was doped with Zn, and the best surfaces for the (1(-1)02) substrates were obtained in a Zn-doped run using He as the transfer gas. The best sample in terms of electrical properties for the (1(-1)02) substrate had a mobility greater than 400 sq cm/V per sec and a carrier concentration of about 10 to the 17th per cu cm. This sample was undoped and used He as the transfer gas. The best (0001) sample was also grown undoped with He as the transfer gas and had a mobility of 300 sq cm/V per sec and a carrier concentration of 1 x 10 to the 18th per cu cm.
Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population
Abdullah, Norhani; Oskoueian, Armin
2013-01-01
This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289
Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants
NASA Astrophysics Data System (ADS)
Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong
Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.
Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B
2017-08-01
In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1 h -1 , respectively.
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.
2015-04-24
One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as anmore » absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.« less
Aryl acylamidase activity of human serum albumin with o-nitrotrifluoroacetanilide as the substrate.
Masson, Patrick; Froment, Marie-Thérèse; Darvesh, Sultan; Schopfer, Lawrence M; Lockridge, Oksana
2007-08-01
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: k(cat) = 0.13 +/- 0.02 min(-1) and Ks = 0.67 +/- 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (k(cat) = k2). Though the aryl acylamidase activity of albumin is low (k(cat)/Ks = 195 M(-1)min(-1)), because of its high concentration in human plasma (0.6-1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.
CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-09-22
Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
NASA Astrophysics Data System (ADS)
Tawara, T.; Matsunaga, S.; Fujimoto, T.; Ryo, M.; Miyazato, M.; Miyazawa, T.; Takenaka, K.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; Kato, T.; Okumura, H.; Kimoto, T.; Tsuchida, H.
2018-01-01
We investigated the relationship between the dislocation velocity and the injected carrier concentration on the expansion of single Shockley-type stacking faults by monitoring the electroluminescence from 4H-SiC PiN diodes with various anode Al concentrations. The injected carrier concentration was calculated using a device simulation that took into account the measured accumulated charge in the drift layer during diode turn-off. The dislocation velocity was strongly dependent on the injected hole concentration, which represents the excess carrier concentration. The activation energy of the dislocation velocity was quite small (below 0.001 eV between 310 and 386 K) over a fixed range of hole concentrations. The average threshold hole concentration required for the expansion of bar-shaped single Shockley-type stacking faults at the interface between the buffer layer and the substrate was determined to be 1.6-2.5 × 1016 cm-3 for diodes with a p-type epitaxial anode with various Al concentrations.
USDA-ARS?s Scientific Manuscript database
We recently reported on the kinetics of the polygalacturonase TtGH28 acting on trimer and dimer substrates. When the starting substrate for hydrolysis is the trimer, the product dimer is also subject to hydrolysis, resulting in discrepancies when either the concentration of dimer or monomer product ...
The effect of the initial concentration of 2,4-dinitrotoluene (DNT) on its biotransformation and on the microbial utilization of ethanol was investigated. The culture used in this study was acclimated in a continuous flow laboratory fermentor with 2,4-DNT and ethanol as substrat...
Process for producing nickel electrode having lightweight substrate
NASA Technical Reports Server (NTRS)
Lim, Hong S. (Inventor)
1996-01-01
A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.
Lead-Tin Telluride Sputtered Thin Films for Infrared Sensors
1975-06-01
Concentrations in Pfa .78Sn,22Te Fllms " Tar8et *10 Effect of Substrate Bias Voltage on As-Deposited Carrier Concentration - Target #12 Effect of...be laid down in one deposition run with one target by simple bias voltage control. 3252 Sorption Coef"^^ *"* Energy Gaps. Typical plots
BACKGROUND: Alcohols, including ethanol and butanol, are receiving increased attention as renewable liquid biofuels. Alcohol concentrations may be low in a biological process due to product inhibition and, for non-starch feedstocks, limited substrate concentrations. The result is...
Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D
2015-01-25
Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.
Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing
2011-01-01
Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun
2018-04-01
Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.
Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa
NASA Astrophysics Data System (ADS)
Zikhali, Vulindlela; Tirok, Katrin; Stretch, Derek
2015-10-01
Wind-driven sediment resuspension affects the physical and biological environment of the water column in shallow estuarine lakes. This study investigated the relationship between wind-driven waves and suspended sediment concentration (SSC) using the 33 km2 South Lake basin of Lake St Lucia, South Africa as a case study. Five wave poles measuring significant wave height and turbidity were deployed over an aggregate period of twenty days at distributed locations where sediment substrate compositions varied from muddy to sandy and depths ranged from 0.7 m to 2.1 m. The resulting turbidity dynamics were used to test a simple depth-averaged model of suspended sediment concentrations. The model performed best in the muddy regions of the lake and was able to simulate the resuspension dynamics more accurately than the settling dynamics. Peak suspended sediment concentration levels were best captured for the deeper muddy locations. The model provides a means to make spatially explicit predictions of suspended sediment concentrations that can be used to understand the forcing mechanisms for primary producer growth and distribution or to improve sediment budget calculations.
NASA Astrophysics Data System (ADS)
Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun
2018-05-01
Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.
Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan
2016-07-28
Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.
Screening of novel bacteria for the 2,3-butanediol production.
Kallbach, Malee; Horn, Sonja; Kuenz, Anja; Prüße, Ulf
2017-02-01
Biotechnologically produced 2,3-butanediol (2,3-BDO) is a potential starting material for industrial bulk chemicals such as butadiene or methyl ethyl ketone which are currently produced from fossil feedstocks. So far, the highest 2,3-BDO concentrations have been obtained with risk group 2 microorganisms. In this study, three risk group 1 microorganisms are presented that are so far unknown for an efficient production of 2,3-BDO. The strains Bacillus atrophaeus NRS-213, Bacillus mojavensis B-14698, and Bacillus vallismortis B-14891 were evaluated regarding their ability to produce high 2,3-BDO concentrations with a broad range of different carbon sources. A maximum 2,3-BDO concentration of 60.4 g/L was reached with the strain B. vallismortis B-14891 with an initial glucose concentration of 200 g/L within 55 h in a batch cultivation. Besides glucose, B. vallismortis B-14891 converts 14 different substrates that can be obtained from residual biomass sources to 2,3-BDO. Therefore B. vallismortis B-14891 is a promising candidate for the large-scale production of 2,3-BDO with low-cost substrates.
Choice of Substrate Material for Epitaxial CdTe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
2015-06-14
Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.
Sleutels, Tom H. J. A.; Molenaar, Sam D.; Heijne, Annemiek Ter; Buisman, Cees J. N.
2016-01-01
A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future. PMID:27681899
Sleutels, Tom H J A; Molenaar, Sam D; Heijne, Annemiek Ter; Buisman, Cees J N
2016-01-05
A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future.
Tan, Xiangping; Liu, Yanju; Yan, Kaihong; Wang, Ziquan; Lu, Guannan; He, Yike; He, Wenxiang
2017-02-01
Dehydrogenase activity (DHA) is an important indicator of heavy metal toxicity in contaminated soils. Different instances of DHA were determined using various substrates and which could affect the description of heavy metal toxicity. Currently, too few investigations have been done on selecting appropriate substrates. This study employed indoor simulation to determine soil DHA and its response to external cadmium (Cd) using two substrates (TTC and INT). Hormesis for DHA obtained using the TTC method (DHA-TTC) in low Cd concentration was observed which was quickly inhibited in high Cd concentration. While DHA obtained using the INT method (DHA-INT) decreased slowly when Cd concentration increased. The DHA-TTC and DHA-INT in soils at Cd concentration of 500 mg kg -1 decreased 86% and 53%, respectively, compared to the control. The dose-response relationship of Cd to DHA can be well simulated using the logistic model (p < 0.01), which indicated DHA could be used to indicate soil Cd toxicity. Multiple stepwise regression analysis revealed that total organic matter (TOC) is the major factor influencing the toxicity of Cd to DHA-TTC, while TOC, pH and cation exchange capacity (CEC) are major factors influencing the toxicity of Cd to DHA-INT. The different responses of soil DHA-TTC and DHA-INT to Cd are due to the differences in electron transport chain characteristics between TTC and INT, as well as the influence of soil properties. Although both DHA-TTC and DHA-INT can monitor soil Cd contamination, DHA-INT is recommended as a superior bio-indicator to indicate and assess contamination of Cd in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics of thermophilic anaerobes in fixed-bed reactors.
Perez, M; Romero, L I; Sales, D
2001-08-01
The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.
Oxidation of monohydric phenol substrates by tyrosinase. An oximetric study.
Naish-Byfield, S; Riley, P A
1992-11-15
The purity of commercially available mushroom tyrosinase was investigated by non-denaturing PAGE. Most of the protein in the preparation migrated as a single band under these conditions. This band contained both tyrosinase and dopa oxidase activity. No other activity of either classification was found in the preparation. Oxygen consumption by tyrosinase during oxidation of the monohydric phenol substrates tyrosine and 4-hydroxyanisole (4HA) was monitored by oximetry in order to determine the stoichiometry of the reactions. For complete oxidation, the molar ratio of oxygen: 4HA was 1:1. Under identical conditions, oxidation of tyrosine required 1.5 mol of oxygen/mol of tyrosine. The additional oxygen uptake during tyrosine oxidation is due to the internal cyclization of dopaquinone to form cyclodopa, which undergoes a redox reaction with dopaquinone to form dopachrome and dopa, which is then oxidized by the enzyme, leading to an additional 0.5 mol of oxygen/mol of original substrate. Oxygen consumption for complete oxidation of 200 nmol of 4HA was constant over a range of concentrations of tyrosinase of 33-330 units/ml of substrate. The maximum rate of reaction was directly proportional to the concentration of tyrosinase, whereas the length of the lag phase decreased non-linearly with increasing tyrosinase concentration. Activation of the enzyme by exposure to citrate was not seen, nor was the lag phase abolished by exposure of the enzyme to low pH. Michaelis-Menten analysis of tyrosinase in which the lag phase is abolished by pre-exposure of the enzyme to a low concentration of dithiothreitol gave Km values for tyrosine and 4HA of 153 and 20 microM respectively.
Micro solar concentrators: Design and fabrication for microcells arrays
NASA Astrophysics Data System (ADS)
Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François
2015-09-01
In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.
The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.
Szondy, Z; Newsholme, E A
1989-01-01
The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990
Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate
NASA Astrophysics Data System (ADS)
Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin
2018-04-01
Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1988-01-01
A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.
Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe
2015-06-01
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian
2016-01-01
Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.
Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang
2018-01-01
To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step process based on successively hydrothermal and alkaline treatment is a simple operating and economical feasible method for the production of glucose, which will be further converted into bioethanol.
Microbial community changes as a possible factor controlling carbon sequestration in subsoil
NASA Astrophysics Data System (ADS)
Strücker, Juliane; Jörgensen, Rainer Georg
2015-04-01
In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.
Glombitza, Clemens; Jaussi, Marion; Røy, Hans; Seidenkrantz, Marit-Solveig; Lomstein, Bente A.; Jørgensen, Bo B.
2015-01-01
Volatile fatty acids (VFAs) are key intermediates in the anaerobic mineralization of organic matter in marine sediments. We studied the role of VFAs in the carbon and energy turnover in the sulfate reduction zone of sediments from the sub-arctic Godthåbsfjord (SW Greenland) and the adjacent continental shelf in the NE Labrador Sea. VFA porewater concentrations were measured by a new two-dimensional ion chromatography-mass spectrometry method that enabled the direct analysis of VFAs without sample pretreatment. VFA concentrations were low and surprisingly constant (4–6 μmol L−1 for formate and acetate, and 0.5 μmol L−1 for propionate) throughout the sulfate reduction zone. Hence, VFAs are turned over while maintaining a stable concentration that is suggested to be under a strong microbial control. Estimated mean diffusion times of acetate between neighboring cells were <1 s, whereas VFA turnover times increased from several hours at the sediment surface to several years at the bottom of the sulfate reduction zone. Thus, diffusion was not limiting the VFA turnover. Despite constant VFA concentrations, the Gibbs energies (ΔGr) of VFA-dependent sulfate reduction decreased downcore, from −28 to −16 kJ (mol formate)−1, −68 to −31 kJ (mol acetate)−1, and −124 to −65 kJ (mol propionate)−1. Thus, ΔGr is apparently not determining the in-situ VFA concentrations directly. However, at the bottom of the sulfate zone of the shelf station, acetoclastic sulfate reduction might operate at its energetic limit at ~ −30 kJ (mol acetate)−1. It is not clear what controls VFA concentrations in the porewater but cell physiological constraints such as energetic costs of VFA activation or uptake could be important. We suggest that such constraints control the substrate turnover and result in a minimum ΔGr that depends on cell physiology and is different for individual substrates. PMID:26379631
Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.
Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus
2018-01-01
The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
Liverseed, David R.
2013-01-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674
Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J
2014-12-02
The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.
Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C
2013-03-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.
Biochemistry of Trypanosomatidae of Importance in Africa.
1983-12-01
translocation of the substrate across the cytoplasmic menbrane . As a consequence of this trans- location, substrates may become available to intracellular...concentration in plasma (Arnold and Cysyk, 1983). These authors found that in rat liver the purines hypoxanthine, inosine, and adenine were all found
Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.
Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel
2016-10-01
Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.
Pinar, Orkun; Karaosmanoğlu, Kübra; Sayar, Nihat Alpagu; Kula, Ceyda; Kazan, Dilek; Sayar, Ahmet Alp
2017-12-01
The present work focuses firstly on the evaluation of the effect of laccase on enzymatic hydrolysis of hazelnut husk which is one of the most abundant lignocellulosic agricultural residues generated in Turkey. In this respect, the co-enzymatic treatment of hazelnut husk by cellulase and laccase, without a conventional pretreatment step is evaluated. Using 2.75 FPU/g substrate (40 g/L substrate) and a ratio of 131 laccase U/FPU achieved the highest reducing sugars concentration. Gas chromatography mass spectrometry confirmed that the hydrolysate was composed of glucose, xylose, mannose, arabinose and galactose. The inclusion of laccase in the enzyme mixture [carboxymethyl cellulase (CMCase) and β-glucosidase] increased the final glucose content of the reducing sugars from 20 to 50%. Therefore, a very significant increase in glucose content of the final reducing sugars concentration was obtained by laccase addition. Furthermore, the production of cellulases and laccase by Pycnoporus sanguineus DSM 3024 using hazelnut husk as substrate was also investigated. Among the hazelnut husk concentrations tested (1.5, 6, 12, 18 g/L), the highest CMCase concentration was obtained using 12 g/L husk concentration on the 10th day of fermentation. Besides CMCase, P. sanguineus DSM 3024 produced β-glucosidase and laccase using hazelnut husk as carbon source. In addition to CMCase and β-glucosidase, the highest laccase activity measured was 2240 ± 98 U/L (8.89 ± 0.39 U/mg). To the best of our knowledge, this is the first study to report hazelnut husk hydrolysis in the absence of pretreatment procedures.
Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol
NASA Astrophysics Data System (ADS)
Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Nashchekina, Yu A; Yudintceva, N M; Nikonov, P O; Ivanova, E A; Smagina, L V; Voronkina, I V
2017-05-01
Collagen I gels with protein concentrations of 1, 2, and 3.5 mg/ml were prepared and embedded in a porous polylactide scaffold to reduce their contraction. Concentration of the gel did not affect its degradation. Collagen gels promoted the formation of cell networks. The cells in the collagen gel with a concentration of 1 mg/ml embedded in polylactide scaffold had elongated spindle-like shape, in contrast to flattened cells in collagen gel of the same concentration not embedded in the scaffold. Stabilization of the collagen gel in the polylactide scaffold promoted active synthesis of laminin and fibronectin by cells as soon as on day 5 of culturing in comparison with that in free collagen substrate.
Evaluation of cashew apple juice for the production of fuel ethanol.
Pinheiro, Alvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R; Gonçalves, Luciana R B
2008-03-01
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L(-1) of initial sugar concentration was used. Cell yield (Y (X/S)) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L(-1) of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Liu, Li; Helbling, Damian E; Kohler, Hans-Peter E; Smets, Barth F
2014-11-18
Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.
Jenta, T R; Batts, G; Rees, G D; Robinson, B H
1997-06-05
Kinetic studies have shown that octyl decanoate synthesis by Chromobacterium viscosum (CV) lipase in sodium bis-2-(ethylhexyl) sulfosuccinate (AOT) water in oil (w/o) microemulsions occurs via the nonsequential (ping-pong) bi bi mechanism. There was evidence of single substrate inhibition by decanoic acid at high concentrations. Initial rate data yielded estimates for acid and alcohol Michaelis constants of ca. 10(-1) mol dm(-3) and a maximum rate under saturation conditions of ca. 10(-3) mol dm(-3) s(-1) for a lipase concentration of 0.36 mg cm(-3). CV lipase immobilized in AOT microemulsion-based organogels (MBGs) was also found to catalyze the synthesis of octyl decanoate according to the ping-pong bi bi mechanism. Reaction rates were similar in the free and immobilized systems under comparable conditions. Initial rates at saturating (but noninhibiting) substrate concentrations were first order with respect to CV lipase concentration in both w/o microemulsions and the MBG/oil systems. Gradients yielded an apparent k(cat) = 4.4 x 10(-4) mol g(-1) s(-1) in the case of w/o microemulsions, and 6.1 x 10(-4) mol g(-1) s(-1) for CV lipase immobilized in the MBGs. A third system comprising w/o microemulsions containing substrates and gelatin at concentrations comparable to those employed in the MBG formulations, provided a useful link between the conventional liquid microemulsion medium and the solid organogels. The nongelation of these intermediate systems stems from the early inclusion of substrate during a modified preparative protocol. The presence of substrate appears to prevent the development of a percolated microstructure that is thought to be a prerequisite for MBG formation. FT-NMR was employed as a semicontinuous in situ assay procedure. The apparent activity expressed by CV lipase in compositionally equivalent liquid and solid phase gelatin-containing systems was similar. An apparent activation energy of 24 +/- 2 kJ mol(-1) was determined by (1)H-NMR for esterification in gelatin-containing w/o microemulsions. This value agrees with previous determinations for CV lipase-catalyzed synthesis of octyl decanoate in "conventional" w/o microemulsions and MBG/oil systems. The similarities in lipase behavior are consistent with the claim, based largely on structural measurements, that the physico-chemical properties of the lipase-containing w/o microemulsion are to a large extent preserved on transformation to the daughter organogel. The close agreement of apparrent activation energies suggests that substrate mass transfer is not rate determining in the three studied systems.
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Vacuum-deposited polymer/silver reflector material
NASA Astrophysics Data System (ADS)
Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.
1994-09-01
Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.
Cadmium (II) removal mechanisms in microbial electrolysis cells.
Colantonio, Natalie; Kim, Younggy
2016-07-05
Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)→H2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal. Copyright © 2016 Elsevier B.V. All rights reserved.
Caron, Laurent; Nardello, Véronique; Mugge, José; Hoving, Erik; Alsters, Paul L; Aubry, Jean-Marie
2005-02-15
Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.
Haeffner, E W
1975-02-03
The initial rate of incorporation of 14C or 3H-labeled choline into Ehrlich-Lettre ascites cells of the glycogen-free strain seven days after inoculation was investigated in vitro. 1. At choline concentrations in the medium between 6 to 30 muM and 100 to 500 muM the choline uptake by the cells followed Michaelis-Menton Kinetics with V values between 31 to 100 and 59 to 500 pmol per minute at a given cell density, and average Q10-values of 2.1 at the high and of 2.4 at the low choline molarity. The K-m-values increased from 27 muM to 58.8 muM at low and from 0.11 mM to 0.22 mM at high choline concentrations over a temperature range between 15 degrees C and 37 degrees C. Arrhenius plot of the V values gave two lines, one with a transition temperature at 25 degrees C at low and one straight line at high choline concentrations, from which the energy of activation for choline uptake was determined to be 16 kcal/mol. 2. It is assumed that two systems exist for the choline uptake by the ascites cells. One, operative at low substrate concentrations, which is saturable and probably is to be classified as a carrier-mediated facilitated diffusion process, can be strongly inhibited by deoxyglucose or 2,4-dinitrophenol and also by substrate analogues such as chlorocholine or benzoylcholine. Ouabain affects this system to a lesser extent. The other system functioning at high choline concentrations may be a simple diffusion process, which is little inhibited by substrate analogues, ouabain and deoxyglucose; however, it is also inhibited by 2,4-dinitrophenol and p-chloromercuribenzoate. 3. Choline incorporation into the acid-insoluble material (lecithin) gave linear Michaelis-Menton kinetics at the low and the high substrate concentration respectively. K-m-values decreased with an increase in temperature at low and increased with rising temperature at high substrate concentrations thus reflecting a close relationship between choline uptake and its metabolism. Labeling of lecithin choline in the various subcellular fractions under the conditions of the functioning of a carrier-mediated process was in the order: mitochondria (50%) greater than plasma membranes (25%) greater nuclei (14%) greater than microsomes (9%) greater than supernatant (1.5%). 4. Treatment of the cells with p-chloromercuribenzoate or heat shock at 50 degrees C markedly reduced the cholinee uptake and concomitantly its conversion into lecithin. Kinetic analysis revealed that the inhibitory effect of p-chloromercuribenzoate was competitive and that of the heat shock non-competitive in nature. Further the choline uptake by the cells was found to be the rate-limiting step, since the rate of choline phosphorylation was determined by the extracellular choline concentration. Pulse chase experiments showed a rapid turnover of the choline moiety with a concomitant increase in activity of the lecithin fraction and little change within the choline phosphate pool.
Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.
Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M
2012-11-01
The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.
Growth of ZnO nanorods on glass substrate deposited using dip coating method
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Ghafar, Safiah Ab; Zoolfakar, Ahmad Sabirin; Rusop, M.
2018-05-01
ZnO unique properties make it attractive for electronics and optoelectronics application. There are varieties synthesis of ZnO nanostructure but one of the best ways is by using dip coating method due to its simplicity, low cost and reliability. This research investigated the effect of precursor concentration on the morphology of ZnO nanorods using dip coating technique. ZnO nanorods is synthesized by using zinc nitrate as precursor and glass slide as substrate. The morphology of ZnO is characterized using Field Emission Scanning Electron Microscope (FESEM). By using different concentration of precursor, each outcome demonstrated diverse morphologies.
Target and method for the production of fission product molybdenum-99
Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi
1989-01-01
A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.
The crystallogenesis of a human estradiol dehydrogenase-substrate complex
NASA Astrophysics Data System (ADS)
Zhu, Dao-Wei; Azzi, Arezki; Rehse, Peter; Lin, Sheng-Xiang
1996-10-01
Human 17β-hydroxysteroid dehydrogenase type 1 is an important steroidogenic enzyme catalyzing the synthesis of the most active estrogen: estradiol. The enzyme is formed by two identical subunits (34.5 kDa). In this paper, we report the preparation of a stoichiometric 17β-HSD1-estradiol complex sample at a much higher concentration than the solubility of the free substrate, using a gradual concentration of the enzyme-substrate mixture starting at low concentration. The complex is successfully crystallized by vapor diffusion at pH 7.5 with polyethyleneglycol 4000 as the precipitating agent. The space group is C2 with a = 123.56 Å, b = 45.21 Å, c = 61.30 Å and β = 99.06°. There is one monomer in the asymmetric unit and two molecules of the enzyme in a unit cell. A diffraction data set to 2.5 Å has been collected to 86% completeness on native crystals. The high quality of the electronic density map of estradiol supports the full occupancy of the binding site, thus confirming the efficiency of the complex preparation. This method will also be useful in crystallizing other steroid-dehydrogenase complexes.
Mleczek, Mirosław; Niedzielski, Przemysław; Rzymski, Piotr; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia
2016-07-02
The content of arsenic (As) in mushrooms can vary depending on the concentration level of this metalloid in the soil/substrate. The present study evaluated the content of arsenic in Boletus badius fruiting bodies collected from polluted and non-polluted sites in relation to the content of this element in overgrown substrate. It was found that mushrooms from the arsenic-polluted sites contained mean concentrations from 49 to 450 mg As kg(-1) dry matter (d.m.), with the greatest content found for specimens growing in close proximity of sludge deposits (490±20 mg As kg(-1)d.m.). The mean content of total arsenic in mushrooms from clean sites ranged from 0.03 to 0.37 mg kg(-1) It was found that B. badius could tolerate arsenic in soil substrate at concentrations of up to 2500 mg kg(-1), at least. In different years of investigation, shifts in particular arsenic forms, as well as a general increase in the accumulation of organic arsenic content, were observed. The results of this study clearly indicate that B. badius should not be collected for culinary purposes from any sites that may be affected by pollution.
Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA).
Kohl, Thomas O; Ascoli, Carl A
2017-07-05
The indirect competitive ELISA (indirect cELISA) pits plate-immobilized antigen against antigens in solution for binding to antigen-specific antibody. The antigens in solution are in the test sample and are first incubated with antigen-specific antibody. These antibody-antigen complexes are then added to microtiter plates whose wells have been coated with purified antigen. The wells are washed to remove unbound antigen-antibody complexes and free antigen. A reporter-labeled secondary antibody is then added followed by the addition of substrate. Substrate hydrolysis yields a signal that is inversely proportional to antigen concentration within the sample. This is because when antigen concentration is high in the test sample, most of the antibody is bound before adding the solution to the plate. Most of the antibody remains in solution (as complexes) and is thus washed away before the addition of the reporter-labeled secondary antibody and substrate. Thus, the higher the antigen concentration in the test sample, the weaker the resultant signal in the detection step. The indirect cELISA is often used for competitive detection and quantification of antibodies against viral diseases in biological samples. © 2017 Cold Spring Harbor Laboratory Press.
Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics.
Chiha, Mahdi; Merouani, Slimane; Hamdaoui, Oualid; Baup, Stéphane; Gondrexon, Nicolas; Pétrier, Christian
2010-06-01
Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H(2)O(2) formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H(2)O(2) formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255-262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634-2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.'s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.'s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.'s model. The Serpone et al.'s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution. (c) 2010 Elsevier B.V. All rights reserved.
A KINETIC ANALYSIS OF THE ENDOGENOUS RESPIRATION OF BAKERS' YEAST
Stier, T. J. B.; Stannard, J. N.
1936-01-01
The process of endogenous respiration of two strains of bakers' yeast, Saccharomyces cerevisiae, was examined kinetically. The rate of respiration with respect to time in a non-nutrient medium was found to exhibit two phases: (a) a period of constant rate of O2 consumption and CO2 production (R.Q. = 1) characteristic of cells with ample concentrations of stored material; (b) a first order decline in rate of respiration with respect to time, where the rate was proportional to the concentration of some substrate, S. (R.Q. = 1 throughout second phase.) The nature of this substrate was reexamined and the evidence summarized confirms the notion that it is a carbohydrate, probably glycogen. These phases of endogenous respiration were shown to depend upon the age of the culture and the amount of substrate available. PMID:19872942
Methods for improved preconcentrators
Manginell, Ronald P [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Okandan, Murat [Edgewood, NM
2010-06-01
The present invention relates generally to chemical analysis (e.g. by gas chromatography), and in particular to a compact chemical preconcentrator formed on a substrate with a heatable sorptive membrane that can be used to accumulate and concentrate one or more chemical species of interest over time and then rapidly release the concentrated chemical species upon demand for chemical analysis.
Kanwar, Lambit; Gogoi, Binod Kumar; Goswami, Pranab
2002-09-01
Among the various lipidic and non-lipidic substances, normal alkanes within the chain lengths of C-12 to C-20 served as the best carbon substrates for the production of extracellular lipase by Pseudomonas species G6. Maximum lipase production of 25 U/ml of the culture broth was obtained by using n-hexadecane as the sole carbon substrate. The optimum pH of 8 and temperature of 34 + 1 degrees C were demonstrated for the production of lipase in n-hexadecane substrate. The optimum concentration of iron, which played a critical role on the lipase production, was found to be 0.25 mg/l. Lipase production could be enhanced to nearly 2.4-fold by using tributyrin at a concentration of 0.05% (v/v) in the culture medium. High recovery of the lipase protein (83%) from the culture broth was achieved by treating the culture supernatant with Silicone 21 Defoamer followed by ammonium sulfate (60% saturation) fractionation.
Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta
2016-03-01
This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biostability analysis for drinking water distribution systems.
Srinivasan, Soumya; Harrington, Gregory W
2007-05-01
The ability to limit regrowth in drinking water is referred to as biological stability and depends on the concentration of disinfectant residual and on the concentration of substrate required for the growth of microorganisms. The biostability curve, based on this fundamental concept of biological stability, is a graphical approach to study the two competing effects that determine bacterial regrowth in a distribution system: inactivation due to the presence of a disinfectant, and growth due to the presence of a substrate. Biostability curves are a practical, system specific approach for addressing the problem of bacterial regrowth in distribution systems. This paper presents a standardized algorithm for generating biostability curves and this will enable water utilities to incorporate this approach for their site-specific needs. Using data from pilot scale studies, it was found that this algorithm was applicable to control regrowth of HPC in chlorinated systems where AOC is the growth limiting substrate, and growth of AOB in chloraminated systems, where ammonia is the growth limiting substrate.
Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can
2016-11-01
Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Most, Jasper; van Can, Judith G P; van Dijk, Jan-Willem; Goossens, Gijs H.; Jocken, Johan; Hospers, Jeannette J.; Bendik, Igor; Blaak, Ellen E.
2015-01-01
Green tea, particularly epigallocatechin-3-gallate (EGCG), may affect body weight and composition, possibly by enhancing fat oxidation. The aim of this double-blind, randomized placebo-controlled cross-over study was to investigate whether 3-day supplementation with EGCG (282mg/day) stimulates fat oxidation and lipolysis in 24 overweight subjects (age = 30 ± 2yrs, BMI = 27.7 ± 0.3 kg/m2). Energy expenditure, substrate metabolism and circulating metabolites were determined during fasting and postprandial conditions. After 6 h, a fat biopsy was collected to examine gene expression. In 12 subjects, skeletal muscle glycerol, glucose and lactate concentrations were determined using microdialysis. EGCG-supplementation did not alter energy expenditure and substrate oxidation compared to placebo. Although EGCG reduced postprandial circulating glycerol concentrations (P = 0.015), no difference in skeletal muscle lipolysis was observed. Fasting (P = 0.001) and postprandial (P = 0.003) skeletal muscle lactate concentrations were reduced after EGCG-supplementation compared to placebo, despite similar tissue blood flow. Adipose tissue leptin (P = 0.05) and FAT/CD36 expression (P = 0.08) were increased after EGCG compared to placebo. In conclusion, 3-day EGCG-supplementation decreased postprandial plasma glycerol concentrations, but had no significant effects on skeletal muscle lipolysis and whole-body fat oxidation in overweight individuals. Furthermore, EGCG decreased skeletal muscle lactate concentrations, which suggest a shift towards a more oxidative muscle phenotype. PMID:26647963
LaBella, F S; Stein, D; Queen, G
1998-10-02
Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.
Lee, Yung-Shan; Otton, S Victoria; Campbell, David A; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2012-01-03
Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.
Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G
2015-09-01
A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.
Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1
Heber, Ulrich; Andrews, T. John; Boardman, N. Keith
1976-01-01
Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466
Hubbard, N L; Pharr, D M; Huber, S C
1990-09-01
During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.
Hubbard, Natalie L.; Pharr, D. Mason; Huber, Steven C.
1990-01-01
During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO2 respired during ripening was positively correlated with sugar accumulation (R2 = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO2 was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688
Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2015-12-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.
Tuning the metal-insulator transition of VO2 by introducing W dopants via a combinatorial approach
NASA Astrophysics Data System (ADS)
Liang, Yangang; Lee, Seunghun; Zhang, Xiaohang; Takeuchi, Ichiro
We have systematically studied the structural phase transition and the electronic properties of composition spread V1-xWxO2 (0 <= x <= 0.037) thin films fabricated on silicon (001) and c-cut sapphire substrates through combinatorial pulsed laser deposition of a V2O5 target and a WO3 target. Our in-situ temperature-dependent x-ray diffraction measurements reveal a gradual change in the film structure from a monoclinic phase to a tetragonal phase via an intermediate mixture of the two as the concentration of tungsten increases from 0% to 3.7% at 300 K. At 358 K, the film is found to be in a tetragonal phase for the entire composition range we studied. The results also suggest that the volume of the unit cell increases as the concentration of tungsten increases. Electrical transport results further show that both the phase transition temperature and the width of the hysteresis loop decrease with the increasing of the concentration of tungsten. Especially, epitaxial V1-xWxO2 films fabricated on c-cut sapphire substrates show narrower hysteresis loop compared to textured V1-xWxO2 films fabricated on Si (100) substrates. In addition, the Hall effect measurements on the epitaxial V1-xWxO2 thin films at various temperature points provide important information for the change in the electronic structure upon increasing the concentration of tungsten. This work was supported by CNAM.
Duval, S M; McEwan, N R; Graham, R C; Wallace, R J; Newbold, C J
2007-12-01
To investigate the mode of action of a blend of essential oil compounds on the colonization of starch-rich substrates by rumen bacteria. Starch-rich substrates were incubated, in nylon bags, in the rumen of sheep organized in a 4 x 4 latin square design and receiving a 60:40 silage : concentrate diet. The concentrate was either high or low in crude protein, and the diet was supplemented or not with a commercial blend of essential oil compounds (110 mg per day). The total genomic DNA was extracted from the residues in the bags. The total eubacterial DNA was quantified by real-time PCR and the proportion of Ruminobacter amylophilus, Streptococcus bovis and Prevotella bryantii was determined. Neither the supplementation with essential oil compounds nor the amount of crude protein affected the colonization of the substrates by the bacteria quantified. However, colonization was significantly affected by the substrate colonized. The effect of essential oils on the colonization of starch-rich substrates is not mediated through the selective inhibition of R. amylophilus. This study enhances our understanding of the colonization of starch-rich substrates, as well as of the mode of action of the essential oils as rumen manipulating agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAuliffe, J.J.; Perry, S.B.; Brooks, E.E.
1991-03-12
Here the authors define the kinetics of the creatine kinase (CK) reaction in an intact mammalian heart containing the full rnage of CK isoenzymes. Previously derived kinetic constants were refit for the reaction occurring at 37C. Steady-state metabolite concentrations from {sup 31}P NMR and standard biochemical techniques were determined. {sup 31}P magnetization transfer data were obtained to determine unidirectional creatine kinase fluxes in hearts with differing total creatine contents and differing mitochondrial CK activities during KCl arrest and isovolumic work for both the forward reaction (MgATP synthesis) and reverse reaction (phosphocreatine synthesis). The NMR kinetic data and substrate concentrations datamore » were used in conjunction with a kinetic model based on MM-CK in solution to determine the applicability of the solution-based kinetic models to the CK kinetics of the intact heart. The results indicated that no single set of rate equation constants could describe both the KCl-arrested and working hearts. Analysis of the results indicated that the CK reaction is rate limited in the direction of ATP synthesis, the size of the guanidino substrate pool drives the measured CK flux in the intact heart, and during isovolumic work, the CK reaction operates under saturating conditions; that is, the substrate concentrations are at least 2-fold greater than the K{sub m} or K{sub im} for each substrate. However, during KCl arrest the reaction does not operate under saturating conditions and the CK reaction velocity is strongly influenced by the guanidino substrate pool size.« less
Potential role for human P-glycoprotein in the transport of lacosamide.
Zhang, Chunbo; Chanteux, Hugues; Zuo, Zhong; Kwan, Patrick; Baum, Larry
2013-07-01
Antiepileptic drugs (AEDs) do not effectively treat 30-40% of patients with epilepsy. Export of AEDs by P-glycoprotein (Pgp, ABCB1, or MDR1), which is overexpressed in the blood-brain barrier in drug-resistant patients, may be a mechanism for resistance to AEDs. For most recently approved AEDs, whether they are transported by Pgp is unknown. We investigated whether a new AED, lacosamide (LCM), is a substrate of human Pgp. LLC-PK1 and MDCKII cells transfected with the human MDR1 gene were used to determine the substrate status of LCM in concentration equilibrium transport assays (CETAs). An equal concentration of drug was initially loaded in both the apical and basal chambers, and the concentration in both chambers was measured up to 4 h. The experiments were repeated in the presence of the Pgp inhibitors verapamil and tariquidar. Caco-2 assays were used to determine the intrinsic permeability and efflux ratio of LCM as well as its potential to inhibit digoxin, a Pgp substrate. Lacosamide was transported by MDR1-transfected cells from basolateral to apical sides. The efflux of LCM could be completely blocked by verapamil or tariquidar. In Caco-2 assays, LCM showed high permeability without a significant efflux ratio; it did not inhibit digoxin, a Pgp substrate. Although LCM is a substrate of Pgp in CETA, Caco-2 data demonstrated that passive diffusion should play a major role in the overall disposition of LCM. The critical role of Pgp should be addressed in vivo. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor.
Nanduri, Bindu; Byrd, Alicia K; Eoff, Robert L; Tackett, Alan J; Raney, Kevin D
2002-11-12
Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a monomer, then the burst amplitude in the pre-steady state might be similar to the concentration of enzyme, whereas if the helicase required oligomerization, then the amplitude would be significantly less than the enzyme concentration. DNA unwinding of an oligonucleotide substrate was conducted by using a Kintek rapid quench-flow instrument. The substrate consisted of 12 bp adjacent to 12 nucleotides of single-stranded DNA. Dda (4 nM) was incubated with substrate (16 nM) in buffer, and the unwinding reaction was initiated by the addition of ATP (5 mM) and Mg(2+) (10 mM). The reaction was stopped by the addition of 400 mM EDTA. Product formation exhibited biphasic kinetics, and the data were fit to the equation for a single exponential followed by a steady state. The amplitude of the first phase was 3.5 +/- 0.2 nM, consistent with a monomeric helicase. The burst amplitude of product formation was measured over a range of enzyme and substrate concentrations and remained consistent with a functional monomer. Thus, Dda can rapidly unwind oligonucleotide substrates as a monomer, indicating that the functional molecular motor component of a helicase can reside within a single polypeptide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, E.P.; Sheehy, K.M.; Lame, M.W.
2000-02-01
The kinetics of glutathione 5-transferase (GST) catalysis were investigated in largemouth bass (Micropterus salmoides) and brown bullheads (Amerius nebulosus), two freshwater fish species found in a variety of polluted waterways in the eastern US. The initial rates of hepatic GST activity toward four GST substrates, including 1-chloro-2,4-dinitrobenzene, ethacrynic acid, {Delta}5-androstene-17-dione, and nitrobutyl chloride, were significantly higher in brown bullheads than in largemouth bass. Hepatic GST activity toward 1,2-dichloro-4-nitrobenzene, a {mu}-class GST substrate in rodents, was not detectable in either species. Liver cytosolic GSTs were more efficient in bullheads than in bass at catalyzing 1-chloro-2,4-dinitrobenzene-reduced glutathione (CDNB-GSH) conjugation over a broadmore » range of electrophile (CDNB) concentrations, including those representative of environmental exposure. In contrast, largemouth bass maintained higher ambient concentrations of GSH, the nucleophilic cofactor for GST-mediated conjugation, than brown bullheads. Biphasic kinetics for GST-CDNB conjugation under conditions of variable GSH concentration were apparent in Eadie-Hofstee plots of the kinetic data, suggesting the presence of at least two hepatic GST isozymes with markedly different K{sub m} values for GSH in both species. The GST-CDNB reaction rate data obtained under conditions of variable GSH were well fitted (R{sup 2} = 0.999) by the two-enzyme Michaelis-Menten equation. In addition, Western blotting experiments confirmed the presence of two different hepatic GST-like proteins in both largemouth bass and brown bullhead liver. Collectively, these findings indicate that largemouth bass and brown bullhead GSTs catalyze the conjugation of structurally diverse, class-specific GST substrates, and that brown bullheads exhibit higher initial rates of GST activity than largemouth bass. The relatively higher rates of in vitro liver GST activity at the low substrate concentrations relevant to environmental exposure is expected to protect brown bullheads from the toxic effects of sediment-associated electrophilic chemicals. The somewhat lower rates of GST activity in largemouth bass liver compared with brown bullhead liver, however, may be offset by maintenance of higher ambient hepatic GSH concentrations in largemouth bass.« less
Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, T.; Mano, T.; Jo, M.
We report the self-assembly of InAs ring complexes on InP (100) substrates by droplet epitaxy. Single-ring, ring-disk complex, and concentric double-ring structures were formed by controlling the As beam flux and substrate temperature. A clear photoluminescence signal was detected in a sample where InAs rings were embedded in InGaAs.
Balimane, Praveen V; Chong, Saeho
2005-09-14
The objective of this project was to develop a cell based in vitro experimental procedure that can differentiate P-glycoprotein (P-gp) substrates from inhibitors in a single assay. Caco-2 cells grown to confluency on 12-well Transwell were used for this study. The efflux permeability (B to A) of P-gp specific probe (viz., digoxin) in the presence of test compounds (e.g. substrates, inhibitors and non-substrates of P-gp) was monitored, and the influx permeability (A to B) of test compounds was evaluated after complete P-gp blockade. Radiolabelled digoxin was added on the basolateral side with buffer on the apical side. The digoxin concentration appearing on the apical side represents digoxin efflux permeability during the control phase (0-1 h period). After 1 h, a test compound (10 microM) was added on the apical side. The reduced efflux permeability of digoxin suggests that the added test compound is an inhibitor. The influx permeability of test compound is also determined during the 1-2 h study period by measuring the concentration of the test compound in the basolateral side. At the end of 2 h, a potent P-gp inhibitor (GF120918) was added. The increased influx permeability of test compound during the 2-3 h incubation period indicates that the added test compound is a substrate. Samples were taken from both sides at the end of 1-3 h and the concentrations of the test compounds and digoxin were quantitated. Digoxin efflux permeability remained unchanged when incubated with P-gp substrates (e.g., etoposide, rhodamine123, taxol). However, when a P-gp inhibitor was added to the apical side, the digoxin efflux (B to A permeability) was significantly reduced (ketoconazole=51% reduction) as expected. The influx permeability of substrates increased significantly (rhodamine123=70%, taxol=220%, digoxin=290%) after the P-gp inhibitor (GF120918) was introduced, whereas the influx permeability of P-gp inhibitor and non-substrates was not affected by GF120918. Thus, this combined assay provides an efficient cell based in vitro screening tool to simultaneously distinguish compounds that are P-gp substrates from P-gp inhibitors.
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.
2013-01-01
One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.
Silicon concentrator cell-assembly development
NASA Astrophysics Data System (ADS)
1982-08-01
The purpose was to develop an improved cell assembly design for photovoltaic concentrator receivers. Efforts were concentrated on a study of adhesive/separator systems that might be applied between cell and substrate, because this area holds the key to improved heat transfer, electrical isolation and adhesion. It is also the area in which simpler construction methods offer the greatest benefits for economy and reliability in the manufacturing process. Of the ten most promising designs subjected to rigorous environmental testing, eight designs featuring acrylic and silicon adhesives and fiberglass and polyester separators performed very well.
Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering
NASA Astrophysics Data System (ADS)
Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.
2016-05-01
Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.
Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.
2016-05-23
Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.
Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun
2006-03-01
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang
2018-03-01
Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.
USDA-ARS?s Scientific Manuscript database
Concentrations of ammonium, nitrate, and phosphorus in irrigation leachate were measured weekly over a 47-week period from a high-fertility, neutral-pH substrate into which four types of 12-month controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were incorporated. Containers...
USDA-ARS?s Scientific Manuscript database
Concentrations of ammonium, nitrate, and phosphorus in irrigation leachate were measured weekly over a 47-week period from a low-fertility, acid-based substrate into which four types of 12-month controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were incorporated. Containers ...
Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters
2013-01-01
Debaryomyces nepalensis, osmotolerant yeast isolated from rotten apple, is known to utilize both hexoses and pentoses and produce industrially important metabolites like ethanol, xylitol and arabitol. In the present study, the effect of different growth substrates, trace elements, nitrogen concentration and initial pH on growth and formation of ethanol and arabitol were examined. Optimum conditions for maximizing the product yields were established: glucose as carbon source, an initial pH of 6.0, 6 g/L of ammonium sulphate and addition of micronutrients. Under these best suited conditions, a concentration of 11g/L of arabitol and 19 g/L of ethanol was obtained in shake flask fermentations. The fermentation was scaled up to 2.5 L bioreactor and the influence of aeration, agitation and initial substrate concentration was also determined. Under optimal conditions (150 g/L glucose, 400 rpm and 0.5 vvm) ethanol concentration reached 52 g/L, which corresponds to a yield of 0.34 g/g and volumetric productivity of 0.28 g/L/h, whereas arabitol production reached a maximum of 14 g/L with a yield and volumetric productivity of 0.1 g/g and 0.07 g/L/h respectively. PMID:23659479
Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.
2010-01-01
The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moto, Kenta; Sadoh, Taizoh; Miyao, Masanobu, E-mail: miyao@ed.kyushu-u.ac.jp
Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (∼2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (∼5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibriummore » growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ∼12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.« less
Tavsan, Zehra; Ayar Kayali, Hulya
2015-05-01
The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.
Role of Peroxidase in Lignification of Tobacco Cells 1
Mäder, Michael; Füssl, Resi
1982-01-01
Coniferyl alcohol is the primary substrate for peroxidase-mediated lignification, a process which depends on the generation of H2O2 by NADH oxidation. We measured the concentrations of various phenols (synthetic and natural) at which maximal enhancement of NADH oxidation occurs. Coniferyl alcohol was found to stimulate NADH oxidation at a much lower concentration (0.01 mm) than other natural or synthetic phenols (1-100 mm). In addition, coniferyl alcohol prevented the conversion of active peroxidase into the inactive intermediate compound III—which is usually formed in the presence of NADH—at equally low concentrations. This conversion was found to be a prerequisite for stimulation of NADH-oxidation, but it was not necessarily connected to stimulation. The oxidation of NADH and coniferyl alcohol (or guaiacol) can occur simultaneously, but there is a strong competitive interaction between these two substrates. At pH 5, the presence of NADH at concentrations 30 to 60 times lower than the phenols completely prevents their oxidation. The results are discussed in relation to the role of cell wall peroxidases in conversion of coniferyl alcohol to lignin and in formation of H2O2. PMID:16662627
Cao, Hailong; Yue, Min; Liu, Gang; Du, Yuguang; Yin, Heng
2018-05-01
In the present study, the conversion of the extract of Jerusalem artichoke tubers for mannitol production by Lactobacillus brevis 3-A5 was investigated. When the bacterium utilized enzymatic hydrolysates of Jerusalem artichoke extract as the main substrates in batch fermentation, the significant decrease in mannitol productivity was observed when the initial concentration of reducing sugar increased. Then, a strategy of continuous fed-batch fermentation was adopted for improving mannitol production with enzymatic hydrolysates of Jerusalem artichoke extract as main substrates. Although the concentration of mannitol could reach 199.86 g/L at the end of the fermentation, the productivity for the overall process of the fermentation was only 1.67 g/L/H. To improve the mannitol productivity with both higher yield and concentration, the simultaneous enzymatic saccharification and fermentation (SSF) was studied. In SSF, the mannitol production reached 176.50 g/L in 28 H with a productivity of 6.30 g/L/H and a yield of 0.68 g/g total sugar. Our study provides a cost-effective and eco-friendly method for mannitol production from a cheap biomass. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Kinetics of suicide substrates. Practical procedures for determining parameters.
Waley, S G
1985-01-01
Many clinically important or mechanistically interesting inhibitors react with enzymes by a branched pathway in which inactivation of the enzyme and formation of product are competing reactions. The steady-state kinetics for this pathway [Waley (1980) Biochem. J. 185, 771-773] gave equations for progress curves that were cumbersome. A convenient linear plot is now described. The time (t1/2) for 50% inactivation of the enzyme (this is also the time for 50% formation of product), or for 50% loss of substrate, is measured in a series of experiments in which the concentration of inhibitor, [I]0, is varied; in these experiments the ratio of the concentration of enzyme to the concentration of inhibitor is kept fixed. Then a plot of [I]0 X t1/2 against [I]0 is linear, and the kinetic parameters can be found from the slope and intercept. Furthermore, simplifications of the equations for progress curves are described that are valid when the concentration of inhibitors is high, or is low, or when the extent of reaction is low. The use of simulated data has shown that the recommended methods are not unduly sensitive to experimental error. PMID:4004802
Ferrer, Pablo; Cambra-López, María; Cerisuelo, Alba; Peñaranda, David S; Moset, Verónica
2014-01-01
Anaerobic co-digestion of pig slurry with four agricultural substrates (tomato, pepper, persimmon and peach) was investigated. Each agricultural substrate was tested in co-digestion with pig slurry at four inclusion levels: 0%, 15%, 30% and 50%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the pig slurry with the VS from the agricultural substrate. The effect of substrate type and inclusion level on the biochemical methane potential (BMP) was evaluated in a batch assay performed at 35 °C for 100 days. Agricultural substrate's chemical composition was also analyzed and related with BMP. Additionally, Bacteria and Archaea domains together with the four main methanogenic archaeal orders were quantified using quantitative real-time TaqMan polymerase chain reaction (qPCR) at the end of the experiment to determine the influence of agricultural substrate on sludge's microbial composition. Results showed that vegetable substrates (pepper and tomato) had higher lipid and protein content and lower carbohydrates than fruit substrates (persimmon and peach). Among substrates, vegetable substrates showed higher BMP than fruit substrates. Higher BMP values were obtained with increasing addition of agricultural substrate. The replacement of 50% of VS from pig slurry by tomato and pepper increased BMP in 41% and 44%, respectively compared with pig slurry only. Lower increments in BMP were achieved with lower inclusion levels. Results from qPCR showed that total bacteria and total archaea gene concentrations were similar in all combinations tested. Methanomicrobiales gene concentrations dominated over the rest of individual archaeal orders. Copyright © 2013 Elsevier Ltd. All rights reserved.
H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors
Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO
2011-03-22
An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.
NASA Astrophysics Data System (ADS)
Ardhi, Muh. Waskito; Sulistyarsi, Ani; Pujiati
2017-06-01
Aspergillus sp is a microorganism which has a high ability to produce cellulase enzymes. In producing Cellulase enzymes requires appropriate concentration and incubation time to obtain optimum enzyme activity. This study aimed to determine the effect of inoculum concentration and incubation time towards production and activity of cellulases from Aspergillus sp substrate bagasse. This research used experiments method; completely randomized design with 2 factorial repeated 2 times. The treatment study include differences inoculum (K) 5% (K1), 15% (K2) 25%, (K3) and incubation time (F) that is 3 days (F1), 6 days (F2), 9 days (F3), 12 days (F4). The data taken from the treatment are glucose reduction and protein levels of crude cellulase enzyme activity that use Nelson Somogyi and Biuret methods. Analysis of variance ANOVA data used two paths with significance level of 5% then continued with LSD test. The results showed that: Fhit>Ftab. Thus, there is effect of inoculum concentrations and incubation time toward activity of crude cellulases of Aspergillus sp. The highest glucose reduction of treatment is K3F4 (concentration of inoculum is 25% with 12 days incubation time) amount 12.834 g / ml and the highest protein content is K3F4 (concentration of inoculum is 25% with with 12 days incubation time) amount 0.740 g / ml.
Fabrication of CdS nanowires with increasing anionic precursor by SILAR method
NASA Astrophysics Data System (ADS)
Dariani, R. S.; Salehi, F.
2016-05-01
CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.
Light funnel concentrator panel for solar power
NASA Technical Reports Server (NTRS)
1987-01-01
The solar concentrator design concept provides a theoretical concentration efficiency of 96 percent with power-to-weight ratios as high as 50 W/kg. Further, it eliminates the need for fragile reflective coatings and is very tolerant to pointing inaccuracies. The concept differs from conventional reflective mirrors and lens design in that is uses the principle of total internal reflection in order to funnel incident sunlight into a concentrator photovoltaic cell. The feasibility of the light funnel concentrator concept was determined through a balanced approach of analysis, development, and fabrication of prototypes, and testing of components. A three-dimensional optical model of the light funnel concentrator and photovoltaic cell was developed in order to assess the ultimate performance of such systems. In addition, a thermal and structural analysis of a typical unit was made. Techniques of fabricating the light funnel cones, optically coupling them to GaAs concentrator cells, bonding the funnels to GaAs cells, making electrical interconnects, and bonding substrates was explored and a prototype light funnel concentrator unit was fabricated and tested. Testing of the system included measurements of optical concentrating efficiency, optical concentrator to cell coupling efficiency, and electrical efficiency.
Enhanced polyhydroxyalkanoate production from organic wastes via process control.
Vargas, Alejandro; Montaño, Liliana; Amaya, Rodolfo
2014-03-01
This work explores the use of a model-based control scheme to enhance the productivity of polyhroxyalkanoate (PHA) production in a mixed culture two-stage system fed with synthetic wastewater. The controller supplies pulses of substrate while regulating the dissolved oxygen (DO) concentration and uses the data to fit a dynamic mathematical model, which in turn is used to predict the time until the next pulse addition. Experiments in a bench scale system first determined the optimal DO set-point and initial substrate concentration. Then the proposed feedback control strategy was compared with a simpler empiric algorithm. The results show that a substrate conversion rate of 1.370±0.598mgPHA/mgCOD/d was achieved. The proposed strategy can also indicate when to stop the accumulation of PHA upon saturation, which occurred with a PHA content of 71.0±7.2wt.%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo
2016-07-01
Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137. Copyright © 2016. Published by Elsevier Ltd.
Song, Jia; Huang, Yiqun; Fan, Yuxia; Zhao, Zhihui; Yu, Wansong; Rasco, Barbara A.; Lai, Keqiang
2016-01-01
Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS) is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone) and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity. PMID:28335303
Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang
2012-11-01
An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent
NASA Astrophysics Data System (ADS)
Nakamura, Hiroshi; Aoki, Masaharu
1981-01-01
Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.
[Study on preparation of sagittatoside B with epimedin B converted from cellulase].
Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin
2014-01-01
To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.
Metabolite concentrations, fluxes and free energies imply efficient enzyme usage
Park, Junyoung O.; Rubin, Sara A.; Xu, Yi -Fan; ...
2016-05-02
In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative Δ G throughout. For each reaction, Δ G is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). In this paper, we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and Δ G for each organism. In glycolysis, we find that free energy is partitioned so asmore » to mitigate unproductive backward fluxes associated with Δ G near zero. Across metabolism, we observe that absolute metabolite concentrations and Δ G are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant ( K m or K i). Finally, the observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints.« less
Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.
Pomeranz Krummel, D A; Altman, S
1999-01-01
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2014-05-01
In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.
Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate
NASA Astrophysics Data System (ADS)
Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.
2018-05-01
We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.
Target and method for the production of fission product molybdenum-99
Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.
1987-10-26
A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.
Preparation, linear and NLO properties of DNA-CTMA-SBE complexes
NASA Astrophysics Data System (ADS)
Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia
2013-10-01
Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.
Adaptation to metals in widespread and endemic plants.
Shaw, A J
1994-01-01
Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025
NASA Astrophysics Data System (ADS)
Poborchii, Vladimir; Shklyaev, Alexander; Bolotov, Leonid; Uchida, Noriyuki; Tada, Tetsuya; Utegulov, Zhandos N.
2017-12-01
Metasurfaces consisting of arrays of high-index Mie resonators concentrating/redirecting light are important for integrated optics, photodetectors, and solar cells. Herein, we report the optical properties of low-Ge-content SiGe lens-like Mie resonator island arrays fabricated via dewetting during Ge deposition on a Si(100) surface at approximately 900 °C. We observe enhancement of the Si interaction with light owing to the efficient island-induced light concentration in the submicron-depth Si layer, which is mediated by both near-field Mie resonance leaking into the substrate and far-field light focusing. Such metasurfaces can improve the Si photodetector and solar-cell performance.
SPERMINE OXIDASE: AN AMINE OXIDASE WITH SPECIFICITY FOR SPERMINE AND SPERMIDINE
Hirsch, James G.
1953-01-01
Sheep serum and bovine serum contain an enzyme which brings about a rapid oxidative deamination of certain biological amines. This enzyme differs from previously described amine oxidases in several regards and especially in its substrate specificity. Studies thus far indicate that only spermine and the closely related compound spermidine serve as substrates for the enzyme in sheep serum. For this reason, the enzyme has been named spermine oxidase. Spermine oxidase is active in a variety of fluids of various ionic strength and buffer composition. The reaction takes place between pH 6.0 and pH 8.0 with an optimal rate in the vicinity of neutrality. Under certain conditions, the rate of oxygen consumption during the initial phase of the reaction is independent of the concentration of substrate. The diminution in rate observed during the latter phase of the enzymatic attack appears to be due to an alteration in the kinetics at low concentrations of substrate, or to competitive inhibition by a product of the reaction. Carbonyl reagents almost completely block the action of spermine oxidase, while certain amines and the cyanide ion bring about partial inhibition. Thiol reagents and sequestering compounds do not alter the course of the oxidative process. In the presence of low concentrations of mercuric chloride, the sheep serum-spermine system consumes approximately twice as much oxygen as controls containing no mercuric ion. The mechanism by which the mercuric ion stimulates additional oxygen uptake is obscure. PMID:13052805
Dong, Daming; Jiao, Leizi; Du, Xiaofan; Zhao, Chunjiang
2017-04-20
In this study, we developed a substrate to enhance the sensitivity of LIBS by 5 orders of magnitude. Using a combination of field enhancement due to the metal nanoparticles in the substrate, the aggregate effect of super-hydrophobic interfaces and magnetic confinement, we performed a quantitative measurement of copper in solution with concentrations on the ppt level. We also demonstrated that the substrate improves quantitative measurements by providing an opportunity for internal standardization.
Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles.
LeVine, Michael V; Khelashvili, George; Shi, Lei; Quick, Matthias; Javitch, Jonathan A; Weinstein, Harel
2016-02-16
Recent work has shown that the choice of the type and concentration of detergent used for the solubilization of membrane proteins can strongly influence the results of functional experiments. In particular, the amino acid transporter LeuT can bind two substrate molecules in low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations of LeuT in DDM proteomicelles revealed that DDM can penetrate to the extracellular vestibule and make stable contacts in the functionally important secondary substrate binding site (S2), suggesting a potential competitive mechanism for the reduction in binding stoichiometry. Because annular lipids can be retained during solubilization, we performed MD simulations of LeuT proteomicelles at various stages of the solubilization process. We find that at low DDM concentrations, lipids are retained around the protein and penetration of detergent into the S2 site does not occur, whereas at high concentrations, lipids are displaced and the probability of DDM binding in the S2 site is increased. This behavior is dependent on the type of detergent, however, as we find in the simulations that the detergent lauryl maltose-neopentyl glycol, which is approximately twice the size of DDM and structurally more closely resembles lipids, does not penetrate the protein even at very high concentrations. We present functional studies that confirm the computational findings, emphasizing the need for careful consideration of experimental conditions, and for cautious interpretation of data in gathering mechanistic information about membrane proteins.
Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles
2016-01-01
Recent work has shown that the choice of the type and concentration of detergent used for the solubilization of membrane proteins can strongly influence the results of functional experiments. In particular, the amino acid transporter LeuT can bind two substrate molecules in low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations of LeuT in DDM proteomicelles revealed that DDM can penetrate to the extracellular vestibule and make stable contacts in the functionally important secondary substrate binding site (S2), suggesting a potential competitive mechanism for the reduction in binding stoichiometry. Because annular lipids can be retained during solubilization, we performed MD simulations of LeuT proteomicelles at various stages of the solubilization process. We find that at low DDM concentrations, lipids are retained around the protein and penetration of detergent into the S2 site does not occur, whereas at high concentrations, lipids are displaced and the probability of DDM binding in the S2 site is increased. This behavior is dependent on the type of detergent, however, as we find in the simulations that the detergent lauryl maltose-neopentyl glycol, which is approximately twice the size of DDM and structurally more closely resembles lipids, does not penetrate the protein even at very high concentrations. We present functional studies that confirm the computational findings, emphasizing the need for careful consideration of experimental conditions, and for cautious interpretation of data in gathering mechanistic information about membrane proteins. PMID:26811944
Du, Jian; Cao, Yuan; Liu, Guodong; Zhao, Jian; Li, Xuezhi; Qu, Yinbo
2017-04-01
Cellulose conversion decreases significantly with increasing solid concentrations during enzymatic hydrolysis of insoluble lignocellulosic materials. Here, mass transfer limitation was identified as a significant determining factor of this decrease by studying the hydrolysis of delignified corncob residue in shake flask, the most used reaction vessel in bench scale. Two mass transfer efficiency-related factors, mixing speed and flask filling, were shown to correlate closely with cellulose conversion at solid loadings higher than 15% DM. The role of substrate characteristics in mass transfer performance was also significant, which was revealed by the saccharification of two corn stover substrates with different pretreatment methods at the same solid loading. Several approaches including premix, fed-batch operation, and particularly the use of horizontal rotating reactor were shown to be valid in facilitating cellulose conversion via improving mass transfer efficiency at solid concentrations higher than 15% DM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gohel, V; Duan, G; Maisuria, V B
2013-01-01
This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α-amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Q(s)), ultimately ethanol yield based on substrate (Y(p/s)) and ethanol productivity based on fermentation time (Q(p)). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. Copyright © 2013 American Institute of Chemical Engineers.
Fabrication of a superhydrophobic and high-glossy copper coating on aluminum substrates
NASA Astrophysics Data System (ADS)
Yang, Hao; He, Yuantao; Wu, Zhongqiang; Miao, Jing; Yang, Fang; Lu, Zhong
2018-03-01
Superhydrophobic metal coatings have been extensively studied in recent years because of their significant potential applications. Unfortunately, most of them lost the original metallic luster due to the micro/nano binary structures. In this paper, a facile method was developed to prepare a superhydrophobic and high-glossy copper coating on aluminum substrates. The bionic lotus leaf surfaces were constructed by electroless plating method and further modified with octadecanethiol. The wettability and gloss could be tuned by the concentration of the precursor. With the increase of CuSO4 concentration, the surface roughness of the coating raised, thus resulting in increase of contact angle and decrease of glossiness. When the CuSO4 concentration was 30 mmol/L, the coating exhibited a sub-micro/nano binary structure, in which 20-30 nm protuberances were grown on 300-500 nm mastoids. Such special morphology endowed the coating with superhydrophobic and high-glossy properties, and the coating also showed ultra-low water adhesion and stable dynamic water repellence.
Delnavaz, Mohammad; Ayati, Bita; Ganjidoust, Hossein; Sanjabi, Sohrab
2015-01-01
In this study, concrete application as a substrate for TiO2 nano powder immobilization in heterogeneous photocatalytic process was evaluated. TiO2 immobilization on the pervious concrete surface was done by different procedures containing slurry method (SM), cement mixed method (CMM) and different concrete sealer formulations. Irradiation of TiO2 was prepared by UV-A and UV-C lamps. Phenolic wastewater was selected as a pollutant and efficiency of the process was determined in various operation conditions including influent phenol concentration, pH, TiO2 concentration, immobilization method and UV lamp intensity. The removal efficiency of photocatalytic process in 4 h irradiation time and phenol concentration ranges of 25-500 mg/L was more than 80 %. Intermediates were identified by GC/Mass and spectrophotometric analysis. According to the results, photocatalytic reactions followed the pseudo-first-order kinetics and can effectively treate phenol under optimal conditions.
Tow steps biohydrogen production: biomass pretreatment and fermentation
NASA Astrophysics Data System (ADS)
Ma, C.; Yang, H. H.; Guo, L. J.
2010-03-01
This paper investigated the pretreatment of cornstalk and integrated dark-photo fermentation for hydrogen production. Five parameters of the pretreatment experiments, including NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase, were optimized through the L25 (5≙5) orthogonal test. The optimal NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase were 0.5wt%, 115 °C, 3 h, 0.08g/g cornstalk, 0.08g/g cornstalk, respectively. Under the optimal conditions, 0.31g glucose/g cornstalk was obtained. The two-step fermentation consisted of dark fermentation and photo fermentation. The pretreated cornstalk was used as the substrate for dark fermentation, with cow dung as the inoculum. Then the effluents of dark fermentation were employed as the substrate for photo fermentation by photosynthetic bacteria. H2 yield of dark fermentation was 116.7 mL/g cornstalk, with H2 concentration of 41%. After photo fermentation, the total H2 yield increased to 294 mL/g cornstalk.
Zobel, C. Richard; Beer, Michael
1961-01-01
Chemical studies have been carried out on the interaction of DNA with uranyl salts. The effect of variations in pH, salt concentration, and structural integrity of the DNA on the stoichiometry of the salt-substrate complex have been investigated. At pH 3.5 DNA interacts with uranyl ions in low concentration yielding a substrate metal ion complex with a UO2++/P mole ratio of about ½ and having a large association constant. At low pH's (about 2.3) the mole ratio decreases to about ⅓. Destruction of the structural integrity of the DNA by heating in HCHO solutions leads to a similar drop in the amount of metal ion bound. Raising the pH above 3.5 leads to an apparent increase in binding as does increasing the concentration of the salt solution. This additional binding has a lower association constant. Under similar conditions DNA binds about seven times more uranyl ion than bovine serum albumin, indicating useful selectivity in staining for electron microscopy. PMID:13788706
Characteristics of Au Migration and Concentration Distributions in Au-Doped HgCdTe LPE Materials
NASA Astrophysics Data System (ADS)
Sun, Quanzhi; Yang, Jianrong; Wei, Yanfeng; Zhang, Juan; Sun, Ruiyun
2015-08-01
Annealing techniques and secondary ion mass spectrometry have been used to study the characteristics of Au migration and concentration distributions in HgCdTe materials grown by liquid phase epitaxy. Secondary ion mass spectrometry measurements showed that Au concentrations had obvious positive correlations with Hg-vacancy concentration and dislocation density of the materials. Au atoms migrate toward regions of high Hg-vacancy concentration or move away from these regions when the Hg-vacancy concentration decreases during annealing. The phenomenon can be explained by defect chemical equilibrium theory if Au atoms have a very large migration velocity compared with Hg vacancies. Au atoms will also migrate toward regions of high dislocation density, leading to a peak concentration in the inter-diffusion region of HgCdTe materials near the substrate. By use of an Hg and Te-rich annealing technique, different concentration distributions of both Au atoms and Hg vacancies in HgCdTe materials were obtained, indicating that Au-doped HgCdTe materials can be designed and prepared to satisfy the requirements of HgCdTe devices.
Fabrication of trough-shaped solar collectors
Schertz, William W.
1978-01-01
There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.
Swelling and Contraction of Corn Mitochondria 1
Stoner, C. D.; Hanson, J. B.
1966-01-01
A survey has been made of the properties of corn mitochondria in swelling and contraction. The mitochondria swell spontaneously in KCl but not in sucrose. Aged mitochondria will swell rapidly in sucrose if treated with citrate or EDTA. Swelling does not impair oxidative phosphorylation if bovine serum albumin is present. Contraction can be maintained or initiated with ATP + Mg or an oxidizable substrate, contraction being more rapid with the substrate. Magnesium is not required for substrate powered contraction. Contraction powered by ATP is accompanied by the release of phosphate. Oligomycin inhibits both ATP-powered contraction and the release of phosphate. However, it does not affect substrate-powered contraction. Substrate powered contraction is inhibited by electron-transport inhibitors. The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone, accelerates swelling and inhibits both ATP-and substrate-powered contraction. However, the concentrations required are well in excess of those required to produce uncoupling and to accelerate adenosine triphosphatase; the concentrations required inhibit respiration in a phosphorylating medium. Phosphate is a very effective inhibitor of succinate-powered contraction. Neither oligomycin nor Mg affects the phosphate inhibition. Phosphate is less inhibitory with the ATP-powered contraction. The results are discussed in terms of a hypothesis that contraction is associated with a nonphosphorylated high energy intermediate of oxidative phosphorylation. Images PMID:16656248
Zhang, Wei; Zhong, Xing; Che, Wu
2018-02-01
To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.
Oldfield, C
1990-01-01
1. Equations are derived for the steady-state kinetics of substrate conversion by enzymes confined within the water-droplets of water-in-oil microemulsion systems. 2. Water-soluble substrates initially confined within droplets that do not contain enzyme are assumed to be converted into product only after they enter enzyme-containing droplets via the inter-droplet exchange process. 3. Hyperbolic (Michaelis-Menten) kinetics are predicted when the substrate concentration is varied in microemulsions of fixed composition. Both kcat. and Km are predicted to be dependent on the size and concentration of the water-droplets in the microemulsion. 4. The predicted behaviour is shown to be supported by published experimental data. A physical interpretation of the form of the rate equation is presented. 5. The rate equation for an oil-soluble substrate was derived assuming a pseudo-two-phase (oil & water) model for the microemulsion. Both kcat. and Km are shown to be independent of phi aq. Km is larger than the aqueous solution value by a factor approximately equal to the oil/water partition coefficient of the substrate. The validity of the rate equation is confirmed by published data. PMID:2264819
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films
NASA Astrophysics Data System (ADS)
Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria
2018-02-01
The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.
López, Rosario Lucas; García, Ma Teresa; Abriouel, Hikmate; Ben Omar, Nabil; Grande, Ma José; Martínez-Cañamero, Magdalena; Gálvez, Antonio
2007-12-01
The influence of substrate composition on the production of enterocin EJ97 and the conditions for semi-preparative bacteriocin recovery have been studied. Final bacteriocin concentrations of 12.5 or 15.6 mg/l were obtained in the commercial media brain heart infusion broth (BHI) and tryptic soya broth, respectively. The bacteriocin was also produced in the complex medium CM (8.75 mg/l), in which the vitamin supplement was essential for production. Some combinations of meat peptone and yeast extract plus either soy peptone or BHI also supported bacteriocin production, at concentrations of 6.25-7.5 mg/l. In cow milk (whole, half-skimmed, and skimmed), the final bacteriocin concentrations obtained ranged from 7.5 to 11.25 mg/l. Highest bacteriocin activity was obtained by using pasteurised milk whey as growth substrate (up to 25 mg/l), suggesting that this bacteriocin can be obtained on a large scale by using this cheap food-grade industrial by-product. Highest bacteriocin titres were always obtained after 8 h of incubation at 37 degrees C. Semi-preparative concentration and purification of enterocin EJ97 produced in a complex medium was achieved by bulk cation exchange chromatography without previous cell separation, followed by reversed-phase chromatography. This two-step procedure allowed preparation of milligram quantities of purified bacteriocin, which is an improvement compared to purification procedures established for most other bacteriocins (35). The availability of purified enterocin EJ97 will facilitate other studies such as the elucidation of its molecular structure and its interaction with target bacteria.
Lynch, J W; Miles, J M; Bailey, J W
1994-01-01
Diets containing either triacetin (the water-soluble triglyceride of acetate) or long-chain triglycerides (LCTs) were fed to rats to determine the effects on intestinal mucosa cells and plasma substrates. Male Sprague-Dawley rats were fed one of three diets, a control diet containing 5% of energy as LCTs or one of two experimental diets that contained 30% of energy as lipid. The lipid component of the two experimental diets was either 100% LCTs or 95% triacetin/5% LCTs. Plasma lactate, glucose, and total ketone body concentrations were not significantly different among dietary treatment groups. Compared with animals fed LCTs and control diet, plasma pyruvate and free fatty acid concentrations were decreased in animals fed triacetin. In contrast, plasma triglyceride concentrations were elevated in animals fed triacetin compared with other groups. Intestinal biochemical measures included total DNA, RNA, protein, and the protein:DNA ratio. Histologic indices measured were villus height in the jejunum and crypt depth in the colon. No significant difference in mucosal protein concentration was observed in the jejunum and colon. Jejunal RNA was significantly decreased in animals fed triacetin compared with other diets. Triacetin feeding significantly increased the DNA content in the jejunum and colon (thereby lowering the protein:DNA ratio), indicating smaller, more numerous cells. Jejunal villus height and colonic crypt depth were not significantly different among dietary treatment groups. Provision of a balanced diet containing 28.5% of the total calories as triacetin had no adverse effects on metabolic substrates and resulted in smaller and more numerous mucosal cells in the jejunum and colon.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.
2003-01-01
c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu
2015-09-07
Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less
NASA Astrophysics Data System (ADS)
Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka
2018-04-01
Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.
Kang, Sungchhang; Wanapat, Metha; Viennasay, Bounnaxay
2016-12-01
The objective of this study was to evaluate the effects of banana flower power pellet (BAFLOP-pellet) and plant oil source on in vitro gas production, fermentation efficiency, and methane (CH 4 ) production. Rumen fluid was collected from two rumen-fistulated dairy steers fed on rice straw-based diet with concentrate supplement to maintain normal rumen ecology. All supplemented feed were added to respective treatments in the 30:70 roughage to concentrate-based substrate. The treatments were arranged according to a 3 × 3 factorial arrangement in a completely randomized design. First factor was different levels of BAFLOP-pellet supplementation (0, 30, and 60 g/kg of dietary substrate) and second factor was plant oil source supplementation [non-supplemented, 20 g/kg krabok seed oil (KSO), and 20 g/kg coconut oil (CO) of dietary substrate, respectively]. Under this investigation, BAFLOP-pellet supplementation increased gas production kinetics and in vitro digestibility (P < 0.05). Ruminal pH was dropped post incubation time in the non-supplemented group but was enhanced in BAFLOP-pellet-supplemented treatments. On the other hand, supplementation of KSO and CO depressed gas production and digestibility, but did not influence ruminal pH. In addition, protozoal population and CH 4 production were decreased by BAFLOP-pellet and plant oil addition (P < 0.05). Based on this study, it could be concluded that supplementation of BAFLOP-pellet and plant oil source could enhance the in vitro fermentation efficiency while reduced protozoal population and CH 4 production. It is suggested that BAFLOP-pellet (60 g/kg of dietary substrate) and KSO/CO (20 g/kg of dietary substrate) could be used to manipulate rumen fermentation characteristics fed on high-concentrate diet.
Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A
2017-01-01
The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika
2016-03-01
Ganoderma lucidum is an important medicinal mushroom species and there is continuous interest in its bioactive properties. This study evaluated whether it may additionally serve as a nutritional supplement for the trace elements: selenium (Se), copper (Cu), and zinc (Zn). Mushrooms were cultivated on substrates enriched with 0.1 to 0.8 mM of inorganic Se alone or in combination with Zn and/or Cu. Supplementation increased accumulation of the elements in fruiting bodies regardless of the applied cultivation model. G. lucidum demonstrated the ability to accumulate significant amounts of organic Se, maximally amounting to (i) over 44 mg/kg when the substrate was supplemented only with Se, (ii) over 20 mg/kg in the Se+Cu model, (iii) over 25 mg/kg in the Se+Zn model, and (iv) 15 mg/kg in the Se+Cu+Zn model. The accumulation of Cu and Zn steadily increased with their initial substrate concentrations. Maximum concentrations found after supplementation with 0.8 mM amounted to over 55 mg/kg (Se+Zn) and 52 mg/kg (Se+Cu+Zn) of Zn, and 29 mg/kg (Se+Cu) and over 31 mg/kg (Se+Cu+Zn) of Cu. The greater the supplemented concentration and number of supplemented elements, the lower the biomass of G. lucidum fruiting bodies. Nevertheless, it still remained high when the substrate was supplemented up to 0.4 mM with each element. These results highlight that G. lucidum can easily incorporate elements from the substrate and that, when biofortified, its dried fruiting bodies may serve as a nutritional source of these essential elements. © 2016 Institute of Food Technologists®
Lehmann, M M; Wegener, F; Werner, R A; Werner, C
2016-09-01
Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 . © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.
Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata
2018-05-08
Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.
[Influence of the substrate composition in extensive green roof on the effluent quality].
Chen, Yu-Lin; Li, Tian; Gu, Jun-Qing
2014-11-01
By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2.93, 0.73 and 78 mg x L(-1), respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was decreased by about 60%. The inorganic compound soil had better effluent quality, however we also need to judge whether the substrate could be applied in extensive green roof or not, by analyzing its ability of water quantity reduction and the plant growth situation.
Effects of heavy metals (Fe3+/Cr6+) on low-level energy generation in a microbial fuel cell
NASA Astrophysics Data System (ADS)
Caparanga, A. R.; Balatbat, A. S.; Tayo, L.
2017-06-01
A dual-chamber microbial fuel cell (MFC) was constructed with Pseudomonas aeruginosa as biocatalyst to facilitate substrate conversion and, consequently, low-level energy generation. To simulate a wastewater situation with BOD and heavy metals contamination, glucose and Fe3+ and Cr6+ were used as substrate and heavy-metal spikes, respectively. The effects of varying substrate concentrations (150 ppm, 300 ppm, 600 ppm) and heavy metal loads (10 ppm, 50 ppm, 100 ppm) on overall power generation were evaluated. The presence of Cr6+ in the anode compartment decreased the potential from 565 to 201 mV (i.e., lowest value achieved at highest Cr6+ concentration of 300 ppm). On the other hand, replacing Cr6+ with Fe3+ as electron acceptor resulted in substantial increase in measured potential (i.e., from 565 to 703 mV). Increasing glucose concentrations resulted in longer time to reach constant open circuit voltage. A maximum potential of 606 mV was achieved at 1200 ppm glucose. Incorporating Pseudomonas aeruginosa increased the potential from 256 to 592 mV. On the basis of these results, a microbial fuel cell feeding on wastewater can be an important potential technology for generating low-level energy
Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains
Gustin, M.S.; Coolbaugh, M.F.; Engle, M.A.; Fitzgerald, B.C.; Keislar, R.E.; Lindberg, S.E.; Nacht, D.M.; Quashnick, J.; Rytuba, J.J.; Sladek, C.; Zhang, H.; Zehner, R.E.
2003-01-01
Waste rock and ore associated with Hg, precious and base metal mining, and their surrounding host rocks are typically enriched in mercury relative to natural background concentrations (<0.1 ??g Hg g-1). Mercury fluxes to the atmosphere from mineralized areas can range from background rates (0-15 ng m-2 h-1) to tens of thousands of ng m-2 h-1. Mercury enriched substrate constitutes a long-term source of mercury to the global atmospheric mercury pool. Mercury emissions from substrate are influenced by light, temperature, precipitation, and substrate mercury concentration, and occur during the day and night. Light-enhanced emissions are driven by two processes: desorption of elemental mercury accumulated at the soil:air interface, and photo reduction of mercury containing phases. To determine the need for and effectiveness of regulatory controls on short-lived anthropogenic point sources the contribution of mercury from geologic non-point sources to the atmospheric mercury pool needs to be quantified. The atmospheric mercury contribution from small areas of mining disturbance with relatively high mercury concentrations are, in general, less than that from surrounding large areas of low levels of mercury enrichment. In the arid to semi-arid west-ern United States volatilization is the primary means by which mercury is released from enriched sites.
Arsenic, Lead, and Cadmium in U.S. Mushrooms and Substrate in Relation to Dietary Exposure.
Seyfferth, Angelia L; McClatchy, Colleen; Paukett, Michelle
2016-09-06
Wild mushrooms can absorb high quantities of metal(loid)s, yet the concentration, speciation, and localization of As, Pb, and Cd in cultivated mushrooms, particularly in the United States, are unresolved. We collected 40 samples of 12 types of raw mushrooms from 2 geographic locations that produce the majority of marketable U.S. mushrooms and analyzed the total As, Pb, and Cd content, the speciation and localization of As in select samples, and assessed the metal sources and substrate-to-fruit transfer at one representative farm. Cremini mushrooms contained significantly higher total As concentrations than Shiitake and localized the As differently; while As in Cremini was distributed throughout the fruiting body, it was localized to the hymenophore region in Shiitake. Cd was significantly higher in Royal Trumpet than in White Button, Cremini, and Portobello, while no difference was observed in Pb levels among the mushrooms. Concentrations of As, Pb, and Cd were less than 1 μg g(-1) d.w. in all mushroom samples, and the overall risk of As, Cd, and Pb intake from mushroom consumption is low in the U.S. However, higher percentages of tolerable intake levels are observed when calculating risk based on single serving-sizes or when substrate contains elevated levels of metal(loid)s.
Rajasimman, M; Karthikeyan, C
2007-05-08
A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.
Suzuki, Nobukazu; Ito, Toshihiko; Hiroshima, Kai; Tokiwano, Tetsuo; Hashizume, Katsumi
2016-03-01
Formation of ethyl ferulate (EF) and ferulic acid (FA) under sake mash conditions was studied using feruloylated oligosaccharide (FO), prepared from rice grains, as the substrate for rice koji enzyme. EF and FA were produced from FO over six times faster than from alkyl ferulates however, under the same ethanol concentration, only small differences were observed between the EF/FA ratios when either FO or methyl ferulate were used as substrates. Esterification and hydrolysis of FO or methyl ferulate showed similar pH dependencies and similar EF/FA ratios for each substrate in all of the pH ranges tested. Ethanol concentration clearly affected the EF/FA ratio; the ratio increased as ethanol concentration increased. Formation of EF and FA in the sake mash simulated rice digest was accelerated by addition of exogenous FO. These results indicated that supply of FO to sake mash is a crucial step for EF and FA formation, and ethanol is an influencing factor in the EF/FA ratio. The rice koji enzyme reaction suggested that EF and FA are formed through a common feruloylated enzyme intermediate complex by transesterification or hydrolysis, and these reactions occur competitively. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Alamethicin for using in bioavailability studies? - Re-evaluation of its effect.
Vollmer, Maren; Klingebiel, Mirko; Rohn, Sascha; Maul, Ronald
2017-03-01
A major pathway for the elimination of drugs is the biliary and renal excretion following the formation of more hydrophilic secondary metabolites such as glucuronides. For in vitro investigations of the phase II metabolism, hepatic microsomes are commonly used in the combination with the pore-forming peptide alamethicin, also to give estimates for the in vivo situation. Thus, alamethicin may represent a neglected parameter in the characterization of microsomal in vitro assays. In the present study, the influence of varying alamethicin concentrations on glucuronide formation of selected phenolic compounds was investigated systematically. A correlation between the alamethicin impact and the lipophilicity of the investigated substrates was analyzed as well. Lipophilicity was determined by the logarithm of the octanol-water partition coefficient. For every substrate, a distinct alamethicin concentration could be detected leading to a maximal glucuronidation activity. Further increase of the alamethicin application led to negative effects. The differences between the maximum depletion rates with and without alamethicin addition varied between 2.7% and 18.2% depending on the substrate. A dependence on the lipophilicity could not be confirmed. Calculation of the apparent intrinsic clearance led to a more than 2-fold increase using the most effective alamethicin concentration compared to the alamethicin free control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chelatable trace zinc causes low, irreproducible KDAC8 activity.
Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J
2018-01-01
Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication
Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.
2009-01-01
Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595
NASA Astrophysics Data System (ADS)
Brion, N.; Elskens, M.; Dehairs, F.; Baeyens, W.
2003-04-01
The concentration-dependent uptakes of nitrate, ammonium and the effect of ammo-nium on the f-ratio were surveyed in surface waters of the NW Iberian shelf during June 1997, July 1998 and September 1999. Because relationships between rates and substrate concentrations were quite variable, ranging from linear to convex shaped curves, they were fitted to rational functions. Stepwize regression analysis yielded subsequent model equations with reasonable statistical properties which allowed describing all but all a few cases. Differentiating these equations with respect to the concentration gave the slope of the tangent to the curve, i.e., the variation in rate expected for a given perturbation of the ambient substrate concentration. The initial slope value was then used as an index to gauge the "affinity" of the plankton community for the nitrogen substrate utilization. In June 1997, the situation at the Iberian shelf showed no upwelling except near Cape Finistère. Overall, the phytoplankton community displayed a high "affinity" for both nitrate and ammonium and low f-ratio values, which is indicative of a re-generated production regime. High ammonium regeneration rates supported furthermore these observations. It was also demonstrated that the new production rates is only marginally sensitive to changes of the ambient nitrate and/or ammonium concentrations. This indicates that the production regime is rather stable throughout. Only at Cape Finistère, nitrate concentrations were high reflecting the onset of an upwelling event. In this zone, the phytoplankton community, taking advantage of its high affinity for nitrate enhanced both total N-uptake rate and f-ratio. In July 1998, the situation evolved towards an extension to the south of the upwelling event starting at Cape Finistère. In this southern zone of the upwelling the phytoplankton community displayed generally a lower affinity for nitrate (but not for ammonium) than in 1997. In spite of this lower affinity, nitrate uptake rate was dominant resulting in f-ratio values greater than 0.5, a characteristic of a new production regime. The new production rate is only marginally sensitive to increases of the ambient nitrate, but is drastically inhibited by small increases of the ambient ammonium. The situation of September 1999 was very close to that observed in July 1998, with higher nitrate concentrations in the coastal northern part of the sampling area dominated by upwelling.
Substrate inhibition kinetics of phenol biodegradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudar, C.T.; Ganji, S.H.; Pujar, B.G.
Phenol biodegradation was studied in batch experiments using an acclimated inoculum and initial phenol concentrations ranging from 0.1 to 1.3 g/L. Phenol depletion an associated microbial growth were monitored over time to provide information that was used to estimate the kinetics of phenol biodegradation. Phenol inhibited biodegradation at high concentrations, and a generalized substrate inhibition model based on statistical thermodynamics was used to describe the dynamics of microbial growth in phenol. For experimental data obtained in this study, the generalized substrate inhibition model reduced to a form that is analogous to the Andrews equation, and the biokinetic parameters {micro}{sub max},more » maximum specific growth; K{sub s}, saturation constant; and K{sub i}, inhibition constant were estimated as 0.251 h{sup {minus}1}, 0.011 g/L, and 0.348 g/L, respectively, using a nonlinear least squares technique. Given the wide variability in substrate inhibition models used to describe phenol biodegradation, an attempt was made to justify selection of particular model based on theoretical considerations. Phenol biodegradation data from nine previously published studies were used in the generalized substrate inhibition model to determine the appropriate form of the substrate inhibition model. In all nine cases, the generalized substrate inhibition model reduced to a form analogous to the Andrews equation suggesting the suitability of the Andrews equation to describe phenol biodegradation data.« less
P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.
Nervi, Pierluigi; Li-Blatter, Xiaochun; Aänismaa, Päivi; Seelig, Anna
2010-03-01
We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux. Copyright 2009 Elsevier B.V. All rights reserved.
Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung
2015-12-15
This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.
Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish
2017-01-01
Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
NASA Astrophysics Data System (ADS)
Hamdiyati, Yanti; Kusnadi, Yuliani, Lia Amelia
2016-02-01
The used of synthetic dyes have various negative effects on human health. Roomates pigment produced by Monascus purpureus mold can be used as an alternative natural food coloring. The research on the effect of inoculum concentration's M. purpureus to pigment production on the jackfruit seed flour has been done. The objective of research to is to investigate the effect of inoculum concentration's M. purpureus to the production of red, yellow and orange pigment on the jackfruit seed flour. The concentrations used were 0%, 5%, 10%, and 15% (v/w). The result of the data analysed using One-Way ANOVA showed that the inoculum concentration affected the production of red pigment M. purpureus, as well as the data analysis using the Kruskal-Wallis showed that inoculum concentration has influence on the production of yellow and orange pigments. Inoculum concentration of 15% is the optimum concentration for the production of red, yellow and orange pigments with 0:10, 0:50 and 0:20 absorbance units per gram of sample respectively. Based on the results of the research, it can be concluded that inoculum concentration of M. purpureus influenced the production of red, yellow and orange pigments.
Breather cloth for vacuum curing
NASA Technical Reports Server (NTRS)
Reed, M. W.
1979-01-01
Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.
Porous glass makes effective substrate for ozone-sensing reagent
NASA Technical Reports Server (NTRS)
1965-01-01
Porous-glass substrate is used for absorption of a dye used in measuring the concentration of atmospheric ozone at high altitudes. This measurement is based on the chemiluminescence produced in the reaction between ozone and the dye, rhodamine B. The porous glass provides a large interstitial surface area which promotes this reaction.
Nutrient relations of dwarf Rhizophora mangle L
Ernesto Medina; Elvira Cuevas; Ariel E. Lugo
2010-01-01
Dwarf mangroves on peat substrate growing in eastern Puerto Rico (Los Machos, Ceiba State Forest) were analyzed for element concentration, leaf sap osmolality, and isotopic signatures of C and N in leaves and substrate. Mangrove communities behind the fringe presented poor structural development with maximum height below 1.5 m, lacked a main stem, and produced...
Influence of GaAs substrate properties on the congruent evaporation temperature
NASA Astrophysics Data System (ADS)
Spirina, A. A.; Nastovjak, A. G.; Shwartz, N. L.
2018-03-01
High-temperature annealing of GaAs(111)A and GaAs(111)B substrates under Langmuir evaporation conditions was studied using Monte Carlo simulation. The maximal value of the congruent evaporation temperature was estimated. The congruent evaporation temperature was demonstrated to be dependent on the surface orientation and concentration of surface defects.
Gagne, G D; Miller, M F
1987-08-01
We describe an artificial substrate system for optimization of labeling parameters in electron microscope immunocytochemical studies. The system involves use of blocks of glutaraldehyde-polymerized BSA into which a desired antigen is incorporated by a simple soaking procedure. The resulting antigen-impregnated artificial substrate can then be fixed and embedded identically to a piece of tissue. The BSA substrate can also be dried and then sectioned for immunolabeling with or without chemical fixation and without exposing the antigen to dehydrating agents and embedding resins. The effects of various fixation and embedding procedures can thus be evaluated separately. Other parameters affecting immunocytochemical labeling, such as antibody and conjugate concentration, can also be evaluated. We used this system, along with immunogold labeling, to determine quantitatively the optimal fixation and embedding conditions for labeling of hepatitis B surface antigen (HbsAg), human IgG, and horseradish peroxidase. Using unfixed and unembedded HBsAg, we were able to detect antigen concentrations below 20 micrograms/ml. We have shown that it is not possible to label HBsAg within resin-embedded cells using conventional aldehyde fixation protocols and polyclonal antibodies.
Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect
Goldstein, Miriam C.; Rosenberg, Marci; Cheng, Lanna
2012-01-01
Plastic pollution in the form of small particles (diameter less than 5 mm)—termed ‘microplastic’—has been observed in many parts of the world ocean. They are known to interact with biota on the individual level, e.g. through ingestion, but their population-level impacts are largely unknown. One potential mechanism for microplastic-induced alteration of pelagic ecosystems is through the introduction of hard-substrate habitat to ecosystems where it is naturally rare. Here, we show that microplastic concentrations in the North Pacific Subtropical Gyre (NPSG) have increased by two orders of magnitude in the past four decades, and that this increase has released the pelagic insect Halobates sericeus from substrate limitation for oviposition. High concentrations of microplastic in the NPSG resulted in a positive correlation between H. sericeus and microplastic, and an overall increase in H. sericeus egg densities. Predation on H. sericeus eggs and recent hatchlings may facilitate the transfer of energy between pelagic- and substrate-associated assemblages. The dynamics of hard-substrate-associated organisms may be important to understanding the ecological impacts of oceanic microplastic pollution. PMID:22573831
Pressure activated interconnection of micro transfer printed components
NASA Astrophysics Data System (ADS)
Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.
2016-05-01
Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.
Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect.
Goldstein, Miriam C; Rosenberg, Marci; Cheng, Lanna
2012-10-23
Plastic pollution in the form of small particles (diameter less than 5 mm)--termed 'microplastic'--has been observed in many parts of the world ocean. They are known to interact with biota on the individual level, e.g. through ingestion, but their population-level impacts are largely unknown. One potential mechanism for microplastic-induced alteration of pelagic ecosystems is through the introduction of hard-substrate habitat to ecosystems where it is naturally rare. Here, we show that microplastic concentrations in the North Pacific Subtropical Gyre (NPSG) have increased by two orders of magnitude in the past four decades, and that this increase has released the pelagic insect Halobates sericeus from substrate limitation for oviposition. High concentrations of microplastic in the NPSG resulted in a positive correlation between H. sericeus and microplastic, and an overall increase in H. sericeus egg densities. Predation on H. sericeus eggs and recent hatchlings may facilitate the transfer of energy between pelagic- and substrate-associated assemblages. The dynamics of hard-substrate-associated organisms may be important to understanding the ecological impacts of oceanic microplastic pollution.
NASA Astrophysics Data System (ADS)
Y, Yusnenti F. M.; M, Othman; Mustapha, Mazli; I, MohdYusri
2016-02-01
A new Silicanizing process on formation of coating on mild steel using Tronoh Silica Sand (TSS) is presented. The process was performed in the temperature range 1000- 1100°C and with varying deposition time of 1-4 hours. Influence of the layer and the substrate constituents on the coating compatibility of the whole silicanized layer is described in detail. Morphology and structure of the silicanized layer were investigated by XRF, XRD and SEM. It is observed that diffusion coatings containing high concentrations of silica which profile distribution of SiO2 in the silicanized layer was encountered and the depth from the surface to the substrate was taken as the layer thickness. The results also depicted that a longer deposition time have tendency to produce a looser and larger grain a hence rougher layer. The silicanized layer composed of FeSi and Fe2SiO4 phases with preferred orientation within the experimental range. It is also found that longer deposition time and higher temperature resulted in an increase in SiO2 concentration on the substrate (mild steel).
Burns, Douglas A.
1996-01-01
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO3-, Ca2+, SO42-, NO3-7, and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO42- concentrations. After CaCO3 treatment, reduction of SO42- was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate. ?? 1996 Kluwer Academic Publishers.
Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi
2017-02-01
The phosphorus (P) adsorption properties of an iron [Fe(0)]-rich substrate (IRS) composed of iron scraps and activated carbon were investigated based on iron-carbon micro-electrolysis (IC-ME) and compared to the substrates commonly used in constructed wetlands (CWs) to provide an initial characterization of the [Fe(0)]-rich substrate. The results showed that P was precipitated by Fe(III) dissolved from the galvanic cell reactions in the IRS and the reaction was suppressed by the pH and stopped when the pH exceeded 8.90 ± 0.09. The adsorption capacity of the IRS decreased by only 4.6% in the second round of adsorption due to Fe(0) consumption in the first round. Substrates with high Ca- and Mg-oxide contents and high Fe- and Al-oxide contents had higher P adsorption capacities at high and low pH values, respectively. Substrates containing high Fe and Al concentrations and low Ca concentrations were more resistant to decreases in the P adsorption capacity resulting from organic matter (OM) accumulation. The IRS with an iron scrap to activated carbon volume ratio of 3:2 resulted in the highest P adsorption capacity (9.34 ± 0.14 g P kg -1 ), with minimal pH change and strong adaptability to OM accumulation. The Fe(0)-rich substrate has the considerable potential for being used as a CW substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.
2016-01-01
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034
Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S
2016-01-01
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.
Plasma concentrations of free triiodothyronine predict weight change in euthyroid persons2
Ortega, Emilio; Pannacciulli, Nicola; Bogardus, Clifton; Krakoff, Jonathan
2007-01-01
Background Factors that influence energy metabolism and substrate oxidation, such as thyroid hormones (THs), may be important regulators of body weight. Objective We investigated associations of THs cross-sectionally with obesity, energy expenditure, and substrate oxidation and prospectively with weight change. Design Euthyroid, nondiabetic, healthy, adult Pima Indians (n = 89; 47 M, 42 F) were studied. Percentage body fat (%BF) was measured by using dual-energy X-ray absorptiometry; sleeping metabolic rate (SMR), respiratory quotient, and substrate oxidation rates were measured in a respiratory chamber. Thyroid-stimulating hormone (TSH), free thyroxine (T4), free triiodothyronine (T3), and leptin concentrations were measured in fasting plasma samples. Results TSH, but neither free T3 nor free T4, was associated with %BF and leptin concentrations (r = 0.27 and 0.29, respectively; both: P ≤ 0.01). In multiple regression analyses adjusted for age, sex, fat mass, and fat-free mass, free T3 was a positive predictor of SMR (P = 0.02). After adjustment for age, sex, %BF, and energy balance, free T3 was a negative predictor of 24-h respiratory quotient (P < 0.05) and a positive predictor of 24-h lipid oxidation rate (P = 0.006). Prospectively, after an average follow-up of 4 ± 2 y, the mean increase in weight was 3 ± 9 kg. Baseline T3 concentrations were associated with absolute and annual percentage of changes in weight (r = −0.27, P = 0.02, and r = −0.28, P = 0.009, for the age-and sex-adjusted associations, respectively). Conclusions In euthyroid Pima Indians, lower free T3 but not free T4 concentrations were an independent predictor of SMR and lipid oxidation and a predictor of weight gain. This finding indicates that control of T4-to-T3 conversion may play a role in body weight regulation. PMID:17284741
Detection of mercury compounds using invertase-glucose oxidase-based biosensor
NASA Astrophysics Data System (ADS)
Amine, A.; Cremisini, C.; Palleschi, G.
1995-10-01
Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.
Depth profiling of nitrogen within 15N-incorporated nano-crystalline diamond thin films
NASA Astrophysics Data System (ADS)
Garratt, E.; AlFaify, S.; Cassidy, D. P.; Dissanayake, A.; Mancini, D. C.; Ghantasala, M. K.; Kayani, A.
2013-09-01
Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate.
Němeček, Jan; Steinová, Jana; Špánek, Roman; Pluhař, Tomáš; Pokorný, Petr; Najmanová, Petra; Knytl, Vladislav; Černík, Miroslav
2018-05-01
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.
2015-12-01
Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.
Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena
2013-02-21
A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.
Method for plating with metal oxides
Silver, Gary L.; Martin, Frank S.
1994-08-23
A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.
[Effect of sodium and calcium ions on glutamate and glutamine oxidation by rat brain synaptosomes].
Nilova, N S
1978-08-01
5 mM oxidative substrates and 0.15 mM Ca(2+) being used, different effects of Ca(2+) on the oxidation are possible, such as an additional inhibition of glutamine oxidation and an additional activation of glutamate oxidation. A decreased Na+-ion concentration in the medium inhibited synaptosomal respiration with glutamate as a substrate. With glutamine as a substrate oxygen consumption does not change.
Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
Feng, Zhu; Brewer, Marilee; Brown, Ian; Komvopoulos, Kyriakos
1994-01-01
A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment.
Palladium/kieselguhr composition and method
Mosley, W.C. Jr.
1993-09-28
A hydrogen-absorbing composition and method for making such a composition are described. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.
Palladium/kieselguhr composition and method
Mosley, Jr., Wilbur C.
1993-01-01
A hydrogen-absorbing composition and method for making such a composition. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.
NASA Astrophysics Data System (ADS)
Hao, Ping
2017-10-01
Potentiality of sequential hydrogen bioproduction from sugary wastewater treatment was investigated using continuous stirred tank reactor (CSTR) for various substrate COD concentrations and HRTs. At optimum substrate concentration of 6 g COD/L, hydrogen could be efficiently produced from CSTR with the highest production rate of 3.00 (±0.04) L/L reactor d at HRT of 6 h. The up flow anaerobic sludge bed (UASB) reactor was used for continuous methane bioproduction from the effluents of hydrogen bioproduction. At optimal HRT 12 h, methane could be produced with a production rate of 2.27 (±0.08) L/L reactor d and the COD removal efficiency reached up to the maximum 82.3%.
Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra
2012-01-01
A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stihi, Claudia; Radulescu, Cristiana; Gheboianu, Anca
2011-10-03
The minerals and heavy metals play an important role in the metabolic processes, during the growth and development of mushrooms, when they are available in appreciable concentration. In this work the concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd and Pb were analyzed using the Flame Atomic Absorption spectrometry (FAAS) together with Energy Dispersive X-ray Fluorescence spectrometry (EDXRF) in 3 wild mushrooms species and their growing substrate, collected from various forestry fields in Dambovita County, Romania. The analyzed mushrooms were: Amanita phalloides, Amanita rubescens and Armillariella mellea. The accumulation coefficients were calculated to assess the mobility of mineralsmore » and heavy metals from substrate to mushrooms [1].« less
Thompson, Corbin G; Sedykh, Alexander; Nicol, Melanie R; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Kashuba, Angela D M
2014-11-01
The exposure of oral antiretroviral (ARV) drugs in the female genital tract (FGT) is variable and almost unpredictable. Identifying an efficient method to find compounds with high tissue penetration would streamline the development of regimens for both HIV preexposure prophylaxis and viral reservoir targeting. Here we describe the cheminformatics investigation of diverse drugs with known FGT penetration using cluster analysis and quantitative structure-activity relationships (QSAR) modeling. A literature search over the 1950-2012 period identified 58 compounds (including 21 ARVs and representing 13 drug classes) associated with their actual concentration data for cervical or vaginal tissue, or cervicovaginal fluid. Cluster analysis revealed significant trends in the penetrative ability for certain chemotypes. QSAR models to predict genital tract concentrations normalized to blood plasma concentrations were developed with two machine learning techniques utilizing drugs' molecular descriptors and pharmacokinetic parameters as inputs. The QSAR model with the highest predictive accuracy had R(2)test=0.47. High volume of distribution, high MRP1 substrate probability, and low MRP4 substrate probability were associated with FGT concentrations ≥1.5-fold plasma concentrations. However, due to the limited FGT data available, prediction performances of all models were low. Despite this limitation, we were able to support our findings by correctly predicting the penetration class of rilpivirine and dolutegravir. With more data to enrich the models, we believe these methods could potentially enhance the current approach of clinical testing.
Development of a Methodology for the Rapid Detection of Coliform Bacteria.
1981-02-27
Micelle Concentration Determination of Sodium Lauryl Sulfate 19 10 Sheath Flow Measuring Chamber 24 ll(a-c) Negative Substrate Control Comparisons 27...the net result being a net increase in the level of detectability. Sodium lauryl sulfate was chosen as the candidate surfactant and used at its...determined experimentally by taking conductivity mea- surements for a concentration series of sodium lauryl sulfate . Plotting equivalent conductivity vs
JPRS Report, Science & Technology, USSR: Life Sciences.
1987-08-04
alpha 2 preparation, produced by E. coli cells, is described and discussed. Cytokinin activity was determined by inducement of betacyanin synthesis in...the dark by cytokinin in the presence of thyrosine, used as a substrate. Experiments with A. caudatus sprouts showed that IFN alpha 2 produced...of IFN- alpha 2 appeared at concentration of 0.1 unit/ml but increase of concentration reduced cytokinin activity. In control experiments, induction
Electroformed Nanocrystalline Coatings: An Advanced Alternative to Hard Chrome Electroplating
2003-11-21
hypo/ phosphorous acid was included in the estimate. The cost analysis is given in Table 2-3. The relative consumable cost for the nanocrystalline...concentrations and phosphorous acid concentrations. While the internal stress of the Co- P deposit was affected by changes in the above-mentioned...may be occurring which consumes the phosphorous acid in solution (see Section 2.2). Table 5-1 Hardness at distance from deposit/substrate
Electrical and structural properties of In-implanted Si 1–xGe x alloys
Feng, Ruixing; Kremer, F.; Sprouster, D. J.; ...
2016-01-14
Here, we report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si 1–xGe x alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si 1–xGe x alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with densitymore » functional theory calculations of two In atoms in a Si 1–xGe x supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si 1–xGe x alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si 1–xGe x alloys, and this combination of dopant and substrate represents an effective doping protocol.« less
Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira
2012-01-01
Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443
Ahmed, Zubair; Briden, Anita; Hall, Susan; Brown, Robert A
2004-02-01
We have previously described the production of large cables of fibronectin, a large extracellular matrix cell adhesion glycoprotein, which has a potential application in tissue engineering. Here we have stabilised these cables for longer survival and looked at their ultrastructural cell-substrate behaviour in vitro. Dissolution experiments showed that low concentrations of copper not only caused significant material stabilisation but left pores which could promote cell ingrowth, as we have previously reported with Fn-mats. Indeed, the greatest amount of cell ingrowth was observed for copper treated cables. Immunostaining showed S-100(+) multi-layers of cells around the edge of cables while ultrastructural analysis confirmed the presence of a mixture of fibroblasts and bipolar cells associated with fragments of basal lamina, which is a Schwann cell phenotype. Interestingly, the outermost layers of cells consisted of S-100(-) cells, presumed fibroblasts, apparently 'capping' the Schwann cells. Toxicity tests revealed that Schwann cells were only able to grow at the lowest concentration of copper used (1microM) while fibroblasts grew at all concentrations tested. These results could be used to design biomaterials with optimum properties for promoting cellular ingrowth and survival in tissue engineered grafts which may be used to improve peripheral nerve repair.
Hayer, Cari-Ann; Chipps, Steven R.; Stone, James J.
2011-01-01
Elevated mercury concentration has been documented in a variety of fish and is a growing concern for human consumption. Here, we explore the influence of physiochemical and watershed attributes on mercury concentration in walleye (Sander vitreus, M.) from natural, glacial lakes in South Dakota. Regression analysis showed that water quality attributes were poor predictors of walleye mercury concentration (R2 = 0.57, p = 0.13). In contrast, models based on watershed features (e.g., lake level changes, watershed slope, agricultural land, wetlands) and local habitat features (i.e., substrate composition, maximum lake depth) explained 81% (p = 0.001) and 80% (p = 0.002) of the variation in walleye mercury concentration. Using an information theoretic approach we evaluated hypotheses related to water quality, physical habitat and watershed features. The best model explaining variation in walleye mercury concentration included local habitat features (Wi = 0.991). These results show that physical habitat and watershed features were better predictors of walleye mercury concentration than water chemistry in glacial lakes of the Northern Great Plains.
Gough, S; Flynn, O; Hack, C J; Marchant, R
1996-09-01
The use of molasses as a substrate for ethanol production by the thermotolerant yeast Kluyveromyces marxianus var. marxianus was investigated at 45 degrees C. A maximum ethanol concentration of 7.4% (v/v) was produced from unsupplemented molasses at a concentration of 23% (v/v). The effect on ethanol production of increasing the sucrose concentration in 23% (v/v) molasses was determined. Increased sucrose concentration had a similar detrimental effect on the final ethanol produced as the increase in molasses concentration. This indicated that the effect may be due to increased osmotic activity as opposed to other components in the molasses. The optimum concentration of the supplements nitrogen, magnesium, potassium and fatty acid for maximum ethanol production rate was determined using the Nelder and Mead (Computer J 7:308-313, 1965) simplex optimisation method. The optimum concentration of the supplements were 0.576 g1(-1) magnesium sulphate, 0.288 g1(-1) potassium dihydrogen phosphate and 0.36% (v/v) linseed oil. Added nitrogen in the form of ammonium sulphate did not affect the ethanol production rate.
Bozkoyunlu, Gaye; Takaç, Serpil
2014-01-01
Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.
NASA Astrophysics Data System (ADS)
Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh
2016-05-01
Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.
Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios
Manatbay, Bakhetgul; Cheng, Yanfen; Mao, Shengyong; Zhu, Weiyun
2014-01-01
The study aimed to investigate the effects of gynosaponin on in vitro methanogenesis under different forage-concentrate ratios (F:C ratios). Experiment was conducted with two kinds of F:C ratios (F:C = 7:3 and F:C = 3:7) and gynosaponin addition (0 mg and 16 mg) in a 2×2 double factorial design. In the presence of gynosaponin, methane production and acetate concentration were significantly decreased, whereas concentration of propionate tended to be increased resulting in a significant reduction (p<0.05) of acetate:propionate ratio (A:P ratio), in high-forage substrate. Gynosaponin treatment increased (p<0.05) the butyrate concentration in both F:C ratios. Denaturing gradient gel electrophoresis (DGGE) analysis showed there was no apparent shift in the composition of total bacteria, protozoa and methanogens after treated by gynosaponin under both F:C ratios. The real-time polymerase chain reaction (PCR) analysis indicated that variable F:C ratios significantly affected the abundances of Fibrobacter succinogenes, Rumninococcus flavefaciens, total fungi and counts of protozoa (p<0.05), but did not affect the mcrA gene copies of methanogens and abundance of total bacteria. Counts of protozoa and abundance of F.succinogenes were decreased significantly (p<0.05), whereas mcrA gene copies of methanogens were decreased slightly (p<0.10) in high-forage substrate after treated by gynosaponin. However, gynosaponin treatment under high-concentrate level did not affect the methanogenesis, fermentation characteristics and tested microbes. Accordingly, overall results suggested that gynosaponin supplementation reduced the in vitro methanogenesis and improved rumen fermentation under high-forage condition by changing the abundances of related rumen microbes. PMID:25083102
Sharma, Satish K; Juyal, Shashibala; Rao, V K; Yadav, V K; Dixit, A K
2014-07-01
A study was conducted to standardize the technology for the removal of amino acids (one of the browning reaction substrates) from sweet orange cv. Malta Common juice to reduce colour and quality deterioration in single strength juice and during subsequent concentration. Juice of sweet orange (Citrus sinensis) cv. Malta Common fruits was extracted by screw type juice extractor, preserved in 500 ppm SO2 and clarified by using "Pectinase CCM" enzyme (0.2% for 2 h at 50 ± 2 °C). For removal of amino acids juice was passed under gravity through a glass column packed with an acidic cation exchange resin (CER), Dowex-50 W and quantity to be treated in one lot was standardized. The CER treated and untreated juices were concentrated to 15 and 30°Brix in a rotary vacuum evaporator. Results indicate that 121 ml of orange juice when passed through a glass column (5 cm internal diameter) packed with cation exchange resin (Dowex-50 W) upto a height of 8 cm, could remove about 98.4% of the amino acids with minimum losses in other juice constituents. With cation exchange resin treatment, the non-enzymatic browning and colour deterioration of orange juice semi-concentrates was reduced to about 3 folds in comparison to untreated counterparts. The retention of vitamin C and sugars was also better in semi-concentrates prepared from cation exchange resin treated juice. Thus, cation exchange resin treatment of orange juice prior to concentration and storage is highly beneficial in reduction of non-enzymatic browning, colour deterioration and retention of nutritional, sensory quality of product during preparation and storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenouda, Josephine; Green, Paula; Sultatos, Lester, E-mail: sultatle@umdnj.ed
2009-12-01
Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted inmore » rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K{sub m} of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k{sub i} of 3048 nM{sup -1} h{sup -1}, and a K{sub D} of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k{sub i} increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k{sub i}s of 1.2 and 19.3 nM{sup -1} h{sup -1}, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.« less
Khani, Rouhollah; Moudi, Maryam; Khojeh, Vahid
2017-02-01
There are great concentrations of toxic metallic and metalloid elements such as lead, arsenic, mercury, cadmium or silver in many species of mushrooms comparative to other fruits and vegetables. In this study, contamination with heavy and toxic metallic and metalloid elements in the cultivated mushroom of (Pleurotus florida (Mont.) Singer) is investigated. P. florida was cultivated on different substrates; wheat straw (as blank), wheat straw + pine cone, wheat straw + soybean straw and wheat straw + urea and the effects of these substrates on contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results showed that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the target mushroom are at the typical levels. The estimated daily intakes of studied metallic and metalloid elements were below their oral reference dosage mentioned by the international regulatory bodies. Health risk index (HRI) was calculated to evaluate the consumer's health risk assessment from the metal intake that contaminated in the cultivated mushroom of P. florida on the different nutrient sources. In this study, the individual HRIs were less than 1, which indicates insignificant potential health risk associated with the consumption of target mushroom from the studied substrates. Based on the HRIs values among the toxic metallic and metalloid elements, As in the target mushroom in the substrate of the wheat straw + pine cone is the main sources of risk, and it may cause severe health problems. Thus, this study suggests that the concentrations of heavy and toxic elements should be periodically monitored in cultivated mushrooms.
Oufir, L E; Barry, J L; Flourié, B; Cherbut, C; Cloarec, D; Bornet, F; Galmiche, J P
2000-08-01
To assess the effects of drug-induced changes in mean transit time (MTT) on the activity of human fecal flora in vitro. The activity of fecal flora was estimated by the ability of a fecal inoculum to ferment a substrate (beet fiber) in vitro in a batch system for 24 h. The inoculum was collected from 8 healthy volunteers studied during three 3-week randomized periods, who received a controlled diet alone (control period) or the same diet with either cisapride or loperamide. Cisapride and loperamide were adjusted in order to halve and double MTT measured during the control period. At the end of each period, the percentage disappearance of the initial added substrate and the concentration and the profile of short-chain fatty acids (SCFAs), were determined. In the control period, the pH of the inoculum and SCFA concentration were inversely related to MTT (P=0.0001). Individual SCFA production was also significantly related to MTT (P<0.01). Cisapride-reduced transit time was associated with a significant rise in the concentrations of total SCFAs (P<0.05), propionic and butyric acids (P<0.05) and the percentage substrate disappearance (P<0.05). Inverse relations were observed during the loperamide period. Moreover, MTT was inversely related to the percentage substrate disappearance (P<0.001), SCFA production (P<0.001) and butyrate production (P<0.0005). Changes in MTT alter bacterial activity and modify the bacterial pathways affecting the proportion of individual SCFAs. European Journal of Clinical Nutrition (2000) 54, 603-609
Komolov, A S; Akhremtchik, S N; Lazneva, E F
2011-08-15
The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.
Photovoltaic solar concentrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat
A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less
The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment
NASA Astrophysics Data System (ADS)
Robertson, Elizabeth K.; Thamdrup, Bo
2017-05-01
The fate of nitrogen in natural environments is controlled by anaerobic nitrate-reducing processes by which nitrogen is removed as N2 or retained as NH4+. These processes can potentially be driven by oxidation of reduced inorganic compounds at oxic-anoxic interfaces. Several studies have investigated the use of Fe2+ as an electron donor in nitrate reduction in bacterial cultures, however current information on this process in the environment is sparse. We aimed to determine whether nitrate-reducing processes in the freshwater Lake Almind (Silkeborg, Denmark) were linked to Fe2+ oxidation. Anaerobic sediment slurries were supplemented with 15N-substrates and electron donors (Fe2+ and/or acetate) to characterize nitrate-reducing processes under environmentally relevant substrate concentrations and at higher concentrations traditionally used in microbial enrichment studies. Dissimilatory nitrate reduction to ammonium, DNRA, was stimulated by Fe2+ addition in 7 of 10 slurry experiments and in some cases, denitrification was concomitantly reduced. The determined kinetic parameters (Vmax and Km) for Fe2+-driven DNRA were 4.7 μmol N L-1 d-1 and 33.8 μmol Fe2+ L-1, respectively and reaction stoichiometry for Fe2+:NH4+ (8.2:1) was consistent with that of predicted stoichiometry (8:1). Conversely, under enrichment conditions, denitrification was greatly increased while DNRA rates remained unchanged. Increased Fe2+ concentrations may be exploited by DNRA organisms and have an inhibitory effect on denitrification, thus Fe2+ may play a role in regulating N transformations in Lake Almind. Furthermore, we suggest enrichment conditions may promote the adaptation or change of microbial communities to optimally utilize the available high substrate concentrations; misrepresenting metabolisms occurring in situ.
Content and bioconcentration of mercury in mushrooms from northern Poland.
Falandysz, J; Gucia, M; Brzostowski, A; Kawano, M; Bielawski, L; Frankowska, A; Wyrzykowska, B
2003-03-01
Mercury (Hg) was quantified using cold vapour-atomic absorption spectrometry (CV-AAS) in the fruiting bodies of nine edible and five inedible mushrooms and in underlying soil substrate samples. In total, 404 samples comprising caps and stalks and 202 samples of soil substrate (0-10 cm layer) were collected in 1996 from Trójmiejski Landscape Park, northern Poland. Mean Hg concentrations in the soil substrate for different species varied between 10 +/- 3 and 780 +/- 500 ng x g(-1) dry wt (range 2.3-1700). Among edible mushroom species, Horse Mushroom (Agaricus arvensis), Brown Birch Scaber Stalk (Leccinum scabrum), Parasol Mushroom (Macrolepiota procera), King Bolete (Boletus edulis) and Yellow-cracking Bolete (Xerocomus subtomentosus) contained elevated concentrations of Hg ranging from 1600 +/- 930 to 6800 +/- 4000 ng x g(-1) dry wt in the caps. Concentrations of Hg in the stalks were 2.6 +/- 1.1 to 1.7 +/- 1.0 times lower than those in the caps. Some mushroom species investigated had high Hg levels when compared with specimens collected from the background reference sites elsewhere (located far away from the big cities) in northern Poland. Bioconcentration factors of Hg in the caps of Horse Mushroom, Parasol Mushroom and Brown Birch Scaber Stalk were between 150 +/- 58 and 230 +/- 150 ng x g(-1) dry wt, respectively, and for inedible Pestle-shaged Puffball (Claviata excipulformis) was 960 +/- 300 ng x g(-1) dry wt. Linear regression coefficients between Hg in caps and in stalks and Hg soil concentrations showed a positive relationship for A. arvensis and Horse mushroom (p < 0.05) and a negative correlation for the caps of Death Caps (Amanita phalloides) and Woolly Milk Cap (Lactarius torminosus) (p < 0.05), while for other species no clear trend was found.
Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G
2017-01-01
Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.
Chen, H; Rygiewicz, P T; Johnson, M G; Harmon, M E; Tian, H; Tang, J W
2008-01-01
Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.
NASA Astrophysics Data System (ADS)
Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.
2014-09-01
Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.
Method for plating with metal oxides
Silver, G.L.; Martin, F.S.
1994-08-23
A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.
Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J
2016-11-01
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tomei, M Concetta; Mosca Angelucci, Domenica; Daugulis, Andrew J
2017-02-01
A continuous two-phase partitioning bioreactor (C-TPPB), operated with coiled tubing made of the DuPont polymer Hytrel 8206, was tested for the bioremediation of 4-chlorophenol, as a model toxic compound. The tubing was immersed in the aqueous phase, with the contaminated water flowing tube-side, and an adapted microbial culture suspended in the bioreactor itself, with the metabolic demand of the cells creating a concentration gradient to cause the substrate to diffuse into the bioreactor for biodegradation. The system was operated over a range of loadings (tubing influent concentration 750-1500 mg L -1 ), with near-complete substrate removal in all cases. Distribution of the contaminant at the end of the tests (96 h) highlighted biological removal in the range of 87-95%, while the amount retained in the polymer ranged from ∼1 to 8%. Mass transfer of the substrate across the tubing wall was not limiting, and the polymer demonstrated the capacity to buffer the substrate loadings and to adapt to microbial metabolism. The impact of C-TPPB operation on biomass activity was also investigated by a kinetic characterization of the microbial culture, which showed better resistance to substrate inhibition after C-TPPB operation, thereby confirming the beneficial effect of sub-inhibitory controlled conditions, characteristic of TPPB systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin
2015-09-15
Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overallmore » mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.« less
NASA Astrophysics Data System (ADS)
Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.
2013-08-01
Vanadium oxide thin films were grown on glass substrates using spray pyrolysis technique. The effects of substrate temperature, vanadium concentration in the initial solution and the solution spray rate on the nanostructural and the electrochromic properties of deposited films are investigated. Characterization and the electrochromic measurements were carried out using X-ray diffraction, scanning electron microscopy and cyclic voltammogram. XRD patterns showed that the prepared films have polycrystalline structure and are mostly mixed phases of orthorhombic α-V2O5 along with minor β-V2O5 and V4O9 tetragonal structures. The preferred orientation of the deposited films was found to be along [101] plane. The cyclic voltammogram results obtained for different samples showed that only the films with 0.2 M solution concentration, 5 ml/min solution spray rate and 450°C substrate temperature exhibit two-step electrochromic properties. The results show a correlation between cycle voltammogram, morphology and resistance of the films.
TSKS concentrates in spermatid centrioles during flagellogenesis.
Xu, Bingfang; Hao, Zhonglin; Jha, Kula N; Zhang, Zhibing; Urekar, Craig; Digilio, Laura; Pulido, Silvia; Strauss, Jerome F; Flickinger, Charles J; Herr, John C
2008-07-15
Centrosomal coiled-coil proteins paired with kinases play critical roles in centrosomal functions within somatic cells, however knowledge regarding gamete centriolar proteins is limited. In this study, the substrate of TSSK1 and 2, TSKS, was localized during spermiogenesis to the centrioles of post-meiotic spermatids, where it reached its greatest concentration during the period of flagellogenesis. This centriolar localization persisted in ejaculated human spermatozoa, while centriolar TSKS diminished in mouse sperm, where centrioles are known to undergo complete degeneration. In addition to the centriolar localization during flagellogenesis, mouse TSKS and the TSSK2 kinase localized in the tail and acrosomal regions of mouse epididymal sperm, while TSSK2 was found in the equatorial segment, neck and the midpiece of human spermatozoa. TSSK2/TSKS is the first kinase/substrate pair localized to the centrioles of spermatids and spermatozoa. Coupled with the infertility due to haploinsufficiency noted in chimeric mice with deletion of Tssk1 and 2 (companion paper) this centriolar kinase/substrate pair is predicted to play an indispensable role during spermiogenesis.
Hatano, Junichi; Okuro, Kou; Aida, Takuzo
2016-01-04
PGlue(PZ), a pyrazoline (PZ)-based fluorescent adhesive which can be generated spatiotemporally in living systems, was developed. Since PGlue(PZ) carries many guanidinium ion (Gu(+)) pendants, it strongly adheres to various oxyanionic substrates through a multivalent salt-bridge interaction. PGlue(PZ) is given by bioorthogonal photopolymerization of a Gu(+)-appended monomer (Glue(TZ)), bearing tetrazole (TZ) and olefinic termini. Upon exposure to UV light, Glue(TZ) transforms into a nitrileimine (NI) intermediate (Glue(NI)), which is eligible for 1,3-dipolar polycycloaddition. However, Glue(NI) in aqueous media can concomitantly be deactivated into Glue(WA) by the addition of water, and the polymerization hardly occurs unless Glue(NI) is concentrated. We found that, even under high dilution, Glue(NI) is concentrated on oxyanionic substrates to a sufficient level for the polymerization, so that their surfaces can be point-specifically functionalized with PGlue(PZ) by the use of a focused beam of UV light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdelkafi, Slim; Abousalham, Abdelkarim
2011-07-01
Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram
NASA Astrophysics Data System (ADS)
Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu
2018-01-01
The surface-enhanced Raman scattering (SERS) activity of multi-branched gold nanostars with fractal structure has been investigated for trace detection of pesticide thiram. Raman spectrum results show that the gold nanostars substrate can produce about 102 fold stronger signal than the thiram alone with the thiram concentration increase of 103 times and 1.4 fold stronger signal than the gold nanostars without fractal feature. In the detection procedure, the most prominent SERS peak at 1376 cm- 1 has been chosen to characterize and quantify the concentration of thiram. Experimental results indicate this Raman substrate based on fractal gold nanostars exhibits excellent selective probing performance for thiram with a detection limit as low as 10- 10 M in solution and 0.24 ng/cm2 in apple peels. Interference experiment results show that the effects from the interfering pesticides could be neglected in the detection procedure. Therefore, the gold nanostars as a SERS substrate have excellent sensitivity and selectivity.
NASA Astrophysics Data System (ADS)
Ohtsu, Naofumi; Kozuka, Taro; Shibata, Yuga; Yamane, Misao
2017-11-01
Plasma nitriding was explored for improving the thermal stability of a composite hydrogen permeable membrane comprising a Pd coating on Nb substrate. A NbN intermediate layer was formed on the Nb substrate, and the progress of interdiffusion and deterioration of hydrogen absorption behavior after a thermal treatment at 573 and 773 K, respectively, were investigated. The intermediate layer significantly suppressed the interdiffusion between the coating and the substrate. Furthermore, an increase in the NbN concentration of the intermediate layer enhanced the suppression efficiency. However, the hydrogen permeability of the intermediate layer was significantly low, and hence, an increase in NbN concentration further decreased the hydrogen permeability. We concluded that the nitride layer with a high NbN content was unsuitable as an intermediate layer owing to its low hydrogen permeability, while the partial nitride layer with a low NbN content was inefficient in suppressing the interdiffusion.
Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun
2012-09-04
In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants K(m) and k(cat) can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin-β-D-galactopyranoside) and found K(m) and k(cat) to be 333 ± 130 μM and 64 ± 8 s(-1), respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions.
Khaskheli, Abid Ali; Talpur, Farah Naz; Cebeci Aydin, Aysun; Jawaid, Sana; Surhio, Muhammad Ali; Afridi, Hassan Imran
2017-10-01
Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.
Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard
2015-11-16
Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating
NASA Astrophysics Data System (ADS)
Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.
2016-07-01
Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (RN), and substrate temperature (TS). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % RN. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB2 phase within the coatings. The TS, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.
NASA Astrophysics Data System (ADS)
Moore, A.; Tecos, G.; Nandasiri, M. I.; Garratt, E.; Wickey, K. J.; Gao, X.; Kayani, A.
2009-11-01
Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in samples deposited on silicon substrates with a 3.3 MeV of He++ beam used to perform Rutherford Backscattering Spectroscopy (RBS), Non-Rutherford backscattering Spectroscopy (NRBS) and Elastic Recoil Detection Analysis (ERDA). Thermal stability with respect to trapped hydrogen in the film has been studied. As the films were heated in-situ in the vacuum using a o non-gassy button heater, hydrogen was found to be decreasing around 400° C.
[Limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou].
Lin, Wen-Jie; Xiao, Tang-Fu; Ao, Zi-Qiang; Xing, Jun; Ma, Huan-Cheng; Hu, Ting-Xing
2007-03-01
With indigenous zinc smelting waste residue, contaminated soil and background soil as test substrates, a pot experiment was conducted to study the growth characteristics of Lolium perenne and Trifolium pretense on these substrates. The results showed that the major limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou were the salt-alkali stress and the lower contents of organic matter, total N, available N and total K. The heavy metals in waste residue had a high concentration, but their available forms only occupied a small proportion, with low toxicity to plant but having potential harmful risk. Contaminated soil had lower concentrations of heavy metals than waste residue, but its contained heavy metals were more in available form. The constraints of revegetation on contaminated soil were the toxicity of heavy metals and the low contents of available P and K. Mixing contaminated soil with zinc smelting waste residue could be one of the effective approaches for the substrate amendment in indigenous zinc smelting areas.
Substrate-induced interfacial plasmonics for photovoltaic conversion
Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng
2015-01-01
Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576
Morillo, Jose Antonio; Aguilera, Margarita; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes
2006-09-01
The present study investigated the use of two-phase olive mill waste (TPOMW) as substrate for the production of exopolysaccharide (EPS) by the endospore-forming bacilli Paenibacillus jamilae. This microorganism was able to grow and produce EPS in aqueous extracts of TPOMW as a unique source of carbon. The effects of substrate concentration and the addition of inorganic nutrients were investigated. Maximal polymer yield in 100-ml batch-culture experiments (2 g l(-1)) was obtained in cultures prepared with an aqueous extract of 20% TPOMW (w/v). An inhibitory effect was observed on growth and EPS production when TPOMW concentration was increased. Nutrient supplementation (nitrate, phosphate, and other inorganic nutrients) did not increase yield. Finally, an adsorption experiment of Pb (II), Cd (II), Cu (II), Zn (II), Co (II), and Ni (II) by EPS is reported. Lead was preferentially complexed by the polymer, with a maximal uptake of 230 mg/g EPS.
Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika
2017-03-16
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.
NASA Astrophysics Data System (ADS)
Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.
2007-04-01
Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S. C.; Ho, C. E.; Chang, C. W.
2007-04-15
Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With themore » growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.« less
High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.
2003-01-01
High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.
Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer
Mandal, Krishna C.; Terry, J. Russell
2016-12-06
A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.