Evaluation of pesticide toxicities with differing mechanisms using Caenorhabditis elegans.
Ruan, Qin-Li; Ju, Jing-Juan; Li, Yun-Hui; Liu, Ran; Pu, Yue-Pu; Yin, Li-Hong; Wang, Da-Yong
2009-01-01
The aim of this study was to (1) determine whether model organism Caenorhabditis elegans was sensitive to pesticides at the maximum concentration limits regulated by national agency standards, and (2) examine the multi-biological toxicities occurring as a result of exposure to pesticides. Five pesticides, namely, chlorpyrifos, imibacloprid, buprofezin, cyhalothrin, and glyphosate, with four different mechanisms of action were selected for the investigation. In accordance with national agency requirements, 4 exposed groups were used for each tested pesticide with the concentration scales ranging from 1.0 x 10(-3) to 1 mg/L. L4 larvae were exposed for 24 and 72 h, respectively. Endpoints of locomotion, propagation, and development were selected for the assay as parameters of toxicity. After exposure for 24 h, both the body bend frequency and head thrash frequency of nematodes exposed to chlorpyrifos, imibacloprid, and cyhalothrin decreased in a concentration-dependent manner, and there were significant differences between exposed groups at maximum concentration level (MCL) compared to control. The generation time of nematodes exposed to buprofezin 24 h significantly increased in a concentration-dependent manner in the highest exposed group. When exposed for 72 h, the body bend frequency and head thrash frequency of nematodes exposed to cyhalothrin markedly decreased at MCL. The generation time and brood size of nematodes exposed to buprofezin were reduced in a concentration-dependent manner. The behavior of nematodes was sensitive to pesticides with neurotoxic properties, while pesticides affecting insect growth modified the reproductive system. The effects of pesticides on nematodes exposed for 24 h appeared more sensitive than with exposure for 72 h. Caenorhabditis elegans may thus be used for assessing the adverse effects of pesticide residues in aquatic environment.
Biswas, C; Mandal, C
1999-02-01
Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.
Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi
2015-05-01
Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Radioprotective properties of apple polyphenols: an in vitro study.
Chaudhary, Pankaj; Shukla, Sandeep Kumar; Kumar, I Prem; Namita, I; Afrin, Farhat; Sharma, Rakesh Kumar
2006-08-01
Present study was undertaken to evaluate the radioprotective ability of total polyphenols extracted from edible portion (epicarp and mesocarp) of apple. Prior administration of apple polyphenols to murine thymocytes significantly countered radiation induced DNA damage (evaluated by alkaline halo assay) and cell death (trypan blue exclusion method) in a dose dependent manner maximally at a concentration of 2 and 0.2 mg/ml respectively. Apple polyphenols in a dose dependent fashion inhibited both radiation or Fenton reaction mediated 2-deoxyribose (2-DR) degradation indicating its ability to scavenge hydroxyl radicals and this activity was found to be unaltered in presence of simulated gastric juice. Similarly apple polyphenols in a dose dependent fashion scavenged DPPH radicals (maximum 69% at 1 mg/ml), superoxide anions (maximum 88% at 2 mg/ml), reduced Fe(3 +) to Fe(2 +) (maximum at 1 mg/ml) and inhibited Fenton reaction mediated lipid peroxidation (maximum 66% at 1.5 mg/ml) further establishing its antioxidative properties. Studies carried out with plasmid DNA revealed the ability of apple polyphenols to inhibit radiation induced single as well as double strand breaks. The results clearly indicate that apple polyphenols have significant potential to protect cellular system from radiation induced damage and ability to scavenge free radicals might be playing an important role in its radioprotective manifestation.
Matsui, Aya; Williams, John T
2010-01-01
BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105
A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch
Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki
2015-01-01
Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550
Königsbrügge, Oliver; Weigel, Günter; Quehenberger, Peter; Pabinger, Ingrid; Ay, Cihan
2018-02-07
The effect of direct oral anticoagulants (DOACs) on turbidimetric measurements of plasma clot formation and susceptibility to fibrinolysis may facilitate a comparison between different classes of anticoagulants in plasma samples. We obtained 424 citrate plasma samples from 226 atrial fibrillation patients on anticoagulation and 24 samples without anticoagulation serving as controls. As comparators, we measured the international normalized ratio (INR) for phenprocoumon samples (N = 166), anti-Xa for low molecular weight heparin (LMWH) samples (N = 42), and DOAC levels with mass spectrometry (dabigatran N = 40, rivaroxaban N = 110, apixaban N = 42). Plasma clot formation and lysis were recorded continuously on a photometer after addition of an activation mix (tissue factor 2 pmol/l and tissue plasminogen activator 333 ng/ml). We used linear regression and ANCOVA for correlation analysis. Clot formation lag phase was prolonged in the presence of anticoagulants in a concentration-dependent manner for DOACs (dabigatran Spearman r = 0.74; rivaroxaban r = 0.78; apixaban r = 0.72, all p < 0.0001), INR dependent for phenprocoumon (r = 0.59, p < 0.0001), anti-Xa level dependent in LMWH samples (r = 0.90, p < 0.0001). Maximum rate of clot formation and peak clot turbidity were reduced in the presence of anticoagulants, but correlated only moderately with the comparator measures of anticoagulation. The clot lysis time was inversely correlated with DOAC concentrations in the presence of recombinant thrombomodulin. A direct ex vivo comparison between the effects of different classes of anticoagulants is possible with turbidimetric measurement of plasma clot formation and lysis. Anticoagulation inhibited clot formation in a plasma concentration manner for DOACs, INR dependent for phenprocoumon, and anti-Xa dependent for LMWH. Susceptibility to fibrinolysis increased with increasing DOAC concentrations.
The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.
Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan
2015-01-01
This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.
Choi, Cheol Hee; Sun, Kyung Hoon; An, Chun San; Yoo, Jin Cheol; Hahm, Kyung Soo; Lee, In Hwa; Sohng, Jae Kyung; Kim, Youn Chul
2002-07-26
Multidrug resistance (MDR) cells can be sensitized to anticancer drugs when treated concomitantly with chemosensitizers. In this study, chemosensitizing effects of 5,6,7,3',4'-pentamethoxyflavone (sinensetin) and its analogs were investigated with respect to in vitro efficacy and structure-activity relationship. Sinensetin reversed the resistance of P-glycoprotein (Pgp)-overexpressing AML-2/D100 to vincristine in a concentration-dependent manner. Chemosensitizing effect of sinensetin was 10- and 18-fold higher than those of 5,7,3',4'-tetramethoxyflavone and 3,7-dihydroxy-3',4'-dimethoxyflavone, respectively. Sinensetin cytotoxicity in AML-2/D100 was not changed by the complete inhibition of Pgp, suggesting that it is not a substrate for Pgp. Flow cytometry showed that sinensetin increased drug accumulation in the AML-2/D100 in a concentration-dependent manner. Unlike verapamil and cyclosporin A, the maximum non-cytotoxic concentrations of sinensetin were found to decrease the Pgp levels. Azidopine-binding assay showed that cyclosporin A or verapamil inhibited azidopine binding on Pgp partially but sinensetin did not. Taken together, these results suggest that sinensetin has a chemosensitizing effect in reversing Pgp-mediated MDR by increasing the intracellular accumulation of drugs without competition in a binding site of azidopine. Thus, sinensetin is anticipated as a novel and highly potent second-generation flavonoid chemosensitizer, since sinensetin has significant advantages of having a high therapeutic index, of being a non-transportable inhibitor, and of effecting no induction of Pgp.
Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania
2016-11-01
Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Caffeine depression of spontaneous activity in rabbit sino-atrial node cells.
Satoh, H
1993-05-01
1. Effects of caffeine on the action potentials and the membrane currents in spontaneously beating rabbit sino-atrial (SA) node cells were examined using a two-microelectrode technique. 2. Cumulative administrations of caffeine (1-10 mM) caused a negative chronotropic effect in a concentration-dependent manner, which was not modified by atropine (0.1 microM). At 10 mM, caffeine increased the amplitude and prolonged the duration of action potentials significantly; the other parameters were unaffected. 3. In 3 of 16 preparations, caffeine (5 mM) elicited arrhythmia. At high Ca2+ (8.1 mM), caffeine (5 mM) increased the incidence of arrhythmia. 4. Caffeine (0.5-10 mM) enhanced the slow inward current, but at 10 mM decreased the enhanced peak current by 5 mM. The hyperpolarization-activated inward current was also enhanced by caffeine, but 10 mM caffeine decreased the current peak as compared with that at 5 mM. In addition, caffeine inhibited the delayed rectifying outward current in a concentration-dependent manner, accompanied by a depressed activation curve without any shift in the half-maximum activation voltage. 5. Caffeine elevated the cytoplasmic Ca2+ level in the SA node cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results suggest that caffeine enhances and/or inhibits the ionic currents and elicits arrhythmia due to the induction of cellular calcium overload.
Double-tailored nonimaging reflector optics for maximum-performance solar concentration.
Goldstein, Alex; Gordon, Jeffrey M
2010-09-01
A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.
Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts.
Donini, Andrew; Lange, Angela B
2004-04-01
Visualization of the tyraminergic innervation of the oviducts was demonstrated by immunohistochemistry, and the presence of tyramine was confirmed using high-performance liquid chromatography coupled to electrochemical detection. Oviducts incubated in high-potassium saline released tyramine in a calcium-dependent manner. Stimulation of the oviducal nerves also resulted in tyramine release, suggesting that tyramine might function as a neurotransmitter/neuromodulator at the locust oviducts. Tyramine decreased the basal tension, and also attenuated proctolin-induced contractions in a dose-dependent manner over a range of doses between 10(-7) and 10(-4) M. Low concentrations of tyramine attenuated forskolin-stimulated cyclic AMP levels in a dose-dependent manner. This effect was not blocked by yohimbine. High concentrations of tyramine increased basal cyclic AMP levels of locust oviducts in a dose-dependent manner; however, the increases in cyclic AMP were only evident at the highest concentrations tested, 5 x 10(-5) and 10(-4) M tyramine. The tyramine-induced increase in cyclic AMP shared a similar pharmacological profile with the octopamine-induced increase in cyclic AMP. Tyramine increased the amplitude of excitatory junction potentials at low concentrations while hyperpolarizing the membrane potential by 2-5 mV. A further increase in the amplitude of the excitatory junction potentials and the occurrence of an active response was seen upon washing tyramine from the preparation. These results suggest that tyramine can activate at least three different endogenous receptors on the locust oviducts a putative tyramine receptor at low concentrations, a different tyramine receptor to inhibit muscle contraction, and an octopamine receptor at high concentrations.
Yan, Dong; Cheng, Lu-feng; Song, Hong-Yan; Turdi, Subat; Kerram, Parhat
2007-08-01
Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Chunyang; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Besas, Jonathan
2010-05-15
Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants and have been detected in human blood, adipose tissue, and breast milk. Both in vitro and in vivo studies have shown that the effects of PBDEs are similar to the known human developmental neurotoxicants such as polychlorinated biphenyls (PCBs) on a molar basis. Previously, we reported that PBDE mixtures and congeners, perturbed calcium homeostasis which is critical for the development and function of the nervous system. In the present study, we tested whether environmentally relevant PBDE/PCB mixtures and congeners affected mitogen-activated protein kinase (MAPK) pathways, which are down-stream events ofmore » calcium signaling in cerebellar granule neuronal cultures. In this study, phosphorylated extracellular signal-regulated kinase (pERK)1/2, a widely studied MAPK cascade and known to be involved in learning and memory, levels were quantitated using western blot technique with phospho-specific antibodies. Glutamate (a positive control) increased pERK1/2 in a time- and concentration-dependent manner reaching maximum activation at 5-30 min of exposure and at doses >= 10 muM. Both Aroclor 1254 (a commercial penta PCB mixture) and DE-71 (a commercial penta PBDE mixture) elevated phospho-ERK1/2, producing maximum stimulation at 30 min and at concentrations >= 3 mug/ml; Aroclor 1254 was more efficacious than DE-71. DE-79 (an octabrominated diphenyl ether mixture) also elevated phospho-ERK1/2, but to a lesser extent than that of DE-71. PBDE congeners 47, 77, 99, and 153 also increased phospo-ERK1/2 in a concentration-dependent manner. The data indicated that PBDE congeners are more potent than the commercial mixtures. PCB 47 also increased phospho-ERK1/2 like its structural analog PBDE 47, but to a lesser extent, suggesting that these chemicals affect similar pathways. Cytotoxicity, measured as %LDH release, data showed that higher concentrations (> 30 muM) and longer exposures (> 30 min) are required to see cell death. These results show that PBDE mixtures and congeners activate MAPK pathway at concentrations where no significant cytotoxicity was observed, suggesting that perturbed intracellular signaling including MAPK pathway might be involved in the initiation of adverse effects, including learning and memory, related to these persistent chemicals.« less
Growth promotion effect of steelmaking slag on Spirulina platensis
NASA Astrophysics Data System (ADS)
Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.
2016-04-01
A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.
Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L
2001-02-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation
Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.
2001-01-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613
Interaction of berberine with human platelet. alpha. sub 2 adrenoceptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Ka Kit; Yu, Jun Liang; Chan, Wai Fong A.
1991-01-01
Berberine was found to inhibit competitively the specific binding of ({sup 3}H)-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, norepinephrine, with the rank order of potency (IC{sub 50}) being clonidine {gt} epinephrine {gt} norepinephrine (14.5 {mu}M) = berberine. Increasing concentrations of berberine from 0.1 {mu}M to 10 {mu}M inhibited ({sup 3}H)-yohimbine binding, shifting the saturation binding curve to the right without decreasing the maximum binding capacity. In platelet cyclic AMP accumulation experiments, berberine at concentrations of 0.1 {mu}M to 0.1 mM inhibited the cAMP accumulation induced by 10 {mu}M prostaglandin E{sub 1} in a dose dependent manner,more » acting as an {alpha}{sub 2} adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of L-epinephrine behaving as an {alpha}{sub 2} adrenoceptor antagonist.« less
Verleden, G M; Belvisi, M G; Stretton, C D; Barnes, P J
1991-01-01
Nonadrenergic, noncholinergic (NANC) neural bronchoconstrictor responses in guinea pig airways are due to the release of tachykinins from sensory nerves. We have performed an in vitro study using electrical field stimulation (EFS; 40 V, 0.5 ms, 8 Hz for 20 s) in guinea pig bronchi to investigate the effect of nedocromil sodium (NS) on NANC bronchoconstrictor responses. NS inhibited NANC bronchoconstriction in bronchi in a concentration-dependent manner, with a maximum inhibition of 40 +/- 4% (p less than 0.001, n = 6) at 100 microM. Cromolyn sodium, however, produced only 9 +/- 8% inhibition at the same molar concentration (p less than 0.05). NS did not affect the contractile response to substance P, nor did it modulate the cholinergic bronchoconstrictor response to EFS in tracheal smooth muscle. These results indicate that NS may modulate the release of tachykinins from airway sensory nerves.
Cochard, A; Guilhermet, R; Bonneau, M
1998-01-01
The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.
Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.
1994-01-01
1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694
Büdingen, Fiona V.; Gonzalez, Daniel; Tucker, Amelia N.
2014-01-01
The liver is a complex organ with great ability to influence drug pharmacokinetics (PK). Due to its wide array of function, its impairment has the potential to affect bioavailability, enterohepatic circulation, drug distribution, metabolism, clearance, and biliary elimination. These alterations differ widely depending on the cause of the liver failure, if it is acute or chronic in nature, the extent of impairment, and comorbid conditions. In addition, the effects on liver functions do not occur in a proportional or predictable manner for escalating degrees of liver impairment. The ability of hepatic alterations to influence PK is also dependent on drug characteristics, such as administration route, chemical properties, protein binding, and extraction ratio, among others. This complexity makes it difficult to predict what effects these changes will have on a particular drug. Unlike certain classes of agents, efficacy of anti-infectives is most often dependent on fulfilling PK/pharmacodynamic targets, such as maximum concentration/minimum inhibitory concentration (Cmax/MIC), area under the curve/minimum inhibitory concentration (AUC/MIC), time above MIC (T>MIC), half-maximal inhibitory concentration (IC50) or half-maximal effective concentration (EC50), or the time above the concentration which inhibits viral replication by 95% (T>EC95). Loss of efficacy and/or an increased risk of toxicity may occur in certain circumstances of liver injury. Although it is important to consider these potential alterations and their effects on specific anti-infectives, many lack data to constitute specific dosing adjustments, making it important to monitor patients for effectiveness and toxicities of therapy. PMID:24949199
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, Kristin Y.; Vaughn, Jeffrey R.
1999-01-01
Skeletal muscle hypertrophy is promoted in vivo by administration of beta-drenergic receptor (bAR) agonists. Chicken skeletal muscle cells were treated with 1 (mu)M isoproterenol, a strong bAR agonist, between days 7 and 10 in culture. bAR population increased by approximately 40% during this treatment; however, the ability of the cells to synthesize cyclic AMP (cAMP) was diminished by two-fold. The quantity of myosin heavy chain (MHC) was not affected. To understand further the relationship between intracellular cAMP levels, bAR population, and muscle protein accumulation, intracellular cAMP levels were artificially elevated by treatment with 0-10 uM forskolin for up to three days. The basal concentration of CAMP in forskolin-treated cells increased up to 7-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in bAR population, with a maximum increase of approximately 40-60% at 10 uM forskolin. A maximum increase of 40-50% in the quantity of MHC was observed at 0.2 uM forskolin, but higher concentrations of forskolin reduced the quantity of MHC back to control levels. At 0.2 uM forskolin, intracellular levels of cAMP were higher by approximately 35%, and the (beta)AR population was higher by approximately 30%. Neither the number of muscle nuclei fused into myotubes nor the percentage of nuclei in myotubes were affected by forskolin at any of the concentrations studied.
[Effect of chloride ion on corrosion of two commonly used dental alloys].
Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan
2014-11-01
To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.
Influence of acidosis on cardiotonic effects of colforsin and epinephrine: a dose-response study.
Hagiya, Keiichi; Takahashi, Hiroshi; Isaka, Yumi; Inomata, Shinichi; Tanaka, Makoto
2013-10-01
Acidosis produces a negative inotropic effect on cardiac muscle against which catecholamines and phosphodiesterase III inhibitors have limited therapeutic effects. This study evaluated the effects of colforsin, which directly activates adenylate cyclase without β-adrenergic receptor activation, in isolated Langendorff rat hearts in a pH- and concentration-dependent manner. Experimental animal study. A university laboratory. Sprague-Dawley rats. Hearts were isolated and perfused with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid/Tyrode solution (pH 7.4) in the Langendorff preparation. The hearts were assigned randomly to the control (pH 7.4), mild acidosis (pH 7.0), or severe acidosis (pH 6.6) group (n = 8 per group) and were perfused continuously with colforsin 10(-7), 10(-6), and 10(-5) mol/L. Maximum dP/dt was determined, and the concentration-response relation was evaluated at each pH. Colforsin at 10(-6) mol/L increased the maximum dP/dt from 2,592 ± 557 to 5,189 ± 721 mmHg/s (p < 0.001) and from 1,942 ± 325 to 3,399 ± 608 mmHg/s (p < 0.001) in the control and mild acidosis groups, respectively; whereas colforsin, 10(-5) mol/L, significantly increased the maximum dP/dt even in the severe acidosis group. No significant difference was seen in maximum dP/dt among the 3 groups after infusion with colforsin 10(-5) mol/L. In contrast to catecholamines and other inodilators, colforsin at a high concentration restores decreased cardiac contractility against severe acidosis to an extent similar to physiologic pH. Copyright © 2013 Elsevier Inc. All rights reserved.
Al-Magableh, Mohammad R; Kemp-Harper, Barbara K; Ng, Hooi H; Miller, Alyson A; Hart, Joanne L
2014-01-01
The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2(-)) and suppressing vascular superoxide anion production. O2(-) was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2(-) generator pyrogallol to model acute oxidative stress in vitro. O2(-) generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2(-) in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2(-) production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM-100 μM; 30 min) inhibited NADPH-stimulated aortic O2(-) production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2(-) production. These data show for the first time that NaHS directly scavenges O2(-) and suppresses vascular NADPH oxidase-derived O2(-) production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2(-) and by reducing vascular NADPH oxidase-derived O2(-) production.
Anticancer and anti-inflammatory activities of some dietary cucurbits.
Sharma, Dhara; Rawat, Indu; Goel, H C
2015-04-01
In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.
Moser, Martin; Bertram, Ulf; Peter, Karlheinz; Bode, Christoph; Ruef, Johannes
2003-04-01
Platelet GPIIb/IIIa antagonists are not only used to prevent platelet aggregation, but also in combination with thrombolytic agents for the treatment of coronary thrombi. Recent data indicate a potential of abciximab alone to dissolve thrombi in vivo. We investigated the potential of abciximab, eptifibatide, and tirofiban to dissolve platelet aggregates in vitro. Adenosine diphosphate (ADP)-induced platelet aggregation could be reversed in a concentration-dependent manner by all three GPIIb/IIIa antagonists when added after the aggregation curve reached half-maximal aggregation. The concentrations chosen are comparable with in vivo plasma concentrations in clinical applications. Disaggregation reached a maximum degree of 72.4% using 0.5 microg/ml tirofiban, 91.5% using 3.75 microg/ml eptifibatide, and 48.4% using 50 microg/ml abciximab (P < 0.05, respectively). A potential fibrinolytic activity of the GPIIb/IIIa antagonists was ruled out by preincubation with aprotinin or by a plasma clot assay. A stable model Chinese hamster ovary (CHO) cell line expressing the activated form of GPIIb/IIIa was used to confirm the disaggregation capacity of GPIIb/IIIa antagonists found in platelets. Not only abciximab, but also eptifibatide and tirofiban have the potential to disaggregate newly formed platelet clusters in vitro. Because enzyme-dependent fibrinolysis does not appear to be involved, competitive removal of fibrinogen by the receptor antagonists is the most likely mechanism.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory
2017-04-01
The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-06-01
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less
Tarai, Madhumita; Mishra, Ashok Kumar
2016-10-12
The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.
Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials
Zhao, Nan; Zhu, Donghui
2016-01-01
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018
Agwu, D E; McPhail, L C; Sozzani, S; Bass, D A; McCall, C E
1991-01-01
Receptor-mediated agonists, such as FMLP, induce an early, phospholipase D (PLD)-mediated accumulation of phosphatidic acid (PA) which may play a role in the activation of NADPH oxidase in human PMN. We have determined the effect of changes in PA production on O2 consumption in intact PMN and the level of NADPH oxidase activity measured in a cell-free assay. Pretreatment of cells with various concentrations of propranolol enhanced (less than or equal to 200 microM) or inhibited (greater than 300 microM) PLD-induced production of PA (mass and radiolabel) in a manner that correlated with enhancement or inhibition of O2 consumption in PMN stimulated with 1 microM FMLP in the absence of cytochalasin B. The concentration-dependent effects of propranolol on FMLP-induced NADPH oxidase activation was confirmed by direct assay of the enzyme in subcellular fractions. In PA extracted from cells pretreated with 200 microM propranolol before stimulation with 1 microM FMLP, phospholipase A1 (PLA1)-digestion for 90 min, followed by quantitation of residual PA, showed that a minimum of 44% of PA in control (undigested) sample was diacyl-PA; alkylacyl-PA remained undigested by PLA1. Propranolol was also observed to have a concentration-dependent enhancement of mass of 1,2-DG formed in PMN stimulated with FMLP. DG levels reached a maximum at 300 microM propranolol and remained unchanged up to 500 microM propranolol. However, in contrast to PA levels, the level of DG produced did not correlate with NADPH oxidase activation. Exogenously added didecanoyl-PA activated NADPH oxidase in a concentration-dependent manner (1-300 microM) in a reconstitution assay using membrane and cytosolic fractions from unstimulated PMN. In addition, PA synergized with SDS for oxidase activation. Taken together, these results indicate that PA plays a second messenger role in the activation of NADPH oxidase in human PMN and that regulation of phospholipase D is a key step in the activation pathway. Images PMID:1864964
Segeda, V; Izakova, L; Hlavacova, N; Bednarova, A; Jezova, D
2017-08-01
Evidence is accumulating that aldosterone may exert central actions and influence mental functions. The aim of the present study was to test the hypothesis that major depressive disorder affects the diurnal variation of salivary aldosterone and that aldosterone concentrations reflect the duration and severity of the depressive episode in a sex dependent manner. The sample consisted of 60 patients (37 postmenopausal women, 23 men) with major depressive disorder. Patients were examined two times, in acute depressive episode (admission to the hospital) and after reaching clinical remission (discharge). The samples of saliva were taken by the patients themselves twice a day (8.00-9.00 h in the morning and in the evening). Aldosterone concentrations were significantly higher in women compared to men and were significantly higher at the time of admission to the hospital compared to those at the discharge. Morning but not evening salivary aldosterone concentrations reflected the length of the depressive episode in women as well as the severity of the disorder in both sexes. Moreover, the patients with depression failed to exert known daily rhythmicity of aldosterone release. The present study brings several pieces of evidence suggesting the association of aldosterone with the pathophysiology of depression. Salivary aldosterone concentrations appear to reflect the outcome, the duration and the severity of the depressive episode in a sex dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio
2003-11-01
A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Sant, Marco; Papadopoulos, George K.; Theodorou, Doros N.
2010-04-01
The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration.
Lim, Yee-Ling; Mok, Shiueh-Lian
2010-01-01
To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro. The antihypertensive activity of 11 species of seaweeds (5 brown, 1 red and 5 green algae) were tested by cumulative addition of the extracts to phenylephrine (PE)-precontracted Wistar-Kyoto (WKY) aortic rings in in vitro isometric contraction studies. Mechanisms for vasorelaxant effect were investigated in the presence of various antagonists. Of the 11 species tested, 2 showed a vasorelaxant effect. Further investigation of the mechanisms of action of the aqueous extract of green alga, Cladophora patentiramea (AECP),showed that the vascular relaxant effect was endothelium- and concentration-dependent. A maximum relaxation of 45.8 +/- 4.6% (n = 8, p < 0.001) was obtained at 0.1 mg/ml of extract, after which the response was found to reduce in a concentration-dependent manner to 15.7 +/- 4.9% (n = 8, p < 0.001) at the highest extract concentration tested. Pretreatment of endothelium-intact aortic rings with Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microM), (1)H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) and methylene blue (100 microM) resulted in a complete blockade of AECP-induced vasorelaxation. However, the relaxant effects of the extract were not blocked by atropine (1 microM), indomethacin (10 microM) and glibenclamide (10 microM), although the maximum relaxant responses were enhanced in the presence of glibenclamide. Our data showed that the in vitro vascular relaxant effect of AECPwas mediated through endothelium-dependent nitric oxide-cGMP pathway, and was not associated with the release of vasodilator prostaglandins, activation of muscarinic receptors, or ATP-sensitive potassium channels opening. Copyright 2010 S. Karger AG, Basel.
Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice
Uebanso, Takashi; Ohnishi, Ai; Kitayama, Reiko; Yoshimoto, Ayumi; Nakahashi, Mutsumi; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira
2017-01-01
Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice. PMID:28587159
Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice.
Uebanso, Takashi; Ohnishi, Ai; Kitayama, Reiko; Yoshimoto, Ayumi; Nakahashi, Mutsumi; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira
2017-06-01
Abstract : Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice.
Palacios, C; Abecia, J A
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures (Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR (P < 0.01) and summer inseminations under lower SR values (P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T (P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum (P < 0.05) and minimum Ts (P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
NASA Astrophysics Data System (ADS)
Palacios, C.; Abecia, J. A.
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P < 0.01) and summer inseminations under lower SR values ( P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T ( P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum ( P < 0.05) and minimum Ts ( P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang
2015-01-01
Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis.
Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang
2015-01-01
Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474
Mechanism of Tacrine Block at Adult Human Muscle Nicotinic Acetylcholine Receptors
Prince, Richard J.; Pennington, Richard A.; Sine, Steven M.
2002-01-01
We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor. PMID:12198092
Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta
2008-01-01
Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.
Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.
Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder
2016-05-01
Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet. Copyright © 2016 Elsevier GmbH. All rights reserved.
Effect of fuel concentration on cargo transport by a team of Kinesin motors
NASA Astrophysics Data System (ADS)
Takshak, Anjneya; Mishra, Nirvantosh; Kulkarni, Aditi; Kunwar, Ambarish
2017-02-01
Eukaryotic cells employ specialized proteins called molecular motors for transporting organelles and vesicles from one location to another in a regulated and directed manner. These molecular motors often work collectively in a team while transporting cargos. Molecular motors use cytoplasmic ATP as fuel, which is hydrolyzed to generate mechanical force. While the effect of ATP concentration on cargo transport by single Kinesin motor function is well understood, it is still unexplored, both theoretically and experimentally, how ATP concentration would affect cargo transport by a team of Kinesin motors. For instance, how does fuel concentration affect the travel distances and travel velocities of cargo? How cooperativity of Kinesin motors engaged on a cargo is affected by ATP concentration? To answer these questions, here we develop mechano-chemical models of cargo transport by a team of Kinesin motors. To develop these models we use experimentally-constrained mechano-chemical model of a single Kinesin motor as well as earlier developed mean-field and stochastic models of load sharing for cargo transport. Thus, our new models for cargo transport by a team of Kinesin motors include fuel concentration explicitly, which was not considered in earlier models. We make several interesting predictions which can be tested experimentally. For instance, the travel distances of cargos are very large at limited ATP concentrations in spite of very small travel velocity. Velocities of cargos driven by multiple Kinesin have a Michaelis-Menten dependence on ATP concentration. Similarly, cooperativity among the engaged Kinesin motors on the cargo shows a Michaelis-Menten type dependence, which attains a maximum value near physiological ATP concentrations. Our new results can be potentially useful in controlling artificial nano-molecular shuttles precisely for targeted delivery in various nano-technological applications.
Qian, Jun; Li, Jing; Jia, Jianguang; Jin, Xin; Yu, Dajun; Guo, Chenxu; Xie, Bo; Qian, Liyu
2016-01-01
Sijunzi Decoction (SD) is a traditional Chinese medicine which is composed of Ginseng, Atractylodes, Poria and Licorice. It is one of the commonly used Chinese traditional medicines that showed anti-gastric cancer activity in clinical studies. Previous evidence demonstrated SD parties (Ginseng, Atractylodes, Poria, Licorice) can inhibit proliferation and induced apoptosis for gastric cancer cell. In order to further investigate the anticancer effect of SD in gastric cancer, we observed the effects of different concentrations of SD on proliferation and apoptosis of Side Population Cells (SP) of human gastric cancer SGC-7901. SGC-7901 SP and Non- Side Population Cells (NSP) were sorted through flow cytometry; to detect the changes of proliferation of SP and NSP before and after the intervention of serum containing different concentrations of SD using cck-8 method; to detect the changes of cell cycle and apoptosis of SP and NSP before and after the intervention of serum containing different concentrations of SD through flow cytometry; to detect the effects of serum containing different concentrations of SD on apoptosis-related proteins Bax and Bcl-2 of SP and NSP before and after the intervention by western-blot. It was found that different concentrations of SD serum treatments inhibited cell proliferation in a time-dependent and concentration-dependent manner. Compared with the control group (normal saline serum treatment), there were increase in G1/G0 phase population of SP and NSP, and decrease in G2/M and S phase population ( P <0.05). Meanwhile, we found G1/G0 arrest induced by different concentrations of SD serum which was followed by apoptosis in a time-dependent and concentration-dependent manner. The apoptosis rate of SD serum treatment group was higher than the control group ( P <0.05), the apoptosis rate of 48 h treatment was higher than 24 h treatment ( P <0.05), and as the SD serum concentration increases, apoptosis rate is higher and higher ( P <0.05). The expression of Bax protein of SP and NSP was higher than the control group in a time-dependent and concentration dependent manner. The expression of Bcl-2 protein of SP and NSP was lower than the control group in a time-dependent and concentration- dependent manner. With the increase of SD serum concentrations, SD can gradually inhibits the proliferation of SP of SGC-7901 cell lines through G1/G0 phase arrest and followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2. List of Abbreviations: (SD) Sijunzi Decoction, (SP) side population, (NSP) non-side population, (Control) normal saline serum group, (L) low concentration SD serum group, (N) normal concentration SD serum group, (H) high concentration SD serum group, (ABCG-2) Adenosine triphosphate Binding Cassette super family G member-2 of transport protein, (Bcl-2) B-cell lymphoma 2, (BAX) Bcl-2 Associated X Protein, (FBS) Fetal bovine serum, (PBS) Phosphate buffer solution, (CCK-8) Cell Counting Kit-8 reagent, (AV) Annexin V-FITC, (PI) Propidium iodide, (EDTA) Ethylene Diamine Tetraacetic Acid, (PMSF) Phenylmethanesulfonyl fluoride, (RIPA) Radio Immunoprecipitation Assay, (PVDF) Poly (vinylidene fluoride), (TBST) Tris-buffered saline containing Tween-20.
Benzi, Roberto; Ching, Emily S C; Horesh, Nizan; Procaccia, Itamar
2004-02-20
A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the maximum drag reduction (MDR) asymptote. The Re-dependent drag and the MDR are analytically explained, and the dependence of the amount of drag on material parameters is rationalized.
Effects of haloperidol on Kv4.3 potassium channels.
Lee, Hong Joon; Sung, Ki-Wug; Hahn, Sang June
2014-10-05
Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 μM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials. Copyright © 2014 Elsevier B.V. All rights reserved.
Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E
2014-11-28
We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.
Hanson, Andrea M; Ickstadt, Alicia T; Marquart, Dillon J; Kittilson, Jeffrey D; Sheridan, Mark A
2017-05-15
Fish in aquatic habitats are exposed to increasing concentrations and types of environmental contaminants, including environmental estrogens (EE). While there is growing evidence to support the observation that endocrine-disrupting compounds (EDCs) possess growth-inhibiting effects, the mechanisms by which these physiological effects occur are poorly understood. In this study, we examined the direct effects of EE, specifically 17β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP), on GH sensitivity as assessed by mRNA expression and functional expression of growth hormone receptor in hepatocytes, gill filaments, and muscle in rainbow trout (Oncorhynchus mykiss). Additionally, we examined the effects of EE on signaling cascades related to growth hormone signal transduction (i.e., JAK-STAT, MAPK, and PI3K-Akt). Environmental estrogens directly suppressed the expression of GHRs in a tissue- and compound-related manner. The potency and efficacy varied with EE; effects were most pronounced with E2 in liver. EE treatment deactivated the JAK-STAT, MAPK, and PI3K-Akt pathways in liver a time-, EE- and concentration-dependent manner. Generally, E2 and NP were most effective in deactivating pathway elements; maximum suppression for each pathway was rapid, typically occurring at 10-30min. The observed effects occurred via an estrogen-dependent pathway, as indicated by treatment with an ER antagonist, ICI 182,780. These findings suggest that EEs suppress growth by reducing GH sensitivity in terms of reduced GHR synthesis and reduced surface GHR expression and by repressing GH signaling pathways. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zavoruev, V. V.; Zavorueva, E. N.
2015-11-01
Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.
Biofunctional properties of Eruca sativa Miller (rocket salad) hydroalcoholic extract.
Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Rauf, Abdur; Akber, Noor Ul; Khan, Murad Ali
2016-01-01
Eruca sativa Miller is a worldwide common alimentary plant (rocket leaves). The aim of this study was to correlate the potential in vitro scavenging activity of the E. sativa hydroalcoholic extract (HAE) with its in vivo hypoglycaemic effect. In DDPH free radical (DFR) and ferric-reducing antioxidant power assays, HAE in a concentration dependent manner (25-100 μg/mL) displayed a strong scavenging activity with maximum effect of 88% and 75% at 100 μg/mL, respectively. Daily administration of HAE (50 mg/kg; p.o.) in the in vivo model of alloxan-induced diabetic rabbits for 28 days showed significant reduction in glycaemia, also supported by recovery of body weight. In conclusion, our results give preliminary information on the potential use of this plant as a nutraceutical, useful to control and/or prevent a hyperglycaemic status.
Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster.
Chauhan, Ved; Srikumar, Syian; Aamer, Sarah; Pandareesh, Mirazkar D; Chauhan, Abha
2017-09-24
Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster . Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration-dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.
Li, Qian; Peng, Jie; Liu, Ting; Zhang, Guiying
2017-09-01
Fas, which is an apoptotic-related protein, has an important role in cell apoptosis. Fas ligand (FasL) binds to Fas and activates apoptosis signal transduction. We previously demonstrated that the efficiency of celecoxib inhibited the proliferation and apoptosis of HT-29 colon cancer cell line. The BGC823 cell line was used as an experimental model to evaluate the potential role of celecoxib on gastric cancer cell apoptosis. Inhibitory effects of celecoxib on cell viability were determined by MTT assay. Cell apoptosis was evaluated by flow cytometric analysis and laser confocal microscopy. The results of the present study demonstrated that celecoxib inhibited the viability of BGC823 cells in a concentration- and time-dependent manner. Furthermore, the effect of BGC823 cells apoptosis was increased in a concentration-dependent manner. Western blotting was used to determine the protein expression levels of Fas, FasL, and B-cell lymphoma-2 (Bcl-2). During the celecoxib-induced apoptosis of BGC823 cells, celecoxib upregulated Fas expression and downregulated FasL and Bcl-2 expression in a concentration-dependent manner. These results suggest that celecoxib inhibited the growth and induced apoptosis of BGC823 gastric cancer cells by regulating the protein expression of Fas, FasL and Bcl-2.
Blood lactate clearance after maximal exercise depends on active recovery intensity.
Devlin, J; Paton, B; Poole, L; Sun, W; Ferguson, C; Wilson, J; Kemi, O J
2014-06-01
High-intensity exercise is time-limited by onset of fatigue, marked by accumulation of blood lactate. This is accentuated at maximal, all-out exercise that rapidly accumulates high blood lactate. The optimal active recovery intensity for clearing lactate after such maximal, all-out exercise remains unknown. Thus, we studied the intensity-dependence of lactate clearance during active recovery after maximal exercise. We constructed a standardized maximal, all-out treadmill exercise protocol that predictably lead to voluntary exhaustion and blood lactate concentration>10 mM. Next, subjects ran series of all-out bouts that increased blood lactate concentration to 11.5±0.2 mM, followed by recovery exercises ranging 0% (passive)-100% of the lactate threshold. Repeated measurements showed faster lactate clearance during active versus passive recovery (P<0.01), and that active recovery at 60-100% of lactate threshold was more efficient for lactate clearance than lower intensity recovery (P<0.05). Active recovery at 80% of lactate threshold had the highest rate of and shortest time constant for lactate clearance (P<0.05), whereas the response during the other intensities was graded (100%=60%>40%>passive recovery, P<0.05). Active recovery after maximal all-out exercise clears accumulated blood lactate faster than passive recovery in an intensity-dependent manner, with maximum clearance occurring at active recovery of 80% of lactate threshold.
Inhibitory action of linoleamide and oleamide toward sarco/endoplasmic reticulum Ca2+-ATPase.
Yamamoto, Sachiko; Takehara, Munenori; Ushimaru, Makoto
2017-01-01
SERCA maintains intracellular Ca 2+ homeostasis by sequestering cytosolic Ca 2+ into SR/ER stores. Two primary fatty acid amides (PFAAs), oleamide (18:1 9-cis ) and linoleamide (18:2 9,12-cis ), induce an increase in intracellular Ca 2+ levels, which might be caused by their inhibition of SERCA. Three major SERCA isoforms, rSERCA1a, hSERCA2b, and hSERCA3a, were individually overexpressed in COS-1 cells, and the inhibitory action of PFAAs on Ca 2+ -ATPase activity of SERCA was examined. The Ca 2+ -ATPase activity of each SERCA was inhibited in a concentration-dependent manner strongly by linoleamide (IC 50 15-53μM) and partially by oleamide (IC 50 8.3-34μM). Inhibition by other PFAAs, such as stearamide (18:0) and elaidamide (18:1 9-trans ), was hardly or slightly observed. With increasing dose, linoleamide decreased the apparent affinity for Ca 2+ and the apparent maximum velocity of Ca 2+ -ATPase activity of all SERCAs tested. Oleamide also lowered these values for hSERCA3a. Meanwhile, oleamide uniquely reduced the apparent Ca 2+ affinity of rSERCA1a and hSERCA2b: the reduction was considerably attenuated above certain concentrations of oleamide. The dissociation constants for SERCA interaction varied from 6 to 45μM in linoleamide and from 1.6 to 55μM in oleamide depending on the isoform. Linoleamide and oleamide inhibit SERCA activity in the micromolar concentration range, and in a different manner. Both amides mainly suppress SERCA activity by lowering the Ca 2+ affinity of the enzyme. Our findings imply a novel role of these PFAAs as modulators of intracellular Ca 2+ homeostasis via regulation of SERCA activity. Copyright © 2016 Elsevier B.V. All rights reserved.
In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts.
Santos, Wanderson Praxedes; da Silva Carvalho, Ana Carla; dos Santos Estevam, Charles; Santana, Antônio Euzébio Goulart; Marçal, Rosilene Moretti
2012-07-01
Erythrina velutina (EV) Willd (Fabaceae-Faboideae) is a medicinal tree that is commonly used in Brazil for the treatment of several central nervous system disorders. The anticholinesterase activity of EV is described in this work. Concentration-response curves (0-1.6 mg/mL) for EV leaf aqueous extract (AE) and alkaloid-rich extracts (AKEs) were performed in vitro. Cholinesterase inhibition was examined in mouse brains, as the cholinesterase source, and in pure acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE). Mice were treated with AE or AKE (100, 200, and 400 mg/kg, p.o.) and their brains were used for the measurement of cholinesterase activity (CA) ex vivo. CA was inhibited by AE (IC(50) = 0.57 [0.43-0.75] mg/mL) and AKE (IC(50) = 0.52 [0.39-0.70] mg/mL) in brain homogenates in a concentration-dependent manner. The ex vivo experiments indicated that AE (400 mg/kg, p < 0.05, 32.2 ± 3.9% of inhibition) and AKE (all doses: p < 0.05-p < 0.001, 29.6 ± 3.2% as the maximum inhibition) significantly inhibited CA in the central nervous system after oral administration. AE and AKE inhibited AChE and BuChE activities in a concentration-dependent manner (AE: IC(50AChE) = 0.56 [0.38-0.81] mg/mL, IC(50BuChE) = 2.95 [1.51-5.76] mg/mL, AKE: IC(50AChE) = 0.87 [0.60-12.5] mg/mL, IC(50BuChE) = 2.67 [0.87-8.11] mg/mL). These data indicated that AE and AKE crossed the blood-brain barrier to inhibit CA in the brain. AE and AKE also exhibited a dual inhibitory action on acetyl- and BuChE.
Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta
2015-01-01
The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435
Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells
Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro
2000-01-01
[3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212
Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa
Lima, Ilana Schneider; Baumeier, Nicole Carmo; Rosa, Rosimeire Takaki; Campelo, Patrícia Maria Stuelp; Rosa, Edvaldo Antonio Ribeiro
2014-01-01
This study evaluated the impact of different concentrations of glyphosate (Rondup®) on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm) and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm) in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p < 0.05). However, these same concentrations favor the planktonic anaerobic growth (p < 0.05). On the other hand, the herbicide favors a slight growth of biofilms in a concentration-dependent manner up to 84.5 ppm (p > 0.05), and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05), regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442. PMID:25477933
Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2).
Chen, Chung-Yi; Yang, Yu-Han; Kuo, Soong-Yu
2010-08-27
The effect of [6]-shogaol (1) on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and viability has not been explored previously in oral epithelial cells. The present study has examined whether 1 alters [Ca(2+)](i) and viability in OC2 human oral cancer cells. Compound 1 at concentrations > or = 5 microM increased [Ca(2+)](i) in a concentration-dependent manner with a 50% effective concentration (EC(50)) value of 65 microM. The Ca(2+) signal was reduced substantially by removing extracellular Ca(2+). In a Ca(2+)-free medium, the 1-induced [Ca(2+)](i) elevation was mostly attenuated by depleting stored Ca(2+) with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). The [Ca(2+)](i) signal was inhibited by La(3+) but not by L-type Ca(2+) channel blockers. The elevation of [Ca(2+)](i) caused by 1 in a Ca(2+)-containing medium was not affected by modulation of protein kinase C activity, but was inhibited by 82% with the phospholipase A2 inhibitor aristolochic acid I (20 microM). U73122, a selective inhibitor of phospholipase C, abolished 1-induced [Ca(2+)](i) release. At concentrations of 5-100 microM, 1 killed cells in a concentration-dependent manner. These findings suggest that [6]-shogaol induces a significant rise in [Ca(2+)](i) in oral cancer OC2 cells by causing stored Ca(2+) release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-dependent manner and by inducing Ca(2+) influx via a phospholipase A2- and La(3+)-sensitive pathway.
Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense.
Sharma, Poonam; Sirhindi, Geetika; Singh, Anil Kumar; Kaur, Harpreet; Mushtaq, Ruqia
2017-10-01
An attempt was made to explore the effect of copper sulphate treatment on growth, photosynthesis, osmolytes and antioxidants in 15 days old seedlings of C. cajan (Pigeonpea). C. cajan seedlings were grown in 0, 1, 5 and 10 mM concentrations of copper sulphate in petriplates lined with Whatman filter paper for 15 days. Root length and shoot length was decreased in a dose dependent manner with highest decrease of 82.80 and 45.92% in 10 mM Cu stress. Photosynthetic efficiency (qP, qN and Y) was decreased in a dose dependent manner whereas NPQ was increased in 1 and 5 mM and decreased in 10 mM Cu. Photosynthetic pigments viz total chlorophyll and carotenoids were increased in low concentrations and decreased in high concentrations of Cu. Osmolytes such as proline, glycine betaine and sugars were found to be increased in a dose dependent manner. Similarly antioxidants such as superoxide dismutase and catalase increased to 129.17 and 169.7%, respectively under Cu stress. Vitamin C and vitamin E was also increased in different concentrations of Cu to a significant level. It can be concluded from the present study that C. cajan can tolerate Cu stress up to 5 mM by adjusting the proportion of proline, glycine betaine, sugars and vitamins along with increasing the activity of some of the antioxidant enzymes.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-10-13
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-01-01
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect. PMID:26458509
Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M
2002-12-01
To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.
Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng
2013-04-01
The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Becker, Joseph F.; Valentin, Jose
1996-01-01
The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.
Ca(2+)-channel blockade in rat thoracic aorta by protopine isolated from Corydalis tubers.
Ko, F N; Wu, T S; Lu, S T; Wu, Y C; Huang, T F; Teng, C M
1992-01-01
The pharmacological properties and mechanism of the action of protopine on isolated rat thoracic aorta were examined. It inhibited norepinephrine (NE, 3 microM)-induced tonic contraction in rat thoracic aorta in a concentration-dependent manner (25-100 micrograms/ml). The phasic contraction caused by NE was inhibited only by a high concentration of protopine (100 micrograms/ml). At the plateau of NE-induced tonic contraction, the addition of protopine also caused relaxation. This relaxing effect of protopine was not antagonized by indomethacin (20 microM) or methylene blue (50 microM), and it still existed in denuded rat aorta or in the presence of nifedipine (2-100 microM). Protopine also inhibited high potassium (60 mM)-induced, calcium-dependent (0.03-3 mM) contraction of rat aorta in a concentration-dependent manner. Neither cAMP nor cGMP level was changed by protopine. Both the formation of inositol monophosphate caused by NE and the phasic contraction induced by caffeine were also not affected by protopine. 45Ca2+ influx caused by either NE or K+ was inhibited by protopine concentration-dependently. It is concluded that protopine relaxed the rat thoracic aorta mainly by suppressing the Ca2+ influx through both voltage- and receptor-operated calcium channels.
Antiviral effects of artesunate on polyomavirus BK replication in primary human kidney cells.
Sharma, Biswa Nath; Marschall, Manfred; Henriksen, Stian; Rinaldo, Christine Hanssen
2014-01-01
Polyomavirus BK (BKV) causes polyomavirus-associated nephropathy (PyVAN) and hemorrhagic cystitis (PyVHC) in renal and bone marrow transplant patients, respectively. Antiviral drugs with targeted activity against BKV are lacking. Since the antimalarial drug artesunate was recently demonstrated to have antiviral activity, the possible effects of artesunate on BKV replication in human primary renal proximal tubular epithelial cells (RPTECs), the host cells in PyVAN, were explored. At 2 h postinfection (hpi), RPTECs were treated with artesunate at concentrations ranging from 0.3 to 80 μM. After one viral replication cycle (approximately 72 hpi), the loads of extracellular BKV DNA, reflecting viral progeny production, were reduced in a concentration-dependent manner. Artesunate at 10 μM reduced the extracellular BKV load by 65%; early large T antigen mRNA and protein expression by 30% and 75%, respectively; DNA replication by 73%; and late VP1 mRNA and protein expression by 47% and 64%, respectively. Importantly, the proliferation of RPTECs was also inhibited in a concentration-dependent manner. At 72 hpi, artesunate at 10 μM reduced cellular DNA replication by 68% and total metabolic activity by 47%. Cell impedance and lactate dehydrogenase measurements indicated a cytostatic but not a cytotoxic mechanism. Flow cytometry and 5-ethynyl-2'-deoxyuridine incorporation revealed a decreased number of cells in S phase and suggested cell cycle arrest in G0 or G2 phase. Both the antiproliferative and antiviral effects of artesunate at 10 μM were reversible. Thus, artesunate inhibits BKV replication in RPTECs in a concentration-dependent manner by inhibiting BKV gene expression and genome replication. The antiviral mechanism appears to be closely connected to cytostatic effects on the host cell, underscoring the dependence of BKV on host cell proliferative functions.
Antiviral Effects of Artesunate on Polyomavirus BK Replication in Primary Human Kidney Cells
Sharma, Biswa Nath; Marschall, Manfred; Henriksen, Stian
2014-01-01
Polyomavirus BK (BKV) causes polyomavirus-associated nephropathy (PyVAN) and hemorrhagic cystitis (PyVHC) in renal and bone marrow transplant patients, respectively. Antiviral drugs with targeted activity against BKV are lacking. Since the antimalarial drug artesunate was recently demonstrated to have antiviral activity, the possible effects of artesunate on BKV replication in human primary renal proximal tubular epithelial cells (RPTECs), the host cells in PyVAN, were explored. At 2 h postinfection (hpi), RPTECs were treated with artesunate at concentrations ranging from 0.3 to 80 μM. After one viral replication cycle (approximately 72 hpi), the loads of extracellular BKV DNA, reflecting viral progeny production, were reduced in a concentration-dependent manner. Artesunate at 10 μM reduced the extracellular BKV load by 65%; early large T antigen mRNA and protein expression by 30% and 75%, respectively; DNA replication by 73%; and late VP1 mRNA and protein expression by 47% and 64%, respectively. Importantly, the proliferation of RPTECs was also inhibited in a concentration-dependent manner. At 72 hpi, artesunate at 10 μM reduced cellular DNA replication by 68% and total metabolic activity by 47%. Cell impedance and lactate dehydrogenase measurements indicated a cytostatic but not a cytotoxic mechanism. Flow cytometry and 5-ethynyl-2′-deoxyuridine incorporation revealed a decreased number of cells in S phase and suggested cell cycle arrest in G0 or G2 phase. Both the antiproliferative and antiviral effects of artesunate at 10 μM were reversible. Thus, artesunate inhibits BKV replication in RPTECs in a concentration-dependent manner by inhibiting BKV gene expression and genome replication. The antiviral mechanism appears to be closely connected to cytostatic effects on the host cell, underscoring the dependence of BKV on host cell proliferative functions. PMID:24145549
Lozeau, Lindsay D; Rolle, Marsha W; Camesano, Terri A
2018-07-01
The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM). Copyright © 2018 Elsevier B.V. All rights reserved.
Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia
2014-01-01
The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter−1) in the absence or presence of PHF (≤500 mg liter−1) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells. PMID:25038095
Variability in memory performance in aged healthy individuals: an fMRI study.
Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W
2003-01-01
Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.
Tripathi, Yamini B; Pandey, Nidhi; Tripathi, Deepshikha; Tripathi, Pratibha
2010-12-01
The oily fraction (non polar fraction-NPF) of S. anacardium (SA) significantly increased the expression of protein kinase C-delta (PKC-delta) in macrophages in concentration dependent manner, which was similar to phorbol myristate acetate (PMA) response. Further, H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine), an inhibitor of PKC significantly inhibited this NPF mediated response in a concentration dependent manner. In the post treatment kinetics, H-7 showed this inhibition only up to 6 min post NPF/PMA addition, but in similar condition, quercetin, a flavone with reported antioxidant property, showed this inhibition only up to 2 min. The results clearly suggest that oily fraction of SA nuts enhances the expression of PKC protein, which may be responsible for its reported pro-inflammatory property.
NASA Technical Reports Server (NTRS)
Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.
1998-01-01
Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.
Farkas, A S; Acsai, K; Nagy, N; Tóth, A; Fülöp, F; Seprényi, G; Birinyi, P; Nánási, P P; Forster, T; Csanády, M; Papp, J G; Varró, A; Farkas, A
2008-05-01
The Na(+)/Ca(2+) exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na(+) concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 microM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na(+) concentrations in rabbit and rat hearts. The concentration-dependent effects of SEA0400 on I(Na/Ca) were studied in rat and rabbit ventricular cardiomyocytes using a patch clamp technique. Starling curves were constructed for isolated, Langendorff-perfused rat and rabbit hearts. The cardiac sarcolemmal NCX protein densities of both species were compared by immunohistochemistry. SEA0400 inhibited I(Na/Ca) with similar efficacy in the two species; there was no difference between the inhibitions of the forward or reverse mode of the NCX in either species. SEA0400 increased the systolic and the developed pressure in the rat heart in a concentration-dependent manner, for example, 1.0 microM SEA0400 increased the maximum systolic pressures by 12% relative to the control, whereas it failed to alter the contractility in the rabbit heart. No interspecies difference was found in the cardiac sarcolemmal NCX protein densities. NCX inhibition exerted a positive inotropic effect in the rat heart, but it did not influence the contractility of the rabbit heart. This implies that the AP configuration and the intracellular Na(+) concentration may play an important role in the contractility response to NCX inhibition.
Beta-Adrenergic Receptor Expression in Muscle Cells
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, K.; Vaughn, J. R.
1999-01-01
beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.
NASA Astrophysics Data System (ADS)
Arunakumara, K. K. I. U.; Zhang, Xuecheng; Song, Xiaojin
2008-11-01
A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. The specimen cultured in Zarrouk liquid medium was treated with various initial metal concentrations (0, 5, 10, 30, 50 and 100 μg mL-1). The growth of S. platensis was adversely affected by Pb2+ at high concentrations (30, 50 and 100 μg mL-1). However, at low concentrations (5 μg mL-1), Pb2+ could stimulate its growth slightly. The pigment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner. The highest reductions (67% and 53% respectively in chlorophyll α and β carotene) were observed in 100 μg mL-1 treatment group. The LC50 (96 h) of Pb2+ was measured as 75.34 μg mL-1. Apart from a few cases of filament breakages at elevated concentrations (50 and 100 μg mL-1), morphological abnormalities are not specific. Metal bioaccumulation increased with Pb2+ concentrations, but decreased with exposure time. The maximum accumulated amount was 188 mg g-1 dry weight. The bioconcentration factor (BCF) reached to a peak at day 2, followed by a gradual reduction for all the exposure concentrations. S. platensis is able to tolerate considerably high Pb2+ concentrations. Consequently it can be used as a potential species to remove heavy metal from contaminated waters.
Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu
2012-12-01
Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.
Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu
2012-01-01
Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10-6-10-5 M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10-9-10-5 M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10-6-10-5 M), while having no effects at low concentrations (10-9-10-7 M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β. PMID:25949102
Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka
2012-01-01
Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343
Zhu, Zhenni; Wang, Yu; Liu, Zhiqing; Wang, Fan; Zhao, Qiu
2012-05-01
The aim of this study was to verify the inhibitory effects of epigallocatechin-3-gallate (EGCG) on cell proliferation and the expression of hypoxia-inducible factor 1 (HIF-1α) and multidrug resistance protein 1 (MDR1/P-gp) in the human pancreatic carcinoma cell line PANC-1, thereby, reversing drug resistance of pancreatic carcinoma and improving its sensitivity to cancer chemotherapy. The human pancreatic carcinoma cell line PANC-1 was incubated under hypoxic conditions with different concentrations of epigallocatechin-3-gallate (EGCG) for indicated hours. The effects of EGCG on the mRNA or protein expression of HIF-1α and MDR1 were determined by RT-PCR or western blotting. Cellular proliferation and viability assays were measured using Cell Counting Kit-8. Western blotting revealed that EGCG inhibits the expression of the HIF-1α protein in a dose-dependent manner, while RT-PCR showed that it does not have any effects on HIF-1α mRNA. In addition, EGCG attenuated the mRNA and protein levels of P-gp in a dose-dependent manner, reaching a peak at the highest concentration. Furthermore, EGCG inhibited the proliferation of PANC-1 cells in a concentration- and time-dependent manner. The attenuation of HIF-1α and the consequently reduced P-gp could contribute to the inhibitory effects of EGCG on the proliferation of PANC-1 cells.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.
Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar
2015-11-04
With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.
NASA Astrophysics Data System (ADS)
Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam
2017-09-01
The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.
Ambiguous dependence of fluorescence intensity of trees on chlorophyll concentration
NASA Astrophysics Data System (ADS)
Zavoruev, Valeriy V.; Zavorueva, Elena N.
2014-11-01
Using fluorimetry Junior PAM (Heinz Walz GmbH, Germany) fluorescence parameters of leaves Prinsepia sinensis, Crataegus chlorocarca M, Acer negúndo, Bétula péndula are studied. It was found that the dependence of maximum fluorescence (Fm) plants on the concentration of chlorophyll depends on the sampling method during of vegetation. The correctness of sampling proves during vegetation is substantiated.
Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.
Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A
2000-01-01
[(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139
Ahmed, Tanzeel; Tripathi, Ashok K; Ahmed, Rafat S; Banerjee, Basu Dev
2010-01-01
The molecular mechanism for noncholinergic toxicity of phosphamidon, an extensively used organophosphate pesticide, is still not clear. The aim of the present study is to find the possible molecular mechanism of this pesticide to induce apoptosis and the role of different drugs for attenuation of such effects. Human peripheral blood mononuclear cells (PBMC) were incubated with increasing concentrations of phosphamidon (0-20 μM) for 6-24 h. The MTT assay reveals that phosphamidon induces cytotoxicity in a dose-dependent manner. Cellular glutathione (GSH) is depleted in a dose-dependent manner from 55% to 70% at concentrations between 10 and 20 μM. The percentage of cells that bind to Annexin-V, which is a representative of cells either undergoing apoptosis or necrosis during 24 h incubation, increases in a dose-dependent manner. Above 5 μM, significant necrosis of cells was observed. DNA fragmentation assay revealed that at low concentration of phosphamidon (1 μM), no appreciable change in DNA fragmentation was seen; however, distinct fragmentation was observed beyond 2.5 μM. Phosphamidon was found to cause significant depletion of GSH, which correlates well with the percentage of cells undergoing apoptosis. An increasing trend in levels of cytochrome c was observed with increasing concentration of phosphamidon, indicating that the apoptotic effect of phosphamidon is mediated through cytochrome c release. Coadministration of the antioxidants N-acetylcysteine and curcumin attenuated phosphamidon-induced apoptosis. This further supports our hypothesis that oxidative stress, as indicated by GSH depletion, results in the induction of apoptosis by release of cytochrome c. Copyright 2010 Wiley Periodicals, Inc.
Moore, Kaitlin M; Girens, Renee E; Larson, Sara K; Jones, Maria R; Restivo, Jessica L; Holtzman, David M; Cirrito, John R; Yuede, Carla M; Zimmerman, Scott D; Timson, Benjamin F
2016-01-01
Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aβ40 and Aβ42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aβ40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aβ42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aβ clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aβ in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aβ clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Tashiro, Miyuki; Watanabe, Yasuhide; Yamakawa, Tomomi; Yamashita, Kanna; Kita, Satomi; Iwamoto, Takahiro; Kimura, Junko
2017-01-01
Carvedilol ((+/-)-1-(carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol), a β-adrenoceptor-blocker, has multi-channel blocking and vasodilator properties. This agent dose-dependently improves left ventricular function and reduces mortality in patients with arrhythmia and chronic heart failure. However, the effect of carvedilol on the cardiac Na+/Ca2+ exchanger (NCX1) has not been investigated. We examined the effects of carvedilol and metoprolol, 2 β-blockers, on Na+/Ca2+ exchange current (INCX) in guinea-pig cardiac ventricular cells and fibroblasts expressing dog cardiac NCX1. Carvedilol suppressed INCX in a concentration-dependent manner but metoprolol did not. IC50 values for the Ca2+ influx (outward) and efflux (inward) components of INCX were 69.7 and 61.5 µmol/l, respectively. Carvedilol at 100 μmol/l inhibited INCX in CCL39 cells expressing wild type NCX1 similar to mutant NCX1 without the intracellular regulatory loop. Carvedilol at 30 µmol/l abolished ouabain-induced delayed afterdepolarizations. Carvedilol inhibited cardiac NCX in a concentration-dependent manner in isolated cardiac ventricles, but metoprolol did not. We conclude that carvedilol inhibits NCX1 at supratherapeutic concentrations. © 2016 S. Karger AG, Basel.
Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2015-05-01
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Wang, Dong; Wang, Qingjie; Yan, Gaoliang; Qiao, Yong; Tang, Chengchun
2015-05-01
Abnormal vascular smooth muscle cell proliferation and migration are key factors in many cardiovascular diseases. Here, we investigated the effects of phloretin on platelet-derived growth factor homodimer (PDGF-BB)-induced rat aortic smooth muscle cell (RASMC) proliferation, migration, and neointimal formation after carotid injury. Phloretin significantly inhibited the PDGF-BB-stimulated RASMC proliferation in a concentration-dependent manner (10-100 μM). Also, PDGF-BB-stimulated RASMC migration was inhibited by phloretin at 50 μM. Pretreating RASMC with phloretin dose-dependently inhibited PDGF-BB-induced Akt and p38 mitogen-activated protein kinases activation. Furthermore, phloretin increased p27 and decreased cyclin-dependent kinase 2, CDK4 expression, and p-Rb activation in PDGF-BB-stimulated RASMC in a concentration-dependent manner (10-50 μM). PDGF-BB-induced cell adhesion molecules and matrix metalloproteinase-9 expression were blocked by phloretin at 50 μM. Preincubation with phloretin dose-dependently reduced the intracellular reactive oxygen species production. In vivo study showed that phloretin (20 mg/kg) significantly reduced neointimal formation 14 days after carotid injury in rats. Thus, phloretin may have potential as a treatment against atherosclerosis and restenosis after vascular injury.
A novel toll-like receptor from Mytilus coruscus is induced in response to stress.
Xu, Mengshan; Wu, Jiong; Ge, Delong; Wu, Changwen; Changfeng Chi; Lv, Zhenming; Liao, Zhi; Liu, Huihui
2018-07-01
Toll-like receptor (TLR) is considered to be an evolutionarily conserved transmembrane protein which promotes the Toll signal pathway to active the expression of transcription factors in the innate immunity of the organism. In this study, a full length of TLR homologue of 2525bp in Mytilus coruscus (named as McTLR-a, GenBank accession no: KY940571) was characterized. Its ORF was 1815 bp with a 5'untranslated region (UTR) of 128 bp and a 3'UTR of 582 bp, encoding 602 amino acid residues with a calculated molecular weight of 70.870 kDa (pI = 6.10). BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of TLR family. Quantitative real time RT-PCR showed that constitutive expression of McTLR-a was occurred, with increasing order in hemocyte, gonad, mantle, adducter, gill and hepatopancreas. Bacterial infection and heavy metals stimulation up-regulated the expression of McTLR-a mRNA in hepatopancreas with time-dependent manners. The maximum expression appeared at 12 h after pathogenic bacteria injection, with approximately 22-fold in Aeromonas hydrophila and 17-fold in Vibrio parahemolyticus higher than that of the blank group. In heavy metals stress group, they all reached peaks at 3d, while the diverse concentration caused the maximum expression were different. The highest expression reached approximately 7-fold higher than the blank in low concentration of Pb 2+ exposure. In Cu 2+ treated group, it reached the peak (approximately 12-fold higher than the blank)in middle concentration. These results indicated that McTLR-a might be involved in the defense response and had a significant role in mediating the environmental stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neuhauser, S; Dörfel, S; Handler, J
2015-05-01
Preservation of epididymal spermatozoa is important to save genetic material of endangered species and breeds, or in case of unexpected injury, which will end the breeding career of valuable sires. Seminal plasma (SP) influences sperm quality in a dose-dependent manner and its addition to preserved semen immediately before insemination may be beneficial for sperm fertility. Increased plasma membrane stability of epididymal spermatozoa reduces freezing injury of cells, and the addition of SP after freezing and thawing might have activating and protecting effects on spermatozoa within the female genital tract. In this study, epididymal spermatozoa were harvested by retrograde flush of the epididymal cauda immediately after routine castration and frozen. Seminal plasma was collected from other six stallions. Homologous SP (SP from the same species, but from a different animal) was added to frozen-thawed epididymal spermatozoa at concentrations of 0, 5, 20, 50 and 80% SP. Addition of SP increased sperm motility and influenced kinematic values in a dose-dependent manner (p < 0.05). Motility improved at concentrations of 20 and 50% SP, but did not further increase at 80% SP. There was no difference in sperm motility among SP from six different donor stallions regardless of the concentrations of SP (p > 0.05). Total and progressive motility of ten frozen-thawed epididymal spermatozoa samples collected from different stallions after dilution with extender and 5, 20, 50 or 80% SP differed significantly (p < 0.05). In conclusion, addition of homologous SP to frozen-thawed stallion epididymal spermatozoa immediately improved motility in a dose-dependent manner regardless of semen quality of SP donor stallions. This might positively influence fertility when SP is added before insemination. Moreover, there seems to be a threshold level of SP concentration for optimal improvement of sperm motility. © 2015 American Society of Andrology and European Academy of Andrology.
The role of Rho-kinase and calcium ions in constriction triggered by ET-1.
Wiciński, Michał; Szadujkis-Szadurska, Katarzyna; Węclewicz, Mateusz M; Malinowski, Bartosz; Matusiak, Grzegorz; Walczak, Maciej; Wódkiewicz, Eryk; Grześk, Grzegorz; Pawlak-Osińska, Katarzyna
2018-05-05
Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca 2+ related to activation of IP3 receptors and to Rho-kinase activity. Copyright © 2018. Published by Elsevier Inc.
Wang, Jin-Cheng; Kiyosue, Tatsuto; Kiriyama, Kuninori; Arita, Makoto
1999-01-01
We investigated the effects of bepridil on the two components of the delayed rectifier K+ current, i.e., the rapidly activating (IKr) and the slowly activating (IKs) currents using tight-seal whole-cell patch-clamp techniques in guinea-pig ventricular myocytes, under blockade of L-type Ca2+ current with nitrendipine (5 μM) or D600 (1 μM).Bepridil decreased IKs under blockade of IKr with E4031 (5 μM), in a concentration-dependent manner. The concentration-dependent inhibition of IKs by bepridil was fitted by a curve, assuming one-to-one interactions between the channel and the drug molecule. The concentration of half-maximal inhibition (IC50) was found to be 6.2 μM.The effect of bepridil on IKr was assessed using an envelope-of-tails test. In the control condition, a ratio of the tail current to the time-dependent current measured during depolarization was large (>1) at shorter pulses (<200 ms), and it decreased to a steady state value of ∼0.4 with increases in the pulse duration. Bepridil at a concentration of 2 μM did not decrease this ratio at shorter pulses.In a short-pulse (duration=50 ms) experiment that largely activates IKr, the drug was found to block IKr in a cooperative manner (Hill coefficient=3.03) and the IC50 was 13.2 μM.These results suggest that bepridil at a clinical therapeutic concentration (∼2 μM) selectively blocks IKs but does not inhibit IKr. This may relate to the characteristic frequency-dependent effects of bepridil on the action potential duration (APD), e.g., the non-reverse use-dependent prolongation of APD. PMID:10588929
Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan
2002-06-01
Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.
Effects of papaverine on carbachol- and high K+ -induced contraction in the bovine abomasum.
Kaneda, Takeharu; Saito, Erika; Kanda, Hidenori; Urakawa, Norimoto; Shimizu, Kazumasa
2015-10-01
The effects of papaverine on carbachol (CCh) -and high K(+)- induced contraction in the bovine abomasum were investigated. Papaverine inhibited CCh (1 µM) -and KCl (65 mM) -induced contractions in a concentration-dependent manner. Forskolin or sodium nitroprusside inhibited CCh-induced contractions in a concentration-dependent manner in association with increases in the cAMP or cGMP contents, whereas papaverine increased cGMP contents only at 30 µM. Changes in the extracellular Ca(2+) from 1.5 mM to 7.5 mM reduced verapamil-induced relaxation in high K(+)-depolarized muscles, but papaverine-induced relaxation did not change. Furthermore, papaverine (30 µM) and NaCN (300 µM) decreased the creatine phosphate contents. These results suggest that the relaxing effects of papaverine on the bovine abomasum are mainly due to the inhibition of aerobic energy metabolism.
Liu, Xiao-Jia; Li, Yun-Qian; Chen, Qiu-Yue; Xiao, Sheng-Jun; Zeng, Si-En
2014-01-01
Prostate cancer is one of the most prevalent malignant cancers in men. The isoflavone formononetin is a main active component of red clover plants. In the present study, we assessed the effect of formononetin on human prostate cancer DU-145 cells in vitro, and elucidated possible mechanisms. DU-145 cells were treated with different concentrations of formononetin and cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 and flow cytometry, and protein levels of RASD1, Bcl-2 and Bax by Western blotting. The results showed that formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax. The level of RASD1 reached its maximum at 48 h post-treatment, and rapidly decreased thereafter. Together, we present evidence that formononetin triggered cell apoptosis through the mitochondrial apoptotic pathway by up-regulating RASD1.
Cheng, Lan; Sanguinetti, Michael C
2009-05-01
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.
Park, Kiyun; Kim, Rosa; Park, Jung Jun; Shin, Hyun Chool; Lee, Jung Sick; Cho, Hyeon Seo; Lee, Yeon Gyu; Kim, Jongkyu; Kwak, Inn-Sil
2012-03-01
Tributyltin (TBT) is the most common pesticide in marine and freshwater environments. To evaluate the potential ecological risk posed by TBT, we measured biological responses such as growth rate, gonad index, sex ratio, the percentage of intersex gonads, filtration rate, and gill abnormalities in the equilateral venus clam (Gomphina veneriformis). Additionally, the biochemical and molecular responses were evaluated in G. veneriformis exposed to various concentrations of TBT. The growth of G. veneriformis was significantly delayed in a dose-dependent manner after exposure to all tested TBT concentrations. After TBT was administered to G. veneriformis, the gonad index decreased and the sex balance was altered. The percentage of intersex gonads also increased significantly in treated females, whereas no intersex gonads were detected in the solvent control group. Additionally, intersex gonads were detected in male G. veneriformis specimens exposed to relatively high TBT concentrations (20 μg L⁻¹). The filtration rate was also reduced in a dose-dependent manner in TBT-exposed G. veneriformis. We also noted abnormal gill morphology in TBT-exposed G. veneriformis. Furthermore, increases in antioxidant enzyme activities were observed in TBT-exposed G. veneriformis clams, regardless of dosage. Vitellogenin gene expression also increased significantly in a dose-dependent manner in G. veneriformis exposed to TBT. These results provide valuable information regarding our understanding of the toxicology of TBT in G. veneriformis. Moreover, the responses of biological and molecular factors could be utilized as information for risk assessments and marine monitoring of TBT toxicity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis
NASA Astrophysics Data System (ADS)
Najafinobar, Neda; Mellander, Lisa J.; Kurczy, Michael E.; Dunevall, Johan; Angerer, Tina B.; Fletcher, John S.; Cans, Ann-Sofie
2016-09-01
Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongliang; Hong, Da Hye; Kim, Han Sol
We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivationmore » curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.« less
Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook
2011-09-01
6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.
Lipotoxicity in HepG2 cells triggered by free fatty acids
Yao, Hong-Rui; Liu, Jun; Plumeri, Daniel; Cao, Yong-Bing; He, Ting; Lin, Ling; Li, Yu; Jiang, Yuan-Ying; Li, Ji; Shang, Jing
2011-01-01
The goal of this study was to investigate the lipid accumulation and lipotoxicity of free fatty acids (FFAs) induced in HepG2 cells. HepG2 cells were co-incubated with various concentrations of FFAs for 24h and the intracellular lipid contents were observed by Oil Red O and Nile Red staining methods. The lipotoxicity of HepG2 cells were then detected by Hoechest 33342/PI, Annexin V-FITC/PI double-staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) experiment tests. The experiments showed a lipid accumulation and lipotoxicity by increasing FFA concentration gradients. Through cell morphological observation and quantitative analysis, FFAs have shown to increase in a dose-dependent manner compared with the control group. The data collected from hoechst 33342/PI, annexin V-FITC/PI double staining and also MTT experiments showed that cell apoptosis and necrosis significantly increased with increasing FFA concentrations. Apoptosis was not obvious in the 1 mM FFAs-treated group compared to the other two groups. In a certain concentration range, FFAs induced intracellular lipid accumulation and lipotoxicity of HepG2 cells in a dose-dependent manner. PMID:21654881
Boxall, A R; Garthwaite, J
1995-05-01
AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 microM-5 mM) and cyclothiazide (1 microM-500 microM) both enhanced the depolarising action of AMPA (1 microM) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.
Light dependence of carboxylation capacity for C3 photosynthesis models
USDA-ARS?s Scientific Manuscript database
Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...
Changes in turbulence with rotation of the omnicarbon prosthesis.
Travis, Brandon R; Nyboe, Camilla; Christensen, Thomas D; Smerup, Morten; Johansen, Peter; Nygaard, Hans; Hasenkam, J Michael
2007-01-01
This study was performed to determine whether annular plane orientation of the Omnicarbon aortic valve influences forward flow turbulence. The Omnicarbon prostheses was modified to allow in situ manual rotation of the valve when implanted in the aortic position of eight 90 kg pigs. Pulsed Doppler ultrasound was used to acquire velocity measurements at 17 locations within the cross-sectional area of the ascending aorta. In each animal, 12 valve rotations were tested in this manner. Reynolds normal stresses were estimated from the velocity measurements. High Reynolds normal stresses were concentrated between left and posterior-right sides of the aortic wall for all orientations studied. No trends in mean or maximum Reynolds normal stresses with respect to valve rotation were consistent in the experiments. Unlike previous experiments with the Medtronic-Hall tilting disc valve, these experiments showed no notable changes in Reynolds normal stress with respect to orientation of the Omnicarbon valve. This suggests that the tendency of turbulent stresses to change with tilting disc valve orientation may be dependent on valve design.
Melittin-induced cholesterol reorganization in lipid bilayer membranes
Qian, Shuo; Heller, William T.
2015-06-12
The peptide melittin, a 26 amino acid, cationic peptide from honey bee ( Apis mellifera) venom, disrupts lipid bilayer membranes in a concentration-dependent manner. Rather than interacting with a specific receptor, the peptide interacts directly with the lipid matrix of the membrane in a manner dependent on the lipid composition. Here, a small-angle neutron scattering study of the interaction of melittin with lipid bilayers made of mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol (Chol) is presented. Through the use of deuterium-labeled DMPC, changes in the distribution of the lipid and cholesterol in unilamellar vesicles were observed for peptide concentrations below thosemore » that cause pores to form. In addition to disrupting the in-plane organization of Chol, melittin produces vesicles having inner and outer leaflet compositions that depend on the lipid–Chol molar ratio and on the peptide concentration. The changes seen at high cholesterol and low peptide concentration are similar to those produced by alamethicin (Qian, S. et al., J. Phys. Chem. B 2014, 118, 11200–11208), which points to an underlying physical mechanism driving the redistribution of Chol, but melittin displays an additional effect not seen with alamethicin. Furthermore, a model for how the peptide drives the redistribution of Chol is proposed. The results suggest that redistribution of the lipids in a target cell membrane by membrane active peptides takes places as a prelude to the lysis of the cell.« less
Melittin-induced cholesterol reorganization in lipid bilayer membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Shuo; Heller, William T.
The peptide melittin, a 26 amino acid, cationic peptide from honey bee ( Apis mellifera) venom, disrupts lipid bilayer membranes in a concentration-dependent manner. Rather than interacting with a specific receptor, the peptide interacts directly with the lipid matrix of the membrane in a manner dependent on the lipid composition. Here, a small-angle neutron scattering study of the interaction of melittin with lipid bilayers made of mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol (Chol) is presented. Through the use of deuterium-labeled DMPC, changes in the distribution of the lipid and cholesterol in unilamellar vesicles were observed for peptide concentrations below thosemore » that cause pores to form. In addition to disrupting the in-plane organization of Chol, melittin produces vesicles having inner and outer leaflet compositions that depend on the lipid–Chol molar ratio and on the peptide concentration. The changes seen at high cholesterol and low peptide concentration are similar to those produced by alamethicin (Qian, S. et al., J. Phys. Chem. B 2014, 118, 11200–11208), which points to an underlying physical mechanism driving the redistribution of Chol, but melittin displays an additional effect not seen with alamethicin. Furthermore, a model for how the peptide drives the redistribution of Chol is proposed. The results suggest that redistribution of the lipids in a target cell membrane by membrane active peptides takes places as a prelude to the lysis of the cell.« less
Ding, K H; Husain, S; Akhtar, R A; Isales, C M; Abdel-Latif, A A
1997-09-01
The effects of carbachol (CCh) on inositol 1,4,5-trisphosphate (IP3) production and intracellular calcium ([Ca2+]i) mobilization, and their regulation by cAMP-elevating agents were investigated in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. CCh produced time- and dose-dependent increases in IP3 production; the t1/2 and EC50 values were 68 s and 0.5 microM, respectively. The muscarinic agonist provoked a transient increase in [Ca2+]i which reached maximum within 77 s, and increased [Ca2+]i mobilization in a concentration-dependent manner with an EC50 of 1.4 microM. Thapsigargin, a Ca(2+)-pump inhibitor, caused a rapid rise in [Ca2+]i and subsequent addition of CCh was without effect. Both CCh-induced IP3 production and CCh-induced [Ca2+]i mobilization were more potently antagonized by 4-DAMP, an M3 muscarinic receptor antagonist, than by pirenzepine, an M1 receptor antagonist, suggesting that both responses are mediated through the M3 receptor subtype. Treatment of the cells with U73122, a phospholipase C (PLC) inhibitor, resulted in a concentration-dependent decrease in both CCh-stimulated IP3 production and [Ca2+]i mobilization. These data indicate close correlation between enhanced IP3 production and [Ca2+]i mobilization in these smooth muscle cells and suggest that the CCh-stimulated increase in [Ca2+]i could be mediated through increased IP3 production. Isoproterenol (ISO) inhibited CCh-induced IP3 production (IC50 = 80 nM) and [Ca2+]i mobilization (IC50 = 0.17 microM) in a concentration-dependent manner. Microsomal fractions isolated from SV-CISM-2 cells contained phospholipase C (PLC) which was stimulated by CCh (10 microM) and GTP gamma S (0.1 microM). Pretreatment of the cells with ISO or forskolin, 5 microM each, produced membrane fractions in which CCh-stimulated PLC activity was significantly attenuated. Furthermore, when microsomal fractions isolated from SV-CISM-2 cells were phosphorylated with Protein kinase A (PKA), the CCh- and GTP gamma S-stimulated IP3 production were significantly inhibited. It can be concluded from these studies that in SV-CISM-2 cells, activation of M3 muscarinic receptors results in stimulation of PLC-mediated PIP2 hydrolysis, generating IP3 which mobilizes [Ca2+]i. Furthermore, elevation of cAMP may inhibit IP3 production and [Ca2+]i mobilization through mechanisms involving PKA-dependent phosphorylation of PLC, G-proteins, IP3 receptor and/or IP3 metabolizing enzymes.
Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan
2015-01-01
To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.
Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages
Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le
2015-01-01
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419
Granica, Sebastian; Czerwińska, Monika E; Piwowarski, Jakub P; Ziaja, Maria; Kiss, Anna K
2013-01-30
In the present study we investigated the chemical composition of extracts prepared from aerial parts of Oenothera paradoxa Hudziok and Oenothera biennis L. and their antioxidative and anti-inflammatory activities. Ultra high pressure liquid chromatography (UHPLC)-DAD-MS/MS studies showed that both extracts contain a wide variety of polyphenols (39 identified constituents) among which macrocyclic ellagitannin turned out to be the main constituent. During the in vitro studies, using noncellular models, both extracts scavenged reactive oxygen species (ROS) in a concentration-dependent manner, and the lowest SC(50) values were obtained for O(2)(-) and H(2)O(2). Both extracts inhibited ROS production by stimulated human neutrophils. The stronger activity in the case of formyl-met-leu-phenylalanine stimulation suggests that both extracts may act through the receptor-dependent pathway. O. paradoxa extract and O. biennis extract exhibited anti-inflammatory activity by the inhibition of hyaluronidase and lipoxygenase in a concentration-dependent manner. The stronger activity of O.biennis extract toward lipoxygenase may be explained by its higher oenothein B content.
Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji
2014-01-30
Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.
Cirino, G.; Wheeler-Jones, C. P.; Wallace, J. L.; Del Soldato, P.; Baydoun, A. R.
1996-01-01
1. The effects of novel nitric oxide-releasing nonsteroidal anti-inflammatory compounds (NO-NSAIDs) on induction of nitric oxide (NO) synthase by bacterial lipopolysaccharide (LPS) were examined in a murine cultured macrophage cell line, J774. 2. LPS-induced nitrite production was markedly attenuated by the nitroxybutylester derivatives of flurbiprofen (FNBE), aspirin, ketoprofen, naproxen, diclofenac and ketorolac, with each compound reducing accumulated nitrite levels by > 40% at the maximum concentrations (100 micrograms ml-1) used. 3. Further examination revealed that nitrite production was inhibited in a concentration-dependent (1-100 micrograms ml-1) manner by FNBE which at 100 micrograms ml-1 decreased LPS-stimulated levels by 63.3 +/- 8.6% (n = 7). The parent compound flurbiprofen was relatively ineffective over the same concentration-range, inhibiting nitrite accumulation by 24 +/- 0.9% (n = 3) at the maximum concentration used (100 micrograms ml-1). 4. FNBE reduced LPS-induced nitrite production when added to cells up to 4 h after LPS. Thereafter, FNBE caused very little or no reduction in nitrite levels. Furthermore NO-NSAIDs (100 micrograms ml-1) did not inhibit the metabolism of L-[3H]-arginine to citrulline by NO synthase isolated from LPS-activated macrophages. 5. Western blot analysis demonstrated that NO synthase expression was markedly attenuated following co-incubation of J774 cell with LPS (1 microgram ml-1; 24 h) and FNBE (100 micrograms ml-1; 24 h). Thus taken together, these findings indicate that NO-NSAIDs inhibit induction of NO synthase without directly affecting enzyme activity. 6. In conclusion our results indicate that NO-NSAIDs can inhibit the inducible L-arginine-NO pathway, and are capable of suppressing NO synthesis by inhibiting expression of NO synthase. The clinical implications of these findings remain to be established. Images Figure 4 PMID:8730734
Effect of thiopental sodium on N-methyl-D-aspartate-gated currents.
Liu, Hongliang; Dai, Tijun; Yao, Shanglong
2006-05-01
N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC) are closely related with the excitability of pyramidal neurons and PFC function. As the effect of thiopental sodium on the central nervous system may partly result from the inhibition of PFC NMDA receptors, we investigated the effect of thiopental sodium with different concentrations on NMDA-gated currents in acutely dissociated rat PFC pyramidal neurons. We sought to determine whether thiopental sodium inhibits NMDA receptor function. Three to four week old male Sprague-Dawley rats were sacrificed and the PFC was dissected. Pyramidal neurons from the PFC were prepared and standard whole-cell patch clamp recordings were performed. Escalating concentrations from 3-1000 microM NMDA were applied 100 microm from the pyramidal cells, and the concentration in the effect compartment related to 50% effect (EC50) of NMDA was determined for the ensuing experiments. One hundred microM NMDA alone (control) or NMDA with different concentrations (10-1000 microM) of thiopental sodium were applied. After the inhibitory concentration, in 50% of NMDA effect (IC50) of thiopental sodium was established this IC50 and NMDA 3-1000 microM were applied 100 microm from the pyramidal cells. The EC50 value of NMDA under the effect of IC50 thiopental sodium was determined. N-methyl-D-aspartate induced inward currents in a concentration-dependent manner, which were completely antagonized by 50 microM AP5. The maximal amplitude of NMDA-induced current was 1.15 +/- 0.27 nA. The EC50 of NMDA was 53.6 +/- 12.4 microM. The NMDA (100 microM)-gated current was inhibited by thiopental sodium in a concentration-dependent manner, and the IC50 of thiopental sodium was 33.6 +/- 6.1 microM. Under the effect of 33.6 microM thiopental sodium, the maximal amplitude of NMDA-induced current was 0.87 +/- 0.17 nA. The concentration-response curve of NMDA was shifted rightwards. The EC50 of NMDA was 128 +/- 15 microM, which was greater than that of NMDA without thiopental sodium (P < 0.01). Thiopental sodium decreases NMDA-gated currents in acutely dissociated rat prefrontal cortical pyramidal neurons in a concentration-dependent manner.
Aggarwal, A; Tandon, S; Singla, S K; Tandon, C
2010-01-01
Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.
Anaesthetic modulation of nicotinic ion channel kinetics in bovine chromaffin cells.
Charlesworth, P; Richards, C D
1995-01-01
1. We have investigated the action of the anaesthetics methoxyflurane, methohexitone and etomidate on the nicotinic acetylcholine receptor channel of bovine adrenal chromaffin cells using the whole cell patch clamp technique. 2. Spectral analysis of macroscopic currents evoked by 25 microM carbachol revealed that each of the agents tested reduced the lifetime of the channel open state in a dose-dependent manner. The whole cell current was inhibited in a concentration-dependent fashion by each agent. 3. Channel gating parameters were calculated from single channel studies and the results used to test models explaining the modulation of nicotinic acetylcholine receptor channels by anaesthetics. 4. Each of the agents studied reduced the mean channel open time in a concentration-dependent manner. Anaesthetic concentrations reducing mean open time by 50% were: 370 microM methoxyflurane, 30 microM methohexitone or 23 microM etomidate. 5. Methohexitone and etomidate produced an increase in the number of brief closures within bursts, while no such increase was observed with methoxyflurane. Despite these inter-burst gaps, mean burst length was reduced by each of the agents tested. 6. It is concluded that a simple sequential blocking model fails to account for the action of these anaesthetics. An extended model, in which blocked channels can close, may be applicable. PMID:7773553
Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12
Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An
2009-01-01
There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751
Salt inactivates endothelial nitric oxide synthase in endothelial cells.
Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An
2009-03-01
There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
NASA Technical Reports Server (NTRS)
Bridge, K. Y.; Young, R. B.; Vaughn, J. R.
1998-01-01
Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.
Ward, J. K.; Fox, A. J.; Barnes, P. J.; Belvisi, M. G.
1994-01-01
1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7518294
Montoro, A; Barquinero, J F; Almonacid, M; Montoro, A; Sebastià, N; Verdú, G; Sahuquillo, V; Serrano, J; Saiz, M; Villaescusa, J I; Soriano, J M
2011-01-01
Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL(-1) and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL(-1) of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1995-01-01
The physical properties of a supersaturated binary solution such as its density rho, shear viscosity eta, and solute mass diffusivity D are dependent on the solute concentration c: rho = rho(c), eta = eta(c), and D = D(c). The diffusion boundary layer equations related to crystal growth from solution are derived for the case of natural convection with a solution density, a shear viscosity, and a solute diffusivity that are all depen- dent on solute concentration. The solution of these equations has demonstrated the following. (1) At the vicinity of the saturation concentration c(sub s) the solution shear viscosity eta depends on rho as eta(sub s) = eta(rho(sub s))varies as square root of rho(c(sub s)). This theoretically derived result has been verified in experiments with several aqueous solutions of inorganic and organic salts. (2) The maximum solute mass transfer towards the growing crystal surface can be achieved for values of c where the ratio of d ln(D(c)/dc) to d ln(eta(c)/dc) is a maximum.
Montoro, A.; Barquinero, J. F.; Almonacid, M.; Montoro, A.; Sebastià, N.; Verdú, G.; Sahuquillo, V.; Serrano, J.; Saiz, M.; Villaescusa, J. I.; Soriano, J. M.
2011-01-01
Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation. PMID:20981159
Seo, Seung-Beom; Choe, Eun Sang; Kim, Kwang-Sik; Shim, Soon-Mi
2017-06-01
Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC 50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.
NASA Astrophysics Data System (ADS)
Zhang, L.; van Eersel, H.; Bobbert, P. A.; Coehoorn, R.
2016-10-01
Using a novel method for analyzing transient photoluminescence (PL) experiments, a microscopic description is obtained for the dye concentration dependence of triplet-triplet annihilation (TTA) in phosphorescent host-guest systems. It is demonstrated that the TTA-mechanism, which could be a single-step dominated process or a diffusion-mediated multi-step process, can be deduced for any given dye concentration from a recently proposed PL intensity analysis. A comparison with the results of kinetic Monte Carlo simulations provides the TTA-Förster radius and shows that the TTA enhancement due to triplet diffusion can be well described in a microscopic manner assuming Förster- or Dexter-type energy transfer.
Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe
2007-01-01
Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our findings constitute a valuable contribution to understanding the clinical effects of EPs 7630.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine-Suzuki, Emiko; Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522; Yu, Dong
2008-12-12
Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may notmore » be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.« less
[Saponin 6 of Anemone Taipaiensis inhibits proliferation and induces apoptosis of U87 MG cells].
Ji, Chenchen; Cheng, Guang; Tang, Haifeng; Zhang, Yun; Hu, Yiyang; Zheng, Minhua; Fei, Zhou
2015-04-01
To investigate the effect of saponin 6 of Anemone Taipaiensis on the proliferation of human U87 MG glioma cells and the possible mechanism. U87 MG cells were treated with different concentrations of saponin 6 (0.0, 1.6, 3.2, 6.4, 12.8 μg/mL) for 24 hours or 48 hours. Cell viability was measured by MTT assay; the apoptosis rate was detected by flow cytometry combined with annexin V-FITC /PI staining; Western blotting was applied to determine the protein level of activated caspase-3. Compared with control groups, saponin 6 significantly inhibited U87 MG cell proliferation in a time- and dose-depended manner. Apoptosis rate of U87 MG cells and the expression of activated caspase-3 were raised with the increasing concentration of saponin 6. Saponin 6 of Anemone Taipaiensis could depress cell proliferation in a dose-depended manner, increase the expression of activated caspase-3 and promote apoptosis in U87 MG cells.
[Effects of ifenprodil on the adenosine triphosphatase of guinea pig liver mitochondria].
Yamashita, Y; Miyake, Y; Mitsuhiro, S; Furukawa, T
1992-07-01
The effects of ifenprodil on adenosine triphosphatase (ATPase) activity were examined using guinea pig liver mitochondria. 1) Intact mitochondrial ATPase activity was stimulated by ifenprodil in a concentration-dependent manner, this effect being further potentiated with dinitrophenol. The stimulation by ifenprodil appeared with only ATP among four nucleotides as substrate. Mg2+ and Ca2+ attenuated the effect of ifenprodil. Ifenprodil abolished the KCN-induced inhibition. 2) Heat-treated mitochondrial ATPase activity, kept for 60 min at 50 degrees C, was decreased in a concentration-dependent manner by ifenprodil. The inhibitory effect of ifenprodil was abolished by Mg2+ and Ca2+. These results indicate that ifenprodil has two behaviors, acceleration of a latent ATPase and inhibition of an activated ATPase. These findings, together with our previous data, suggest that ifenprodil seems to affect the actions of Mg2+ and Ca2+ on mitochondrial ATPase by directly affecting the membrane, and these mechanisms may be involved in its anti-cyanide effect.
Tatsumiya, Katsuhisa; Yamanishi, Tomonori; Watanabe, Miho; Masuda, Akinori; Mizuno, Tomoya; Kamai, Takao; Yoshida, Ken-Ichiro
2009-12-01
To investigate the effects of fasudil, a Rho-associated serine-threonine protein kinase inhibitor, on contraction of the pig urinary bladder tissues with or without urothelium. Cumulative concentration-response curves (CRCs) to carbachol were obtained with and without 3-10 microM fasudil. Drug effects were evaluated in detrusor with and without urothelium. Inhibitory responses to fasudil were also examined in tissues precontracted with KCl and carbachol, and in response to electrical field stimulation, in pig bladder with and without urothelium. In detrusor without urothelium, maximum contraction (E(max)) decreased after administration of fasudil at 3 or 10 micromol/L (both P < 0.01), or 30 micromol/L (72.5 + or - 7.43%, 58.4 + or - 8.04% and 68.4 + or - 9.6%, respectively, of the first curve). In detrusor with urothelium, E(max) decreased significantly (all P < 0.05) after the addition of 3, 10 or 30 micromol/L of fasudil (84.9 + or - 6.7%, 67.9 + or - 5.2% and 35.2 + or - 4.1%, respectively). In tissues precontracted with 80 mmol/L KCl or 100 micromol/L carbachol, tension after administration of fasudil (1 nmol/L to 100 micromol/L) decreased (by approximately 40%), only after administration of fasudil at high concentration (>1 micromol/L), in detrusor both with and without urothelium. In tissues with and without urothelium, responses to electrical field stimulation at 1-50 Hz decreased significantly in a concentration-dependent manner after addition of fasudil (3 to 30 micromol/L). Fasudil seems to provoke relaxation of the bladder detrusor via both urothelium-dependent and independent pathways.
Diuretic effects of medetomidine compared with xylazine in healthy dogs.
Talukder, Md Hasanuzzaman; Hikasa, Yoshiaki
2009-07-01
This study aimed to investigate and compare the effects of medetomidine and xylazine on diuretic and hormonal variables in healthy dogs. Five dogs, used in each of 11 groups, were injected intramuscularly with physiological saline solution (control), 5, 10, 20, 40, and 80 microg/kg of medetomidine, and 0.25, 0.5, 1, 2, and 4 mg/kg of xylazine. Urine and blood samples were taken 11 times over 24 h. Both medetomidine and xylazine increased urine production in a dose-dependent manner up to 4 h after injection, but the increase was much less with medetomidine than with xylazine at the tested doses. Urine specific gravity, pH, osmolality, and concentrations of creatinine, sodium, potassium, chloride, and arginine vasopressin (AVP) were decreased in a dose-dependent manner with both medetomidine and xylazine. Plasma osmolality and concentrations of sodium, potassium, and chloride were increased significantly with both drugs. Total amounts of urine AVP excreted and plasma AVP concentrations were significantly decreased by higher doses of medetomidine but were not significantly decreased by xylazine. Higher doses of both drugs significantly increased the plasma concentration of atrial natriuretic peptide (ANP), but the effect was greater with medetomidine than with xylazine. The results revealed that both drugs induce a profound diuresis, but medetomidine's effect is less dose-dependent than xylazine's effect. Although changes in plasma concentrations of AVP and ANP may partially influence the diuresis induced by medetomidine, other factors may be involved in the mechanism of the diuretic response to both drugs. Thus, both agents can be used clinically for transient but effective diuresis accompanied by sedation.
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1998-10-01
The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.
Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu
2001-01-01
Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521
Satoh, H; Inui, J
1984-01-27
Histamine (10(-8)-10(-6) M) relaxed in a concentration-dependent manner the guinea-pig pulmonary artery which had been contracted by noradrenaline (5 X 10(-7) M). After the removal of endothelial cells (ETCs) histamine at the same concentrations did not cause relaxation but induced additional contraction. Both responses to histamine were antagonized by chlorpheniramine (3 X 10(-7) M). These results suggest that in the pulmonary artery histamine simultaneously stimulates H1-receptors located on both ETCs and smooth muscle cells. This results in two opposite effects, relaxation mediated by ETCs, and contraction.
Chauhan, Ved; Chauhan, Abha
2016-06-01
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.
Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li
2011-08-01
The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.
Evaluation of radioprotective activities Rhodiola imbricata Edgew--a high altitude plant.
Arora, Rajesh; Chawla, Raman; Sagar, Ravinder; Prasad, Jagdish; Singh, Surendar; Kumar, Raj; Sharma, Ashok; Singh, Shikha; Sharma, Rakesh Kumar
2005-05-01
The present study reports the radioprotective properties of a hydro-alcoholic rhizome extract of Rhodiola imbricata (code named REC-7004), a plant native to the high-altitude Himalayas. The radioprotective effect, along with its relevant superoxide ion scavenging, metal chelation, antioxidant, anti-lipid peroxidation and anti-hemolytic activities was evaluated under both in vitro and in vivo conditions. Chemical analysis showed the presence of high content of polyphenolics (0.971 +/- 0.01 mg% of quercetin). Absorption spectra analysis revealed constituents that absorb in the range of 220-290 nm, while high-performance liquid chromatography (HPLC) analysis confirmed the presence of four major peaks with retention times of 4.780, 5.767, 6.397 and 7.577 min. REC-7004 was found to lower lipid oxidation significantly (p < 0.05) at concentrations viz., 8 and 80 microg/ml respectively as compared to reduced glutathione, although the optimally protective dose was 80 microg/ml, which showed 59.5% inhibition of induction of linoleic acid degradation within first 24 h. The metal chelation activity of REC-7004 was found to increase concomitantly from 1 to 50 microg/ml. REC-7004 (10-50 microg/ml) exhibited significant metal chelation activity (p < 0.05), as compared to control, and maximum percentage inhibition (30%) of formation of iron-2,2'-bi-pyridyl complex was observed at 50 microg/ml, which correlated well with quercetin (34.9%), taken as standard. The reducing power of REC-7004 increased in a dose-dependent manner. The absorption unit value of REC-7004 was significantly lower (0.0183 +/- 0.0033) as compared to butylated hydroxy toluene, a standard antioxidant (0.230 +/- 0.091), confirming its high reducing ability. Superoxide ion scavenging ability of REC-7004 exhibited a dose-dependent increase (1-100 microg/ml) and was significantly higher (p < 0.05) than that of quercetin at lower concentrations (1-10 microg/ml), while at 100 microg/ml, both quercetin and REC-7004 scavenged over 90% superoxide anions. MTT assay in U87 cell line revealed an increase in percent survival of cells at doses between 25 and 125 microg/ml in case of drug + radiation group. In vivo evaluation of radio-protective efficacy in mice revealed that intraperitoneal administration of REC-7004 (maximally effective dose: 400 mg/kg b.w.) 30 min prior to lethal (10 Gy) total-body gamma-irradiation rendered 83.3% survival. The ability of REC-7004 to inhibit lipid peroxidation induced by iron/ascorbate, radiation (250 Gy) and their combination [i.e., iron/ascorbate and radiation (250 Gy)], was also investigated and was found to decrease in a dose-dependent manner (0.05-2 mg/ml). The maximum percent inhibition of formation of MDA-TBA complex at 2 mg/ml in case of iron/ascorbate, radiation (250 Gy) and both i.e., iron/ascorbate with radiation (250 Gy) was 53.78, 63.07, and 51.76% respectively and were found to be comparable to that of quercetin. REC-7004 (1 microg/ml) also exhibited significant anti-hemolytic capacity by preventing radiation-induced membrane degeneration of human erythrocytes. In conclusion, Rhodiola renders in vitro and in vivo radioprotection via multifarious mechanisms that act in a synergistic manner.
Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa
2017-11-01
Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Piret, Jocelyne; Roy, Sylvie; Gagnon, Mylène; Landry, Sébastien; Désormeaux, André; Omar, Rabeea F.; Bergeron, Michel G.
2002-01-01
The mechanisms of herpes simplex virus (HSV) inactivation by sodium lauryl sulfate (SLS) and n-lauroylsarcosine (LS), two anionic surfactants with protein denaturant potency, have been evaluated in cultured cells. Results showed that pretreatment of HSV type 1 (HSV-1) strain F and HSV-2 strain 333 with either surfactant inhibited, in a concentration- and time-dependent manner, their infectivities on Vero cells. SLS was a more potent inhibitor of HSV-2 strain 333 infectivity than LS with respect to the concentration (4.8-fold lower) and time (2.4-fold shorter) required to completely inactivate the virus. No inhibition of both herpesvirus strains infectivities was observed when Vero cells were pretreated with either surfactant. LS prevented the binding of HSV-2 strain 333 to cells without affecting the stable attachment and the rate of penetration into cells, whereas SLS exerted the opposite effect. Both SLS and LS inhibited, in a concentration-dependent manner, the HSV-2 strain 333-induced cytopathic effect, probably by affecting newly synthesized virions that come into contact with surfactant molecules present in culture medium. The pretreatment of HSV-2 strain 333 with specific combinations of SLS and LS concentrations inhibited the viral infectivity in a synergistic manner and resulted in only a small increase in their toxicities for exponentially growing Vero cells compared with that caused by each compound alone. Taken together, these results suggest that SLS and LS, alone or combined, could represent potent candidates as microbicides in topical vaginal formulations to prevent the transmission of herpes and possibly other pathogens that cause sexually transmitted diseases, including human immunodeficiency virus type 1. PMID:12183250
Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae
2016-05-23
Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27(kip-1) increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27(kip-1).
Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu
2017-06-01
To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.
Rauch, Cyril; Loughna, Paul T
2005-01-01
The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin. Copyright (c) 2005 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jin; Ye, Feng; Dan, Guorong
Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O{sup 6}-methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPCmore » was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p97-dependent manner.« less
Toxic effects of glyphosate on diploid and triploid fin cell lines from Misgurnus anguillicaudatus.
Qin, Yanjie; Li, Xia; Xiang, Yang; Wu, Di; Bai, Liwen; Li, Zhuangzhuang; Liang, Yan
2017-08-01
We examined the toxic effects of glyphosate on diploid (DIMF) and triploid (TRMF) fin cell lines from the Oriental Weather Loach Misgurnus anguillicaudatus. The LC 50 values of glyphosate estimated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay were 315.34 and 371.77 mg/L for DIMF and TRMF, respectively. Superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities in DIMF and TRMF cells gradually increased and then decreased with increasing glyphosate concentrations, reaching a maximum at 240 mg/L glyphosate. In contrast, acetylcholinesterase (AChE) activities in DIMF and TRMF decreased with increasing concentrations of glyphosate in a concentration-dependent manner. SOD and AChE activities were generally significantly higher in TRMF compared with DIMF cells (P < 0.05). The rates of micronucleus and abnormal nuclei were significantly higher in DIMF and TRMF groups treated with 80-560 mg/L glyphosate compared with the control groups (P < 0.01). The highest micronuclei rates in both DIMF and TRMF cells (both 4.30‰) occurred at 400 mg/L glyphosate. There were no differences in the rates of micronuclei and abnormal nuclei between DIMF and TRMF cells at any glyphosate concentration. Cell damage, including chromatin condensation, nucleus distortion, and broken and reduced endoplasmic reticulum, mitochondria, and ribosomes, were found in both cells treated with the LC 50 concentration of glyphosate. Moreover, vacuolization and apoptotic bodies occurred in glyphosate-exposed DIMF and TRMF cells, indicating apoptosis. These results indicate that glyphosate in the range of tested concentrations represent a potential risk to loach through inhibiting proliferation of diploid and triploid cell lines and induces micronuclei and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Huijun; Lan, Tonghan; Lin, Jiarui
2005-01-01
Nano-Selenium, a novel Nano technology production, was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Selenium on tetrodotoxin-sensitive (TTX-S) voltage-dependent Na+channels in isolated rat dorsal root ganglion neurons, using whole-cell patch-clamp method. Nano-Selenium irreversibly decreased TTX-S Na+current (I
Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.
Mehrabadi, Mohammad; Bandani, Ali R.; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the Km remained constant (0.58%) but the maximum velocity (Vmax) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T50) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase. PMID:21062146
Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S., E-mail: aelkadi@pharmacy.ualberta.c
Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels inmore » a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.« less
Synthetic detergents induced-biochemical and histological changes in skin of guinea pigs.
Agarwal, C; Mathur, A K; Gupta, B N; Singh, A; Shanker, R
1990-06-01
The linear alkylbenzene sulphonate (LAS) based synthetic detergents-induced decrease in lipid peroxydation and increase in histamine content in exposed skin of guinea pigs in a dose-dependent manner. Histopathological alterations of exposed skin included moderate degree of hyperkeratinization at lower concentration but necrosis, scarring, sloughing as well as discontinuity of epidermis at higher concentrations. The results shows that the contact of skin with detergents causes dermal toxicity.
Dependence of driving characteristics upon follower-leader combination
NASA Astrophysics Data System (ADS)
Nagahama, Akihito; Yanagisawa, Daichi; Nishinari, Katsuhiro
2017-10-01
The analysis of the microscopic view of mixed traffic offers a basis for resolving traffic jams which are inhomogeneous due to several types of vehicles. In this study, we research the dependence of driving characteristics upon vehicle order in a platoon. By focusing particularly upon the manner in which the driving characteristics of a follower are affected by both their own vehicle type and that of their leader, we measured the trajectories of platoons comprising two vehicles selected from motorcycles, passenger cars, and trucks on a test course. Analysis based on vehicle order showed that the vehicle types of both the leader and the follower as well as the leader's driving characteristics affected the velocity, acceleration, deceleration, operational delay of followers, and the distance gap between leaders and followers in different ways. In addition, we investigated the factors affecting driving characteristics by multiple regression analysis. We revealed that the operational delay and the maximum distance gap tend to be large when the length of leaders is large. Furthermore, as long as a follower can follow, we need not consider vehicle types among the parameters determining maximum velocity in car-following models. The vehicle types of the leader and the follower should be considered to determine maximum acceleration. When determining maximum deceleration, the vehicle types of the follower should be considered.
Fujimaki, Y; Kamachi, T; Yanagi, T; Cáceres, A; Maki, J; Aoki, Y
2005-03-01
Twelve extracts of 11 Guatemalan medicinal plants were initially screened in vitro for potential macrofilaricidal activity against Brugia pahangi, a lymphatic dwelling filarial worm, using concentrations from 125 to 1000 microg ml(-1) of each extract that could be dissolved in the culture medium. Of 12 extracts used, the ethanol extract of leaves of Neurolaena lobata showed the strongest activity against the motility of adult worms. Subsequently, the extract of N. lobata was extensively examined in vitro for macro- and micro-filaricidal effects using a series of concentrations of 500, 250, 100, 50 and 10 microg ml(-1). The effects were assessed by worm motility, microfilarial release by female worms and a MTT assay. The effect on the motility of adult worms was observed in a concentration- and time-dependent manner. The time required to stop motility of both sexes of adult worms was 6 h at 500 microg ml(-1), 24 h at 250 microg ml(-1), and 3 days for females and 4 days for males at 100 microg ml(-1). The movement of females ceased at 4 days at a concentration of 50 microg ml(-1) whereas the motility of males was only reduced. The loss of worm's viability was confirmed by the MTT assay and was similar to the motility results. These concentrations, including 10 microg ml(-1), prevented microfilarial release by females in a concentration- and time-dependent manner. Concentrations higher than 100 microg ml(-1) even induced mortality of the microfilariae. The present study suggested that the ethanol extract of Neurolaena lobata has potential macro- and micro-filaricidal activities.
Mahipal, Amit; Klapman, Jason; Vignesh, Shivakumar; Yang, Chung S; Neuger, Anthony; Chen, Dung-Tsa; Malafa, Mokenge P
2016-07-01
Vitamin E delta-tocotrienol (VEDT) has demonstrated chemopreventive and antineoplastic activity in preclinical models. The aim of our study was to determine the safety and pharmacokinetics of VEDT and its metabolites after single- and multiple-dose administrations in healthy subjects. Thirty-six subjects received from 100 to 1600 mg of oral VEDT as a single dose or twice daily for 14 consecutive days. A 3 + 3 dose escalation design was utilized. Pharmacokinetic data were derived from high-performance liquid chromatography (HPLC) assays. Serial blood and urine samples were collected before and during VEDT administration, with serum and urine metabolites assessed using HPLC. No drug-related adverse events were observed. Pharmacokinetic parameters for single and multiple doses were, respectively, as follows (shown as range): time to maximum concentration of 4-9.3 and 4.7-7.3 h, maximum concentration of 795.6-3742.6 and 493.3-3746 ng/mL, half-life of 1.7-5.9 and 2.3-6.9 h, and 0-12 h area under the curve of 4518.7-20,781.4 and 1987.7-22,171.2 ng h/mL. Plasma tocotrienols were significantly increased after VEDT administration, indicating oral bioavailability of VEDT in humans. Plasma and urine levels of metabolites, δ-carboxyethyl hydroxychroman, and δ-carboxymethylbutyl hydroxychroman were elevated after VEDT administration in a dose-dependent manner and were 30-60 times significantly higher than δ-tocotrienol levels. VEDT can be safely administered at doses up to 1600 mg twice daily. Plasma VEDT concentrations were comparable to those obtained in VEDT-treated mice in which tumor growth was delayed. Our results suggest that VEDT can be safely consumed by healthy subjects and achieve bioactive levels, supporting the investigation of VEDT for chemoprevention.
Maggi, C A; Coy, D H; Giuliani, S
1992-08-01
1. The effect of [D-Phe6] bombesin (6-13) methylester (OMe), a newly developed potent antagonist of bombesin receptors, has been investigated against bombesin-induced contractions of the guinea-pig and rat isolated urinary bladder. 2. Bombesin (0.1 nM-10 microM) produced a concentration-dependent contraction of the guinea-pig isolated bladder which approached the same maximum response as KCl (80 mM). The response to bombesin was antagonized in a competitive manner (rightward shift of the concentration-response curve without depression of the maximal response) by [D-Phe6] bombesin (6-13) OMe (0.3-10 microM). Degree of antagonism was concentration-dependent between 0.3 and 3 microM (dose ratios = 2.4, 9 and 39 in the presence of 0.3, 1, 3 microM of the antagonist). However, a larger concentration (10 microM) of the antagonist was not more effective (dose ratio = 36) than 3 microM. 3. Neither the action of bombesin nor the activity of the antagonist was influenced by peptidase inhibitors (bestatin, captopril and thiorphan 3 microM each) or by atropine, indomethacin, chlorpheniramine and desensitization of P2x purinoceptors by alpha, beta methylene ATP. 4. The bombesin antagonist was ineffective against contraction of the guinea-pig urinary bladder produced by the NK-1 tachykinin receptor-selective agonist, [Sar9] substance P sulphone. The action of the NK-1 receptor agonist was antagonized by L 668, 169 (3 microM), a cyclic peptide tachykinin antagonist. L 668, 169 had no effect toward bombesin-induced contraction. 5. The bombesin antagonist (1-10 microM) had no effect against the non-adrenergic non-cholinergic response of the guinea-pig isolated urinary bladder to electrical field stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali
2010-12-01
Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.
Diuretic effects of medetomidine compared with xylazine in healthy dogs
Talukder, Md. Hasanuzzaman; Hikasa, Yoshiaki
2009-01-01
This study aimed to investigate and compare the effects of medetomidine and xylazine on diuretic and hormonal variables in healthy dogs. Five dogs, used in each of 11 groups, were injected intramuscularly with physiological saline solution (control), 5, 10, 20, 40, and 80 μg/kg of medetomidine, and 0.25, 0.5, 1, 2, and 4 mg/kg of xylazine. Urine and blood samples were taken 11 times over 24 h. Both medetomidine and xylazine increased urine production in a dose-dependent manner up to 4 h after injection, but the increase was much less with medetomidine than with xylazine at the tested doses. Urine specific gravity, pH, osmolality, and concentrations of creatinine, sodium, potassium, chloride, and arginine vasopressin (AVP) were decreased in a dose-dependent manner with both medetomidine and xylazine. Plasma osmolality and concentrations of sodium, potassium, and chloride were increased significantly with both drugs. Total amounts of urine AVP excreted and plasma AVP concentrations were significantly decreased by higher doses of medetomidine but were not significantly decreased by xylazine. Higher doses of both drugs significantly increased the plasma concentration of atrial natriuretic peptide (ANP), but the effect was greater with medetomidine than with xylazine. The results revealed that both drugs induce a profound diuresis, but medetomidine’s effect is less dose-dependent than xylazine’s effect. Although changes in plasma concentrations of AVP and ANP may partially influence the diuresis induced by medetomidine, other factors may be involved in the mechanism of the diuretic response to both drugs. Thus, both agents can be used clinically for transient but effective diuresis accompanied by sedation. PMID:19794896
Designing generalized conic concentrators for conventional optical systems
NASA Technical Reports Server (NTRS)
Eichhorn, W. L.
1985-01-01
Generalized nonimaging concentrators can be incorporated into conventional optical systems in situations where flux concentration rather than imaging is required. The parameters of the concentrator for maximum flux concentration depend on the design of the particular optical system under consideration. Rationale for determining the concentrator parameters is given for one particular optical system and the procedure used for calculation of these parameters is outlined. The calculations are done for three concentrators applicable to the optical system.
Peng, Henry T; Grodecki, Richard; Rizoli, Sandro; Shek, Pang N
2016-01-01
Rotational thromboelastometry (ROTEM) and thromboelastography (TEG) have been increasingly used to diagnose acute coagulopathy and guide blood transfusion. The tests are routinely performed using different triggering activators such as tissue factor and kaolin, which activate different pathways yielding different results. To optimize the global blood coagulation assays using ROTEM and TEG, we conducted a comparative study on the activation methods employing tissue factor and kaolin at different concentrations as well as standard reagents as recommended by the manufacturer of each device. Key parameter values were obtained at various assay conditions to evaluate and compare coagulation and fibrinolysis profiles of citrated whole blood collected from healthy volunteers. It was found that tissue factor reduced ROTEM clotting time and TEG R, and increased ROTEM clot formation time and TEG K in a concentration-dependent manner. In addition, tissue factor affected ROTEM alpha angle, and maximum clot firmness, especially in the absence of kaolin activation, whereas both ROTEM and TEG clot lysis (LI30, CL30, and LY30) remained unaffected. Moreover, kaolin reduced ROTEM clotting time and TEG R and K, but to a lesser extent than tissue factor, in-tem and ex-tem. Correlations in all corresponding parameters between ROTEM and TEG were observed, when the same activators were used in the assays compared with lesser correlations between standard kaolin TEG and ROTEM (INTEM/EXTEM). The two types of viscoelastic point-of-care devices provide different results, depending on the triggering reagent used to perform the assay. Optimal assay condition was obtained to reduce assay time and improve assay accuracy.
Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar
2010-09-01
In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Principles that Govern the Performance of Molecular Motors
NASA Astrophysics Data System (ADS)
Eide, Jon; Chakraborty, Arup; Oster, George
2003-03-01
We have created a two dimensional polymeric coarse-grained model to simulate the power stroke from the F0F1 ATP synthase class of molecular motors. There has been much work to understand the structure and dynamics of this type of molecular motor using both constrained molecular dynamics and general Markov models but neither of them have been able to elucidate in a qualitative manner how a constant force is created and transferred in the motor at a nearly 100efficiency. Our model is a modified Rouse system using Brownian and Monte Carlo (with solvent) Dynamics, concentrating only on the catalytic site and protein structures that we think are important for motor motion and energy transfer. While modeling the real system as closely as possible, we have determined the optimum characteristics for maximum efficiency. The efficiency depends on the load against the polymer, the polymer flexibility, polymer and surface matching, and solvent interactions. Insight into the basic principles behind the mechanical motion of this system may have implications for many other molecular motors driven by nucleotide hydrolysis and help design synthetic devices that can carry out biomimetic tasks.
Park, Jung-Joon; Kim, Minsik; Lee, Joon-Ho; Shin, Key-Il; Lee, Sung Eun; Kim, Jeong-Gyu; Cho, Kijong
2011-07-01
Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.
Donor impurity incorporation during layer growth of Zn II-VI semiconductors
NASA Astrophysics Data System (ADS)
Barlow, D. A.
2017-12-01
The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.
A review of odour impact criteria in selected countries around the world.
Brancher, Marlon; Griffiths, K David; Franco, Davide; de Melo Lisboa, Henrique
2017-02-01
Exposure to environmental odour can result in annoyance, health effects and depreciation of property values. Therefore, many jurisdictions classify odour as an atmospheric pollutant and regulate emissions and/or impacts from odour generating activities at a national, state or municipal level. In this work, a critical review of odour regulations in selected jurisdictions of 28 countries is presented. Individual approaches were identified as: comparing ambient air odour concentration and individual chemicals statistics against impact criteria (maximum impact standard); using fixed and variable separation distances (separation distance standard); maximum emission rate for mixtures of odorants and individual chemical species (maximum emission standard); number of complaints received or annoyance level determined via community surveys (maximum annoyance standard); and requiring use of best available technologies (BAT) to minimize odour emissions (technology standard). The comparison of model-predicted odour concentration statistics against odour impact criteria (OIC) is identified as one of the most common tools used by regulators to evaluate the risk of odour impacts in planning stage assessments and is also used to inform assessment of odour impacts of existing facilities. Special emphasis is given to summarizing OIC (concentration percentile and threshold) and the manner in which they are applied. The way short term odour peak to model time-step mean (peak-to-mean) effects is also captured. Furthermore, the fundamentals of odorant properties, dimensions of nuisance odour, odour sampling and analysis methods and dispersion modelling guidance are provided. Common elements of mature and effective odour regulation frameworks are identified and an integrated multi-tool strategy is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mo, Fei; Hu, Jing-Ying; Gan, Yu; Zhao, Yang-Xing; Zhao, Xin-Tai
2008-09-01
To confirm the anti-cancer effect and mechanism of Wuxing soup. Inhibition of cellular growth under Wuxing soup treatment was observed by MTT; Apoptosis was detected by gel electrophoresis, transmission electron microscopy and FACS; The concentration of calcium was measured by fluorescence probe. After SGC-7901 cell being treated by Wuxing soup, it showed that: 1) Wuxing soup could specifically inhibit cancer cells proliferation in a time and dose dependent manner; 2) Typical apoptotic morphological changes and DNA ladder of SGC-7901 cells were observed; 3) calcium inhibitor Bapta AM could reduce the apoptotic rate and protect SGC-7901 cells in a dose dependent manner. Wuxing soup has an effective inhibition on cancer cells, and can induce SGC-7901 cells to apoptosis by calcium.
Welsh, Robert A.; Deurbrouck, Albert W.
1976-01-20
A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.
Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells
Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun
2017-01-01
Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro. When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer. PMID:28587399
Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells.
Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun
2017-06-01
Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro . When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC 50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer.
2010-01-01
Background Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart. Methods The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM), quinine (0.3 - 2.4 μM), halofantrine (0.1 - 2.0 μM) and mefloquine (0.1 - 2.0 μM). The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects. Results Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine < quinine ≈ halofantrine. Conclusions In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity. PMID:21067575
Fleshman, Allison M; Petrowsky, Matt; Frech, Roger
2013-05-02
The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.
Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.
Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo
2012-07-01
Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.
Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah
2016-11-01
The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. Copyright © 2016 Elsevier B.V. All rights reserved.
America's Seniors: Marketers Are Underestimating Their Power.
ERIC Educational Resources Information Center
Clayton, Catherine
Society has stereotyped the elderly as those who are unable, dependent, institutionalized, and handicapped in various other ways. Stereotyping older people in this manner allows them to be cast aside in the market as well. The marketing community should concentrate more on this thriving aggregate, for they have disposable income--some for the…
Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1 -xSrxTiO3
NASA Astrophysics Data System (ADS)
Lisenkov, S.; Ponomareva, I.
2018-05-01
The electrocaloric effect is investigated systematically in Ba1 -xSrxTiO3 ferroelectrics using a semiclassical direct computational approach. The data are reported for the technologically important range of Sr concentrations of 0.0-0.6, electric fields up to 1000 kV/cm, and temperatures ranging from 5 to 600 K. A detailed comparison of computational data with experimental data from the literature reveals semiquantitative agreement and suggests the origin of discrepancies. The electrocaloric change in temperature Δ T shows strong dependence on Sr concentration which offers a way to tune electrocaloric response. In particular, the maximum electrocaloric Δ T is found to decrease with the increase in Sr concentration, whereas the location of the maximum shifts towards lower temperatures following the Curie point of the ferroelectric. Surprisingly, the width of the peak in the dependence of Δ T on the initial temperature is independent of the Sr concentration but shows a strong dependence on the applied electric field. Computational data are used to propose a compositionally graded ferroelectric Ba0.70Sr0.30TiO3/Ba0.55Sr0.45TiO3/Ba0.50Sr0.50TiO3/Ba0.45Sr0.55TiO3 whose Δ T shows almost no temperature dependence in the technologically important range of temperatures and electric fields. Such a desirable feature could potentially lead to the enhancement of relative cooling power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.-Y.; Chu, R.-M.; Wang, C.-C.
2008-02-01
We recently reported that cannabidiol (CBD) exhibited a generalized suppressive effect on T-cell functional activities in splenocytes directly exposed to CBD in vitro or isolated from CBD-administered mice. To investigate the potential mechanisms of CBD effects on T cells, we characterized the pro-apoptotic effect of CBD on primary lymphocytes. The apoptosis of splenocytes was markedly enhanced following CBD exposure in a time- and concentration-dependent manner, as evidenced by nuclear hypodiploidity and DNA strand breaks. Exposure of splenocytes to CBD elicited an early production of reactive oxygen species (ROS) with the peak response at 1 h post CBD treatment. In parallelmore » with the ROS production, a gradual diminishment in the cellular glutathione (GSH) content was detected in CBD-treated splenocytes. Both CBD-mediated ROS production and GSH diminishment were remarkably attenuated by the presence of N-acetyl-L-cysteine (NAC), a thiol antioxidant. In addition, CBD treatment significantly stimulated the activation of caspase-8, which was abrogated in the presence of NAC or GSH. Pretreatment of splenocytes with a cell-permeable inhibitor for caspase-8 significantly attenuated, in a concentration-dependent manner, CBD-mediated apoptosis, but not ROS production. Collectively, the present study demonstrated that the apoptotic effect of CBD in primary lymphocytes is closely associated with oxidative stress-dependent activation of caspase-8.« less
Pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses.
Tsujimura, Koji; Yamada, Masayuki; Nagata, Shun-ichi; Yamanaka, Takashi; Nemoto, Manabu; Kondo, Takashi; Kurosawa, Masahiko; Matsumura, Tomio
2010-03-01
We investigated the pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses. Following an oral dose of famciclovir at 20 mg/kg, maximum plasma concentrations of penciclovir occurred between 0.75 and 1.5 hr (mean 0.94 + or - 0.38 hr) after dosing and were in the range 2.22 to 3.56 microg/ml (mean 2.87 + or - 0.61 microg/ml). The concentrations of penciclovir declined in a biphasic manner after the peak concentration was attained. The mean half-life of the rapid elimination phase was 1.73 + or - 0.34 hr whereas that of the slow elimination phase was 34.34 + or - 13.93 hr. These pharmacokinetic profiles observed were similar to those of another antiherpesvirus drug, acyclovir, previously reported in horses following oral dosing of its prodrug valacyclovir.
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He
2016-01-01
Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that of TD group PMID:26941540
Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan
2013-08-01
To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10(-9)-10(-5) mol/L) were added when VSMCs were induced with 1000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and activation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.
Shi, Haohong; Luo, Xingjing
2016-01-01
Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503
Gehrke, Helge; Pelka, Joanna; Hartinger, Christian G; Blank, Holger; Bleimund, Felix; Schneider, Reinhard; Gerthsen, Dagmar; Bräse, Stefan; Crone, Marlene; Türk, Michael; Marko, Doris
2011-07-01
Three differently sized, highly dispersed platinum nanoparticle (Pt-NP) preparations were generated by supercritical fluid reactive deposition (SFRD) and deposited on a β-cyclodextrin matrix. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations of <20, <100 and >100 nm as characterised by TEM and SEM. As reported previously, these Pt-NPs were found to cause DNA strand breaks in human colon carcinoma cells (HT29) in a concentration- and time-dependent manner and a distinct size dependency. Here, we addressed the question whether Pt-NPs might affect directly DNA integrity in these cells and thus behave analogous to platinum-based chemotherapeutics such as cisplatin. Therefore, DNA-associated Pt as well as the translocation of Pt-NPs through a Caco-2 monolayer was quantified by ICP-MS. STEM imaging demonstrated that Pt-NPs were taken up into HT29 cells in their particulate and aggregated form, but appear not to translocate into the nucleus or interact with mitochondria. The platinum content of the DNA of HT29 cells was found to increase in a time- and concentration-dependent manner with a maximal effect at 1,000 ng/cm(2). ICP-MS analysis of the cell culture medium indicated the formation of soluble Pt species, although to a limited extent. The observations suggest that DNA strand breaks mediated by metallic Pt-NPs are caused by Pt ions forming during the incubation of cells with these nanoparticles.
Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland
2008-11-14
In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.
Li, Yong-Bo; Yang, Ting; Wang, Jin-Xing; Zhao, Xiao-Fan
2018-01-01
Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12–ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12–ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12–ATG5 in a concentration and time-dependent manner. The ATG12–ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12–ATG5 conjugate level decreased at the time of pupation. At low concentrations (2–5 µM) over a short time course (1–48 h), 20E promoted the conjugation of ATG12–ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12–ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12–ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD. PMID:29467720
Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae
2016-01-01
Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770
Dietary Phenethyl Isothiocyanate Protects Mice from Colitis Associated Colon Cancer.
Liu, Yi; Dey, Moul
2017-09-06
We have previously reported alleviation of dextran sodium sulfate (DSS)-induced ulcerative colitis signs in phenethyl isothiocyanate (PEITC)-treated mice. Here we investigated chemoprotective activities of PEITC in mice with Azoxymethane-DSS induced colitis associated colon carcinogenesis. We also examined the molecular mediators associated with the PEITC effects using relevant cell lines. A 0.12% PEITC-enriched mouse-diet reduced mucosal and submucosal inflammation as well as glandular atypia by 12% and the frequency of adenocarcinoma by 17% with a concomitant improvement in overall disease activity indices compared to the diseased control group. Lipopolysaccharide-induced in vitro up-regulation of key mediators of inflammation, immune response, apoptosis, and cell proliferation were attenuated by 10 μM PEITC. Three of these mediators showed concentration-dependent reduction in respective mRNAs. Furthermore, PEITC inhibited Nuclear factor kappa B1 (NFκB1) proteins in a concentration-dependent manner. The NFκB1 mRNA expression inversely correlated ( r = −0.940, p = 0.013) with tri-methylation of lysine 27 on histone 3 near its promoter region in a time-dependent manner. These results indicate that PEITC may slow down the development of colon carcinogenesis in an inflammatory intestinal setting which is potentially associated with epigenetic modulation of NFκB1 signaling.
Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H
1999-01-01
Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.
Wensing, Georg; Haase, Claus; Brendel, Erich; Böttcher, Michael Friedrich
2007-12-01
BAY 63-9044 is a new full 5-HT(1A)-agonist with functional dopamine agonist properties aimed for the treatment of Parkinson's disease. This first-in-man study investigated the pharmacodynamics, safety and tolerability as well as the pharmacokinetics of BAY 63-9044 in a randomized, single-blind, placebo-controlled group-comparison dose escalation study. 45 healthy men received BAY 63-9044 as an oral solution in single doses of 0.25 mg, 0.5 mg, 1.2 mg, 2.5 mg and 5.0 mg. Pupil reaction (baseline pupil diameter (DIAM), constriction amplitude (CA)), body temperature, electroencephalography (EEG) and prolactin, cortisol and adrenocorticotrophic hormone (ACTH) served as pharmacodynamic measures and were monitored up to 24 h after drug intake. Safety, tolerability and plasma samples for determination of BAY 63-9044 were followed up to 72 h. Up to a dose of 2.5 mg, BAY 63-9044 was safe and well tolerated. Dose-limiting adverse events (nausea, vomiting, and dizziness) occurred in 5 out of 6 volunteers at the 5 mg dose. Adverse events resolved spontaneously in all but one volunteers who was treated with an antihistaminergic for vomiting. Dose-dependent changes of DIAM and CA were observed at doses higher than 0.5 mg and 1.2 mg, respectively. Body temperature showed a trend for reduction starting at C(max) in the highest two doses only. No clear effect was found on prolactin, cortisol and ACTH levels. The pharmacokinetics of BAY 63-9044 showed a dose-dependent increase with maximum plasma concentrations reached within 1 h. Plasma concentrations declined in a bi-phased manner with an apparent terminal half-life of 5.2-8.1 h. Up to the maximum tolerated dose (MTD) of 2.5 mg BAY 63-9044 was safe and well tolerated and showed predictable linear pharmacokinetics. Pupil reaction may serve as a non-invasive biomarker for pharmacodynamic effects of 5-HT(1A)-compounds with DIAM being the most sensitive parameter.
Homocysteine induces oxidative stress to damage trabecular meshwork cells.
You, Zhi-Peng; Zhang, Yue-Zhi; Zhang, Yu-Lan; Shi, Lu; Shi, Ke
2018-05-01
The aim of the present study was to investigate the effect of homocysteine (Hcy) in on human trabecular meshwork cells (HTMCs). A total of 41 patients with primary open-angle glaucoma (POAG) and 53 patients with senile cataracts (control group) were recruited. Plasma and aqueous humor samples were collected and the Hcy concentrations were determined using enzymatic cycling assays. In cell experiments, normal HTMCs were passaged and randomly divided into a blank control group, a normal HTMC group and experimental groups, which were treated with different concentrations of Hcy. The HTMC activities were detected using the Cell Counting Kit-8 method and the HTMC mitochondrial membrane potential (MMP) was detected using JC-1 staining. Reactive oxygen species (ROS) released by trabecular meshwork cells was detected using flow cytometry and superoxide dismjutase-1 (SOD1) expression was detected using immunoblotting. The results revealed that the concentration of Hcy in the plasma and aqueous humor of the POAG group (14.44±0.86 and 1.60±0.27 µmol/l, respectively) was significantly higher compared with the control group (10.82±0.29 and 0.69±0.39 µmol/l). All tested concentrations (30, 100, 300 and 1,000 µmol/l) of Hcy reduced the MMP in HTMCs and inhibited HTMC proliferation in a dose-dependent manner. ROS production by HTMCs significantly increased with increased concentrations of Hcy, whereas SOD1 expression significantly decreased in a dose-dependent manner. In summary, patients with POAG were demonstrated to have increased concentrations of Hcy in the plasma and aqueous humor. High concentrations of Hcy in HTMCs induced an oxidative stress state, thereby further inhibiting HTMC proliferation. The results of the present study demonstrate that Hcy may be a potential treatment target in patients with POAG.
Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun
2012-05-01
The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.
Ethanol inhibits human bone cell proliferation and function in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, K.E.; Howard, G.A.
1991-06-01
The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less
Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi
2013-10-01
Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers suchmore » as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.« less
Incorporation of Pr into LuAG ceramics
NASA Astrophysics Data System (ADS)
Marchewka, M. R.; Chapman, M. G.; Qian, H.; Jacobsohn, L. G.
2017-06-01
An investigation of the effects of Pr in (Lu1-xPrx)3Al5O12 (LuAG:Pr) ceramics was carried out by means of x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) measurements coupled with luminescence measurements. It was found that the Pr concentration that maximizes luminescence emission depends on the thermal processing conditions. While the calcined LuAG:Pr powder showed maximum luminescence emission for Pr concentrations between 0.18 and 0.33 at.%, maximum emission of ceramic bodies sintered at 1500 °C for 20 h was obtained with Pr concentrations between 0.018 and 0.18 at.%. Further, for short sintering times up to about 3 h, luminescence emission intensity is maximum for Pr concentrations around 0.33 at.%. Longer sintering times lead to the formation of PrAlO3 as a secondary phase, concomitant with a reduction of the intensity of luminescence emission.
Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O
2011-08-01
The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.
Chen, I-Shu; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Yu, Chia-Cheng; Liang, Wei-Zhe; Kuo, Chun-Chi; Shieh, Pochuen; Kuo, Daih-Huang; Chen, Fu-An; Jan, Chung-Ren
2017-02-01
Minoxidil is clinically used to prevent hair loss. However, its effect on Ca 2+ homeostasis in prostate cancer cells is unclear. This study explored the effect of minoxidil on cytosolic-free Ca 2+ levels ([Ca 2+ ] i ) and cell viability in PC3 human prostate cancer cells. Minoxidil at concentrations between 200 and 800 μM evoked [Ca 2+ ] i rises in a concentration-dependent manner. This Ca 2+ signal was inhibited by 60% by removal of extracellular Ca 2+ . Minoxidil-induced Ca 2+ influx was confirmed by Mn 2+ -induced quench of fura-2 fluorescence. Pre-treatment with the protein kinase C (PKC) inhibitor GF109203X, PKC activator phorbol 12-myristate 13 acetate (PMA), nifedipine and SKF96365 inhibited minoxidil-induced Ca 2+ signal in Ca 2+ containing medium by 60%. Treatment with the endoplasmic reticulum Ca 2+ pump inhibitor 2,5-ditert-butylhydroquinone (BHQ) in Ca 2+ -free medium abolished minoxidil-induced [Ca 2+ ] i rises. Conversely, treatment with minoxidil abolished BHQ-induced [Ca 2+ ] i rises. Inhibition of phospholipase C (PLC) with U73122 abolished minoxidil-evoked [Ca 2+ ] i rises. Overnight treatment with minoxidil killed cells at concentrations of 200-600 μM in a concentration-dependent fashion. Chelation of cytosolic Ca 2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent minoxidil's cytotoxicity. Together, in PC3 cells, minoxidil induced [Ca 2+ ] i rises that involved Ca 2+ entry through PKC-regulated store-operated Ca 2+ channels and PLC-dependent Ca 2+ release from the endoplasmic reticulum. Minoxidil-induced cytotoxicity in a Ca 2+ -independent manner.
Zhong, Mingqin; Yin, Pinghe; Zhao, Ling
2017-04-01
The objective of the present work was to evaluate the toxic effect of nonylphenol (NP) on the antioxidant response and antitumor activity of Gracilaria lemaneiformis. An obvious oxidative damage was observed in this study. The thallus exposed to NP showed 1.2-2.0-fold increase in lipid peroxide and displayed a maximum level of 16.58 μmol g -1 Fw on 0.6 mg L -1 for 15-day exposure. The activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) enhanced significantly by 1.1-3.2-fold and subsequently diminished at the high concentrations and prolonged exposure. The results of DNA damage in comet assay also supported that NP was obviously toxic on G. lemaneiformis with increasing the percentage of tail DNA in a dose-dependent manner. Furthermore, the ethanol extract of G. lemaneiformis (EEGL) did exhibit antitumor potential against HepG-2 cells. While decreased in cell inhibition, ROS generation, apoptosis, and caspase-3 in HepG-2 cells treated with the EEGL were observed when G. lemaneiformis was exposed to NP for 15 days, and which were related to exposure concentration of NP. These suggested that NP has strongly toxic effect on the antitumor activity of G. lemaneiformis. The results revealed in this study imply that macroalgae can be useful biomarkers to evaluate marine pollutions.
Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.
Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan
2017-07-01
Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.
Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.
2017-01-01
The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730
Reistad, Trine; Mariussen, Espen
2005-09-01
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants (BFRs), which have become ubiquitous in the environment. This study investigates the effects of the pentabrominated diphenyl ether mixture, DE-71, on human neutrophil granulocytes in vitro. DE-71 enhanced production of reactive oxygen species (ROS) in a concentration-dependent manner measured as lucigenin-amplified chemiluminescence. Octabrominated diphenyl ether (OBDE), decabrominated diphenyl ether (DBDE), and the non-brominated diphenyl ether did not induce ROS formation at the concentrations tested. DPI (4 microM), an inhibitor of the NADPH oxidase completely inhibited DE-71 induced ROS formation, highlighting a role for NADPH oxidase activation. The protein kinase C inhibitor BIM (0.25 microM) and the selective chelator of intracellular calcium, BAPTA-AM (5 microM), also inhibited NADPH oxidase activation, indicating a calcium-dependent activation of PKC. ROS formation was also inhibited by the tyrosine kinase inhibitor tyrphostin (1 microM), the phospholipase C inhibitor ET-18-OCH3 (5 microM), and the phosphatidylinositol-3 kinase inhibitor LY294002 (25 microM). Alterations in intracellular calcium were measured using fura-2/AM, and a significant increase was measured after exposure to DE-71 both with and without extracellular calcium. The tetra brominated compound BDE-47 also enhanced ROS formation in a concentration dependent manner. The combination of DE-71 with the bacteria-derived N-formyl peptide fMLP and PCB153 induced an additive effect in the lucigenin assay. We suggest that tyrosine kinase mediated activation of PI3K could result in enhanced activation of calcium-dependent PKC by enhanced PLC activity, followed by intracellular calcium release leading to ROS formation in neutrophil granulocytes.
Koo, Bon Hyeock; Yi, Bong Gu; Wang, Wi Kwang; Ko, In Young; Hoe, Kwang Lae; Kwon, Young Guen; Won, Moo Ho; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo
2018-05-01
Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. © Copyright: Yonsei University College of Medicine 2018.
Wang, Wi-Kwang; Ko, In-Young; Hoe, Kwang-Lae; Kwon, Young-Guen; Won, Moo-Ho; Kim, Young-Myeong
2018-01-01
Purpose Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Materials and Methods Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Results Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Conclusion Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. PMID:29611398
Bestman-Smith, Julie; Piret, Jocelyne; Désormeaux, André; Tremblay, Michel J.; Omar, Rabeea F.; Bergeron, Michel G.
2001-01-01
The microbicidal activity of sodium lauryl sulfate (SLS) against human immunodeficiency virus type 1 (HIV-1) was studied in cultured cells. Pretreatment of HIV-1NL4-3 with SLS decreased, in a concentration-dependent manner, its infectivity when using 1G5 as target cells. In the absence of a viral pretreatment period or when 1G5 cells were pretreated with SLS, the surfactant-induced inactivation of viral infectivity was less pronounced, especially at concentrations between 375 and 550 μM. SLS had no effect on HIV-1 when the virus was adsorbed to 1G5 cells by a 2-h incubation period. SLS almost completely inhibited the fusion process by decreasing the attachment of HIV-1 to target cells. SLS also inhibited the infectivity of HIV-1-based luciferase reporter viruses pseudotyped with the amphotropic murine leukemia virus envelope (which enters cells in a CD4-, CCR5-, and CXCR4-independent manner), indicating that SLS may inactivate other envelope viruses. In contrast, no effect was seen with vesicular stomatitis virus envelope glycoprotein G (which enters cells through receptor-mediated endocytosis) pretreated with up to 700 μM SLS. SLS also decreased, in a dose-dependent manner, the HIV-1-dependent syncytium formation between 1G5 and J1.1 cells after a 24-h incubation. The reduction of luciferase activity was more pronounced when J1.1 cells (which express HIV-1 proteins on their surface) were pretreated with SLS rather than 1G5 cells. Taken together, our results suggest that SLS could represent a candidate of choice for use in vaginal microbicides to prevent the sexual transmission of HIV and possibly other pathogens causing sexually transmitted diseases. PMID:11451679
Ma, Yanping; Liu, Wenhua; Zhang, Ling; Jia, Gu
2017-01-01
Background The aim of this study was to explore the impact of LBH589 alone or in combination with proteasome inhibitor bortezomib on multiple myeloma (MM) cell proliferation and its mechanism. Material/Methods MM cell line U266 and RRMM-BMMNC were treated with different concentrations of LBH589 alone or in combination with bortezomib. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis was analyzed by flow cytometry. The protein and mRNA level of related genes was determined by Western blotting and qRT-PCR respectively. Results U266 cell and RRMM-BMMNC proliferation were inhibited by different concentrations of LBH589 (0, 10, 20, and 50 nmol/L) alone or 50 nmol/L of LBH589 in combination with bortezomib (10 and 20 nmol/L) in a dose- and time-dependent manner. LBH589 significantly induced G0/G1phase arrest and apoptosis in RRMM-BMMNC in a dose-dependent manner. The effects were significantly higher in all combined groups than in single-agent groups (all P<0.05). The mRNA level of Caspase3 and APAF1 were up-regulated gradually, while TOSO gene expression in RRMM-BMMNC was down-regulated gradually in a dose- and time-dependent manner. Moreover, LBH589 significantly induced hyperacetylation of histone H4, the protein level of PARP notably increased, and the level of Bcl-X decreased. Conclusions LBH589 can inhibit MM cell growth, block the cell cycle, and induce cell apoptosis, which has an anti-resistant effect on multidrug-resistant cells. LBH589 in combination with bortezomib has a synergistic effect on myeloma cells; its mechanism and reversal of drug resistance mechanism is involved in multiple changes in gene expression. PMID:29080899
You, Yumin; Ludescher, Richard D
2008-02-04
Phosphorescence from the triplet probe erythrosin B provides spectroscopic characteristics such as emission energy and lifetime that are specifically sensitive to molecular mobility of the local environment. This study used phosphorescence of erythrosin B to investigate how variation in NaCl content modulated the mobility of the amorphous sucrose matrix over the temperature range from 5 to 100 degrees C. Addition of NaCl increased the emission energy and the energy difference with excitation at the absorption maximum and the red edge, and increased the lifetime by reducing the non-radiative decay rate in the glass as well as in the undercooled liquid in a concentration dependent manner, indicating that NaCl decreased the matrix molecular mobility. Emission energy and lifetime increased with increasing NaCl content up to a maximum at NaCl/sucrose mole ratio of approximately 0.5; above 0.5 mole ratio, the effect of NaCl was less significant and appeared to be opposed by increasing plasticization by residual water. Changes in the width of the distribution of the emission energy and lifetime and variation in the lifetime with excitation and emission wavelength indicated that NaCl increased the spectral heterogeneity and thus increased the extent of dynamic site heterogeneity. These results are consistent with a physical model in which sodium and chloride ions interact with sucrose OH by ion-dipole interactions, forming clusters of less mobile molecules within the matrix.
Minois, N; Carmona-Gutierrez, D; Bauer, M A; Rockenfeller, P; Eisenberg, T; Brandhorst, S; Sigrist, S J; Kroemer, G; Madeo, F
2012-10-11
The naturally occurring polyamine spermidine (Spd) has recently been shown to promote longevity across species in an autophagy-dependent manner. Here, we demonstrate that Spd improves both survival and locomotor activity of the fruit fly Drosophila melanogaster upon exposure to the superoxide generator and neurotoxic agent paraquat. Although survival to a high paraquat concentration (20 mM) was specifically increased in female flies only, locomotor activity and survival could be rescued in both male and female animals when exposed to lower paraquat levels (5 mM). These effects are dependent on the autophagic machinery, as Spd failed to confer resistance to paraquat-induced toxicity and locomotor impairment in flies deleted for the essential autophagic regulator ATG7 (autophagy-related gene 7). Spd treatment did also protect against mild doses of another oxidative stressor, hydrogen peroxide, but in this case in an autophagy-independent manner. Altogether, this study establishes that the protective effects of Spd can be exerted through different pathways that depending on the oxidative stress scenario do or do not involve autophagy.
Riobóo, R J; Philipp, M; Ramos, M A; Krüger, J K
2009-09-01
The temperature and concentration dependence of the refractive index, nD(x, T), in ethanol-water mixtures agrees with previous data in the ethanol-rich concentration range. The refractive index versus concentration x determined at 20 degrees C shows the expected maximum at about 41 mol% water (22 mass% water). The temperature derivative of the refractive index, dnD/dT, shows anomalies at lower water concentrations at about 10 mol% water but no anomaly at 41 mol% water. Both anomalies are related to intermolecular interactions, the one in nD seems to be due to molecular segregation and cluster formation while the origin of the second one in dnD/dT is still not clear.
Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.
Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E
2017-07-01
Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.
Lee, Ju-Han; Jung, In-Sang; Lee, Sung-Hun; Yang, Min-Kyu; Hwang, Ji-Hye; Lee, Hak-Dong; Cho, Yu-Sun; Song, Min-Jin; Yi, Kyu-Yang; Yoo, Sung-Eun; Kwon, Suk-Hyung; Kim, Bokyung; Lee, Chang-Soo; Shin, Hwa-Sup
2007-05-01
To investigate the involvement of reperfusion-induced salvage kinases (RISK) as possible signaling molecules for the cardioprotective effects of BMS-180448, a prototype mitochondrial ATP-sensitive K+ (mitoK(ATP)) channel opener, we measured its cardioprotective effects in a rat model of ischemia/reperfusion (I/R) heart injury, together with western blotting analysis of five different signaling proteins. In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, BMS-180448 (1, 3 and 10 microM) significantly increased reperfusion left ventricular developed pressure (LVDP) and 30-min reperfusion double product (heart rate x LVDP) in a concentration-dependent manner, while decreasing left ventricular end-diastolic pressure (LVEDP) throughout reperfusion period in a concentration-dependent manner. SDS-PAGE/western blotting analysis of left ventricle reperfused for 30 min revealed that BMS-180448 significantly decreased phospho-GSK3beta at high concentration, whereas it tended to increase slightly phospho-eNOS and phospho-p70S6K with concentration. However, BMS-180448 had no effect on phospho-Akt and phospho-Bad. These results suggest that the cardioprotective effects of BMS-180448 against I/R heart injury may result from direct activation of mitoK(ATP) channel in cardiomyocytes, with the minimal role of RISK pathway in the activation of this channel and the cardioprotective effects of BMS-180448.
Lee, Byung-Hwan; Kim, Jisu; Lee, Ra Mi; Choi, Sun-Hye; Kim, Hyeon-Joong; Hwang, Sung-Hee; Lee, Myung Koo; Bae, Chun-Sik; Kim, Hyoung-Chun; Rhim, Hyewon; Lim, Kiwon; Nah, Seung-Yeol
2016-01-26
Ginseng has a long history of use as a tonic for restoration of vigor. One example of ginseng-derived tonic effect is that it can improve physical stamina under conditions of stress. However, the active ingredient and the underlying molecular mechanism responsible for the ergogenic effect are unknown. Recent studies show that ginseng contains a novel ingredient, gintonin, which consists of a unique class of herbal-medicine lysophosphatidic acids (LPAs). Gintonin activates G protein-coupled LPA receptors to produce a transient [Ca(2+)]i signal, which is coupled to diverse intra- and inter-cellular signal transduction pathways that stimulate hormone or neurotransmitter release. However, relatively little is known about how gintonin-mediated cellular modulation is linked to physical endurance. In the present study, systemic administration of gintonin, but not ginsenosides, in fasted mice increased blood glucose concentrations in a dose-dependent manner. Gintonin treatment elevated blood glucose to a maximum level after 30min. This elevation in blood glucose level could be abrogated by the LPA1/3 receptor antagonist, Ki16425, or the β-adrenergic receptor antagonist, propranolol. Furthermore, gintonin-dependent enhanced performance of fasted mice in rotarod test was likewise abrogated by Ki16425. Gintonin also elevated plasma epinephrine and norepinephrine concentrations. The present study shows that gintonin mediates catecholamine release through activation of the LPA receptor and that activation of the β-adrenergic receptor is coupled to liver glycogenolysis, thereby increasing the supply of glucose and enhancing performance in the rotarod test. Thus, gintonin acts via the LPA-catecholamine-glycogenolysis axis, representing a candidate mechanism that can explain how ginseng treatment enhances physical stamina. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moody, J.A.; Butman, B.; Bothner, Michael H.
1987-01-01
A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.
Matsumura, Y; Tsukahara, Y; Kojima, T; Murata, S; Murakami, A; Takada, K; Takaoka, M; Morimoto, S
1995-03-01
Using cultured human aortic endothelial cells, we examined the effects of phosphoramidon, an endothelin converting enzyme (ECE) inhibitor, on the release of endogenous endothelin-1 (ET-1) and big endothelin-1 (big ET-1), and on the generation of ET-1 from exogenously applied big ET-1. Phosphoramidon, at concentrations of 10(-6) to 2 x 10(-4) M, caused a biphasic alteration of the ET-1 release, i.e., at lower concentrations of the drug, there were slight but unexpected increases of the release, whereas higher concentrations led to a decrease which is due to the drug-induced inhibition of ECE. The former effect appears to be based on the inhibition of ET-1 degradation by neutral endopeptidase 24.11 (NEP), since kelatorphan, a specific NEP inhibitor, produced a similar increasing effect on ET-1 release. Phosphoramidon enhanced the big ET-1 release from the cells in a concentration-dependent manner. When high concentrations of phosphoramidon were added, there was a dramatic increase in the release of big ET-1, which cannot be explained only by the drug-induced inhibition of ECE. This increase in big ET-1 release appeared to be partly due to a transient stimulation of the expression of prepro ET-1 mRNA. The amount of ET-1 generated from exogenously applied big ET-1 was markedly decreased by phosphoramidon in a concentration-dependent manner. In a similar fashion, phosphoramidon markedly inhibited ECE activity of the membrane fraction of cultured cells. Thus, ET-1 generation from exogenously applied big ET-1 reflects the functional phosphoramidon-sensitive ECE activities in human aortic endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Hashmi, Muhammad Zaffar; Khan, Kiran Yasmin; Hu, Jinxing; Naveedullah; Su, Xiaomei; Abbas, Ghulam; Yu, Chunna; Shen, Chaofeng
2015-12-01
Hormesis, a biphasic dose-response phenomenon, which is characterized by stimulation of an end point at a low-dose and inhibition at a high-dose. In the present study we used human lungs fibroblast (HELF) cells as a test model to evaluate the role of oxidative stress (OS) in hormetic effects of non coplanar PCB 101. Results from 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assay indicated that PCB101 at lower concentrations (10(-5) to 10(-1) μg mL(-1) ) stimulated HELF cell proliferation and inhibited at high concentrations (1, 5, 10, and 20 μg mL(-1) ) in a dose- and time-dependent manner. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) (except 48 h) showed a significant increase at higher concentrations of PCB 101 than those at the lower concentrations with the passage of time. Antioxidant enzymes such as glutathione peroxidase (GSH-Px) exhibited decreasing trends in dose and time dependent manner. Lipid peroxidation assay resulted in a significant increase (P < 0.05) of MDA level in PCB 101-treated HELF cells compared with controls, suggesting that OS plays a key role in PCB 101-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of PCB 101 exposure compared to lower concentrations. Overall, we found that HELF cell proliferation was higher at low ROS level and vice versa, which revealed activation of cell signaling-mediated hormetic mechanisms. The results suggested that PCB 101 has hormetic effects to HELF cells and these were associated with oxidative stress. © 2014 Wiley Periodicals, Inc.
Magnetization at high pressure in CeP
NASA Astrophysics Data System (ADS)
Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.
1995-02-01
We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.
Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M
2007-01-01
Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182
Sandalwood oil prevent skin tumour development in CD1 mice.
Dwivedi, C; Zhang, Y
1999-10-01
Sandalwood oil (SW oil) has been used for the treatment of inflammatory and eruptive skin diseases. In the present study, the chemopreventive effects of SW oil on 7,12-dimethylbenz(a)-anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate(TPA)-promoted skin tumour development and TPA-induced ornithine decarboxylase (ODC) activity in CD1 mice were investigated. Female CD1 mice (5-6 weeks old) were divided in different groups, having 30 mice in each group. One week after topical application of DMBA (200 nmole in 100 microl acetone) alone or with SW oil at different concentrations (100 microl, 1.25, 2.5, 3.75, 5% in acetone), at different times (0.5, 1, 2 h) before DMBA, the mice were treated topically with TPA (5 nmole in 100 microl acetone) alone or with SW oil at different concentrations (100 microl, 1.25, 2.5, 3.75, 5% in acetone) at different times (0.5, 1, 2 h) before TPA applications twice a week for 20 weeks. The mice were weighed and papillomas counted weekly. The results indicate that SW oil pre-treatment decreased the papilloma incidence and multiplicity in a concentration and time-dependent manner. The pre-treatment with 5% SW oil (100 microl) 1 h before DMBA and TPA treatments provided a maximum of 67% and 96% decrease in papilloma incidence and multiplicity, respectively, after 20 weeks of promotion. The mice pre-treated with SW oil at all concentrations and time period before TPA had significantly lower ODC activity than the group treated with TPA alone. The data suggest that SW oil could be an effective chemopreventive agent against chemically-induced skin cancer.
Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.
Li, Bo; Bai, Xiangjun; Wanh, Haiping
2006-01-01
The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.
Protopine from Corydalis ternata has anticholinesterase and antiamnesic activities.
Kim, S R; Hwang, S Y; Jang, Y P; Park, M J; Markelonis, G J; Oh, T H; Kim, Y C
1999-04-01
While screening extracts of natural products in search of anticholinesterase activity, we found that a total methanolic extract of the tuber of Corydalis ternata (Papaveraceae) showed significant inhibitory effects on acetylcholinesterase. Further fractionation of this extract using acetylcholinesterase inhibition as the parameter screened resulted in the isolation and purification of an alkaloid, protopine. Protopine inhibited acetylcholinesterase activity in a dose-dependent manner. The concentration required for 50% inhibition was 50 microM. The anti-acetylcholinesterase activity of protopine was specific reversible and competitive in manner. Furthermore, when mice were pretreated with protopine, the alkaloid significantly alleviated scopolamine-induced memory impairment. In fact, protopine had an efficacy almost identical to that of velnacrine, a tacrine derivative developed by a major drug manufacturer to treat Alzheimer's disease, at an identical therapeutic concentration. We suggest, therefore, that protopine has both anti-acetylcholinesterase and antiamnesic properties that may ultimately hold significant therapeutic value in alleviating certain memory impairments observed in dementia.
Rabinovich-Guilatt, Laura; Steiner, Lilach; Hallak, Hussein; Pastino, Gina; Muglia, Pierandrea; Spiegelstein, Ofer
2017-10-01
Pridopidine is an oral drug in clinical development for treatment of patients with Huntington's disease. This study examined the interactions of pridopidine with in vitro cytochrome P450 activity and characterized the effects of pridopidine on CYP2D6 activity in healthy volunteers using metoprolol as a probe substrate. The effect of food on pridopidine exposure was assessed. The ability of pridopidine to inhibit and/or induce in vitro activity of drug metabolizing enzymes was examined in human liver microsomes and fresh hepatocytes. CYP2D6 inhibition potency and reversibility was assessed using dextromethorphan. For the clinical assessment, 22 healthy subjects were given metoprolol 100 mg alone and concomitantly with steady-state pridopidine 45 mg twice daily. Food effect on a single 90 mg dose of pridopidine was evaluated in a crossover manner. Safety assessments and pharmacokinetic sampling occurred throughout the study. Pridopidine was found to be a metabolism dependent inhibitor of CYP2D6, the main enzyme catalysing its own metabolism. Flavin-containing monooxygenase heat inactivation of liver microsomes did not affect pridopidine metabolism-dependent inhibition of CYP2D6 and its inhibition of CYP2D6 was not reversible with addition of FeCN 3 . Exposure to metoprolol was markedly increased when coadministered with pridopidine; the ratio of the geometric means (90% confidence interval) for maximum observed plasma concentration, and area under the plasma concentration-time curve from time 0 to the time of the last quantifiable concentration and extrapolated to infinity were 3.5 (2.9, 4.22), 6.64 (5.27, 8.38) and 6.55 (5.18, 8.28), respectively. Systemic exposure to pridopidine was unaffected by food conditions. As pridopidine is a metabolism-dependent inhibitor of CYP2D6, systemic levels of drugs metabolized by CYP2D6 may increase with chronic coadministration of pridopidine. Pridopidine can be administered without regard to food. © 2017 Teva Pharmaceutical Industries Ltd. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła
2014-01-01
Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic effects of pterostilbene against human colon cancer cells in vitro.
Studies on the absorption and disposition of meptazinol following rectal administration.
Franklin, R A; Southgate, P J; Coleman, A J
1977-01-01
1 Rectal administration of the new analgesic drug, meptazinol, resulted in rapid absorption of the compound both in the monkey and in man. Peak plasma levels were observed within 0.5 h of dosing. 2 Absorption of the drug following rectal administration was extensive as shown by the recovery of 65-90% of the dose in the urine. 3 Despite substantial inter-individual variation in the observed maximum plasma concentrations of the drug, it was still evident that concentrations after rectal dosage were considerably higher than when the same dosage was given orally. 4 Elimination of the drug from plasma took place rapidly in an apparently mono-exponential manner in both species. The half-life of elimination in monkeys was 1.25 h and in man 2.0 h. PMID:405029
Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko
2010-05-28
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, bothmore » DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.« less
Winther, Sine V.; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B.
2016-01-01
The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca2+ dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca2+ ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca2+ concentration. Neither increasing nor decreasing intracellular Ca2+ concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2−/− heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca2+. Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185
Han, Liang; Ma, Qingyong; Li, Junhui; Liu, Han; Li, Wei; Ma, Guodong; Xu, Qinhong; Zhou, Shuang; Wu, Erxi
2011-01-01
Multiple lines of evidence suggest that a large portion of pancreatic cancer patients suffer from either hyperglycemia or diabetes, both of which are characterized by high blood glucose level. However, the underlying biological mechanism of this phenomenon is largely unknown. In the present study, we demonstrated that the proliferative ability of two human pancreatic cancer cell lines, BxPC-3 and Panc-1, was upregulated by high glucose in a concentration-dependent manner. Furthermore, the promoting effect of high glucose levels on EGF transcription and secretion but not its receptors in these PC cell lines was detected by using an EGF-neutralizing antibody and RT-PCR. In addition, the EGFR transactivation is induced by high glucose levels in concentration- and time-dependent manners in PC cells in the presence of the EGF-neutralizing antibody. These results suggest that high glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. Our findings may provide new insight on the links between high glucose level and PC in terms of the molecular mechanism and reveal a novel therapeutic strategy for PC patients who simultaneously suffer from either diabetes or hyperglycemia.
Park, Sang Eun; Park, Cheol; Kim, Sun Hee; Hossain, Mohammad Akbar; Kim, Min Young; Chung, Hae Young; Son, Woo Sung; Kim, Gi-Young; Choi, Yung Hyun; Kim, Nam Deuk
2009-01-21
Korean red ginseng (KRG, Panax ginseng C.A. Meyer Radix rubra) has been used to treat various diseases including cancer. However, the molecular mechanisms responsible for KRG extract induced apoptosis and telomerase inhibition remain unclear. The hot water extract from KRG was used to evaluate the mechanism of induction of apoptosis in U937 human leukemia cells and its effects on cyclooxgenase-2 (COX-2) and telomerase activity. KRG extract treatment to U937 cells resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner as measured by hemacytometer counts, MTT assay, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the down-regulation of antiapoptotic Bcl-2, Bcl-X(L), and IAPs family members, and the activation of caspase-3. KRG extract treatment also decreased the expression levels of COX-2 and inducible nitric oxide synthase. Furthermore, KRG extract treatment progressively down-regulated the expression of human telomerase reverse transcriptase, a main determinant of the telomerase enzymatic activity, with inhibiting the expression of c-Myc in a concentration-dependent manner. These results provide important new insights into the possible molecular mechanisms of the anticancer activity of KRG extract.
Wei, Shihu; He, Wenfei; Lu, Jincai; Wang, Zhonghuan; Yamashita, Koichi; Yokoyama, Masanori; Kodama, Hiroyuki
2012-03-01
Five oleanolic acid triterpenoid saponins (OTS-1, 2, 3, 4 and 5) were isolated from the rhizome of Anemone raddeana. The effect of these triterpenoid saponins on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c using a dual-beam spectrophotometer. The phosphorylation of neutrophil proteins, and translocation of p67(phox), p47(phox) and Rac to plasma membrane were investigated using specific monoclonal antibodies. The five oleanolic acid triterpenoid saponins used in this experiment suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in a concentration-dependent manner. OTS-1, 2 and 4 suppressed phorbol 12-myristate 13-acetate (PMA)- and arachidonic acid (AA)-induced superoxide generation in a concentration-dependent manner, but OTS-3 and 5 showed no effect. fMLP- and PMA-induced tyrosyl or serine/threonine phosphorylation, and fMLP-, PMA- and AA-induced translocation of p67(phox), p47(phox) and Rac to plasma membrane were in parallel with the suppression of the stimulus-induced superoxide generation. Copyright © 2011 Elsevier B.V. All rights reserved.
Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.
Tsujita, Takahiro
2016-01-01
Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.
Sim, J A; Henderson, G
1981-04-09
Opiates depress the potassium-induced efflux of [3H]noradrenaline from the mouse vas deferens in a concentration-dependent (the IC50 for normorphine was 1.5 microM), stereospecific and naloxone-reversible manner. As the concentration of sodium in the extracellular fluid was reduced, the inhibitory action of opiates was also reduced. This attenuation of opiate action is the converse of that predicted by the 'sodium-shift' observed in opiate binding studies in which lowering the sodium concentration potentiates opiate agonist binding. The relevance of sodium to the pharmacological actions of opiates is discussed.
Battelino, Tadej; Rasmussen, Michael Højby; De Schepper, Jean; Zuckerman-Levin, Nehama; Gucev, Zoran; Sävendahl, Lars
2017-10-01
To evaluate the safety, local tolerability, pharmacodynamics and pharmacokinetics of escalating single doses of once-weekly somapacitan, a reversible, albumin-binding GH derivative, vs once-daily GH in children with GH deficiency (GHD). Phase 1, randomized, open-label, active-controlled, dose-escalation trial (NCT01973244). Thirty-two prepubertal GH-treated children with GHD were sequentially randomized 3:1 within each of four cohorts to a single dose of somapacitan (0.02, 0.04, 0.08 and 0.16 mg/kg; n=6 each), or once-daily Norditropin ® SimpleXx ® (0.03 mg/kg; n=2 each) for 7 days. Pharmacokinetic and pharmacodynamic profiles were assessed. Adverse events were all mild, and there were no apparent treatment-dependent patterns in type or frequency. Four mild transient injection site reactions were reported in three of 24 children treated with somapacitan. No antisomapacitan/anti-human growth hormone (hGH) antibodies were detected. Mean serum concentrations of somapacitan increased in a dose-dependent but nonlinear manner: maximum concentration ranged from 21.8 ng/mL (0.02 mg/kg dose) to 458.4 ng/mL (0.16 mg/kg dose). IGF-I and IGFBP-3, and change from baseline in IGF-I standard deviation score (SDS) and IGFBP-3 SDS, increased dose dependently; greatest changes in SDS values were seen for 0.16 mg/kg. IGF-I SDS values were between -2 and +2 SDS, except for peak IGF-I SDS with 0.08 mg/kg somapacitan. Postdosing, IGF-I SDS remained above baseline levels for at least 1 week. Single doses of once-weekly somapacitan (0.02-0.16 mg/kg) were well tolerated in children with GHD, with IGF-I profiles supporting a once-weekly treatment profile. No clinically significant safety/tolerability signals or immunogenicity concerns were identified. © 2017 The Authors. Clinical Endocrinology Published by John Wiley & Sons Ltd.
Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Das, Subhasis
2009-01-01
In the present study, methanol extract of Ocimum gratissimum Linn (ME-Og) was tested against nicotine-induced murine peritoneal macrophage in vitro. Phytochemical analysis of ME-Og shown high amount of flavonoid and phenolic compound present in it. The cytotoxic effect of ME-Og was studied in murine peritoneal macrophages at different concentrations (0.1 to 100 µg/ml) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) method. To establish the protective role of ME-Og against nicotine toxicity, peritoneal macrophages from mice were treated with nicotine (10 mM), nicotine + ME-Og (1 to 25 µg/ml) for 12 h in culture media. The significantly (p < 0.05) increased super oxide anion generation, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, myeloperoxidase (MPO) activity, lipid peroxidation, protein carbonyls, oxidized glutathione levels were observed in nicotine-treated group as compared to control group; those were significantly (p < 0.05) reduced in ME-Og supplemented groups in concentration dependent manner. More over, significantly (p < 0.05) reduced antioxidant status due to nicotine exposure was effectively ameliorated by ME-Og supplementation in murine peritoneal macrophages. Among the different concentration of ME-Og, maximum protective effect was observed by 25 µg/ml, which does not produce significant cell cytotoxicity in murine peritoneal macrophages. These findings suggest the potential use and beneficial role of O. gratissimum as a modulator of nicotine-induced free radical generation, lipid-protein damage and antioxidant status in important immune cell, peritoneal macrophages. PMID:20716908
Pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe (Part I).
Asami, Akitoshi; Shimada, Tsutomu; Mizuhara, Yasuharu; Asano, Takayuki; Takeda, Shuichi; Aburada, Takashi; Miyamoto, Ken-Ichi; Aburada, Masaki
2010-07-01
To investigate the pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe, the pharmacokinetic parameters were determined by using (14)C-[6]-shogaol (labeled compound) and [6]-shogaol (non-labeled compound). When the labeled compound was orally administered to rats, the maximum plasma concentration (C (max)) and the area under the curve (AUC) of plasma radioactivity concentration increased in a dose-dependent manner. When the labeled compound was orally administered at a dose of 10 mg/kg, 20.0 + or - 1.8% of the radioactivity administered was excreted into urine, 64.0 + or - 12.9% into feces, and 0.2 + or - 0.1% into breath. Thus, more of the radioactivity was excreted into feces than into urine, and almost no radioactivity was excreted into breath. Furthermore, when the labeled compound was orally administered at a dose of 10 mg/kg, cumulative biliary radioactivity excretion over 48 h was 78.5 + or - 4.5% of the radioactivity administered, and cumulative urinary radioactivity excretion over 48 h was 11.8 + or - 2.7%, showing that about 90% of the dose administered orally was absorbed from the digestive tract and most of the fecal excretion was via biliary excretion. On the other hand, when the non-labeled compound [6]-shogaol was orally administered, the plasma concentration and biliary excretion of the unchanged form were extremely low. When these results are combined with those obtained with the labeled compound, it would suggest that [6]-shogaol is mostly metabolized in the body and excreted as metabolites.
Cotinine antagonizes the behavioral effects of nicotine exposure in the planarian Girardia tigrina.
Bach, Daniel J; Tenaglia, Matthew; Baker, Debra L; Deats, Sean; Montgomery, Erica; Pagán, Oné R
2016-10-06
Nicotine is one of the most addictive drugs abused by humans. Our laboratory and others have demonstrated that nicotine decreases motility and induces seizure-like behavior in planarians (pSLM, which are vigorous writhing and bending of the body) in a concentration-dependent manner. Nicotine also induces withdrawal-like behaviors in these worms. Cotinine is the major nicotine metabolite in humans, although it is not the final product of nicotine metabolism. Cotinine is mostly inactive in vertebrate nervous systems and is currently being explored as a molecule which possess most of nicotine's beneficial effects and few of its undesirable ones. It is not known whether cotinine is a product of nicotine metabolism in planarians. We found that cotinine by itself does not seem to elicit any behavioral effects in planarians up to a concentration of 1mM. We also show that cotinine antagonizes the aforementioned nicotine-induced motility decrease and also decreases the expression of nicotine-induced pSLMs in a concentration-dependent manner. Also cotinine prevents the manifestation of some of the withdrawal-like behaviors induced by nicotine in our experimental organism. Thus, we obtained evidence supporting that cotinine antagonizes nicotine in this planarian species. Possible explanations include competitive binding of both compounds at overlapping binding sites, at different nicotinic receptor subtypes, or maybe allosteric interactions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A
2017-01-01
Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).
Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.
Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin
2017-01-01
The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago
2004-10-01
Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential applications in cancer chemotherapy because of their MDR reversal potency and specificity for P-glycoprotein.
Sun, Binbin; Zhang, Yinqing; Chen, Wei; Wang, Kunkun; Zhu, Lingyan
2018-06-22
The impacts of a model globular protein (bovine serum albumin, BSA) on aggregation kinetics of graphene oxide (GO) in aquatic environment were investigated through time-resolved dynamic light scattering at pH 5.5. Aggregation kinetics of GO without BSA as a function of electrolyte concentrations (NaCl, MgCl 2 , and CaCl 2 ) followed the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and the critical coagulation concentration (CCC) was 190, 5.41, and 1.61 mM, respectively. As BSA was present, it affected the GO stability in a concentration dependent manner. At fixed electrolyte concentrations below the CCC values, for example 120 mM NaCl, the attachment efficiency of GO increased from 0.08 to 1, then decreased gradually and finally reached up to zero as BSA concentration increased from 0 to 66.5 mg C/L. The low-concentration BSA depressed GO stability mainly due to electrostatic binding between the positively charged lysine groups of BSA and negatively charged groups of GO, as well as double layer compression effect. With the increase of BSA concentration, more and more BSA molecules were adsorbed on GO, leading to strong steric repulsion which finally predominated and stabilized the GO. These results provided significant information about the concentration dependent effects of natural organic matters on GO stability under environmentally relevant conditions.
Piret, Jocelyne; Désormeaux, André; Cormier, Hélène; Lamontagne, Julie; Gourde, Pierrette; Juhász, Julianna; Bergeron, Michel G.
2000-01-01
The influence of sodium lauryl sulfate (SLS) on the efficacies of topical gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous infection has been evaluated in mice. A single application of the gel formulation containing 3% foscarnet given 24 h postinfection exerted only a modest effect on the development of herpetic skin lesions. Of prime interest, the addition of 5% SLS to this gel formulation markedly reduced the mean lesion score. The improved efficacy of the foscarnet formulation containing SLS could be attributed to an increased penetration of the antiviral agent into the epidermis. In vitro, SLS decreased in a concentration-dependent manner the infectivities of herpesviruses for Vero cells. SLS also inhibited the HSV-1 strain F-induced cytopathic effect. Combinations of foscarnet and SLS resulted in subsynergistic to subantagonistic effects, depending on the concentration used. Foscarnet in phosphate-buffered saline decreased in a dose-dependent manner the viability of cultured human skin fibroblasts. This toxic effect was markedly decreased when foscarnet was incorporated into the polymer matrix. The presence of SLS in the gel formulations did not alter the viabilities of these cells. The use of gel formulations containing foscarnet and SLS could represent an attractive approach to the treatment of herpetic mucocutaneous lesions, especially those caused by acyclovir-resistant strains. PMID:10952566
A potential drug interaction between phenobarbital and dolutegravir: A case report.
Hikasa, Shinichi; Sawada, Akihiro; Seino, Hitomi; Shimabukuro, Shota; Hideta, Kyoko; Uwa, Noriko; Higasa, Satoshi; Tokugawa, Tazuko; Kimura, Takeshi
2018-06-01
In this report, we describe a human immunodeficiency virus (HIV)-infected patient in whom changes in phenobarbital (PB) dosage resulted in associated changes in plasma concentrations of dolutegravir (DTG). His plasma concentrations of DTG were 0.934, 0.584, 1.003 and 3.25 μg/mL, respectively, with concomitant daily PB doses of 40, 70, 30 and 0 mg, respectively. This case suggests that PB can lead to a remarkable reduction in the plasma concentration of DTG in a dose-dependent manner. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Pandey, Rakesh; Flockerzi, Dietrich; Hauser, Marcus J B; Straube, Ronny
2012-09-01
Purple bacteria derive energy from aerobic respiration or photosynthesis depending on the availability of oxygen and light. Under aerobic conditions, photosynthesis genes are specifically repressed by the PpsR protein. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the blue-light and redox-sensitive flavoprotein AppA, which sequesters PpsR under anaerobic conditions into transcriptionally inactive complexes. However, under semi-aerobic conditions, blue-light excitation of AppA causes the AppA-PpsR complexes to dissociate, again leading to a repression of photosynthesis genes. We have recently developed a simple mathematical model suggesting that this phenotype arises from the formation of a maximum in the response curve of reduced PpsR at intermediate oxygen concentrations. However, this model focused mainly on the oxygen-dependent interactions whereas light regulation was only implemented in a simplified manner. In the present study, we incorporate a more detailed mechanism for the light-dependent interaction between AppA and PpsR, which now allows for a direct comparison with experiments. Specifically, we take into account that, upon blue-light excitation, AppA undergoes a conformational change, creating a long-lived signalling state causing the dissociation of the AppA-PpsR complexes. The predictions of the extended model are found to be in good agreement with experimental results on the light-dependent repression of photosynthesis genes under semi-aerobic conditions. We also identify the potential kinetic and stoichiometric constraints that the interplay between light and redox regulation imposes on the functionality of the AppA/PpsR system, especially with respect to a possible bistable response. © 2012 The Authors Journal compilation © 2012 FEBS.
Estradiol selectively enhances auditory function in avian forebrain neurons
Caras, Melissa L.; O’Brien, Matthew; Brenowitz, Eliot A.; Rubel, Edwin W
2012-01-01
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner. PMID:23223283
Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.
1980-01-01
Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136
Obertreis, B; Ruttkowski, T; Teucher, T; Behnke, B; Schmitz, H
1996-04-01
An extract of Urtica dioica folium (IDS 23, Rheuma-Hek), monographed positively for adjuvant therapy of rheumatic diseases and with known effects in partial inhibition of prostaglandin and leukotriene synthesis in vitro, was investigated with respect to effects of the extract on the lipopolysaccharide (LPS) stimulated secretion of proinflammatory cytokines in human whole blood of healthy volunteers. In the assay system used, LPS stimulated human whole blood showed a straight increase of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion reaching maximum concentrations within 24 h following a plateau and slight decrease up to 65 h, respectively. The concentrations of these cytokines was strongly positively correlated with the number of monocytes/macrophages of each volunteer. TNF-alpha and IL-1 beta concentration after LPS stimulation was significantly reduced by simultaneously given IDS 23 in a strictly dose dependent manner. At time 24 h these cytokine concentrations were reduced by 50.8% and 99.7%, respectively, using the highest test IDS 23 assay concentration of 5 mg/ml (p < 0.001). After 65 h the corresponding inhibition was 38.9% and 99.9%, respectively (p < 0.001). On the other hand IDS 23 showed no inhibition but stimulated IL-6 secretion in absence of LPS alone. Simultaneously given LPS and IDS 23 resulted in no further increase. In contrast to described effects on arachidonic acid cascade in vitro, tested Urtica dioica phenol carbon acid derivates and flavonoides such as caffeic malic acid, caffeic acid, chlorogenic acid, quercetin and rutin did not influence LPS stimulated TNF-alpha, IL-1 beta and IL-6 secretion in tested concentrations up to 5 x 10(-5) mol/l. These further findings on the pharmacological mechanism of action of Urticae dioica folia may explain the positive effects of this extract in the treatment of rheumatic diseases.
CB1 Receptor Antagonist SR141716A Inhibits Ca2+-Induced Relaxation in CB1 Receptor–Deficient Mice
Bukoski, Richard D.; Bátkai, Sándor; Járai, Zoltán; Wang, Yanlin; Offertaler, Laszlo; Jackson, William F.; Kunos, George
2006-01-01
Mesenteric branch arteries isolated from cannabinoid type 1 receptor knockout (CB1−/−) mice, their wild-type littermates (CB1+/+ mice), and C57BL/J wild-type mice were studied to test the hypothesis that murine arteries undergo high sensitivity Ca2+-induced relaxation that is CB1 receptor dependent. Confocal microscope analysis of mesenteric branch arteries from wild-type mice showed the presence of Ca2+ receptor–positive periadventitial nerves. Arterial segments of C57 control mice mounted on wire myographs contracted in response to 5 μmol/L norepinephrine and responded to the cumulative addition of extracellular Ca2+ with a concentration-dependent relaxation that reached a maximum of 72.0±6.3% of the prerelaxation tone and had an EC50 for Ca2+ of 2.90±0.54 mmol/L. The relaxation was antagonized by precontraction in buffer containing 100 mmol/L K+ and by pretreatment with 10 mmol/L tetraethylammonium. Arteries from CB1−/− and CB1+/+ mice also relaxed in response to extracellular Ca2+ with no differences being detected between the knockout and their littermate controls. SR141716A, a selective CB1 antagonist, caused concentration-dependent inhibition of Ca2+-induced relaxation in both the knockout and wild-type strains (60% inhibition at 1 μmol/L). O-1918, a cannabidiol analog, had a similar blocking effect in arteries of both wild-type and CB1−/− mice at 10 μmol/L. In contrast, 1 μmol/L SR144538, a cannabinoid type 2 receptor antagonist, or 50 μmol/L 18α-glycyrrhetinic acid, a gap junction blocker, were without effect. SR141716A (1 to 30 μmol/L) was also assessed for nonspecific actions on whole-cell K+ currents in isolated vascular smooth muscle cells. SR141716A inhibited macroscopic K+ currents at concentrations higher than those required to inhibit Ca2+-induced relaxation, and appeared to have little effect on currents through large conductance Ca2+-activated K+ channels. These data indicate that arteries of the mouse relax in response to cumulative addition of extracellular Ca2+ in a hyperpolarization-dependent manner and rule out a role for CB1 or CB2 receptors in this effect. The possible role of a nonclassical cannabinoid receptor is discussed. PMID:11847193
LIF potentiates the NT-3-mediated survival of spiral ganglia neurones in vitro.
Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J
1997-05-06
The survival of auditory neurones depends on the continued supply of trophic factors. Early postnatal spiral ganglion cells (SGC) in a dissociated cell culture were used as a model of auditory innervation to test the trophic factors leukaemia inhibitory factor (LIF) and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings suggest that LIF supports neuronal survival in a concentration-dependent manner. Moreover LIF potentiated NT-3-mediated spiral ganglion neuronal survival in a synergistic fashion.
2010-01-01
dependent manner, with a relatively high average IC50 of8.5 J.lM (Table 1 ). For bovine pulmonary artery, the JC50 for sodium nitrite was more than 1... dependent on nitrovasodilator concentration, suggesting SNP and sodium nitrite -induced autocatalytic conversion of oxyhemoglobin to methemoglobin at...Gladwin, M.T., Kim-Shapiro, D.R., 2008. The functional nitrite reductase activity of the heme -globins. Blood 112, 2636-2647. Hart, j.L, Ledvina, M.A
Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks
NASA Astrophysics Data System (ADS)
Lieleg, O.; Bausch, A. R.
2007-10-01
The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.
The impact of meteorology on ozone in Houston
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eder, B.K.; Davis, J.M.; Nychka, D.
1997-12-31
This paper compares the results from both a one-stage hierarchical clustering technique (average linkage) and a two-stage technique (average linkage then k-means) as part of an objective meteorological Classification scheme designed to better elucidate ozone`s dependence on meteorology in the Houston, Texas, area. When applied to twelve years of meteorological data (1981-1992), each technique identified seven statistically distinct meteorological regimes, the majority of which exhibited significantly different daily 1-hour maximum ozone (O{sub 3}) concentrations. While both clustering approaches proved successful, the two-stage approach did appear superior in terms of better segregation of the mean O{sub 3}, concentrations. Both approaches indicatedmore » that the largest mean daily one-hour maximum concentrations are associated with migrating anticyclones and not with the quasi-permanent Bermuda High that often dominates the southeastern United States during the summer. As a result, maximum ozone concentrations are just as likely during the months of April, May, September and October as they are during the summer months. These findings support and help explain the unique O{sub 3}, climatology experienced by the Houston area.« less
Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V
1996-01-01
It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.
Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.
Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S
1995-01-01
In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK activation by Ang II was inhibited by pretreatment of cells with thapsigargin and EGTA, a procedure which depletes intracellular Ca(2+) stores. JNK activation following Ang II stimulation did not involve calmodulin; either W-7 nor calmidizolium, in concentrations sufficient to inhibit Ca(2+)/calmodulin-dependent kinase II, blocked JNK activation by Ang II. In contrast, genistein, in concentrations sufficient to inhibit Ca(2+)-dependent tyrosine phosphorylation, prevented Ang II and thapsigargin-induced JNK activation. In summary, in GN4 rat liver epithelial cells, Ang II stimulates JNK via a novel Ca(2+)-dependent pathway. The inhibition by genistein suggest that Ca(2+)-dependent tyrosine phosphorylation may modulate the JNK pathway in a cell type-specific manner, particularly in cells with a readily detectable Ca(2+)-regulated tyrosine kinase. PMID:7565768
Trigeminal induced arousals during human sleep.
Heiser, Clemens; Baja, Jan; Lenz, Franziska; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A
2015-05-01
Arousals caused by external stimuli during human sleep have been studied for most of the sensorial systems. It could be shown that a pure nasal trigeminal stimulus leads to arousals during sleep. The frequency of arousals increases dependent on the stimulus concentration. The aim of the study was to evaluate the influence of different stimulus durations on arousal frequency during different sleep stages. Ten young healthy volunteers with 20 nights of polysomnography were included in the study. Pure trigeminal stimulation with both different concentrations of CO2 (0, 10, 20, 40% v/v) and different stimulus durations (1, 3, 5, and 10 s) were applied during different sleep stages to the volunteers using an olfactometer. The application was performed during different sleep stages (light sleep, deep sleep, REM sleep). The number of arousals increased with rising stimulus duration and stimulus concentration during each sleep stage. Trigeminal stimuli during sleep led to arousals in dose- and time-dependent manner.
Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin
2016-09-01
Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.
Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel
Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng
2010-01-01
Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Cheming; Yu, Sheumeei; Chen, Chienchih
Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent, and were not inhibited by indomethacin. The fast relaxation was completely antagonized by hemoglobin and methylene blue, and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium-induced, calcium-dependent contraction of rat aorta in a concentration-dependent manner. {sup 45}Ca{sup ++} influx induced by highmore » potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI{sub 2}, was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels.« less
Nitric oxide interferes with islet cell zinc homeostasis.
Tartler, U; Kröncke, K D; Meyer, K L; Suschek, C V; Kolb-Bachofen, V
2000-12-01
Zinc is crucial for the biosynthesis, storage, and secretion of insulin in pancreatic islet cells. We have previously presented evidence that NO interferes with cellular Zn(2+) homeostasis and we therefore investigated the influence of chronic NO exposure on the labile islet cell Zn(2+) content. A strong fluorescence activity in a large islet cell subpopulation was found after staining with the Zn(2+)-specific fluorophore Zinquin. Culture for 24 h in the presence of nontoxic concentrations of the slow-releasing NO donor DETA/NO resulted in a significantly reduced Zn(2+)-dependent fluorescence. This appears to be islet specific as in endothelial cells DETA/NO exposure enhanced the Zn(2+)-dependent fluorescence activity in a concentration-dependent manner. These results suggest that NO interferes with cellular Zn(2+) homeostasis, which in islet cells is crucial for proper hormone delivery and thus special cell function. Copyright 2000 Academic Press.
Ground-water quality for Grainger County, Tennessee
Weaver, J.D.; Patel, A.R.; Hickey, A.C.
1994-01-01
The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.
Balsano, Evelyn; Esterhuizen-Londt, Maranda; Hoque, Enamul; Lima, Stephan Pflugmacher
2017-08-01
To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l -1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l -1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.
Kozasa, Tetsuo; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Torigoe, Hidetaka
2009-01-01
We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel sensor to determine the concentration of each of Hg(II) and Ag(I) cation. The sensor is composed of a dye-labelled T-rich or C-rich DNA oligonucleotide, F2T6W2D: 5'-Fam-T(2)CT(2)CT(2)C(4)T(2)GT(2)GT(2)-Dabcyl-3' or F2C6W2D: 5'-Fam-C(2)TC(2)TC(2)T(4)C(2)AC(2)AC(2)-Dabcyl-3', where 6-carboxyfluorescein (Fam) is a fluorophore and Dabcyl is a quencher. The addition of Hg(II) cation decreased the intensity of Fam emission of F2T6W2D at 520 nm in a concentration-dependent manner. Also, the addition of Ag(I) cation decreased the intensity of Fam emission of F2C6W2D at 520 nm in a concentration-dependent manner. We conclude that, using the novel sensor developed in this study, the concentration of each of Hg(II) and Ag(I) cation can be determined from the intensity of Fam emission at 520 nm.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...
Ways of increasing muscular activity by means of isometric muscular exertion
NASA Technical Reports Server (NTRS)
Kovalik, A. V.
1980-01-01
The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.
Giesy, John P.; Jones, Paul D.; Kannan, Kurunthachalam; Newsted, John L.; Tillitt, Donald E.; Williams, Lisa L.
2002-01-01
Adult female rainbow trout were exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at concentrations of 1.8, 18 and 90 ng TCDD/kg (ww) food for up to 300 day. At the end of the exposure fish were spawned and the reproductive outcomes were assessed. TCDD was accumulated into tissues and eggs in a dose-dependent manner with steady state being achieved after 50–100 day of exposure. Biochemical and hematological parameters were monitored at 50, 100, 150, and 200 day after the beginning of exposure. The survival of adult female trout was reduced in a dose-dependent manner by exposure to TCDD in the diet. Fish fed 1.8 ng TCDD/kg, moist weight of diet, showed significantly reduced survival compared with those fed the control diet. TCDD also affected survival of fry from females fed 1.8 ng TCDD/kg. Observed adverse effects in adult fish were as sensitive as early life-stage endpoints. Liver EROD activity was only moderately increased in all exposure groups after 250+ day of exposure. Low rates of edema and deformities were observed in fry from all treatment groups including controls. This study has demonstrated adverse effects of TCDD to both adults and fry at concentrations comparable to current environmental concentrations. This suggests that direct adult toxicity as well as reproductive endpoints need to be incorporated in the current risk assessment paradigm for these compounds.
Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia
2008-06-01
Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.
Zhang, Yuanyuan; Chu, Xi; Liu, Ling; Zhang, Nan; Guo, Hui; Yang, Fan; Liu, Zhenyi; Dong, Yongsheng; Bao, Yifan; Zhang, Xuan; Zhang, Jianping
2016-04-01
This study investigated the effect of tannic acid (TA), a plant-derived hydrolyzable polyphenol, on Kv7.4 and Kv7.5 K(+) channels and rat mesenteric artery. Whole-cell patch clamp experiments were used to record the Kv7.4 and Kv7.3/7.5 K(+) currents expressed in HEK293 cells; and the tension changes of mesenteric arteries isolated from rats were recorded using small vessel myography apparatus. Tannic acid increases the Kv7.4 and Kv7.3/7.5 K(+) currents in a concentration-dependent manner (median effective concentration (EC50 ) = 27.3 ± 3.6 μm and EC50 = 23.1 ± 3.9 μm, respectively). In addition, 30 μm TA shifts the G-V curve of Kv7.4 and Kv7.3/7.5 K(+) currents to the left by 14.18 and 25.24 mV, respectively, and prolongs the deactivation time constants by 184.44 and 154.77 ms, respectively. Moreover, TA relaxes the vascular tension of rat mesenteric arteries in a concentration-dependent manner (half inhibitory concentration (IC50 ) = 148.7 ± 13.4 μm). These results confirms the vasodilatory effects of TA on rat mesenteric artery and the activating effects on the Kv7.4 and Kv7.3/7.5 K(+) channels, which may be a mechanism to explain the vasodilatory effect and this mechanism can be used in the research of antihypertension. © 2016 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Bhargava, Anuj; Khanna, R. N.; Bhargava, S. K.; Kumar, Sushil
In India, a vast majority of rural household burns unprocessed biomass, as an energy source, to cook food. The biomass is burnt indoors in conventionally homemade clay-stoves, called 'Chulha', which results in the generation of a variety of airborne products along with polycyclic aromatic hydrocarbons (PAHs) in an uncontrolled manner. We report here the concentrations and profile of carcinogenic PAHs, co-sampled with respirable suspended particulate matter, in rural indoors during burning of biomass vis-à-vis liquified petroleum gas as the energy source. There is a limited data on the subject in the literature. The seasonal variation has also been studied. Sampling was done in breathing zone and in surrounding areas concurrent with cooking on chulha. PAHs were extracted in methylene chloride and analyzed over HPLC after column clean up on silica gel. Our study revealed that the concentrations of carcinogenic PAHs were fairly high in breathing zone and in surrounding areas while cooking over chulha in rural India. PAHs concentrations increased substantially during biomass combustion. Concentrations were high during CDC combustion and low during LPG combustion or the non-cooking period. This trend was conserved in both the seasons. Concentrations of total PAHs were greater in winter as compared to summer and greatest in the breathing zone. Di-benz( a,h)anthracene, benzo( k)-fluoranthene and chrysene contributed maximum. Benzo( a)pyrene contributed moderately. Maximum concentrations of indoor air benzo( a)pyrene (>1.5 μg/m 3) were found in breathing zone in winter. The daily exposure to high concentrations of carcinogenic PAHs in indoor air environment while cooking food could be impacting for chronic pulmonary illnesses in rural Indian women.
Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.
Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren
2010-04-01
In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Zhang, Jiliang; Zuo, Zhenghong; He, Chengyong; Cai, Jiali; Wang, Yuqing; Chen, Yixin; Wang, Chonggang
2009-07-01
Organotin compounds, such as tributyltin (TBT), that have been used as antifouling biocides can induce masculinization in female mollusks. However, few studies addressing the effects of TBT on fishes have been reported. The present study was conducted to investigate the effects of TBT at environmentally relevant concentrations (1, 10, and 100 ng/L) on testicular development in Sebastiscus marmoratus and to gain insight into its mechanism of action. After exposure for 48 d, the gonadosomatic index had decreased in a dose-dependent manner. Although the testosterone levels in the testes were elevated and the 17beta-estradiol levels were decreased, spermatogenesis was suppressed. Moreover, gamma-glutamyl transpeptidase activity (which is used as a Sertoli cell marker) was decreased in a dose-dependent manner after TBT exposure, and serious interstitial fibrosis was observed in the interlobular septa of the testes in the 100 ng/L TBT test group. Increases in the retinoid X receptors and peroxisome proliferator activated receptor gamma expression and the progressive enlargement of lipid droplets in the testes were observed after TBT exposure. Estrogen receptor alpha levels in the testes of the fish exposed to TBT decreased in a dose-dependent manner. The reduction of estrogen receptor alpha mRNA resulted from the decrease of 17beta-estradiol levels, and the progressive enlargement of lipid droplets may have contributed to the dysfunction of the Sertoli cells, which then disrupted spermatogenesis.
[Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells].
Dong, Yang; Ji, Guang; Cao, Aili; Shi, Jianrong; Shi, Hailian; Xie, Jianqun; Wu, Dazheng
2011-03-01
To study the effects and mechanisms of sinensetin on proliferation and apoptosis of human AGS gastric cancer cells. MTT assay was used to detect the growth inhibition rates of human AGS gastric cancer cells treated with sinsesectin in different concentrations and times. The cell cycle distribution was measured by flow cytometry. The apoptosis was examined by Annexin-FITC/PI staining and DNA fragment analysis. The apoptosis morphology was observed by inverted fluorescence microscope after Hoechst 33342 staining. The protein expressions of p21 and p53 were detected by western blot. MTT assay showed that sinensetin inhibited the growth of AGS gastric cancer cells in a dose- and time-dependent manner. Sinensetin blocked AGS cells in G2/ M and increased the apoptosis rates of AGS cells in a dose-dependent manner. DNA ladder was observed in cells treated with 60 micromol x L(-1) sinensetin for 48 h. The typical apoptotic morphological changes including cell nucleus shrinkage, chromatin condensation and apoptotic bodies were observed when treated with different dose of sinensetin. Western blot showed that sinensetin increased expressions of p53 and p21 in a dose-dependent manner. Sinensetin could inhibit human AGS gastric cancer cells proliferation and induce cell cycle block in G2/M phase and apoptosis. The up regulation of p53 and p21 protein might be one of the mechanisms.
In vitro immunomodulatory effects of cuphiin D1 on human mononuclear cells.
Wang, Ching-Chiung; Chen, Lih-Geeng; Yang, Ling-Ling
2002-01-01
Cuphiin D1 (CD1), a macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert antitumor activity both in vitro and in vivo. Moreover, the antitumor effects of CD1 are not only related to its cytotoxicity to carcinoma cell lines, but also depend on host-mediated mechanisms. In the present study, CD1 was investigated for its effects on the proliferation and cytokine secretion of human peripheral blood mononuclear cells (PBMCs). At concentrations of from 6.25 to 50 micrograms/ml, it enhanced the 3H-thymidine incorporation of concanavalin A (Con A)-stimulated PBMCs in a dose-dependent manner. Excretion of IL-1 beta, IL-2 and TNF-alpha by CD1-stimulated PBMCs was markedly increased in a dose-dependent manner. The results show that CD1 could stimulate PBMCs release of IL-1 beta, IL-2 and TNF-alpha and then activate T cells. Therefore, CD1-activated T cells via IL-1 beta in vitro might account for the host-mediated CD1 mechanism of action.
Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.
Guan, S-M; Fu, S-M; He, J-J; Zhang, M
2011-01-01
Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Weille, J.; Schmid-Antomarchi, H.; Fosset, M.
1988-02-01
The action of the hyperglycemia-inducing hormone galanin, a 29-amino acid peptide names from its N-terminal glycine and C-terminal amidated alanine, was studied in rat insulinoma (RINm5F) cells using electrophysiological and /sup 86/Rb/sup +/ flux techniques. Galanin hyperpolarizes and reduces spontaneous electrical activity by activating a population of APT-sensitive K/sup +/ channels with a single-channel conductance of 30 pS (at -60 mV). Galanin-induced hyperpolarization and reduction of spike activity are reversed by the hypoglycemia-inducing sulfonylurea glibenclamine. Glibenclamide blocks the galanin-activated ATP-sensitive K/sup +/ channel. /sup 86/Rb/sup +/ efflux from insulinoma cells is stimulated by galanin in a dose-dependent manner. The half-maximummore » value of activation is found at 1.6 nM. Galanin-induced /sup 86/Rb/sup +/ efflux is abolished by glibenclamide. The half-maximum value of inhibition is found at 0.3 nM, which is close to the half-maximum value of inhibition of the ATP-dependent K/sup +/ channel reported earlier. /sup 86/Rb/sup +/ efflux studies confirm the electrophysiological demonstration that galanin activates and ATP-dependent K/sup +/ channel.« less
Palytoxin isolated from marine coelenterates. The inhibitory action on (Na,K)-ATPase.
Ishida, Y; Takagi, K; Takahashi, M; Satake, N; Shibata, S
1983-07-10
Palytoxin (PTX), C129H223N3O54, a highly toxic substance isolated from zoanthids of Palythoa tuberculosa, inhibited (Na,K)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) prepared from guinea pig heart and hog cerebral cortex in a dose-dependent manner at concentrations greater than 10(-8) M. In the presence of Na (100 mM) and K (20 mM), PTX showed potency nearly equal to that of ouabain. When the ATPase was activated by the various Na concentrations at a constant K concentration, both PTX and ouabain inhibited the ATPase activity noncompetitively. On the other hand, when K concentration was changed at a constant Na concentration, PTX caused a competitive inhibition in all ranges of K concentrations employed, whereas ouabain caused a competitive inhibition at low concentrations and a noncompetitive inhibition at high concentrations.
Bélanger, A; Bostanian, N J; Boivin, G; Boudreau, F
1991-06-01
Vase-shaped standard apple trees cv. McIntosh were sprayed with azinphos-methyl at pink, pink and 1st cover and 1st cover only. Residue analyses by gas chromatography revealed detectable residues on foliage until mid summer. At harvest, negligible residue levels were found on the peel and the whole apple. On four trees, fluorescein was sprayed in the same manner as the insecticide and maximum levels of the dye were detected on the outside lower canopy along the row. Minimal concentration of fluorescein was detected on the inner upper canopy away from the direction of the row.
The Use of Ion Implantation for Materials Processing.
1980-10-06
consists of a series of sections, each section being an annular insulator (glass) and a shaped metal electrode (polished aluminum ) cemented together. A...depending on the ion species, semiconductor material, attached materials (such as aluminum leads), implantation energy, and dose; but some devices are...concentration of subsurface carbon. Appearing directly beneath the oxide layer, the C concentration first reaches a maximum of about five times the bulk
Mechanism of vasorelaxation induced by Tridax procumbens extract in rat thoracic aorta
Salahdeen, Hussein Mofomosara; Idowu, Gbolahan O; Salami, Shakiru A; Murtala, Babatunde A; Alada, AbdulRasak A
2016-01-01
Background/Aim: Tridax procumbens (Linn) (Asteraceae) is one of the herbs widely distributed in many parts of the world. Its leaves have long been used for the treatment of hypertension in Nigeria. Previous studies have shown that aqueous leaves of T. procumbens extract (TPE) lowers blood pressure through endothelium-dependent and -independent mechanism in the aortic rings isolated from normotensive rats. The aim of the present study was to further investigate mechanisms of TPE-induced relaxation in the aortic artery by assessing its mechanistic interactions with nitric oxide (NO) synthase, cyclic guanosine monophosphate (cGMP), and cyclic adenosine monophosphate (cAMP). Materials and Methods: The aortic artery isolated from healthy, young adult normotensive Wistar albino rats (250-300 g) were pre-contracted with phenylephrine (PE) (10–7 M) and KCl (60 mM) and were treated with various concentrations of aqueous extract of TPE (0.5-9.0 mg/ml). The changes in arterial tension were recorded using Ugo Basile model 7004 coupled to data capsule acquisition system model 17400. The interaction between TPE with cAMP and cGMP inhibitors was also evaluated. Results: The results showed that the TPE (0.5-9.0 mg/ml) significantly (P < 0.05) reduced the contraction induced by PE in a concentration-dependent manner. The vasorelaxant effect caused by the TPE was significantly (P < 0.05) attenuated with pre-incubation of cGMP (Rp-8Br PET cGMPS) and cAMP (Rp-AMP) inhibitor, respectively. Conclusion: These results suggest that TPE causes vasodilatory effects in a concentration-dependent manner in the isolated rat aortic artery. The mechanism of action of TPE is complex. A part of its relaxing effect is mediated directly by blocking or modulating cGMP and cAMP. PMID:27104039
Mechanism of vasorelaxation induced by Tridax procumbens extract in rat thoracic aorta.
Salahdeen, Hussein Mofomosara; Idowu, Gbolahan O; Salami, Shakiru A; Murtala, Babatunde A; Alada, AbdulRasak A
2016-01-01
Tridax procumbens (Linn) (Asteraceae) is one of the herbs widely distributed in many parts of the world. Its leaves have long been used for the treatment of hypertension in Nigeria. Previous studies have shown that aqueous leaves of T. procumbens extract (TPE) lowers blood pressure through endothelium-dependent and -independent mechanism in the aortic rings isolated from normotensive rats. The aim of the present study was to further investigate mechanisms of TPE-induced relaxation in the aortic artery by assessing its mechanistic interactions with nitric oxide (NO) synthase, cyclic guanosine monophosphate (cGMP), and cyclic adenosine monophosphate (cAMP). The aortic artery isolated from healthy, young adult normotensive Wistar albino rats (250-300 g) were pre-contracted with phenylephrine (PE) (10-7 M) and KCl (60 mM) and were treated with various concentrations of aqueous extract of TPE (0.5-9.0 mg/ml). The changes in arterial tension were recorded using Ugo Basile model 7004 coupled to data capsule acquisition system model 17400. The interaction between TPE with cAMP and cGMP inhibitors was also evaluated. The results showed that the TPE (0.5-9.0 mg/ml) significantly (P < 0.05) reduced the contraction induced by PE in a concentration-dependent manner. The vasorelaxant effect caused by the TPE was significantly (P < 0.05) attenuated with pre-incubation of cGMP (Rp-8Br PET cGMPS) and cAMP (Rp-AMP) inhibitor, respectively. These results suggest that TPE causes vasodilatory effects in a concentration-dependent manner in the isolated rat aortic artery. The mechanism of action of TPE is complex. A part of its relaxing effect is mediated directly by blocking or modulating cGMP and cAMP.
Pyridine 2,4-dicarboxylic acid suppresses tomato seedling growth
NASA Astrophysics Data System (ADS)
Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis
2018-01-01
Pyridine 2,4-dicarboxylic acid is a structural analogue of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μΜ of PDCA decreased hydroxyproline content in roots while only the 250 μΜ treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μΜ PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μΜ which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analogue. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.
Azami, Kian; Etminani, Maryam; Tabrizian, Kaveh; Salar, Fatemeh; Belaran, Maryam; Hosseini, Asieh; Hosseini-Sharifabad, Ali; Sharifzadeh, Mohammad
2010-06-25
We previously showed that post-training intra-hippocampal infusion of nicotine-bucladesine combination enhanced spatial memory retention in the Morris water maze. Here we investigated the role of cholinergic markers in nicotine-bucladesine combination-induced memory improvement. We assessed the expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in CA1 region of the hippocampus and medial septal area (MSA) of the brain. Post-training bilateral infusion of a low concentration of either nicotine or bucladesine into the CA1 region of the hippocampus did not affect spatial memory significantly. Quantitative immunostaining analysis of optical density in CA1 regions and evaluation of immunopositive neurons in medial septal area of brain sections from all combination groups revealed a significant increase (P<0.001) in the ChAT and VAChT immunoreactivity. The maximum increase was observed with combination of 10-microM/side bucladesine and 0.5 microg/side nicotine and in a concentration dependent manner. Also, increase in the optical density and amount of ChAT and VAChT immunostaining correlated with the decrease in escape latency and traveled distance in rats treated with nicotine and low dose of bucladesine. Taken together, these results suggest that significant increases of ChAT and VAChT protein expressions in the CA1 region and medial septal area are the possible mechanisms of spatial memory improvement induced by nicotine-bucladesine combination. (c) 2010 Elsevier B.V. All rights reserved.
Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk; Jeong, Min Ho; Choi, Yoo Jin
2012-12-01
Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVBinduced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability.
Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk
2012-01-01
Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVBinduced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability. PMID:24278616
Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay
Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal
2015-01-01
The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish. PMID:26862320
Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay.
Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal
2015-01-01
The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish.
Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila.
Shen, Baohe; Manley, James L
2002-04-01
The Drosophila Pelle kinase plays a key role in the evolutionarily conserved Toll signaling pathway, but the mechanism responsible for its activation has been unknown. We present in vivo and in vitro evidence establishing an important role for concentration-dependent autophosphorylation in the signaling process. We first show that Pelle phosphorylation can be detected transiently in early embryos, concomitant with activation of signaling. Importantly, Pelle phosphorylation is enhanced in a gain-of-function Toll mutant (Toll(10b)), but decreased by loss-of-function Toll alleles. Next we found that Pelle is phosphorylated in transfected Schneider L2 cells in a concentration-dependent manner such that significant modification is observed only at high Pelle concentrations, which coincide with levels required for phosphorylation and activation of the downstream target, Dorsal. Pelle phosphorylation is also enhanced in L2 cells co-expressing Toll(10b), and is dependent on Pelle kinase activity. In vitro kinase assays revealed that recombinant, autophosphorylated Pelle is far more active than unphosphorylated Pelle. Importantly, unphosphorylated Pelle becomes autophosphorylated, and activated, by incubation at high concentrations. We discuss these results in the context of Toll-like receptor mediated signaling in both flies and mammals.
Posada, Maria M.; Smith, David E.
2013-01-01
Purpose To determine the effect of PepT1 on the absorption and disposition of cefadroxil, including the potential for saturable intestinal uptake, after escalating oral doses of drug. Methods The absorption and disposition kinetics of [3H]cefadroxil was determined in wild-type and PepT1 knockout mice after 44.5, 89.1, 178, and 356 nmol/g oral doses of drug. The pharmacokinetics of [3H]cefadroxil was also determined in both genotypes after 44.5 nmol/g intravenous bolus doses. Results PepT1 deletion reduced the area under the plasma concentration-time profile (AUC0-120) of cefadroxil by 10-fold, the maximum plasma concentration (Cmax) by 17.5-fold, and increased the time to reach a maximum plasma concentration (Tmax) by 3-fold. There was no evidence of nonlinear intestinal absorption since AUC0-120 and Cmax values changed in a dose-proportional manner. Moreover, the pharmacokinetics of cefadroxil was not different between genotypes after intravenous bolus doses, indicating that PepT1 did not affect drug disposition. Finally, no differences were observed in the peripheral tissue distribution of cefadroxil (i.e., outside gastrointestinal tract) once these tissues were corrected for differences in perfusing blood concentrations. Conclusions The findings demonstrate convincingly the critical role of intestinal PepT1 in both the rate and extent of oral administration for cefadroxil and potentially other aminocephalosporin drugs. PMID:23959853
Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP).
Dutta, Susmita; Bhattacharyya, Aparupa; De, Parameswar; Ray, Parthasarathi; Basu, Srabanti
2009-12-30
In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.
Lee, Seung Sik; Jung, Hyun Suk; Park, Soo-Kwon; Lee, Eun Mi; Singh, Sudhir; Lee, Yuno; Lee, Kyun Oh; Lee, Sang Yeol; Chung, Byung Yeoup
2015-11-13
AtTDX, a thioredoxin-like plant-specific protein present in Arabidopsis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW) complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiger, G.; Fowler, C.J.
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 potentiated the response to carbachol at 6 mM K{sup +} when Ca{sup 2+}-free, but not when 2.52 mM Ca{sup 2+} assay buffer was used. In Ca{sup 2+}-free buffer, verapamil inhibited the response to carbachol at both 6 and 18 mM K{sup +} but higher concentrations were needed when 2.52 mM Ca{sup 2+} was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM ({sup 3}H)pirenzepine to muscarinic recognitionmore » sites. N-Methyl-D-Aspartate (NMDA) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K{sup +} at 1.3 mM Ca{sup 2+}, but was without effect on the basal rate at other K{sup +} and Ca{sup 2+} concentrations. In the presence of NMDA or quisqualate, the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K{sup +} and Ca{sup 2+} concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used.« less
Nedelec, Stephane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W.; Kam, Lance C.; Wichterle, Hynek
2012-01-01
Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell (ESC) derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f and Sema3a in a concentration dependent manner. At low doses, ES-MNs exhibit segmental or subtype specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins relies on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation. PMID:22279234
SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganezer, K; Krmar, M; Cvejic, Z
2015-06-15
Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less
Gabriel, J E; Guerra-Slompo, E P; de Souza, E M; de Carvalho, F A L; Madeira, H M F; de Vasconcelos, A T R
2015-08-21
The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner.
Fan, Guangqin; Zhou, Fankun; Feng, Chang; Wu, Fengyun; Ye, Weiwei; Wang, Chunhong; Lin, Fen; Yan, Ji; Li, Yanshu; Chen, Ying; Bi, Yongyi
2013-02-01
Lead, a ubiquitous neurotoxicant, can result in learning and memory dysfunction. Long term potentiation in the hippocampus, a potential neural substrate for learning and memory, is thought to be linked to calcium-triggered intracellular events. In this study, laser scanning confocal microscopy was used to examine the effects of Pb(2+) on intracellular and endoplasmic reticulum free calcium concentration ([Ca(2+)](i) and [Ca(2+)](ER)) in cultured neonatal rat hippocampal neurons and their possible antagonism by methionine choline; understanding these effects would help explain the lead-induced cognitive and learning dysfunction and explore efficient safety and relief strategies. The results showed that Pb(2+) increased [Ca(2+)](i) and decreased [Ca(2+)](ER) linearly in a time- and concentration-dependant manner, and Pb(2+) addition after the applying of a ryanodine receptor (RyR) antagonist and an inositol-1,4,5-triphosphate receptor (IP(3)R) antagonist did not increase [Ca(2+)](i). The addition of 10, 20, or 40 mmol/L methionine choline simultaneously with addition of 10 μmol/L Pb(2+) decreased [Ca(2+)](i) in Ca(2+)-free culture medium by 39.0%, 66.0%, and 61.6%, respectively, in a concentration-dependant manner in a certain dose range. Our results suggest that Pb(2+) induces ER calcium release to increase the resting [Ca(2+)](i); and methionine choline inhibit this increase in [Ca(2+)](i). Copyright © 2012 Elsevier Ltd. All rights reserved.
Schröder, Lennard; Richter, Dagmar Ulrike; Piechulla, Birgit; Chrobak, Mareike; Kuhn, Christina; Schulze, Sandra; Abarzua, Sybille; Jeschke, Udo; Weissenbacher, Tobias
2016-01-01
Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was upregulated in BeWo and MCF7 cells in a concentration dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in breast cancer prevention and/or treatment and warrant further investigation. PMID:27740591
Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-Ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru
2017-04-05
The flagellar motor of Bacillus subtilis possesses two distinct H + -type MotAB and Na + -type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner.
Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru
2017-01-01
The flagellar motor of Bacillus subtilis possesses two distinct H+-type MotAB and Na+-type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner. PMID:28378843
Kennedy, Christopher J; Farrell, Anthony P
2006-10-01
The swimming performance and recovery from exercise were determined in juvenile Pacific herring (Clupea pallasi) following exposure to the water-soluble fraction (WSF) of North Slope crude oil for more than eight weeks. Total polycyclic aromatic hydrocarbon concentrations (mean +/- standard error) at the beginning of exposures were as follows: control, 0.2 +/- 0.1 microg/L; low, 9.6 +/- 2.5 microg/L; medium, 40.7 +/- 6.9 microg/L; and high, 120.2 +/- 11.4 microg/L. Biological availability of hydrocarbons was confirmed by a significant induction of hepatic cytochrome P450 content and ethoxyresorufin-O-deethylase activity. Critical swimming speed (Ucrit) was significantly reduced in fish exposed to the highest concentration of WSF for 96 h (11% +/- 3.7% reduction) and at the two highest concentrations at four weeks (16% +/- 3.6% and 29% +/- 5.4% reductions) and eight weeks (11% +/- 3.8% and 40% +/- 5.7% reductions). Mortality occurred in all groups 24 h following Ucrit swim trials, with significantly higher mortalities observed in fish exposed to WSF in a concentration- and time-dependent manner (maximum mortality of 72.2% +/- 5.5% in the eight-week, high-exposure group). Burst swimming alone resulted in increased plasma cortisol, lactate, Na+, and Cl- concentrations and decreased muscle glycogen levels that returned to baseline values by 24 h. An interpretation of the effect of WSF exposure on postexercise metabolic recovery was complicated by pre-exercise alterations in several parameters. The time courses and magnitudes of several key postexercise parameters, including plasma cortisol, lactate, and muscle glycogen, were significantly altered by exposure to WSE The present study clearly shows that hydrocarbon exposure can reduce the swimming ability of fish and their ability to recover from exhaustive exercise.
Maeda, Akimitsu; Tsuruoka, Shuichi; Ushijima, Kentarou; Kanai, Yoshikatsu; Endou, Hitoshi; Saito, Kazuyuki; Miyamoto, Etsuko; Fujimura, Akio
2010-08-25
Methotrexate has a clinically important pharmacokinetic interaction with nonsteroidal anti-inflammatory drugs (NSAIDs) mainly through its competition for tubular secretion via the renal organic anion transporter 3 (OAT3). We have previously reported the usefulness of OAT3-transfected renal tubular cells for screening of the drugs which interfere with the pharmacokinetics of methotrexate. Celecoxib, a cyclooxygenase (COX) 2 inhibitor, has not been reported to interact with methotrexate, but the mechanisms are unclear why the interaction did not occur. The purpose of this study was to evaluate the effect of celecoxib on methotrexate tubular secretion using a renal cell line stably expressing human OAT3 (S2-hOAT3), and to evaluate the pharmacokinetic interaction of the two drugs in rats. [3H]methotrexate uptake into S2-hOAT3 cells was significantly inhibited by celecoxib in a concentration-dependent manner and the Ki value was 35.3 microM. However, methotrexate serum concentrations and urinary excretion of methotrexate over 24 h in rats were not affected by celecoxib (50, 200 mg/kg). Celecoxib serum concentrations were increased by the increase in celecoxib dosage and the maximum drug concentration (Cmax) was 20.6 microM (celecoxib 200 mg/kg), which did not reach the Ki value obtained in the in vitro study. These results indicated that celecoxib inhibited the secretion of methotrexate via hOAT3, which suggested that celecoxib was a substrate of hOAT3. However, co-administration of the two drugs at clinical dosage did not affect the pharmacokinetics of methotrexate, because the serum concentrations did not reach the Ki value. Although the accumulation study using S2-hOAT3 cells was useful to predict the interaction between the new drug and methotrexate in vivo, a comparison of the Ki value with the Cmax in clinical dosage was necessary to evaluate the degree of this interaction. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Salahdeen, Hussein M; Idowu, Gbolahan O; Murtala, Babatunde A
2012-12-01
Tridax procumbens leaf extract induced aortic relaxation in a concentration-dependent manner, for both phenylephrine (PE) and KCl- induced contractions in isolated rat aortic rings. The relaxation effect of the extract on PE-induced contraction was 57% greater than that on KCl- induced contraction. The extract caused dose-dependent relaxations in precontracted isolated rat aorta with phenylephrine; the relaxation was attenuated by the removal of endothelium. However, the relaxation responses to sodium nitroprusside were not significantly abolished by the removal of endothelium. The vasorelaxatory effect of the extract was completely abolished in presence of L-NAME. The results indicate that the vasorelaxant effect of T. procumbens extract is probably mediated by both endothelium-dependent and-independent mechanisms.
Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.
Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi
2018-02-09
Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.
Eotaxin increases monolayer permeability of human coronary artery endothelial cells.
Jamaluddin, Md Saha; Wang, Xinwen; Wang, Hao; Rafael, Cubas; Yao, Qizhi; Chen, Changyi
2009-12-01
The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs). Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner. In addition, eotaxin treatment significantly decreased the mRNA and protein levels of endothelial junction molecules including zonula occludens-1 (ZO-1), occludin, and claudin-1 in a concentration-dependent manner as determined by real-time RT-PCR and Western blot analysis, respectively. Increased oxidative stress was observed in eotaxin-treated HCAECs by analysis of cellular glutathione levels. Furthermore, eotaxin treatment substantially activated the phosphorylation of MAPK p38. HCAECs expressed CCR3. Consequently, antioxidants (ginkgolide B and MnTBAP), specific p38 inhibitor SB203580, and anti-CCR3 antibody effectively blocked the eotaxin-induced permeability increase in HCAECs. Eotaxin also increased the phosphorylation of Stat3 and nuclear translocation of NF-kappaB in HCAECs. Eotaxin increases vascular permeability through CCR3, the downregulation of tight junction proteins, increase of oxidative stress, and activation of MAPK p38, Stat3, and NF-kB pathways in HCAECs.
Karthikeyan, Chandrabose; Amawi, Haneen; Viana, Arabela Guedes; Sanglard, Leticia; Hussein, Noor; Saddler, Maria; Ashby, Charles R; Moorthy, N S Hari Narayana; Trivedi, Piyush; Tiwari, Amit K
2018-07-15
A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC 50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong
2015-01-01
The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi
APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less
Ng, Juki; Chwalisz, Kristof; Carter, David C; Klein, Cheri E
2017-05-01
Elagolix is a nonpeptide, oral gonadotropin-releasing hormone (GnRH) antagonist being developed for sex-hormone-dependent diseases in women. We evaluated the pharmacokinetics and pharmacodynamics of elagolix. This study was a randomized, double-blind, placebo-controlled, multiple-ascending dose study in 45 healthy premenopausal women at a research unit. Elagolix [150 mg once daily or 100, 200, 300, or 400 mg twice daily (BID)] or placebo was administered for 21 days. Main outcome measures were elagolix pharmacokinetics, suppression of gonadotropics [follicle-stimulating hormone (FSH), luteinizing hormone (LH)] and ovarian hormones [estradiol (E2), progesterone (P)], and adverse events. Elagolix was rapidly absorbed after oral dosing, reaching maximum concentrations at 1.0 to 1.5 hours, with a half-life of 4 to 6 hours. FSH, LH, and E2 were suppressed within hours of elagolix administration on day 1. Dose-dependent suppression of E2 was observed, with maximum suppression achieved with elagolix 200 mg BID. Dose-dependent suppression of FSH and LH was also observed, with maximal or near-maximal suppression achieved at 300 mg BID and 200 mg BID, respectively. At elagolix doses ≥100 mg BID, P concentrations remained at anovulatory levels throughout 21 days of dosing. The most frequently reported adverse events were headache and hot flush. Elagolix administration allows for modulation of gonadotropin and ovarian hormone concentrations, from partial suppression at lower doses to nearly full suppression at higher doses. The results of this study provide a rationale for elagolix dose selection for treatment of sex hormone-dependent diseases in women. Copyright © 2017 Endocrine Society
Maximum drag reduction simulation using rodlike polymers.
Gillissen, J J J
2012-10-01
Simulations of maximum drag reduction (MDR) in channel flow using constitutive equations for suspensions of noninteracting rods predict a few-fold larger turbulent kinetic energy than in experiments using rodlike polymers. These differences are attributed to the neglect of interactions between polymers in the simulations. Despite these inconsistencies the simulations correctly reproduce the essential features of MDR, with universal profiles of the mean flow and the shear stress budgets that do not depend on the polymer concentration.
Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping
2015-08-06
Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.
Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner.
Landry, David; Paré, Aurélie; Jean, Stéphanie; Martin, Luc J
2015-04-01
Obesity in men is associated with lower testosterone levels, related to reduced sperm concentration and the development of various diseases with aging. Hormones produced by the adipose tissue may have influences on both metabolism and reproductive function. Among them, the production and secretion of adiponectin is inversely correlated to total body fat. Adiponectin receptors (AdipoR1 and AdipoR2) have been found to be expressed in testicular Leydig cells (producing testosterone). Since StAR and Cyp11a1 are essential for testosterone synthesis and adiponectin has been shown to regulate StAR mRNA in swine granulosa cells, we hypothesized that adiponectin might also regulate these genes in Leydig cells. Our objective was to determine whether adiponectin regulates StAR and Cyp11a1 genes in Leydig cells and to better define its mechanisms of action. Methods used in the current study are qPCR for the mRNA levels, transfections for promoter activities, and enzyme-linked immunosorbent assay for the progesterone concentration. We have found that adiponectin cooperates with cAMP-dependent stimulation to activate StAR and Cyp11a1 mRNA expressions in a dose-dependent manner in MA-10 Leydig cells as demonstrated by transfection of a luciferase reporter plasmid. These results led to a significant increase in progesterone production from MA-10 cells. Thus, our data suggest that high doses of adiponectin typical of normal body weight may promote testosterone production from Leydig cells.
Uchida, Masaya; Hirano, Masashi; Ishibashi, Hiroshi; Kobayashi, Jun; Kagami, Yoshihiro; Koyanagi, Akiko; Kusano, Teruhiko; Koga, Minoru; Arizono, Koji
2016-11-01
Nonylphenol (NP) has been classified as an endocrine-disrupting chemical. In this study, we conducted mysid DNA microarray analysis with which has 2240 oligo DNA probes to observe differential gene expressions in mysid crustacean (Americamysis bahia) exposed to 1, 3, 10 and 30 μg/l of NP for 14 days. As a result, we found 31, 27, 39 and 68 genes were differentially expressed in the respective concentrations. Among these genes, the expressions of five particular genes were regulated in a similar manner at all concentrations of the NP exposure. So, we focused on one gene encoding cuticle protein, and another encoding cuticular protein analogous to peritrophins 1-H precursor. These genes were down-regulated by NP exposure in a dose-dependent manner, and it suggested that they were related in a reduction of the number of molting in mysids. Thus, they might become useful molecular biomarker candidates to evaluate molting inhibition in mysids. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, D.; Gibb, J.P.; Glover, W.A.
Compliance with the mandate of the Uranium Mill Tailings Radiation Control Act (UMTRCA) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites requires implementation of a groundwater remedial action plan that meets the requirements of Subpart B of the US Environmental Protection Agency`s proposed groundwater protection standards (40 CFR 192). The UMTRA Groundwater Project will ensure that unacceptable current risk or potential risk to the public health, safety and the environment resulting from the groundwater contamination attributable to the UMTRA sites, is mitigated in a timely and cost-efficient manner. For each UMTRA processing site and vicinity property where contamination exists,more » a groundwater remedial action plan must be developed that identifies hazardous constituents and establishes acceptable concentration limits for the hazardous constituents as either (a) alternate concentration limits (ACL), (b) maximum concentration limits (MCLs), (c) supplemental standards, or (d) background groundwater quality levels. Project optimization is a strategy that will aggressively work within the current regulatory framework using all available options to meet regulatory requirements. This strategy is outlined within.« less
Farrell, A P
2007-11-29
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki
2014-05-01
The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.
Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.
Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J
1997-01-01
Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.
Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.
Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei
2017-11-01
Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p < 0.05). These effects were enhanced by spermine and completely negated by ruthenium red, which are known to activate and inhibit mitochondrial calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng
Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less
So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji
2015-09-15
Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.
Cadmium neurotoxicity to a freshwater planarian.
Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui
2014-11-01
Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.
JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2017-03-01
Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.
JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2017-01-01
Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels. PMID:28454225
Sostaric, Joe Z
2008-09-01
Sonolysis of aqueous solutions of n-alkyl anionic surfactants results in the formation of secondary carbon-centered radicals (-*CH-). The yield of -*CH- depends on the bulk surfactant concentration up to a maximum attainable radical yield (the 'plateau yield') where an increasing surfactant concentration (below the critical micelle concentration) no longer affects the -*CH- yield. In an earlier study it was found that the ratio of -*CH- detected following sonolysis of aqueous solutions of sodium pentane sulfonate (SPSo) to that of sodium dodecyl sulfate (SDS) (i.e. CH(SPSo)/CH(SDS)) depended on the frequency of sonolysis, but was independent of the ultrasound intensity, at the plateau concentrations [J.Z. Sostaric, P. Riesz, Adsorption of surfactants at the gas/solution interface of cavitation bubbles: an ultrasound intensity-independent frequency effect in sonochemistry, J. Phys. Chem. B 106 (2002) 12537-12548]. In the current study, it was found that the CH(SPSo)/CH(SDS) ratio depended only on the ultrasound frequency and did not depend on the geometry of the ultrasound exposure apparatus considered.
Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A
2011-02-01
Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties make scorpion venom a valuable therapeutic agent in cancer research.
Owen, Stewart F; Huggett, Duane B; Hutchinson, Thomas H; Hetheridge, Malcolm J; McCormack, Paul; Kinter, Lewis B; Ericson, Jon F; Constantine, Lisa A; Sumpter, John P
2010-12-01
Two studies to examine the effect of waterborne clofibric acid (CA) on growth-rate and condition of rainbow trout were conducted using accepted regulatory tests (Organisation for Economic Co-operation and Development [OECD] 215). The first study (in 2005) showed significant reductions after 21 d of exposure (21-d growth lowest-observed-effect concentration [LOEC] = 0.1 µg/L, 21-d condition LOEC = 0.1 µg/L) that continued to 28 d. Growth rate was reduced by approximately 50% (from 5.27 to 2.67% per day), while the condition of the fish reduced in a concentration-dependant manner. Additionally, in a concentration-dependent manner, significant changes in relative liver size were observed, such that increasing concentrations of CA resulted in smaller livers after 28-d exposure. A no-observed-effect concentration (NOEC) was not achieved in the 2005 study. An expanded second study (in 2006) that included a robust bridge to the 2005 study, with four replicate tanks of eight individual fish per concentration, did not repeat the 2005 findings. In the 2006 study, no significant effect on growth rate, condition, or liver biometry was observed after 21 or 28 d (28-d growth NOEC = 10 µg/L, 28-d condition NOEC = 10 µg/L), contrary to the 2005 findings. We do not dismiss either of these findings and suggest both are relevant and stand for comparison. However, the larger 2006 study carries more statistical power and multiple-tank replication, so probably produced the more robust findings. Despite sufficient statistical power in each study, interpretation of these and similar studies should be conducted with caution, because much significance is placed on the role of limited numbers of individual and tank replicates and the influence of control animals. Copyright © 2010 SETAC.
Kumar, Neeraj; Krishnani, Kishore Kumar; Singh, Narendra Pratap
2018-03-01
Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.
29 CFR 4022.23 - Computation of maximum guaranteeable benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Under Step-Down Life Annuity Age of participant 1 at the later of the date the temporary additional... in any manner other than as a monthly benefit payable for life commencing at age 65, the maximum... of a step-down life annuity, the maximum guaranteeable monthly amount of such benefit shall be...
NASA Technical Reports Server (NTRS)
Bubsey, R. T.; Pierce, W. S.; Shannon, J. L., Jr.; Munz, D.
1982-01-01
The short rod chevron-notch specimen has the advantages of (1) crack development at the chevron tip during the early stage of test loading, and (2) convenient calculation of plane-strain fracture toughness from the maximum test load and from a calibration factor which depends only on the specimen geometry and manner of loading. For generalized application, calibration of the specimen over a range of specimen proportions and chevron-notch configurations is necessary. Such was the objective of this investigation, wherein calibration of the short rod specimen was made by means of experimental compliance measurements converted into dimensionless stress intensity factor coefficients.
Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao
2017-05-01
L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70 S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.
Chronic administration of phenytoin induces efflux transporter overexpression in rats.
Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra
2014-12-01
Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon
Fei, Guijun; Wang, Yu-Zhong; Liu, Sumei; Hu, Hong-Zhen; Wang, Guo-Du; Qu, Mei-Hua; Wang, Xi-Yu; Xia, Yun; Sun, Xiaohong; Bohn, Laura M.; Cooke, Helen J.; Wood, Jackie D.
2009-01-01
Actions of lubiprostone, a selective type-2 chloride channel activator, on mucosal secretion were investigated in guinea pig small intestine and colon. Flat-sheet preparations were mounted in Ussing flux chambers for recording short-circuit current (Isc) as a marker for electrogenic chloride secretion. Lubiprostone, applied to the small intestinal mucosa in eight concentrations ranging from 1–3000 nM, evoked increases in Isc in a concentration-dependent manner with an EC50 of 42.5 nM. Lubiprostone applied to the mucosa of the colon in eight concentrations ranging from 1–3000 nM evoked increases in Isc in a concentration-dependent manner with an EC50 of 31.7 nM. Blockade of enteric nerves by tetrodotoxin did not influence stimulation of Isc by lubiprostone. Antagonists acting at prostaglandin (PG)E2, EP1–3, or EP4 receptors did not suppress stimulation of Isc by lubiprostone but suppressed or abolished PGE2-evoked responses. Substitution of gluconate for chloride abolished all responses to lubiprostone. The selective CFTR channel blocker, CFTR(inh)-172, did not suppress lubiprostone-evoked Isc. The broadly acting blocker, glibenclamide, suppressed (P < 0.001) lubiprostone-evoked Isc. Lubiprostone, in the presence of tetrodotoxin, enhanced carbachol-evoked Isc. The cholinergic component, but not the putative vasoactive intestinal peptide component, of neural responses to electrical field stimulation was enhanced by lubiprostone. Application of any of the prostaglandins, E2, F2, or I2, evoked depolarization of the resting membrane potential in enteric neurons. Unlike the prostaglandins, lubiprostone did not alter the electrical behavior of enteric neurons. Exposure to the histamine H2 receptor agonists increased basal Isc followed by persistent cyclical increases in Isc. Lubiprostone increased the peak amplitude of the dimaprit-evoked cycles. PMID:19179625
Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon.
Fei, Guijun; Wang, Yu-Zhong; Liu, Sumei; Hu, Hong-Zhen; Wang, Guo-Du; Qu, Mei-Hua; Wang, Xi-Yu; Xia, Yun; Sun, Xiaohong; Bohn, Laura M; Cooke, Helen J; Wood, Jackie D
2009-04-01
Actions of lubiprostone, a selective type-2 chloride channel activator, on mucosal secretion were investigated in guinea pig small intestine and colon. Flat-sheet preparations were mounted in Ussing flux chambers for recording short-circuit current (Isc) as a marker for electrogenic chloride secretion. Lubiprostone, applied to the small intestinal mucosa in eight concentrations ranging from 1-3000 nM, evoked increases in Isc in a concentration-dependent manner with an EC50 of 42.5 nM. Lubiprostone applied to the mucosa of the colon in eight concentrations ranging from 1-3000 nM evoked increases in Isc in a concentration-dependent manner with an EC50 of 31.7 nM. Blockade of enteric nerves by tetrodotoxin did not influence stimulation of Isc by lubiprostone. Antagonists acting at prostaglandin (PG)E2, EP1-3, or EP4 receptors did not suppress stimulation of Isc by lubiprostone but suppressed or abolished PGE2-evoked responses. Substitution of gluconate for chloride abolished all responses to lubiprostone. The selective CFTR channel blocker, CFTR(inh)-172, did not suppress lubiprostone-evoked Isc. The broadly acting blocker, glibenclamide, suppressed (P<0.001) lubiprostone-evoked Isc. Lubiprostone, in the presence of tetrodotoxin, enhanced carbachol-evoked Isc. The cholinergic component, but not the putative vasoactive intestinal peptide component, of neural responses to electrical field stimulation was enhanced by lubiprostone. Application of any of the prostaglandins, E2, F2, or I2, evoked depolarization of the resting membrane potential in enteric neurons. Unlike the prostaglandins, lubiprostone did not alter the electrical behavior of enteric neurons. Exposure to the histamine H2 receptor agonists increased basal Isc followed by persistent cyclical increases in Isc. Lubiprostone increased the peak amplitude of the dimaprit-evoked cycles.
Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells.
Cheng, H-H; Chou, C-T; Sun, T-K; Liang, W-Z; Cheng, J-S; Chang, H-T; Tseng, H-W; Kuo, C-C; Chen, F-A; Kuo, D-H; Shieh, P; Jan, C-R
2015-11-01
Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis. © The Author(s) 2015.
Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.
2013-01-01
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519
Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin
2018-01-26
Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Taniguchi, Masayuki; Ikeda, Atsuo; Nakamichi, Shun-Ichi; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki
2013-10-01
Hsp70(241-258), an octadecapeptide derived from the heat shock protein 70 (Hsp70) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains four lysine, two arginine, and two histidine residues. The antimicrobial activity of Hsp70(241-258) against Porphyromonas gingivalis, a periodontal pathogen, and Candida albicans, an opportunistic fungal pathogen, was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentrations of Hsp70(241-258) against P. gingivalis and C. albicans cells were 63 μM and 70 μM, respectively. Hsp70(241-258) had little or no hemolytic activity even at 1mM, and showed negligible cytotoxicity up to 300 μM. The degrees of calcein leakage from large unilamellar vesicles, which mimic the membranes of Gram-negative bacteria, and 3,3'-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of Hsp70(241-258) increased in a concentration-dependent manner. When Hsp70(241-258) was added to calcein-acetoxymethyl ester-loaded C. albicans cells, calcein release from the cells increased in a concentration-dependent manner. Flow cytometric analysis also showed that the percentages of C. albicans cells stained with propidium iodide, a DNA-intercalating dye, increased as the concentration of Hsp70(241-258) added was increased. Therefore, Hsp70(241-258) appears to exhibit antimicrobial activity against P. gingivalis and C. albicans through membrane disruption. These results suggest that Hsp70(241-258) could be useful as a safe and potent AMP against P. gingivalis and C. albicans in many fields of health care, especially in the control of oral infections. Copyright © 2013 Elsevier Inc. All rights reserved.
Gai, Xiang-yun; Wei, Yu-hai; Zhang, Wei; Wuren, Ta-na; Wang, Ya-ping; Li, Zhan-qiang; Liu, Shou; Ma, Lan; Lu, Dian-xiang; Zhou, Yi; Ge, Ri-li
2015-01-01
Aim: Sustained pulmonary vasoconstriction as experienced at high altitude can lead to pulmonary hypertension (PH). The main purpose of this study is to investigate the vasorelaxant effect of echinacoside (ECH), a phenylethanoid glycoside from the Tibetan herb Lagotis brevituba Maxim and Cistanche tubulosa, on the pulmonary artery and its potential mechanism. Methods: Pulmonary arterial rings obtained from male Wistar rats were suspended in organ chambers filled with Krebs-Henseleit solution, and isometric tension was measured using a force transducer. Intracellular Ca2+ levels were measured in cultured rat pulmonary arterial smooth muscle cells (PASMCs) using Fluo 4-AM. Results: ECH (30–300 μmol/L) relaxed rat pulmonary arteries precontracted by noradrenaline (NE) in a concentration-dependent manner, and this effect could be observed in both intact endothelium and endothelium-denuded rings, but with a significantly lower maximum response and a higher EC50 in endothelium-denuded rings. This effect was significantly blocked by L-NAME, TEA, and BaCl2. However, IMT, 4-AP, and Gli did not inhibit ECH-induced relaxation. Under extracellular Ca2+-free conditions, the maximum contraction was reduced to 24.54%±2.97% and 10.60%±2.07% in rings treated with 100 and 300 μmol/L of ECH, respectively. Under extracellular calcium influx conditions, the maximum contraction was reduced to 112.42%±7.30%, 100.29%±8.66%, and 74.74%±4.95% in rings treated with 30, 100, and 300 μmol/L of ECH, respectively. After cells were loaded with Fluo 4-AM, the mean fluorescence intensity was lower in cells treated with ECH (100 μmol/L) than with NE. Conclusion: ECH suppresses NE-induced contraction of rat pulmonary artery via reducing intracellular Ca2+ levels, and induces its relaxation through the NO-cGMP pathway and opening of K+ channels (BKCa and KIR). PMID:25864652
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.
1977-01-01
An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.
Optical sensing of anticoagulation status: Towards point-of-care coagulation testing
Tripathi, Markandey M.; Hajjarian, Zeinab; Van Cott, Elizabeth M.; Nadkarni, Seemantini K.
2017-01-01
Anticoagulant overdose is associated with major bleeding complications. Rapid coagulation sensing may ensure safe and accurate anticoagulant dosing and reduce bleeding risk. Here, we report the novel use of Laser Speckle Rheology (LSR) for measuring anticoagulation and haemodilution status in whole blood. In the LSR approach, blood from 12 patients and 4 swine was placed in disposable cartridges and time-varying intensity fluctuations of laser speckle patterns were measured to quantify the viscoelastic modulus during clotting. Coagulation parameters, mainly clotting time, clot progression rate (α-angle) and maximum clot stiffness (MA) were derived from the clot viscoelasticity trace and compared with standard Thromboelastography (TEG). To demonstrate the capability for anticoagulation sensing in patients, blood samples from 12 patients treated with warfarin anticoagulant were analyzed. LSR clotting time correlated with prothrombin and activated partial thromboplastin time (r = 0.57–0.77, p<0.04) and all LSR parameters demonstrated good correlation with TEG (r = 0.61–0.87, p<0.04). To further evaluate the dose-dependent sensitivity of LSR parameters, swine blood was spiked with varying concentrations of heparin, argatroban and rivaroxaban or serially diluted with saline. We observed that anticoagulant treatments prolonged LSR clotting time in a dose-dependent manner that correlated closely with TEG (r = 0.99, p<0.01). LSR angle was unaltered by anticoagulation whereas TEG angle presented dose-dependent diminution likely linked to the mechanical manipulation of the clot. In both LSR and TEG, MA was largely unaffected by anticoagulation, and LSR presented a higher sensitivity to increased haemodilution in comparison to TEG (p<0.01). Our results establish that LSR rapidly and accurately measures the response of various anticoagulants, opening the opportunity for routine anticoagulation monitoring at the point-of-care or for patient self-testing. PMID:28771571
Mafra, R A; Leão, R M; Beirão, P S L; Cruz, J S
2003-07-01
A glutamate-sensitive inward current (Iglu) is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 M and a maximum increase of 51.2 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM), shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.
Manjunathan, Reji; Ragunathan, Malathi
2015-06-10
Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects while some suggested that it has antiangiogenic potential. It is theoretically highly important to understand the effect of leptin on angiogenesis to use as a therapeutic molecule in various angiogenesis related pathological conditions. Chicken chorio allantoic membrane (CAM) on 9th day of incubation was incubated with 1, 3 and 5 μg concentration of HRL for 72 h using gelatin sponge. Images where taken after every 24 h of incubation and analysed with Angioguant software. The treated area was observed under microscope and histological evaluation was performed for the same. Tissue thickness was calculated morphometrically from haematoxylin and eosin stained cross sections. Reverse transcriptase PCR and immunohistochemistry were also performed to study the gene and protein level expression of angiogenic molecules. HRL has the ability to induce new vessel formation at the treated area and growth of the newly formed vessels and cellular morphological changes occur in a dose dependent manner. Increase in the tissue thickness at the treated area is suggestive of initiation of new capillary like structures. Elevated mRNA and protein level expression of VEGF165 and MMP2 along with the activation of ECs as demonstrated by the presence of CD34 expression supports the neovascularization potential of HRL. Angiogenic potential of HRL depends on the concentration and time of incubation and is involved in the activation of ECs along with the major interaction of VEGF 165 and MMP2. It is also observed that 3 μg of HRL exhibits maximum angiogenic potential at 72 h of incubation. Thus our data suggest that dose dependent angiogenic potential HRL could provide a novel role in angiogenic dependent therapeutics such as ischemia and wound healing conditions.
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less
Ji, Y.; Ji, C.; Yue, L.; Xu, H.
2012-01-01
Objective Many scientific studies have shown that Asparagus officinalis has an antitumour effect and enhances human immunity, but the active components and the antitumour mechanisms are unclear. We investigated the effects of saponins isolated from Asparagus on proliferation and apoptosis in the human hepatoma cell line HepG2. Methods HepG2 cells were treated with varying concentrations of Asparagus saponins at various times. Using mtt and flow cytometry assays, we evaluated the effects of Asparagus saponins on the growth and apoptosis of HepG2 cells. Transmission electron microscopy was used to observe the morphology of cell apoptosis. Confocal laser scanning microscopy was used to analyze intracellular calcium ion concentration, mitochondrial permeability transition pore (mptp), and mitochondrial membrane potential (mmp). Spectrophotometry was applied to quantify the activity of caspase-9 and caspase-3. Flow cytometry was used to investigate the levels of reactive oxygen species (ros) and pH, and the expressions of Bcl2, Bax, CytC, and caspase-3, in HepG2 cells. Results Asparagus saponins inhibited the growth of HepG2 cells in a dose-dependent manner. The median inhibitory concentration (IC50) was 101.15 mg/L at 72 hours. The apoptosis morphology at 72 hours of treatment was obvious, showing cell protuberance, concentrated cytoplasm, and apoptotic bodies. The apoptotic rates at 72 hours were 30.9%, 51.7%, and 62.1% (for saponin concentrations of 50 mg/L, 100 mg/L, 200 mg/L). Treatment with Asparagus saponins for 24 hours increased the intracellular level of ros and Ca2+, lowered the pH, activated intracellular mptp, and decreased mmp in a dose-dependent manner. Treatment also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl2, upregulated the expression of Bax, and induced release of CytC and activation of caspase-3. Conclusions Asparagus saponins induce apoptosis in HepG2 cells through a mitochondrial-mediated and caspase-dependent pathway, suggesting that they may be a potent agent for the treatment of hepatocellular carcinoma. PMID:22876162
Nisin depletes ATP and proton motive force in mycobacteria.
Chung, H J; Montville, T J; Chikindas, M L
2000-12-01
This study examined the inhibitory effect of nisin and its mode of action against Mycobacterium smegmatis, a non-pathogenic species of mycobacteria, and M. bovis-Bacill Carmette Guerin (BCG), a vaccine strain of pathogenic M. bovis. In agar diffusion assays, 2.5 mg ml(-1) nisin was required to inhibit M. bovis-BCG. Nisin caused a slow, gradual, time- and concentration-dependent decrease in internal ATP levels in M. bovis-BCG, but no ATP efflux was detected. In mycobacteria, nisin decreased both components of proton motive force (membrane potential, Delta Psi and Delta pH) in a time- and concentration-dependent manner. However, mycobacteria maintained their intracellular ATP levels during the initial time period of Delta Psi and Delta pH dissipation. These data suggest that the mechanism of nisin in mycobacteria is similar to that in food-borne pathogens.
Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients.
Dasbiswas, Kinjal; Hannezo, Edouard; Gov, Nir S
2018-02-27
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin
2016-12-01
The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Hua; Tian, Qiang
2018-04-01
Polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1- x As core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.
Ojewole, J A O; Kamadyaapa, D R; Gondwe, M M; Moodley, K; Musabayane, C T
2007-01-01
The cardiovascular effects of Persea americana Mill (Lauraceae) aqueous leaf extract (PAE) have been investigated in some experimental animal paradigms. The effects of PAE on myocardial contractile performance was evaluated on guinea pig isolated atrial muscle strips, while the vasodilatory effects of the plant extract were examined on isolated portal veins and thoracic aortic rings of healthy normal Wistar rats in vitro. The hypotensive (antihypertensive) effect of the plant extract was examined in healthy normotensive and hypertensive Dahl salt-sensitive rats in vivo. P americana aqueous leaf extract (25-800 mg/ml) produced concentration-dependent, significant (p < 0.05-0.001), negative inotropic and negative chronotropic effects on guinea pig isolated electrically driven left and spontaneously beating right atrial muscle preparations, respectively. Moreover, PAE reduced or abolished, in a concentration-dependent manner, the positive inotropic and chronotropic responses of guinea pig isolated atrial muscle strips induced by noradrenaline (NA, 10(-10)-10(-5) M), and calcium (Ca(2+), 5-40 mM). PAE (50-800 mg/ml) also significantly reduced (p < 0.05-0.001) or abolished, in a concentration-dependent manner, the rhythmic, spontaneous, myogenic contractions of portal veins isolated from healthy normal Wistar rats. Like acetylcholine (ACh, 10(-8)-10(-5) M), the plant extract (25- 800 mg/ml) produced concentration-related relaxations of isolated endothelium-containing thoracic aortic rings pre-contracted with noradrenaline. The vasorelaxant effects of PAE in the isolated, endothelium-intact aortic rings were markedly inhibited or annulled by N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-5) M), a nitric oxide synthase inhibitor. Furthermore, PAE (25-400 mg/kg iv) caused dose-related, transient but significant reductions (p < 0.05-0.001) in the systemic arterial blood pressure and heart rates of the anaesthetised normotensive and hypertensive rats used. The results of this laboratory animal study indicate that PAE caused bradycardia, vasorelaxation and hypotension in the mammalian experimental models used. The vasorelaxant action of PAE was endothelium dependent, and was, therefore, possibly dependent on the synthesis and release of nitric oxide (NO). The vasorelaxant effects of PAE appeared to contribute significantly to the hypotensive (antihypertensive) effects of the plant extract. However, the findings of this study tend to suggest that P americana leaf could be used as a natural supplementary remedy in essential hypertension and certain cases of cardiac dysfunctions in some rural Africa communities.
Han, Kyung Ah; Woo, Doyeon; Kim, Seungjoon; Choii, Gayoung; Jeon, Sangmin; Won, Seoung Youn; Kim, Ho Min; Heo, Won Do; Um, Ji Won; Ko, Jaewon
2016-04-27
Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 μW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 μW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. In this study, we present several lines of experimental evidences to support the conclusion that neurotrophin-3 (NT-3) modulates the synaptic adhesion pathway involving neurotrophin receptor tyrosine kinase C (TrkC) and presynaptic protein tyrosine phosphatase σ (PTPσ) in a bidirectional manner at excitatory synapses. NT-3 acts in concentration-independent manner to facilitate TrkC-mediated presynaptic differentiation, whereas it acts in a concentration-dependent manner to exert differential effects on TrkC-mediated organization of postsynaptic development. We further investigated TrkC extracellular ligand binding, intracellular signaling pathways, and kinase activity in NT-3-induced synapse development. Last, we found that interneuronal differences in TrkC levels regulate the synapse number. Overall, these results suggest that NT-3 functions as a positive modulator of synaptogenesis involving TrkC and PTPσ. Copyright © 2016 the authors 0270-6474/16/364817-16$15.00/0.
p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.
Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan
2016-10-01
The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Berta; Erlanger-Rosengarten, Avigail; Proscura, Elena
2008-06-15
The primary purpose of the present study was to investigate the mechanism of the counter-irritating activity of topical iodine against skin lesions induced by chemical and thermal stimuli. The hypothesis that iodine exerts its activity by inducing an endogenous anti-inflammatory factor was confirmed by exposing guinea pig skin to heat stimulus followed by topical iodine treatment and skin extraction. Injection of the extract into naive guinea pigs reduced heat-induced irritation by 69%. The protective factor, identified as a new nonapeptide (histone H2A 36-44, H-Lys-Gly-Asn-Tyr-Ala-Glu-Arg-Ileu-Ala-OH), caused reduction of 40% in irritation score in heat-exposed guinea pigs. The murine analog (H-Lys-Gly-His-Tyr-Ala-Glu-Arg-Val-Gly-OH, termedmore » IIIM1) reduced sulfur mustard (SM)-induced ear swelling at a dose-dependent bell-shape manner reaching peak activity of 1 mg/kg. Cultured keratinocytes transfected with the peptide were more resistant towards SM than the control cells. The peptide suppressed oxidative burst in activated neutrophils in a concentration-dependent manner. In addition, the peptide reduced glucose oxidase-induced skin edema in mice at a dose-dependent bell-shape manner. Apart from thermal and chemical-induced skin irritation this novel peptide might be of potential use in chronic dermal disorders such as psoriasis and pemphigus as well as non-dermal inflammatory diseases like multiple sclerosis, arthritis and colitis.« less
Sun, Yue; Ye, Da-Wei; Zhang, Peng; Wu, Ying-Xing; Wang, Bang-Yan; Peng, Guang; Yu, Shi-Ying
2016-10-01
Cytokines are believed to be involved in a "vicious circle" of progressive interactions in bone metastasis. Iguratimod is a novel anti-rheumatic drug which is reported to have the capability of anti-cytokines. In this study, a rat model was constructed to investigate the effect of iguratimod on bone metastasis and it was found that iguratimod alleviated cancer-induced bone destruction. To further explore whether an anti-tumor activity of iguratimod contributes to the effect of bone resorption suppression, two human breast cancer cell lines MDA-MB-231 and MCF-7 were studied. The effect of iguratimod on tumor proliferation was detected by CCK-8 assay and flow cytometry. The effects of iguratimod on migration and invasion of cancer cells were determined by wound-healing and Transwell assays. Results showed that high dose (30 μg/mL) iguratimod slightly suppressed the proliferation of cancer cells but failed to inhibit their migration and invasion capacity. Interestingly, iguratimod decreased the transcription level of IL-6 in MDA-MB-231 cells in a concentration-dependent manner. Moreover, iguratimod partially impaired NF-κB signaling by suppressing the phosphorylation of NF-κB p65 subunit. Our findings indicated that iguratimod may alleviate bone destruction by partially decreasing the expression of IL-6 in an NF-κB-dependent manner, while it has little effect on the tumor proliferation and invasion.
New protopine alkaloids from Aristolochia constricta reduce morphine withdrawal in vitro.
Capasso, A; De Tommasi, N; Rastrelli, L; De Simone, F
2000-12-01
The present study examines the effect of four new protopine alkaloids (1-4) isolated and purified from the aerial parts of Aristolochia constricta (Aristolichiaceae) on morphine withdrawal in vitro. The results of our experiments indicate that the pure compounds (1-4) significantly and in a concentration-dependent manner reduced the morphine withdrawal. The results of the present study suggest that these new protopine alkaloids may be potential anti-addictive agents.
Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I
2004-05-01
We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
Glasgow, Nathan G; Wilcox, Madeleine R; Johnson, Jon W
2018-05-12
Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg 2+ also binds. Under physiological conditions, Mg 2+ increases the IC 50 s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg 2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg 2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg 2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg 2+ . Copyright © 2018 Elsevier Ltd. All rights reserved.
Arslan, Mehmet; Topaktas, Mehmet; Rencuzogullari, Eyyüp
2008-02-01
The aim of this study was to determine the possible genotoxic effects of boric acid (BA) (E284), which is used as an antimicrobial agent in food, by using sister chromatid exchange (SCEs) and chromosome aberration (CAs) tests in human peripheral lymphocytes. The human lymphocytes were treated with 400, 600, 800, and 1000 mug/mL concentrations of BA dissolved in dimethyl sulfoxide (DMSO), for 24 h and 48 h treatment periods. BA did not increase the SCEs for all the concentrations and treatment periods when compared to control and solvent control (DMSO). BA induced structural and total CAs at all the tested concentrations for 24 and 48 h treatment periods. The induction of the total CAs was dose dependent for the 24 h treatment period. However, BA did not cause numerical CAs. BA showed a cytotoxic effect by decreasing the replication index (RI) and mitotic index (MI). BA decreased the MI in a dose-dependent manner for the 24 h treatment period.
Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A
2015-05-01
Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda
Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém
2009-01-01
Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666
Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M
2001-01-01
Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current and include enough qualified sources to ensure maximum open and free competition. Recipients must... transactions in a manner providing maximum full and open competition. (a) Restrictions on competition... bonding requirements; (3) Noncompetitive pricing practices between firms or between affiliated companies...
Effect of pH and glucose on cultured human peritoneal mesothelial cells.
Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M
1999-08-01
We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.
Concentration dependence of sodium alloys based on tin surface tension
NASA Astrophysics Data System (ADS)
Alchagirov, B. B.; Kyasova, O. Kh; Uzdenova, A. N.; Khibiev, A. Kh
2018-04-01
The concentration dependence of the surface tension (ST) for alloys of the Sn-Na system in the range of compositions with a content of 0.06 to 5.00 at.% Na is studied by the large droplet method using high-purity components and a corresponding ST isotherm for T = 573 K is constructed. It has been established that small additions of sodium to tin significantly reduce ST of the studied melts. Calculations of sodium adsorption in alloys have shown that there is a maximum on the adsorption curve corresponding to alloys with a content of about 1.5 at.% Na in tin.
Liu, Yani; Luo, Xiaomei; Yang, Chunxiao; Yang, Tingyu; Zhou, Jiali; Shi, Shaojun
2016-01-01
The aim of the present study was to evaluate whether quercetin (Que) modulates the mRNA and protein expression levels of drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in the small intestine and liver, and thus modifies the pharmacokinetic profile of cyclosporine (CsA) in rats. This two-part study evaluated the pharmacokinetic profiles of CsA in the presence or absence of Que (experiment I) and the involvement of DMEs and DTs (experiment II). In experiment I, 24 rats received single-dose CsA (10 mg/kg) on day 1, single-dose Que (25, 50 and 100 mg/kg/day; eight rats in each group) on days 3–8, and concomitant CsA/Que on day 9. In experiment II, the mRNA and protein expression levels of cytochrome P (CYP)3A1, CYP3A2, UDP glucuronosyltransferase family 1 member A complex locus, organic anion-transporting polypeptide (OATP)2B1, OATP1B2, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the small intestine and liver of rats were analyzed following oral administration of Que at 25, 50 and 100 mg/kg in the presence or absence of CsA (10 mg/kg) for seven consecutive days. Co-administration of Que (25,50 and 100 mg/kg) decreased the maximum serum concentration of CsA by 46, 50 and 47% in a dose-independent manner. In addition, the area under the curve to the last measurable concentration and area under the curve to infinite time were decreased, by 21 and 16%, 30 and 33%, and 33 and 34% (P<0.01), respectively. However, the mRNA and protein expression levels of the above-mentioned DMEs and DTs were inhibited by Que in a dose-dependent manner (P<0.01) to a similar extent in the small intestine and liver. It was demonstrated that Que was able to reduce the bioavailability of CsA following multiple concomitant doses in rats. Overlapping modulation of intestinal and hepatic DMEs and DTs, as well as the DME-DT interplay are potential explanations for these observations. PMID:27510982
Pradeepa, Venkatraman; Senthil-Nathan, Sengottayan; Sathish-Narayanan, Subbiah; Selin-Rani, Selvaraj; Vasantha-Srinivasan, Prabhakaran; Thanigaivel, Annamalai; Ponsankar, Athirstam; Edwin, Edward-Sam; Sakthi-Bagavathy, Muthiah; Kalaivani, Kandaswamy; Murugan, Kadarkarai; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah
2016-11-01
Plumbagin was isolated and characterized from the roots of Plumbago zeylanica using chromatography: TLC, Column chromatogram, HPLC, FTIR and 1 H NMR. The isolated pure compounds were assayed for potency as inhibitors of: acetylcholine esterase (AchE), glutathione S-transferases (GST), superoxide dismutase (SOD), cytochrome P450 and α, β-esterase, and for repellency with Anopheles stephensi at four different concentrations (25, 50, 75 and 100ppm). The enzyme assay against the pure compound reveals that the level of esterase and SOD was decreased significantly in contrast the level of GST and cytochrome P450 was increased significantly. Our results suggests that novel Plumbagin has significantly alters the level of enzyme comparable to the control. Evaluations resulted in Plumbagin producing maximum repellency scores against An. stephensi mosquitoes in dose dependent manner with highest repellence was observed in the 100ppm. Histological examination showed that the midgut, hindgut and muscles are the most affected tissues. These tissues affected with major changes including separation and collapse of epithelial layer and cellular vacuolization. The results support the utility of plant compound Plumbagin for vector control as an alternative to synthetic insecticides, however, more vigorous field trials are needed to determine viability under natural conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrogen protects auditory hair cells from cisplatin-induced free radicals.
Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi
2014-09-05
Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Barnett, Alicia M.; Roy, Nicole C.; McNabb, Warren C.; Cookson, Adrian L.
2016-01-01
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function. PMID:27164134
Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L
2016-05-06
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.
Kaneda, Takeharu; Kido, Yuuki; Tajima, Tsuyoshi; Urakawa, Norimoto; Shimizu, Kazumasa
2015-01-01
The effects of various selective phosphodiesterase (PDE) inhibitors on carbachol (CCh)-induced contraction in the bovine abomasum were investigated. Various selective PDE inhibitors, vinpocetine (type 1), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, type 2), milrinone (type 3), Ro20-1724 (type 4), vardenafil (type 5), BRL-50481 (type 7) and BAY73-6691 (type 9), inhibited CCh-induced contractions in a concentration-dependent manner. Among the PDE inhibitors, Ro20-1724 and vardenafil induced more relaxation than the other inhibitors based on the data for the IC50 or maximum relaxation. In smooth muscle of the bovine abomasum, we showed the expression of PDE4B, 4C, 4D and 5 by RT-PCR analysis. In the presence of CCh, Ro20-1724 increased the cAMP content, but not the cGMP content. By contrast, vardenafil increased the cGMP content, but not the cAMP content. These results suggest that Ro20-1724-induced relaxation was correlated with cAMP and that vardenafil-induced relaxation was correlated with cGMP in the bovine abomasum. In conclusion, PDE4 and PDE5 are the enzymes involved in regulation of the relaxation associated with cAMP and cGMP, respectively, in the bovine abomasum.
Nishikawa, A; Yoshizato, K
1986-02-01
Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.
NASA Astrophysics Data System (ADS)
Ahmadian, Radin
2010-09-01
This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.
Lugo-Huitrón, R; Blanco-Ayala, T; Ugalde-Muñiz, P; Carrillo-Mora, P; Pedraza-Chaverrí, J; Silva-Adaya, D; Maldonado, P D; Torres, I; Pinzón, E; Ortiz-Islas, E; López, T; García, E; Pineda, B; Torres-Ramos, M; Santamaría, A; La Cruz, V Pérez-De
2011-01-01
Kynurenic acid (KYNA) is an endogenous metabolite of the kynurenine pathway for tryptophan degradation and an antagonist of both N-methyl-D-aspartate (NMDA) and alpha-7 nicotinic acetylcholine (α7nACh) receptors. KYNA has also been shown to scavenge hydroxyl radicals (OH) under controlled conditions of free radical production. In this work we evaluated the ability of KYNA to scavenge superoxide anion (O(2)(-)) and peroxynitrite (ONOO(-)). The scavenging ability of KYNA (expressed as IC(50) values) was as follows: OH=O(2)(-)>ONOO(-). In parallel, the antiperoxidative and scavenging capacities of KYNA (0-150 μM) were tested in cerebellum and forebrain homogenates exposed to 5 μM FeSO(4) and 2.5 mM 3-nitropropionic acid (3-NPA). Both FeSO(4) and 3-NPA increased lipid peroxidation (LP) and ROS formation in a significant manner in these preparations, whereas KYNA significantly reduced these markers. Reactive oxygen species (ROS) formation were determined in the presence of FeSO(4) and/or KYNA (0-100 μM), both at intra and extracellular levels. An increase in ROS formation was induced by FeSO(4) in forebrain and cerebellum in a time-dependent manner, and KYNA reduced this effect in a concentration-dependent manner. To further know whether the effect of KYNA on oxidative stress is independent of NMDA and nicotinic receptors, we also tested KYNA (0-100 μM) in a biological preparation free of these receptors - defolliculated Xenopus laevis oocytes - incubated with FeSO(4) for 1 h. A 3-fold increase in LP and a 2-fold increase in ROS formation were seen after exposure to FeSO(4), whereas KYNA attenuated these effects in a concentration-dependent manner. In addition, the in vivo formation of OH evoked by an acute infusion of FeSO(4) (100 μM) in the rat striatum was estimated by microdialysis and challenged by a topic infusion of KYNA (1 μM). FeSO(4) increased the striatal OH production, while KYNA mitigated this effect. Altogether, these data strongly suggest that KYNA, in addition to be a well-known antagonist acting on nicotinic and NMDA receptors, can be considered as a potential endogenous antioxidant. Copyright © 2011 Elsevier Inc. All rights reserved.
Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.
2010-01-01
The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms
Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.
Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz
2013-12-01
Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Root Zone Respiration on Hydroponically Grown Wheat Plant Systems
NASA Technical Reports Server (NTRS)
Soler-Crespo, R. A.; Monje, O. A.
2010-01-01
Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.
Intrinsic Fluorescence as a Spectral Probe for Protein Denaturation Studies in the Presence of Honey
NASA Astrophysics Data System (ADS)
Wong, Y. H.; Kadir, H. A.; Tayyab, S.
2015-11-01
Honey was found to quench the intrinsic fluorescence of bovine serum albumin (BSA) in a concentration dependent manner, showing complete quenching in the presence of 5% (w/v) honey. Increasing the protein concentration up to 5.0 μM did not lead to the recovery of the protein fluorescence. Urea denaturation of BSA, which otherwise shows a two-step, three-state transition, using intrinsic fluorescence of the protein as the probe failed to produce any result in the presence of 5% (w/v) honey. Thus, intrinsic fluorescence cannot be used as a spectral probe for protein denaturation studies in the presence of honey.
Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto
2014-01-01
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.
Opioid overdose mortality in Kansas, 2001-2011: toxicologic evaluation of intent.
Okic, Merisa; Cnossen, Leslie; Crifasi, Joseph A; Long, Christopher; Mitchell, Erik K
2013-01-01
Drug concentration is a factor in the determination of the manner of death, but considerable overlap exists between therapeutic and toxic concentrations. This study aims to quantify opioid mortality in Kansas from use of fentanyl, methadone and oxycodone and to evaluate utility of drug concentrations for the determination of the manner of death. Cases referred to a forensic pathology practice in Kansas for autopsy from 1 January 2001 to 31 December 2011 were considered. The criterion for inclusion was detection of fentanyl, methadone and/or oxycodone in postmortem toxicology. Of 9,789 cases, 3,315 had positive toxicology: 180 of fentanyl, 299 of methadone and 310 of oxycodone. There were 207 single opioid fatalities, 264 polydrug overdoses and 318 deaths where an opioid was present but not contributory to the mechanism of death. In line with published studies, incidence of opioid overdose deaths increased over the time of the study. Drug concentrations within each cause and manner of death covered broad ranges. Non-natural and natural manners had less overlap than existed within non-natural manners in limited comparisons. This study shows that drug concentration is independent of manner for non-natural deaths and although insufficient to identify intent, can provide a guideline in differentiating non-natural from natural deaths.
Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.
Park, Bo Kyung; Um, In Chul
2017-02-01
Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.
Souza, Iara Leão Luna de; Correia, Ana Carolina de Carvalho; Araujo, Layanne Cabral da Cunha; Vasconcelos, Luiz Henrique César; Silva, Maria da Conceição Correia; Costa, Vicente Carlos de Oliveira; Tavares, Josean Fechine; Paredes-Gamero, Edgar Julian; Cavalcante, Fabiana de Andrade; Silva, Bagnólia Araújo da
2015-09-16
Xylopia frutescens Aubl. (embira, semente-de-embira or embira-vermelha), is used in folk medicine as antidiarrheal. The essential oil from its leaves (XF-EO) has been found to cause smooth muscle relaxation. Thus, the aim of this study was to investigate the spasmolytic action by which XF-EO acts on guinea pig ileum. The components of the XF-EO were identified by gas chromatography-mass spectrometry. Segments of guinea pig ileum were suspended in organ bath containing modified Krebs solution at 37 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer coupled to an amplifier and computer. Fluorescence measurements were obtained with a microplate reader using Fluo-4. Forty-three constituents were identified in XF-EO, mostly mono- and sesquiterpenes. XF-EO has been found to cause relaxation on guinea pig ileum. The essential oil inhibited in a concentration-dependent manner both CCh- and histamine-induced phasic contractions, being more potent on histamine-induced contractions as well as antagonized histamine-induced cumulative contractions in a non-competitive antagonism profile. XF-EO relaxed in a concentration-dependent manner the ileum pre-contracted with KCl and histamine. Since the potency was smaller in organ pre-contracted with KCl, it was hypothesized that XF-OE would be acting as a K(+) channel positive modulator. In the presence of CsCl (non-selective K(+) channel blocker), the relaxant potency of XF-OE was not altered, indicating a non-participation of these channels. Moreover, XF-EO inhibited CaCl2-induced cumulative contractions in a depolarizing medium nominally without Ca(2+) and relaxed the ileum pre-contracted with S-(-)-Bay K8644 in a concentration-dependent manner, thus, was confirmed the inhibition of Ca(2+) influx through Cav1 by XF-EO. In cellular experiments, the viability of longitudinal layer myocytes from guinea pig ileum was not altered in the presence of XF-OE and the Fluo-4-associated fluorescence intensity in these intestinal myocytes stimulated by histamine was reduced by the essential oil, indicating a [Ca(2+)]c reduction. Spasmolytic action mechanism of XF-EO on guinea pig ileum can involve histaminergic receptor antagonism and Ca(2+) influx blockade, which results in [Ca(2+)]c reduction leading to smooth muscle relaxation.
Yousufzai, S Y; Abdel-Latif, A A
1998-11-06
We investigated the effects of the protein tyrosine kinase inhibitors, genistein, tyrphostin 47, and herbimycin on prostaglandin F2alpha- and carbachol-induced inositol-1,4,5-trisphosphate (IP3) production, [Ca2+]i mobilization and contraction in cat iris sphincter smooth muscle. Prostaglandin F2alpha and carbachol induced contraction in a concentration-dependent manner with EC50 values of 0.92 x 10(-9) and 1.75 x 10(-8) M, respectively. The protein tyrosine kinase inhibitors blocked the stimulatory effects of prostaglandin F2alpha, but not those evoked by carbachol, on IP3 accumulation, [Ca2+]i mobilization and contraction, suggesting involvement of protein tyrosine kinase activity in the physiological actions of the prostaglandin. Daidzein and tyrphostin A, inactive negative control compounds for genistein and tyrphostin 47, respectively, were without effect. Latanoprost, a prostaglandin F2alpha analog used as an antiglaucoma drug, induced contraction and this effect was blocked by genistein. Genistein (10 microM) markedly reduced (by 67%) prostaglandin F2alpha-stimulated increase in [Ca2+]i but had little effect on that of carbachol in cat iris sphincter smooth muscle cells. Vanadate, a potent inhibitor of protein tyrosine phosphatase, induced a slow gradual muscle contraction in a concentration-dependent manner with an EC50 of 82 microM and increased IP3 generation in a concentration-dependent manner with an EC50 of 90 microM. The effects of vanadate were abolished by genistein (10 microM). Wortmannin, a myosin light chain kinase inhibitor, reduced prostaglandin F2alpha- and carbachol-induced contraction, suggesting that the involvement of protein tyrosine kinase activity may lie upstream of the increases in [Ca2+]i evoked by prostaglandin F2alpha. Further studies aimed at elucidating the role of protein tyrosine kinase activity in the coupling mechanism between prostaglandin F2alpha receptor activation and increases in intracellular Ca2+ mobilization and identifying the tyrosine-phosphorylated substrates will provide important information about the role of protein tyrosine kinase in the mechanism of smooth muscle contraction, as well as about the mechanism of the intraocular pressure lowering effect of the prostaglandin in glaucoma patients.
Davies, Sarah L; Gibbons, Claire E; Steward, Martin C; Ward, Donald T
2008-10-01
The calcium-sensing receptor (CaR) is expressed on intestinal epithelial serosal membrane and in Caco-2 cells. In renal epithelium, CaR expressed on the basolateral membrane acts to limit excess tubular Ca2+ reabsorption. Therefore, here we investigated whether extracellular calcium (Ca(o)2+) can regulate active or passive 45Ca2+ transport across differentiated Caco-2 monolayers via CaR-dependent or CaR-independent mechanisms. Raising the Ca(o)2+ concentration from 0.8 to 1.6 mM increased transepithelial electrical resistance (TER) and decreased passive Ca2+ permeability but failed to alter active Ca2+ transport. The Ca(o)2+ effect on TER was rapid, sustained and concentration-dependent. Increasing basolateral Mg2+ concentration increased TER and inhibited both passive and active Ca2+ transport, whereas spermine and the CaR-selective calcimimetic NPS R-467 were without effect. We conclude that small increases in divalent cation concentration elicit CaR-independent increases in TER and inhibit passive Ca2+ transport across Caco-2 monolayers, most probably through a direct effect on tight junction permeability. Whilst it is known that the complete removal of Ca(o)2+ lowers TER, here we show that Ca(o)2+ addition actually increases TER in a concentration-dependent manner. Therefore, such Ca(o)2+-sensitivity could modulate intestinal solute transport including the limiting of excess Ca2+ absorption.
Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere
NASA Astrophysics Data System (ADS)
Wortel, M. J. R.; Vlaar, N. J.
1988-09-01
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.
Wang, Xing; Chen, Qiuhua; Tian, Wenjuan; Wang, Jianqing; Cheng, Lu; Lu, Jun; Chen, Mingqi; Pei, Yinhao; Li, Can; Chen, Gong; Gu, Ning
2017-01-01
Energy metabolism may alter pattern differences in acute lung injury (ALI) as one of the causes but the detailed features at single-cellular level remain unclear. Changes in intercellular temperature and adenosine triphosphate (ATP) concentration within the single cell may help to understand the role of energy metabolism in causing ALI. ALI in vitro models were established by treating mice lung epithelial (MLE-12) cells with lipopolysaccharide (LPS), hydrogen peroxide (H2O2), hydrochloric acid (HCl) and cobalt chloride (CoCl2, respectively. 100 nm micro thermocouple probe (TMP) was inserted into the cytosol by micromanipulation system and thermoelectric readings were recorded to calculate the intracellular temperature based on standard curve. The total ATP contents for the MLE-12 cells were evaluated at different time intervals after treatments. A significant increase of intracellular temperature was observed after 10 or 20 μg/L LPS and HCl treatments. The HCl increased the temperature in a dose-dependent manner. On the contrary, H2O2 induced a significant decline of intracellular temperature after treatment. No significant difference in intracellular temperature was observed after CoCl2 exposure. The intracellular ATP levels decreased in a time-dependent manner after treatment with H2O2 and HCl, while the LPS and CoCl2 had no significant effect on ATP levels. The intracellular temperature responses varied in different ALI models. The concentration of ATP in the MLE-12 cells played part in the intracellular temperature changes. No direct correlation was observed between the intracellular temperature and concentration of ATP in the MLE-12 cells.
Serotonin Shapes the Migratory Potential of NK Cells - An in vitro Approach.
Zimmer, Philipp; Bloch, Wilhelm; Kieven, Markus; Lövenich, Lukas; Lehmann, Jonas; Holthaus, Michelle; Theurich, Sebastian; Schenk, Alexander
2017-10-01
Increased serotonin (5-HT) levels have been shown to influence natural killer cell (NK cell) function. Acute exercise mobilizes and activates NK cells and further increases serum 5-HT concentrations in a dose-dependent manner. The aim of this study was to investigate the impact of different serum 5-HT concentrations on NK cell migratory potential and cytotoxicity. The human NK cell line KHYG-1 was assigned to 4 conditions, including 3 physiological concentrations of 5-HT (100, 130 or 170 µg/l 5-HT) and one control condition. NK cells were analyzed regarding cytotoxicity, migratory potential and expression of adhesion molecules. No treatment effect on NK cell cytotoxicity and expression of integrin subunits was detected. Migratory potential was increased in a dose dependent manner, indicating the highest protease activity in cells that were incubated with 170 µg/l 5-HT (170 µg/l vs. control, p<0.001, 170 µg/l vs. 100 µg/l, p<0.001; 170 µg/l vs. 130 µg/l, p=0.003; 130 µg/l vs. control, p<0.001, 130 µg/l vs. 100 µg/l, p<0.001). These results suggest that elevated 5-HT serum levels play a mediating role in NK cell function. As exercise has been shown to be involved in NK cell mobilization and redistribution, the influence of 5-HT should be investigated in ex vivo and in vivo experiments. © Georg Thieme Verlag KG Stuttgart · New York.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway.
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-12-10
BACKGROUND There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. MATERIAL AND METHODS This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. RESULTS The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. CONCLUSIONS Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-01-01
Background There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. Material/Methods This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. Results The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. Conclusions Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation. PMID:27941708
Alani, Behrang; Zare, Mohammad; Noureddini, Mahdi
2015-01-01
The smooth muscle contractions of the tracheobronchial airways are mediated through the balance of adrenergic, cholinergic and peptidergic nervous mechanisms. This research was designed to determine the bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of root Althaea on the isolated tracheobronchial smooth muscle of the rat. In this experimental study, 116 tracheobronchial sections (5 mm) from 58 healthy male Sprague-Dawley rats were dissected and divided into 23 groups. The effect of methanolic and aqueous extracts of the root Althaea was assayed at different concentrations (0.2, 0.6, 2.6, 6.6, 14.6 μg/ml) and epinephrine (5 μm) in the presence and absence of propranolol (1 μM) under one g tension based on the isometric method. This assay was recorded in an organ bath containing Krebs-Henseleit solution for tracheobronchial smooth muscle contractions using potassium chloride (KCl) (60 mM) induction. Epinephrine (5 μm) alone and root methanolic and aqueous extract concentrations (0.6-14.6 μg/ml) reduced tracheobronchial smooth muscle contractions induced using KCl (60 mM) in a dose dependent manner. Propranolol inhibited the antispasmodic effect of epinephrine on tracheobronchial smooth muscle contractions, but could not reduce the antispasmodic effect of the root extract concentrations. The methanolic and aqueous extracts of Althaea root inhibited the tracheobronchial smooth muscle contractions of rats in a dose dependent manner, but B-adrenergic receptors do not appear to engage in this process. Understanding the mechanism of this process can be useful in the treatment of pulmonary obstructive diseases like asthma.
The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Kyoung-Ah; Gadi, Jogeswar; Park, Hyoung Woo
2008-12-05
Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminalmore » of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 {mu}M, and appeared to plateau above a concentration of 1 {mu}M. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins.« less
Ward, J K; Fox, A J; Barnes, P J; Belvisi, M G
1994-04-01
1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM. 5. Selective 5-HT receptor agonists were also tested on excitatory NANC responses. 5-Carboxamidotryptamine (5-CT, 0.1-100 MicroM) was the most potent, producing a concentration-dependent inhibition with an EC50 of 0.13 MicroM. Calculation of approximate IC25 values (concentration of the agonist required to give a 25% inhibition of the excitatory NANC response) gave a rank order of potency 5-CT > 5-HT> > 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) >alpha-methyl-5-hydroxytryptamine (alpha-Me-5HT). Sumatriptan, 5-methoxytryptamine (5-MeOT) and 2-methyl-5-hydroxytryptamine (2-Me-5HT) were essentially inactive with IC25> 100 MicroM.6. 5-HT (10 microM) did not significantly affect contractile responses to exogenously applied substance P(1 nM-10 Microm).7. The effect of 5-HT was unchanged after incubation with the nitric oxide (NO) synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME, 100 Microm). However, pretreatment with charybdotoxin (ChTX,0.1-30 nM), a blocker of the large conductance Ca2+-activated K+channel (K+ca), produced a concentration-dependent inhibition of the effect of 5-HT (10 MicroM).8. 5-HT evokes a concentration-dependent inhibition of e-NANC bronchoconstriction in guinea-pig isolated bronchi but does not affect cumulative concentration-dependent contractile responses to substance P, suggesting that inhibition is via a prejunctional receptor. Effects of selective antagonists and agonists suggest that an atypical 5-HT receptor mediates this inhibition. The inhibitory effect of 5-HT does not involve the production of NO, but may involve the opening a ChTX-sensitive K+ca channel.These data suggest that an atypical 5-HT receptor inhibits the release of neuropeptides from sensory C fibres and may act as other inhibitory neuromodulators via the opening of a common K'channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xun, C.Q.; Ensor, C.M.; Tai, H.H.
1991-06-28
Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and (35S)methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Evidence that forskolin binds to the glucose transporter of human erythrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavis, V.R.; Lee, D.P.; Shenolikar, S.
1987-10-25
Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less
Rabinovich‐Guilatt, Laura; Steiner, Lilach; Hallak, Hussein; Muglia, Pierandrea; Spiegelstein, Ofer
2017-01-01
Aims Pridopidine is an oral drug in clinical development for treatment of patients with Huntington's disease. This study examined the interactions of pridopidine with in vitro cytochrome P450 activity and characterized the effects of pridopidine on CYP2D6 activity in healthy volunteers using metoprolol as a probe substrate. The effect of food on pridopidine exposure was assessed. Methods The ability of pridopidine to inhibit and/or induce in vitro activity of drug metabolizing enzymes was examined in human liver microsomes and fresh hepatocytes. CYP2D6 inhibition potency and reversibility was assessed using dextromethorphan. For the clinical assessment, 22 healthy subjects were given metoprolol 100 mg alone and concomitantly with steady‐state pridopidine 45 mg twice daily. Food effect on a single 90 mg dose of pridopidine was evaluated in a crossover manner. Safety assessments and pharmacokinetic sampling occurred throughout the study. Results Pridopidine was found to be a metabolism dependent inhibitor of CYP2D6, the main enzyme catalysing its own metabolism. Flavin‐containing monooxygenase heat inactivation of liver microsomes did not affect pridopidine metabolism‐dependent inhibition of CYP2D6 and its inhibition of CYP2D6 was not reversible with addition of FeCN3. Exposure to metoprolol was markedly increased when coadministered with pridopidine; the ratio of the geometric means (90% confidence interval) for maximum observed plasma concentration, and area under the plasma concentration–time curve from time 0 to the time of the last quantifiable concentration and extrapolated to infinity were 3.5 (2.9, 4.22), 6.64 (5.27, 8.38) and 6.55 (5.18, 8.28), respectively. Systemic exposure to pridopidine was unaffected by food conditions. Conclusions As pridopidine is a metabolism‐dependent inhibitor of CYP2D6, systemic levels of drugs metabolized by CYP2D6 may increase with chronic coadministration of pridopidine. Pridopidine can be administered without regard to food. PMID:28449367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyunjin; Bergeron, Eric; Senta, Helena
2010-08-27
Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma,more » a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.« less
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won
2013-04-01
In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.
Holmes, Amie L.; Wise, Sandra S.; Pelsue, Stephen C.; Aboueissa, AbouEl-Makarim; Lingle, Wilma; Salisbury, Jeffery; Gallagher, Jamie; Wise, John Pierce
2010-01-01
Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen, however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no increase in aneuploidy after a 24 hour exposure to zinc chromate, but with more chronic exposures, zinc chromate induced concentration- and time-dependent increases in aneuploidy in the form of hypodiploidy, hyperdiploidy and tetraploidy. Zinc chromate also induced centrosome amplification in a concentration- and time-dependent manner in both interphase and mitotic cells after chronic exposure, producing cells with centriolar defects. Further, chronic exposure to zinc chromate induced concentration- and time-dependent increases in spindle assembly checkpoint bypass with increases in centromere spreading, premature centromere division and premature anaphase. Lastly, we found that chronic exposure to zinc chromate induced a G2 arrest. All together, these data indicate that zinc chromate can induce chromosome instability after prolonged exposures. PMID:20030412
Kluge, H; Gessner, D K; Herzog, E; Eder, K
2016-03-01
The present study was performed to assess the bioefficacy of DL-methionine hydroxy analogue-free acid (MHA) in comparison to DL-methionine (DLM) as sources of methionine for growing male white Pekin ducks in the first 3 wk of life. For this aim, 580 1-day-old male ducks were allocated into 12 treatment groups and received a basal diet that contained 0.29% of methionine, 0.34% of cysteine and 0.63% of total sulphur containing amino acids or the same diet supplemented with either DLM or MHA in amounts to supply 0.05, 0.10, 0.15, 0.20, and 0.25% of methionine equivalents. Ducks fed the control diet without methionine supplement had the lowest final body weights, daily body weight gains and feed intake among all groups. Supplementation of methionine improved final body weights and daily body weight gains in a dose dependent-manner. There was, however, no significant effect of the source of methionine on all of the performance responses. Evaluation of the data of daily body weight gains with an exponential model of regression revealed a nearly identical efficacy (slope of the curves) of both compounds for growth (DLM = 100%, MHA = 101%). According to the exponential model of regression, 95% of the maximum values of daily body weight gain were reached at methionine supplementary levels of 0.080% and 0.079% for DLM and MHA, respectively. Overall, the present study indicates that MHA and DLM have a similar efficacy as sources of methionine for growing ducks. It is moreover shown that dietary methionine concentrations of 0.37% are required to reach 95% of the maximum of daily body weight gains in ducks during the first 3 wk of life. © 2015 Poultry Science Association Inc.
St Denis, Tyler G.; Vecchio, Daniela; Zadlo, Andrzej; Rineh, Ardeshir; Sadasivam, Magesh; Avci, Pinar; Huang, Liyi; Kozinska, Anna; Chandran, Rakkiyappan; Sarna, Tadeusz; Hamblin, Michael R.
2013-01-01
Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (•OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 μM MB, 5J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P < 0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P < 0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of •OH, which, together with kinetic data, strongly suggests that MB, known to produce •OH and 1O2, may, under the conditions used, preferentially form 1O2. PMID:23969112
Eotaxin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells
Jamaluddin, Md Saha; Wang, Xinwen; Wang, Hao; Rafael, Cubas; Yao, Qizhi; Chen, Changyi
2009-01-01
Objective The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs). Methods and Results Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas-Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner. In addition, eotaxin treatment significantly decreased the mRNA and protein levels of endothelial junction molecules including zonula occludens-1 (ZO-1), occludin and claudin-1 in a concentration-dependent manner as determined by real time RT-PCR and Western blot analysis, respectively. Increased oxidative stress was observed in eotaxin-treated HCAECs by analysis of cellular glutathione levels. Furthermore, eotaxin treatment substantially activated the phosphorylation of MAPK p38. HCAECs expressed CCR3. Consequently, antioxidants (ginkgolide B and MnTBAP), specific p38 inhibitor SB203580 and anti-CCR3 antibody effectively blocked the eotaxin-induced permeability increase in HCAECs. Eotaxin also increased phosphorylation of Stat3 and nuclear translocation of NF-κB in HCAECs. Conclusions Eotaxin increases vascular permeability through CCR3, the down regulation of tight junction proteins, increase of oxidative stress and activation of MAPK p38, Stat3 and NF-kB pathways in HCAECs. PMID:19778943
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
Aroui, Sonia; Aouey, Bakhta; Chtourou, Yassine; Meunier, Annie-Claire; Fetoui, Hamadi; Kenani, Abderraouf
2016-01-25
Naringin (4',5,7-trihydroxyflavanone 7-rhamnoglucoside), a natural flavonoid, has pharmacological properties. In the present study, we investigated the anti-metastatic activity of naringin and its molecular mechanism(s) of action in human glioblastoma cells. Naringin exhibits inhibitory effects on the invasion and adhesion of U87 cells in a concentration-dependent manner by Matrigel Transwell and cell adhesion assays. Naringin also inhibited the migration of U87 cells in a concentration-dependent manner by wound-healing assay. Additional experiments showed that naringin treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2 and MMP-9 using a gelatin zymography assay and western blot analyses. Furthermore, naringin was able to reduce the protein phosphorylation of extracellular signal-regulated kinase ERK, p38 mitogen-activated protein kinase and c-Jun N-terminal kinase by western blotting. Collectively, our data showed that naringin attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the downregulation of the expression and enzymatic activities of MMP-2, MMP-9, contributing to the inhibition of metastasis in U87 cells. These findings proved that naringin may offer further application as an antimetastatic agent. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ríos, J David; Shatos, Marie A; Urashima, Hiroki; Dartt, Darlene A
2008-04-01
The purpose of the study was to determine if OPC-12759 stimulates secretion from conjunctival goblet cells in culture and if it activates the EGF receptor (EGFR) and p44/p42 mitogen-activated protein kinase (MAPK) to cause mucin secretion. Conjunctival goblet cells were cultured from pieces of male rat conjunctiva. OPC-12759 was added at increasing concentrations and for varying times to the cultured cells. The cholinergic agonist carbachol was used as a positive control. In selected experiments an inhibitor of the EGFR, AG1478, or an inhibitor of the kinase that activates MAPK, U0126, were added before OPC-12759. Goblet cell secretion of high molecular weight glycoconjugates was measured by an enzyme-linked lectin assay using the lectin UEA-1. Activation of the EGFR and MAPK were determined with Western blotting analysis using antibodies specific to the phosphorylated and the total amounts of these proteins. We found that OPC-12759 induced goblet cell secretion in a time- and concentration-dependent manner. Inhibition of the EGFR with AG1478 blocked secretion stimulated by OPC-12759. Inhibition of MAPK with U0126 also blocked secretion stimulated by OPC-12759. OPC-12759 increased the phosphorylation of the EGFR and MAPK in a time-dependent manner. We concluded that OPC-12759 stimulates secretion from cultured conjunctival goblet cells by activating the EGFR, which then induces MAPK activity.
Ying, Xiaozhou; Cheng, Shaowen; Shen, Yue; Cheng, Xiaojie; An Rompis, Ferdinand; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Peng, Lei; Tian, Xin Qiao; Lu, Chuan Zhu
2012-01-01
The aims of the study were to show the direct effect of nicotine with different concentrations (0, 25, 50, and 100 ng/ml) on chondrocytes isolated from normal human and osteoarthritis patients, respectively. Microscopic observation was performed during the culture with an inverted microscope. Methyl thiazolyl tetrazolium (MTT) assay method was adopted to observe the influence of nicotine on the proliferation of chondrocytes, and real-time PCR and ELISA were used to assay the mRNA and protein expression of type II collagen and aggrecan, respectively. We discovered that the OA chondrocytes were similar to fibroblasts in shape and grow slower than normal chondrocytes. The proliferation of the two kinds of chondrocytes was increased in a concentration-dependent manner and in a time-dependent manner (P<0.05). Also, we found that the mRNA level of type II collagen were upregulated under 25-100 ng/ml nicotine doses both in the two kinds of chondrocytes compared with control. The expression of protein levels of type II collagen were synthesized in line with the increase in mRNA. No effect was observed on aggrecan synthesis with any nicotine dose. We concluded that nicotine has the same effect on both chondrocytes, obtained either from osteoarthritis patients or from normal human, and the positive effect of smoking in OA may relate to the alteration in metabolism of chondrocytes.
Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.
Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan
2015-12-01
To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.
Sun, Haoyu; Pan, Yongzheng; Gu, Yue; Lin, Zhifen
2018-07-15
Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic investigation of time-dependent cross-phenomenon, benefitting the environmental risk assessment of mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Oral administration of paraquat perturbs immunoglobulin productivity in mouse.
Okabe, Masaaki; Nishimoto, Sogo; Sugahara, Takuya; Akiyama, Koichi; Kakinuma, Yoshimi
2010-04-01
Paraquat is one of the most widely used herbicides in the world and has been known to injure lungs, liver and skin in animals and human. Hence, it is important to understand the manner of paraquat in mammals. We studied the effect of paraquat on the immune function of mouse in vitro and in vivo. When splenocytes were cultured in vitro with various concentrations of paraquat, IgA productivity was not affected while IgG and IgM productivity decreased. On the other hand, Oral administration of paraquat for 1, 2 or 3 weeks increased IgA level but decreased IgM levels in serum of mice. Similarly IgA productivity increased while IgM productivity decreased. These results suggest that paraquat perturbs the lymphocytes immunoglobulin productivity in an immunoglobulin class-dependent manner.
Aruga, Yasuhiro; Kozuka, Masaya
2016-04-01
Needle-shaped precipitates in an aged Al-0.62Mg-0.93Si (mass%) alloy were identified using a compositional threshold method, an isoconcentration surface, in atom probe tomography (APT). The influence of thresholds on the morphological and compositional characteristics of the precipitates was investigated. Utilizing optimum parameters for the concentration space, a reliable number density of the precipitates is obtained without dependence on the elemental concentration threshold in comparison with evaluation by transmission electron microscopy (TEM). It is suggested that careful selection of the concentration space in APT can lead to a reasonable average Mg/Si ratio for the precipitates. It was found that the maximum length and maximum diameter of the precipitates are affected by the elemental concentration threshold. Adjustment of the concentration threshold gives better agreement with the precipitate dimensions measured by TEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wei, Chia-Fong; Shien, Jui-Hung; Chang, Shao-Kuang; Chou, Chi-Chung
2016-01-01
Synergistic effects between the same class of antibiotics are rarely reported. Our previous study found synergistic-like interaction between florfenicol (FFC) and thiamphenicol (TAP) against Staphylococcus aureus. Here, the enhanced antimicrobial activity was evaluated in 97 clinical isolates of both Gram-negative and Gram-positive bacteria. Susceptible strains were initially identified by checkerboard microdilution assay (fractional inhibitory concentration index [FICI] ≤ 0.625), followed by confirmation of synergism using the time-kill methodology (≥2 log10 CFU/ml reduction). In all, 43% of Pasteurella multocida tested were susceptible to the enhanced bactericidal effect. In chicken fowl cholera models, FFC and TAP combination at much lower dosage that is correspondent to their MIC deduction provided maximum protection in vivo. Furthermore, synergistic combination of FFC with oxytetracycline (OTC) against Pseudomonas aeruginosa in vitro was also demonstrated. Based on the enhanced uptake of TAP and OTC, FFC presumably elicits enhanced antimicrobial activity in an orderly manner through alteration of bacterial membrane permeability or efflux systems and subsequent increase of intracellular concentration of the antibiotics used in combination. Results of ethidium bromide accumulation assay and RNA-seq showed little evidence for the involvement of efflux pumps in the synergy but further investigation is required. This study suggests the potentiality of a novel combination regimen involving FFC as an initiating modulator effective against both Gram-positive and Gram-negative bacteria depending on the antibiotics that are combined. The observed improvement of bacteriostatic effect to bactericidal, and the extended effectiveness against FFC-resistant bacterial strains warrant further studies. PMID:27065961
Martínez; Martín; Prádanos; Calvo; Palacio; Hernández
2000-01-15
The mass of gamma-globulin fouling an Anodisc alumina membrane with a nominal pore diameter of 0.1 µm has been measured at several concentrations and pHs. This fouling resulted from filtering through the membrane in a continuous recirculation device. The low-concentration fouling can be attributed mainly to adsorption. The complete concentration dependence of fouling mass has been obtained and fitted to a Freundlich heterogeneous isotherm, from which the pH dependence of active fouling sites and energies has been also obtained. Adsorption is studied as a function of the electrostatic forces between the solute and the membrane. A sharp maximum in the adsorbed mass for zero electrostatic force is observed. At high concentrations, accumulation plays a relevant role at alkaline pH, as confirmed by flux decay experiments, retention measurements, and AFM (atomic force microscopy) pictures. Copyright 2000 Academic Press.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed
2018-03-15
Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP concentration toward environmentally relevant concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Dependence of performance of Si nanowire solar cells on geometry of the nanowires.
Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun
2014-01-01
The dependence of performance of silicon nanowires (SiNWs) solar cells on the growth condition of the SiNWs has been described. Metal-assisted electroless etching (MAE) technique has been used to grow SiNWs array. Different concentration of aqueous solution containing AgNO3 and HF for Ag deposition is used. The diameter and density of SiNWs are found to be dependent on concentration of solution used for Ag deposition. The diameter and density of SiNWs have been used to calculate the filling ratio of the SINWs arrays. The filling ratio is increased with increase in AgNO3 concentration, whereas it is decreased with increase in HF concentration. The minimum reflectance value achieved is ~1% for SiNWs of length of ~1.2 μ m in the wavelength range of 300-1000 nm. The performance and diode parameters strongly depend on the geometry of SiNWs. The maximum short circuit current density achieved is 35.6 mA/cm(2). The conversion efficiency of solar cell is 9.73% for SiNWs with length, diameter, and wire density of ~1.2 μ m, ~75 nm, and 90 μ m(-2), respectively.
Polese, Gianluca; Winlow, William; Di Cosmo, Anna
2014-12-01
Recent progress in animal welfare legislation relating to invertebrates has provoked interest in methods for the anesthesia of cephalopods, for which different approaches to anesthesia have been tried but in most cases without truly anesthetizing the animals. For example, several workers have used muscle relaxants or hypothermia as forms of "anesthesia." Several inhalational anesthetics are known to act in a dose-dependent manner on the great pond snail Lymnaea stagnalis, a pulmonate mollusk. Here we report, for the first time, on the effects of clinical doses of the well-known inhalational clinical anesthetic isoflurane on the behavioral responses of the common octopus Octopus vulgaris. In each experiment, isoflurane was equilibrated into a well-aerated seawater bath containing a single adult O. vulgaris. Using a web camera, we recorded each animal's response to touch stimuli eliciting withdrawal of the arms and siphon and observed changes in the respiratory rate and the chromatophore pattern over time (before, during, and after application of the anesthetic). We found that different animals of the same size responded with similar behavioral changes as the isoflurane concentration was gradually increased. After gradual application of 2% isoflurane for a maximum of 5 min (at which time all the responses indicated deep anesthesia), the animals recovered within 45-60 min in fresh aerated seawater. Based on previous findings in gastropods, we believe that the process of anesthesia induced by isoflurane is similar to that previously observed in Lymnaea. In this study we showed that isoflurane is a good, reversible anesthetic for O. vulgaris, and we developed a method for its use.
Doping dependence of critical temperature for superconductivity induced by hole-phonon interaction
NASA Astrophysics Data System (ADS)
Durajski, A. P.; Szczȩśniak, R.
2017-10-01
To understand the nature of the high-temperature superconductors (cuprates) we have taken into consideration the interaction terms, which possess the structure of the hole-phonon (HP) and hole-hole-phonon (HHP) type. It was shown that for the high value of the HHP potential in comparison to HP, the superconducting critical temperature (TC) reaches the maximum value for the low concentration of holes, which fairly corresponds with the observed maximum of TC for hole-doped cuprates. The analysis was performed within the framework of the Eliashberg approach.
Binding of KATP channel modulators in rat cardiac membranes
Löffler-Walz, Cornelia; Quast, Ulrich
1998-01-01
The binding of [3H]-P1075, a potent opener of adenosine-5′-triphosphate-(ATP)-sensitive K+ channels, was studied in a crude heart membrane preparation of the rat, at 37°C.Binding required MgATP. In the presence of an ATP-regenerating system, MgATP supported [3H]-P1075 binding with an EC50 value of 100 μM and a Hill coefficient of 1.4.In saturation experiments [3H]-P1075 binding was homogeneous with a KD value of 6±1 nM and a binding capacity (Bmax) of 33±3 fmol mg−1 protein.Upon addition of an excess of unlabelled P1075, the [3H]-P1075-receptor complex dissociated in a mono-exponential manner with a dissociation rate constant of 0.13±0.01 min−1. If a bi-molecular association mechanism was assumed, the dependence of the association kinetics on label concentration gave an association rate constant of 0.030±0.003 nM−1 min−1. From the kinetic experiments the KD value was calculated as 4.7±0.6 nM.Openers of the ATP-sensitive K+ channel belonging to different structural classes inhibited specific [3H]-P1075 binding in a monophasic manner to completion; an exception was minoxidil sulphate where maximum inhibition was 68%. The potencies of the openers in this assay agree with published values obtained in rat cardiocytes and are on average 3.5 times lower than those determined in rat aorta.Sulphonylureas, such as glibenclamide and glibornuride and the sulphonylurea-related carboxylate, AZ-DF 265, inhibited [3H]-P1075 binding with biphasic inhibition curves. The high affinity component comprised about 60% of the curves with the IC50 value of glibenclamide being ≈amp;90 nM; affinities for the low affinity component were in the μM concentration range. The fluorescein derivative, phloxine B, showed a monophasic inhibition curve with an IC50 value of 6 μM, a maximum inhibition of 94% and a Hill coefficient of 1.5.It is concluded that binding studies with [3H]-P1075 are feasible in rat heart membranes in the presence of MgATP and of an ATP-regenerating system. The pharmacological profile of the [3H]-P1075 binding sites in the cardiac preparation, which probably contains sulphonylurea receptors (SURs) from cardiac myocytes (SUR2A) and vascular smooth muscle cells (SUR2B), differs from that expected for SUR2A and SUR2B. PMID:9579735
El Bardai, Sanae; Wibo, Maurice; Hamaide, Marie-Christine; Lyoussi, Badiaa; Quetin-Leclercq, Joëlle; Morel, Nicole
2003-01-01
The objective of the present study was to investigate the mechanism of the relaxant activity of marrubenol, a diterpenoid extracted from Marrubium vulgare. In rat aorta, marrubenol was a more potent inhibitor of the contraction evoked by 100 mM KCl (IC50: 11.8±0.3 μM, maximum relaxation: 93±0.6%) than of the contraction evoked by noradrenaline (maximum relaxation: 30±1.5%). In fura-2-loaded aorta, marrubenol simultaneously inhibited the Ca2+ signal and the contraction evoked by 100 mM KCl, and decreased the quenching rate of fura-2 fluorescence by Mn2+. Patch-clamp data obtained in aortic smooth muscle cells (A7r5) indicated that marrubenol inhibited Ba2+ inward current in a voltage-dependent manner (KD: 8±2 and 40±6 μM at holding potentials of −50 and −100 mV, respectively). These results showed that marrubenol inhibits smooth muscle contraction by blocking L-type calcium channels. PMID:14597602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
Barbosa, Wagner Faria; De Meyer, Laurens; Guedes, Raul Narciso C; Smagghe, Guy
2015-01-01
Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of azadirachtin were studied on B. terrestris via oral exposure in the laboratory to bring out the potential risks of the compound to this important pollinator. The compound was tested at different concentrations above and below the maximum concentration that is used in the field (32 mg L(-1)). As most important results, azadirachtin repelled bumblebee workers in a concentration-dependent manner. The median repellence concentration (RC50) was estimated as 504 mg L(-1). Microcolonies chronically exposed to azadirachtin via treated sugar water during 11 weeks in the laboratory exhibited a high mortality ranging from 32 to 100 % with a range of concentrations between 3.2 and 320 mg L(-1). Moreover, no reproduction was scored when concentrations were higher than 3.2 mg L(-1). At 3.2 mg L(-1), azadirachtin significantly inhibited the egg-laying and, consequently, the production of drones during 6 weeks. Ovarian length decreased with the increase of the azadirachtin concentration. When azadirachtin was tested under an experimental setup in the laboratory where bumblebees need to forage for food, the sublethal effects were stronger as the numbers of drones were reduced already with a concentration of 0.64 mg L(-1). Besides, a negative correlation was found between the body mass of male offspring and azadirachtin concentration. In conclusion, our results as performed in the laboratory demonstrated that azadirachtin can affect B. terrestris with a range of sublethal effects. Taking into account that sublethal effects are as important as lethal effects for the development and survival of the colonies of B. terrestris, this study confirms the need to test compounds on their safety, especially when they have to perform complex tasks such as foraging. The latter agrees with the recent European Food Safety Authority guidelines to assess 'potentially deleterious' compounds for sublethal effects on behavior.
NASA Astrophysics Data System (ADS)
Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.
2017-05-01
We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.
Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R
2018-02-01
The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.
Bai, Yan; Edelmann, Martin; Sanderson, Michael J
2009-08-01
The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3)-dependent mechanism.
Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A
1996-10-25
The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.
Billur, Deniz; Tuncay, Erkan; Okatan, Esma Nur; Olgar, Yusuf; Durak, Aysegul Toy; Degirmenci, Sinan; Can, Belgin; Turan, Belma
2016-11-01
The Zn 2+ in cardiomyocytes is buffered by structures near T-tubulus and/or sarcoplasmic/endoplasmic reticulum (S(E)R) while playing roles as either an antioxidant or a toxic agent, depending on the concentration. Therefore, we aimed first to examine a direct effect of ZnPO 4 (extracellular exposure) or Zn 2+ pyrithione (ZnPT) (intracellular exposure) application on the structure of the mitochondrion in ventricular cardiomyocytes by using histological investigations. The light microscopy data demonstrated that Zn 2+ exposure induced marked increases on cellular surface area, an indication of hypertrophy, in a concentration-dependent manner. Furthermore, a whole-cell patch-clamp measurement of cell capacitance also supported the hypertrophy in the cells. We observed marked increases in mitochondrial matrix/cristae area and matrix volume together with increased lysosome numbers in ZnPO 4 - or ZnPT-incubated cells by using transmission electron microscopy, again in a concentration-dependent manner. Furthermore, we observed notable clustering and vacuolated mitochondrion, markedly disrupted and damaged myofibrils, and electron-dense small granules in Zn 2+ -exposed cells together with some implications of fission-fusion defects in the mitochondria. Moreover, we observed marked depolarization in mitochondrial membrane potential during 1-μM ZnPT minute applications by using confocal microscopy. We also showed that 1-μM ZnPT incubation induced significant increases in the phosphorylation levels of GSK3β (Ser21 and Ser9), Akt (Ser473), and NFκB (Ser276 and Thr254) together with increased expression levels in ER stress proteins such as GRP78 and calregulin. Furthermore, a new key player at ER-mitochondria sites, promyelocytic leukemia protein (PML) level, was markedly increased in ZnPT-incubated cells. As a summary, our present data suggest that increased cytosolic free Zn 2+ can induce marked alterations in mitochondrion morphology as well as depolarization in mitochondrion membrane potential and changes in some cytosolic signaling proteins as well as a defect in ER-mitochondria cross talk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.
Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less
Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.; ...
2018-05-23
Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.
2015-03-01
On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-04-01
Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.
2010-01-01
Background Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS2concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. Methods Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. Results The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. Conclusions Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects. PMID:20433757
Kuwayama, Kenji; Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Yamamuro, Tadashi; Segawa, Hiroki; Inoue, Hiroyuki
2017-04-01
Hair and nails are often used to prove long-term intake of drugs in forensic drug testing. The aim of this study was to evaluate the effectiveness of drug testing using hair and nails and the feasibility of determining when drugs were ingested by measuring the time-courses of drug concentrations in hair and toenails after single administrations of various drugs. Healthy subjects ingested four pharmaceutical products containing eight active ingredients in single doses. Hair and toenails were collected at predetermined intervals, and drug concentrations in hair and nails were measured for 12 months. The administered drugs and their main metabolites were extracted using micropulverized extraction with a stainless steel bullet and were analyzed using liquid chromatography/tandem mass spectrometry. Acidic compounds such as ibuprofen and its metabolites were not detected in both specimens. Acetaminophen, a weakly acidic compound, was detected in nails more frequently than in hair. The maximum concentration of allyl isopropyl acetylurea, a neutral compound, in nails was significantly higher than in hair. Nails are an effective specimen to detect neutral and weakly acidic compounds. For fexofenadine, a zwitterionic compound, and for most basic compounds, the maximum concentrations in hair segments tended to be higher than those in nails. The hair segments showing the maximum concentrations varied between drugs, samples, and subjects. Drug concentrations in hair segments greatly depended on the selection of the hair. Careful interpretation of analytical results is required to predict the time of drug intake. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Simple detection of residual enrofloxacin in meat products using microparticles and biochips.
Ha, Mi-Sun; Chung, Myung-Sub; Bae, Dong-Ho
2016-05-01
A simple and sensitive method for detecting enrofloxacin, a major veterinary fluoroquinolone, was developed. Monoclonal antibody specific for enrofloxacin was immobilised on a chip and fluorescent dye-labelled microparticles were covalently bound to the enrofloxacin molecules. Enrofloxacin in solution competes with the microparticle-immobilised enrofloxacin (enroMPs) to bind to the antibody on the chip. The presence of enrofloxacin was verified by detecting the fluorescence of enrofloxacin-bound microparticles. Under optimum conditions, a high dynamic range was achieved at enrofloxacin concentrations ranging from 1 to 1000 μg kg(-1). The limits of detection and quantification for standard solutions were 5 and 20 μg kg(-1) respectively, which are markedly lower than the maximum residue limit. Using simple extraction methods, recoveries from fortified beef, pork and chicken samples were 43.4-62.3%. This novel method also enabled approximate quantification of enrofloxacin concentration: the enroMP signal intensity decreased with increasing enrofloxacin concentration. Because of its sensitivity, specificity, simplicity and rapidity, the method described herein will facilitate the detection and approximate quantification of enrofloxacin residues in foods in a high-throughput manner.
Observational and modeling studies of chemical species concentrations as a function of raindrop size
NASA Astrophysics Data System (ADS)
Wai, K. M.; Tam, C. W. F.; Tanner, P. A.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.
Biogeographical drivers of ragweed pollen concentrations in Europe
NASA Astrophysics Data System (ADS)
Matyasovszky, István; Makra, László; Tusnády, Gábor; Csépe, Zoltán; Nyúl, László G.; Chapman, Daniel S.; Sümeghy, Zoltán; Szűcs, Gábor; Páldy, Anna; Magyar, Donát; Mányoki, Gergely; Erostyák, János; Bodnár, Károly; Bergmann, Karl-Christian; Deák, Áron József; Thibaudon, Michel; Albertini, Roberto; Bonini, Maira; Šikoparija, Branko; Radišić, Predrag; Gehrig, Regula; Rybníček, Ondřej; Severova, Elena; Rodinkova, Victoria; Prikhodko, Alexander; Maleeva, Anna; Stjepanović, Barbara; Ianovici, Nicoleta; Berger, Uwe; Seliger, Andreja Kofol; Weryszko-Chmielewska, Elżbieta; Šaulienė, Ingrida; Shalaboda, Valentina; Yankova, Raina; Peternel, Renata; Ščevková, Jana; Bullock, James M.
2017-06-01
The drivers of spatial variation in ragweed pollen concentrations, contributing to severe allergic rhinitis and asthma, are poorly quantified. We analysed the spatiotemporal variability in 16-year (1995-2010) annual total (66 stations) and annual total (2010) (162 stations) ragweed pollen counts and 8 independent variables (start, end and duration of the ragweed pollen season, maximum daily and calendar day of the maximum daily ragweed pollen counts, last frost day in spring, first frost day in fall and duration of the frost-free period) for Europe (16 years, 1995-2010) as a function of geographical coordinates. Then annual total pollen counts, annual daily peak pollen counts and date of this peak were regressed against frost-related variables, daily mean temperatures and daily precipitation amounts. To achieve this, we assembled the largest ragweed pollen data set to date for Europe. The dependence of the annual total ragweed pollen counts and the eight independent variables against geographical coordinates clearly distinguishes the three highly infected areas: the Pannonian Plain, Western Lombardy and the Rhône-Alpes region. All the eight variables are sensitive to longitude through its temperature dependence. They are also sensitive to altitude, due to the progressively colder climate with increasing altitude. Both annual total pollen counts and the maximum daily pollen counts depend on the start and the duration of the ragweed pollen season. However, no significant changes were detected in either the eight independent variables as a function of increasing latitude. This is probably due to a mixed climate induced by strong geomorphological inhomogeneities in Europe.
Harms, H; Zehnder, A J
1994-01-01
Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817
Cortisone and hydrocortisone inhibit human Kv1.3 activity in a non-genomic manner.
Yu, Jing; Park, Mi-Hyeong; Choi, Se-Young; Jo, Su-Hyun
2015-06-01
Glucocorticoids are hormones released in response to stress that are involved in various physiological processes including immune functions. One immune-modulating mechanism is achieved by the Kv1.3 voltage-dependent potassium channel, which is expressed highly in lymphocytes including effector memory T lymphocytes (TEM). Although glucocorticoids are known to inhibit Kv1.3 function, the detailed inhibitory mechanism is not yet fully understood. Here we studied the rapid non-genomic effects of cortisone and hydrocortisone on the human Kv1.3 channel expressed in Xenopus oocytes. Both cortisone and hydrocortisone reduced the amplitude of the Kv1.3 channel current in a concentration-dependent manner. Both cortisone and hydrocortisone rapidly and irreversibly inhibited Kv1.3 currents, eliminating the possibility of genomic regulation. Inhibition rate was stable relative to the degree of depolarization. Kinetically, cortisone altered the activating gate of Kv1.3 and hydrocortisone interacted with this channel in an open state. These results suggest that cortisone and hydrocortisone inhibit Kv1.3 currents via a non-genomic mechanism, providing a mechanism for the immunosuppressive effects of glucocorticoids.
β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage
Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu
2013-01-01
Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957
Nickel, Jeffrey D.; Kaufman, Moriah N.; Finn, Deborah A.
2014-01-01
The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration. PMID:25416204
Ford, Matthew M; Nickel, Jeffrey D; Kaufman, Moriah N; Finn, Deborah A
2015-05-01
The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration.
Masson, Olivier; Bieringer, Jacqueline; Brattich, Erika; Dalheimer, Axel; Estier, Sybille; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Steinmann, Philipp; Tositti, Laura; Van Beek, Pieter; Vismes-Ott, Anne de
2016-10-01
The Fukushima-labeled air mass arrival, and later the cesium-134 ( 134 Cs), cesium-137 ( 137 Cs) and particulate iodine-131 (hereafter noted 131 I p ) maximum levels were registered in Europe at different dates depending on the location. Most of those data were obtained at low-altitude sampling areas. Here, we compare the airborne levels registered at different high-altitude European locations (from 850 m to about 3500 m). The integrated 137 Cs activity concentration was not uniform with regard to the altitude even after a long travel time/distance from Japan. Moreover, the relation of integrated 137 Cs vs. altitude showed a linear decrease up to an altitude of about 3000 m. A similar trend was noticed for 131 I p (particulate fraction) while it increased above 3000 m. Comparison with 7 Be activity concentration showed that, as far as the high altitude location is concerned, the 137 Cs and 134 Cs maximum concentrations corresponded to the 7 Be maximum, suggesting downdraft movements from high tropospheric or stratospheric layers to be responsible for 137,134 Cs increase and peak values. This was also confirmed by high potential vorticity and low relative humidity registered during the peak values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul
2012-01-27
Here, we estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.
Impact of Laser Radiation on Microhardness of a Semiconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvid', A.; Onufrijevs, P.; Chiradze, G.
2011-12-23
It was found that strongly absorbed Nd:YAG laser radiation leads to a non-monotonous dependence of microhardness of p- and n-type Si crystals on laser radiation. This dependence is characterized by two maxima for p-Si and one maximum for n-Si crystals. In both cases the increase of microhardness at higher laser intensity is explained by formation of mechanically compressed layer at the irradiated surface due to concentration of the interstitial atoms of Si at the surface in temperature gradient field. The decrease of the microhardness is explained by formation of nano-cones as a result of plastic deformation of the mechanically stressedmore » layer. The additional maximum at lower laser intensity for p-Si crystal is explained by p-n type inversion of Si conductivity.« less
Magnetic and hydrogel composite materials for hyperthermia applications.
Lao, L L; Ramanujan, R V
2004-10-01
Micron-sized magnetic particles (Fe3O4) were dispersed in a polyvinyl alcohol hydrogel to study their potential for hyperthermia applications. Heating characteristics of this ferrogel in an alternating magnetic field (375 kHz) were investigated. The results indicate that the amount of heat generated depends on the Fe3O4 content and magnetic field amplitude. A stable maximum temperature ranging from 43 to 47 degrees C was successfully achieved within 5-6 min. The maximum temperature was a function of Fe3O4 concentration. A specific absorption rate of up to 8.7 W/g Fe3O4 was achieved; this value was found to depend on the magnetic field strength. Hysteresis loss is the main contribution to the heating effect experienced by the sample.
The involvement of ethylene in regulation of Arabidopsis gravitropism
NASA Astrophysics Data System (ADS)
Li, Ning; Zhu, Lin
Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow green 1, Chen et al 2005; Guo et al 2008). To address the molecular mechanism by which ethylene regulates gravitropism, a cutting-edge phosphopro-teomics approach has been adopted to discover new components involved in ethylene signaling pathways (Li et al 2009). Two putative ethylene response transcription factors: EIL1 and ERF110, have been identified to contain ethylene-regulated phosphorylation sites, the phos-phorylation status of which are ethylene treatment-dependent but EIN2-independent, strongly suggestive of the existence of novel signaling components mediating an alternative ethylene signal pathway. Combination of the time-dependent ethylene treatments with the systematic profiling of protein phosphorylation using functional phosphoproteomics among Arabidopsis ethylene response mutants is able to provide more valuable information about the molecular mechanisms underlying ethylene and gravity signaling pathways. (This work is supported by grants: RPC07/08.SC16, 661408, 661207, N HKUST627/06, DAG04/05.SC08, HKUST6105/01M, and HKUST6413/06M)
Quitschke, Wolfgang W.
2012-01-01
Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4–6 days to either preparation in cell culture media reduced cell division (1–5 µM), induced senescence (6–7 µM) or comprehensive cell death (8–10 µM) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM) for 0.5–4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6–10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are sequentially activated and that this activation is dependent on the affinity of curcuminoids for the respective binding sites. Defined serum-solubilized curcuminoids used in cell culture media are thus suitable for further investigating the differential activation of signal transduction pathways. PMID:22768090
NASA Technical Reports Server (NTRS)
Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.
1974-01-01
Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.
Adaptive relaxation for the steady-state analysis of Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1994-01-01
We consider a variant of the well-known Gauss-Seidel method for the solution of Markov chains in steady state. Whereas the standard algorithm visits each state exactly once per iteration in a predetermined order, the alternative approach uses a dynamic strategy. A set of states to be visited is maintained which can grow and shrink as the computation progresses. In this manner, we hope to concentrate the computational work in those areas of the chain in which maximum improvement in the solution can be achieved. We consider the adaptive approach both as a solver in its own right and as a relaxation method within the multi-level algorithm. Experimental results show significant computational savings in both cases.
Micromotors Powered by Enzyme Catalysis.
Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman
2015-12-09
Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.
Zhang, X; Liu, X; Liu, L
2001-12-01
To explore the effects of HOXB2 anti-sense oligodeoxynucleotides (asodn) on the proliferation and the expression of human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 ASODN modified by thiophosphate were transfected into HUVECs by liposome mediation. MTT and RT-PCR methods were employed to determine the influence of different concentrations of ASODN on endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 ASODN, the endothelial proliferation was inhibited in dose-dependent manner. Simultaneously, the expression level of HOXB2 mRNA decreased significantly. HOXB2 might play important roles in the proliferation of endothelial cells.
Proteomic analysis of ethanol-induced embryotoxicity in cultured post-implantation rat embryos.
Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu
2014-04-01
Protein expression changes were examined in day 10.5 rat embryos cultured for 24 hr in the presence of ethanol by using two-dimensional electrophoresis and mass spectrometry. Exposure to ethanol resulted in quantitative changes in many embryonic protein spots (16 decreased and 28 increased) at in vitro embryotoxic concentrations (130 and 195 mM); most changes occurred in a concentration-dependent manner. For these protein spots, 17 proteins were identified, including protein disulfide isomerase A3, alpha-fetoprotein, phosphorylated cofilin-1, and serum albumin. From the gene ontology classification and pathway mapping of the identified proteins, it was found that ethanol affected several biological processes involving oxidative stress and retinoid metabolism.
Econazole-releasing porous space maintainers for fungal periprosthetic joint infection.
Tatara, Alexander M; Rozich, Allison J; Kontoyiannis, Panayiotis D; Watson, Emma; Albert, Nathaniel D; Bennett, George N; Mikos, Antonios G
2018-05-11
While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.
Tang, W; Leil, T A; Johnsson, E; Boulton, D W; LaCreta, F
2016-03-01
To compare the pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 1 diabetes mellitus (T1DM) versus type 2 diabetes mellitus (T2DM) in order to explore the potential of dapagliflozin as add-on therapy to insulin in patients with T1DM. Steady-state pharmacokinetics and pharmacodynamics of dapagliflozin (1-100 mg) were evaluated in a meta-analysis of patients with T1DM or T2DM. A model was constructed of the relationship between dapagliflozin systemic exposure and urinary glucose excretion (UGE) in patients with T1DM versus those with T2DM. Data were analysed from 160 patients (T1DM, n = 70; T2DM, n = 90). Dapagliflozin systemic exposure (maximum concentration and area under the curve) increased similarly in a dose-related manner in both patient populations. Dose-dependent increases in 24-h UGE were observed with dapagliflozin in both populations. Unadjusted results showed that with regard to UGE response, dapagliflozin was more potent in patients with T1DM {mean half-maximum effective concentration [EC50 ] = 2.72 ng/ml [95% confidence interval (CI) 1.14, 5.08]} than in patients with T2DM [EC50 = 12.2 ng/ml (95% CI 4.91, 21.1)]. After normalization for baseline fasting plasma glucose, estimated glomerular filtration rate and UGE, however, the UGE potency of dapagliflozin was similar between the two populations [T1DM: mean EC50 , 8.12 ng/ml (95% CI 2.95, 14.6); T2DM: mean EC50 , 7.75 ng/ml (95% CI 1.35, 18.1)]. Dapagliflozin pharmacokinetics and the predicted UGE dose exposure response to dapagliflozin were similar in patients with T1DM and those with T2DM and suggest that the dapagliflozin dosages currently used for the treatment of T2DM may provide benefit as add-on therapy to insulin in patients with T1DM. © 2015 John Wiley & Sons Ltd.
Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells
NASA Technical Reports Server (NTRS)
Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.
1997-01-01
Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.
NASA Astrophysics Data System (ADS)
Bandaccari, Kyle J.; Chesmore, Grace E.; Bugaj, Mitchel; Valverde, Parisa Tajalli-Tehrani; Barber, Richard P.; McNelis, Brian J.
2018-04-01
We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction layer (active layer) morphology using atomic-force microscope (AFM) imaging reveals reordering patterns which suggest that the primary effects of the dyes arise via structural, not absorptive, characteristics.
Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts.
Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung
2017-03-01
This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P <0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.
Role of sugars under abiotic stress.
Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul
2016-12-01
Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield
NASA Astrophysics Data System (ADS)
Denisov, Ilia G.; Victoria, Doreen C.; Sligar, Stephen G.
2007-04-01
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ˜160 kGy total dose, and does not depend on the protein concentration in the range 0.01-5 mM.
Biomonitoring of two types of chromium exposure in an electroplating shop.
Pierre, Francis; Diebold, François; Baruthio, François
2008-01-01
This study is concerned with two specific chromium (Cr) exposure situations at a hard-process electroplating company. Its aims are to define variations in urinary Cr concentration and to clarify their exposure relationships. Airborne chromium exposure and urinary excretion were measured for a-one week period. The majority of the exposed population was divided into two groups distinguishing chromium plating and polishing functions. Analysis of airborne Cr distinguished water soluble Cr(VI), water total soluble Cr and water insoluble Cr. Volunteers provided 6-7 urine samples per day for a monitoring period of 7 days. Differences between the two groups appear in relation to the type of exposure. Low concentration water soluble Cr(VI) (5.3 microg/m3 maximum) in electroplating shops is practically undetected in other workshops. Water insoluble Cr present in low concentration in electroplating exceeds 1 mg/m3 in polishing shops. Total soluble Cr concentrations are similar in these two activities (3-10 microg/m3). In polishing, 0.4% of the Cr aerosol comprises soluble Cr. Urinary Cr varied according to a 24 h cycle in similar manner in both groups throughout the monitoring week. Minimum values (3-10 microg/g crea) occurred when starting a work shift, following by a rapid rise as soon as exposure commenced, whilst maximum values (12-30 microg/g crea) were recorded towards the end of the work shift. Although uncorrelated with soluble Cr(VI), urinary Cr (24 h) is effectively related to the soluble fraction of airborne chromium. In the case of chromium electroplating, correspondence between exposure and excretion appears to be governed by relationships different to those emerging from stainless steel welding, from which current biological limit values have been derived.
Habibi, Alireza; Vahabzadeh, Farzaneh
2013-01-01
The ability of the phenol-adapted Ralstonia eutropha to utilize formaldehyde (FD) as the sole source of carbon and energy was studied. Adaptation to FD was accomplished by substituting FD for glucose in a stepwise manner. The bacterium in the liquid test culture could tolerate concentrations of FD up to 900 mg L(-1). Degradation of FD was complete in 528 h at 30°C with shaking at 150 rpm (r = 1.67 mg L(-1) h(-1)), q = 0.035 g(FD) g(cell) (-1) h(-1). Substrate inhibition kinetics (Haldane and Luong equations) are used to describe the experimental data. At non-inhibitory concentrations of FD, the Monod equation was used. According to the Luong model, the values of the maximum specific growth rate (μ(max)), half-saturation coefficient (k(S)), the maximum allowable formaldehyde concentration (S(m)), and the shape factor (n) were 0.117 h(-1), 47.6 mg L(-1), 900 mg L(-1), and 2.2, respectively. The growth response of the test bacterium to consecutive FD feedings was examined, and the FD-adapted R. eutropha cells were able to degrade 1000 mg L(-1) FD in 150 h through 4 cycles of FD feeds. During FD degradation, formic acid metabolite was formed. Assimilation of FD, methanol, formic acid, and oxalate by the test bacterium was accompanied by the formation of a pink pigment. The carotenoid nature of the cellular pigment has been confirmed and the test bacterium appeared to be closely related to pink-pigmented facultative methylotrophs (PPFM). The extent of harm to soil exposed to biotreated wastewaters containing FD may be moderated due to the association between methylotrophic/oxalotrophic bacteria and plants.
Wu, Jianzhang; Ren, Jiye; Yao, Song; Wang, Jiabing; Huang, Lili; Zhou, Peng; Yun, Di; Xu, Qing; Wu, Shoubiao; Wang, Zhankun; Qiu, Peihong
2017-04-01
Novel structure compounds (WS) containing 3,4,5-trimethoxyphenyl and acyl pyrazole were designed and synthesized based combination principles. Among them, WS13 was screened out to possess desirable anti-oxidative activity in vitro. Cell survival assay and apoptosis experiment in H 2 O 2 induced PC12 cells injury model all showed that its cytoprotection exhibited a concentration-effect manner. WS13 at 10μM could remove ROS with equal effiency to edaravone. Further, it clearly activated Nrf2 nuclear translocation and upregulated GCLC mRNA transcription and protein expression in dose-dependent manner, and its cytoprotection was reversed by GCLC protein inhibitor. In total, WS13 with further promotion can serve as Nrf2-GCLC activator in anti-oxidative therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antihyperglycemic effect of syringaldehyde in streptozotocin-induced diabetic rats.
Huang, Chia-Hsin; Chen, Mei-Fen; Chung, Hsien-Hui; Cheng, Juei-Tang
2012-08-24
The antihyperglycemic effect of syringaldehyde (1), purified from the stems of Hibiscus taiwanensis, was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats) showing type-1 like diabetes mellitus. Bolus intravenous injection of 1 showed antihyperglycemic activity in a dose-dependent manner in STZ-diabetic rats. An effective dose of 7.2 mg/kg of 1 attenuated significantly the increase of plasma glucose induced by an intravenous glucose challenge test in normal rats. A glucose uptake test showed that 1 exhibits an increase of glucose uptake activity in a concentration-related manner. Moreover, an effect by 1 was shown for insulin sensitivity in STZ-diabetic rats. The compound was found to increase insulin sensitivity in STZ-diabetic rats. These results suggest that syringaldehyde (1) can increase glucose utilization and insulin sensitivity to lower plasma glucose in diabetic rats.
Singh, Hina; Du, Juan; Singh, Priyanka; Mavlonov, Gafurjon Tom; Yi, Tae Hoo
2018-06-01
The current study focused on direct conjugation of superparamagnetic iron oxide nanoparticles (SPIONs) with ginsenosides CK and Rg3. The direct conjugation approach was low-cost, eco-friendly, simple, fast and high yield. The synthesized conjugates (SPION-CK and SPION-Rg3) were characterized by field emission transmission electron microscopy, dynamic light scattering, zeta potential, X-ray diffractometer, and magnetometer. The characterization results confirmed the formation of SPIONs conjugates. The maximum attaching percentage for ginsenosides to SPIONs was found to be 5%. In vitro cytotoxicity assay in HaCaT keratinocyte cells revealed that the conjugates were non-cytotoxic to normal cells. Moreover, the anti-inflammatory activity of SPION-CK and SPION-Rg3 were investigated. The expression of reactive oxygen species (ROS) in lipopolysaccharide-activated RAW 264.7 (murine macrophage cells) were inhibited by SPIONs conjugates in a dose-dependent manner. In addition, SPION-CK and SPION-Rg3 significantly reduced the production of nitric oxide and inducible nitric oxide synthase (iNOS) in a dose-dependent manner in the lipopolysaccharide-induced RAW 264.7 cells. Overall the results suggested that the SPIONs were conjugated with ginsenosides CK and Rg3 by using direct conjugation approach were non-cytotoxic and can be used as a carrier for intracellular release of ginsenosides in inflammatory diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jiamin; Wu, Kewen; Lin, Feng
2013-11-08
Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study,more » MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc
Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradicationmore » of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl{sub 2} (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.« less
Hydroxylated PBDEs induce developmental arrest in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu
The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was notmore » observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.« less
Antioxidant and hepatoprotective effects of Crataegus songarica methanol extract.
Ganie, Showkat Ahmad; Dar, Tanveer Ali; Zargar, Bilal; Hamid, Rabia; Zargar, Ovais; Dar, Parvaiz Ahmad; Abeer, Shayaq Ul; Masood, Akbar; Amin, Shajrul; Zargar, Mohammad Afzal
2014-01-01
The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.
Wang, Chi-Chung; Lin, Sheng-Yi; Lai, Yi-Hua; Liu, Ya-Jung; Hsu, Yuan-Lin; Chen, Jeremy J. W.
2012-01-01
Background Dimethyl sulfoxide (DMSO) is an amphipathic molecule that displays a diversity of antitumor activities. Previous studies have demonstrated that DMSO can modulate AP-1 activity and lead to cell cycle arrest at the G1 phase. HLJ1 is a newly identified tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. Its transcriptional activity is regulated by the transcription factor AP-1. However, the effects of DMSO on HLJ1 are still unknown. In the present study, we investigate the antitumor effects of DMSO through HLJ1 induction and demonstrate the mechanisms involved. Methods and Findings Low-HLJ1-expressing highly invasive CL1–5 lung adenocarcinoma cells were treated with various concentrations of DMSO. We found that DMSO can significantly inhibit cancer cell invasion, migration, proliferation, and colony formation capabilities through upregulation of HLJ1 in a concentration-dependent manner, whereas ethanol has no effect. In addition, the HLJ1 promoter and enhancer reporter assay revealed that DMSO transcriptionally upregulates HLJ1 expression through an AP-1 site within the HLJ1 enhancer. The AP-1 subfamily members JunD and JunB were significantly upregulated by DMSO in a concentration-dependent manner. Furthermore, pretreatment with DMSO led to a significant increase in the percentage of UV-induced apoptotic cells. Conclusions Our results suggest that DMSO may be an important stimulator of the tumor suppressor protein HLJ1 through AP-1 activation in highly invasive lung adenocarcinoma cells. Targeted induction of HLJ1 represents a promising approach for cancer therapy, which also implied that DMSO may serve as a potential lead compound or coordinated ligand for the development of novel anticancer drugs. PMID:22529897
Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis
Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael
2014-01-01
Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627
Choi, Bo Ram; Kim, Hye Kyung; Park, Jong Kwan
2017-12-01
The objective of this study was to evaluate the relaxant effect of scoparone from Artemisia capillaris on rabbit penile corpus cavernosum smooth muscle (PCCSM) and to elucidate the mechanism of action of scoparone for the treatment of erectile dysfunction (ED). PCCSM that had been precontracted with phenylephrine was treated with 3 Artemisia herbs (A. princeps, A. capillaris, and A. iwayomogi) and 3 fractions (n-hexane, ethyl acetate, and n-butanol) with different concentrations (0.1, 0.5, 1.0, and 2.0 mg/mL). Four components (esculetin, scopoletin, capillarisin, and scoparone) isolated from A. capillaris were also evaluated. The PCCSM was preincubated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). Cyclic nucleotides in the perfusate were measured by a radioimmunoassay. The interactions of scoparone with udenafil and rolipram were also evaluated. A. capillaris extract relaxed PCCSM in a concentration-dependent manner. Scoparone had the highest relaxant effect on PCCSM among the 4 components (esculetin, scopoletin, capillarisin, and scoparone) isolated from the ethyl acetate fraction. The application of scoparone on PCCSM pretreated with L-NAME and ODQ led to significantly less relaxation. Scoparone also increased the cyclic guanosine monophosphate (cGMP) levels in the perfusate in a concentration-dependent manner. Furthermore, scoparone enhanced udenafil- and rolipram-induced relaxation of the PCCSM. Scoparone relaxed the PCCSM mainly by activating the nitric oxide-cGMP signaling pathway, and it may be a new promising treatment for ED patients who do not completely respond to udenafil. Copyright © 2017 Korean Society for Sexual Medicine and Andrology
2017-01-01
Purpose The objective of this study was to evaluate the relaxant effect of scoparone from Artemisia capillaris on rabbit penile corpus cavernosum smooth muscle (PCCSM) and to elucidate the mechanism of action of scoparone for the treatment of erectile dysfunction (ED). Materials and Methods PCCSM that had been precontracted with phenylephrine was treated with 3 Artemisia herbs (A. princeps, A. capillaris, and A. iwayomogi) and 3 fractions (n-hexane, ethyl acetate, and n-butanol) with different concentrations (0.1, 0.5, 1.0, and 2.0 mg/mL). Four components (esculetin, scopoletin, capillarisin, and scoparone) isolated from A. capillaris were also evaluated. The PCCSM was preincubated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). Cyclic nucleotides in the perfusate were measured by a radioimmunoassay. The interactions of scoparone with udenafil and rolipram were also evaluated. Results A. capillaris extract relaxed PCCSM in a concentration-dependent manner. Scoparone had the highest relaxant effect on PCCSM among the 4 components (esculetin, scopoletin, capillarisin, and scoparone) isolated from the ethyl acetate fraction. The application of scoparone on PCCSM pretreated with L-NAME and ODQ led to significantly less relaxation. Scoparone also increased the cyclic guanosine monophosphate (cGMP) levels in the perfusate in a concentration-dependent manner. Furthermore, scoparone enhanced udenafil- and rolipram-induced relaxation of the PCCSM. Conclusions Scoparone relaxed the PCCSM mainly by activating the nitric oxide-cGMP signaling pathway, and it may be a new promising treatment for ED patients who do not completely respond to udenafil. PMID:29164835
Buzhynskyy, Nikolay; Golczak, Marcin; Lai-Kee-Him, Joséphine; Lambert, Olivier; Tessier, Béatrice; Gounou, Céline; Bérat, Rémi; Simon, Anne; Granier, Thierry; Chevalier, Jean-Marc; Mazères, Serge; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Brisson, Alain R
2009-10-01
Annexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca(2+)-concentration. At low Ca(2+)-concentration ( approximately 60-150microM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca(2+)-concentration ( approximately 2mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.
Sharrad, D F; Chen, B N; Gai, W P; Vaikath, N; El-Agnaf, O M; Brookes, S J H
2017-04-01
Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K + ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. Rotenone and prolonged raising of [K + ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease. © 2016 John Wiley & Sons Ltd.
ACTH is a novel regulator of bone mass.
Isales, Carlos M; Zaidi, Mone; Blair, Harry C
2010-03-01
Adrenocorticotropin (ACTH) is one of several peptide hormones derived from a larger molecule, proopiomelanocortin (POMC). ACTH is a classic endocrine hormone, processed and secreted from the pituitary to stimulate cortisol production from the fasciculata cells in the adrenal gland. However, ACTH is also produced by other cells, including macrophages, at many sites in the body. ACTH binds to a specific member of the melanocortin receptor family, the MC2R. MC2R is expressed in osteoblastic cells in vivo, as shown by in situ hybridization. MC2R expression is strongest at sites of active bone deposition, and thus ACTH response probably varies with osteoblastic activity or stage of osteoblast differentiation. In vitro ACTH stimulates proliferation of osteoblasts in a dose-dependent manner. ACTH at 10 nM increases collagen I mRNA in the osteoblastic cell line SaOs2, although at lower concentrations ACTH may oppose osteoblast differentiation. ACTH is thus, at high concentrations, anabolic for the osteoblast, and it is highly likely that the hormone has concentration-dependent effects on bone metabolism in vivo.
Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells
LU, ZHAO; KARNE, SURESH; KOLODECIK, THOMAS; GORELICK, FRED S.
2010-01-01
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10−10 to 10−7 M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of ≥2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation. PMID:11842000
Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films
Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; ...
2014-11-21
Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less
Early photosensitizer uptake kinetics predict optimum drug-light interval for photodynamic therapy
NASA Astrophysics Data System (ADS)
Sinha, Lagnojita; Elliott, Jonathan T.; Hasan, Tayyaba; Pogue, Brian W.; Samkoe, Kimberley S.; Tichauer, Kenneth M.
2015-03-01
Photodynamic therapy (PDT) has shown promising results in targeted treatment of cancerous cells by developing localized toxicity with the help of light induced generation of reactive molecular species. The efficiency of this therapy depends on the product of the intensity of light dose and the concentration of photosensitizer (PS) in the region of interest (ROI). On account of this, the dynamic and variable nature of PS delivery and retention depends on many physiological factors that are known to be heterogeneous within and amongst tumors (e.g., blood flow, blood volume, vascular permeability, and lymph drainage rate). This presents a major challenge with respect to how the optimal time and interval of light delivery is chosen, which ideally would be when the concentration of PS molecule is at its maximum in the ROI. In this paper, a predictive algorithm is developed that takes into consideration the variability and dynamic nature of PS distribution in the body on a region-by-region basis and provides an estimate of the optimum time when the PS concentration will be maximum in the ROI. The advantage of the algorithm lies in the fact that it predicts the time in advance as it takes only a sample of initial data points (~12 min) as input. The optimum time calculated using the algorithm estimated a maximum dose that was only 0.58 +/- 1.92% under the true maximum dose compared to a mean dose error of 39.85 +/- 6.45% if a 1 h optimal light deliver time was assumed for patients with different efflux rate constants of the PS, assuming they have the same plasma function. Therefore, if the uptake values of PS for the blood and the ROI is known for only first 12 minutes, the entire curve along with the optimum time of light radiation can be predicted with the help of this algorithm.
Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang
2014-03-01
An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.
Effect of dopants on the TL response of the new LiF:Mg,Cu,Ag material
NASA Astrophysics Data System (ADS)
Yahyaabadi, A.; Torkzadeh, F.; Rezaei-Ochbelagh, D.; Hosseini Pooya, M.
2018-07-01
The new TL LiF:Mg,Cu,Ag material was prepared and investigated in this study. The TL intensity of LiF:Mg,Cu,Ag is strongly dependent on the concentration of dopants and the preparation procedure. Any small change in these factors can cause alterations in TL response. In this study, the influence of Cu and Ag concentrations on the response of the LiF:Mg,Cu,Ag sample was investigated and showed that the height of the low, main and high temperature peaks changes with Ag concentration. Their intensities increased with increasing Ag concentration to a maximum value and decreased with higher Ag concentration. It was also found that Cu concentration less than 0.05 mol% influences the maximum peak height and TL intensity. The optimum Cu and Ag concentrations were found to be 0.05 and 0.1 mol% at 1005 °C QT, respectively. The role of dopants in LiF:Mg,Cu,Ag material was also investigated. The results showed that presence of three dopants is important for having material with sensitivity higher than LiF:Mg,Ti. The Mg dopant plays a crucial role in the formation of the trapping center and the position of the main dosimetric peak.
Liu, K; Husler, J; Ye, J; Leonard, S S; Cutler, D; Chen, F; Wang, S; Zhang, Z; Ding, M; Wang, L; Shi, X
2001-06-01
Cr (VI) compounds are widely used industrial chemicals and are recognized human carcinogens. The mechanisms of carcinogenesis associated with these compounds remain to be investigated. The present study focused on dose-dependence of Cr (VI)-induced uptake and cellular responses. The results show that Cr (VI) is able to enter the cells (human lung epithelial cell line A549) at low concentration (< 10 microM) and that the Cr (VI) uptake appears to be a combination of saturable transport and passive diffusion. Electron spin resonance (ESR) trapping measurements showed that upon stimulation with Cr (VI), A549 cells were able to generate reactive oxygen species (ROS). The amount of ROS generated depended on the Cr (VI) concentration. ROS generation involved NADPH-dependent flavoenzymes. Cr (VI) affected the following cellular parameters in a dose-dependent manner, (a) activation of nuclear transcription factors NF-kappaB, and p53, (b) DNA damage, (c) induction of cell apoptosis, and (d) inhibition of cell proliferation. The activation of transcription factors was assessed by electrophoretic mobility shift assay and western blot analysis, DNA damage by single cell gel electrophoresis assay, cell apoptosis by DNA fragmentation assay, and cell proliferation by a non-radioactive ELISA kit. At the concentration range used in the present study, no thresholds were found in all of these cell responses to Cr (VI). The results may guide further research to better understand and evaluate the risk of Cr (VI)-induced carcinogenesis at low levels of exposure.
Calcium effects on stomatal movement in Commelina communis L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, A.; Ilan, N.; Grantz, D.A.
1988-07-01
Stomatal movements depends on both ion influx and efflux: attainment of steady state apertures reflects modulation of either or both processes. The role of Ca{sup 2+} in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca{sup 2+} chelator EGTA to reduce apoplastic (Ca{sup 2+}). The results suggest that a certain concentration of Ca{sup 2+} is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance ofmore » stomata in the open state does not necessarily depend on continued K{sup +} influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO{sub 2} causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO{sub 2}-induced closing of open stomata but only partially prevented the inhibition of opening.« less
Effects of salts on protein-surface interactions: applications for column chromatography.
Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu
2007-07-01
Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.
Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun
2012-07-01
Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
Kleinschmit, D H; Kung, L
2006-10-01
The results of adding Lactobacillus buchneri to silages from 43 experiments in 23 sources reporting standard errors were summarized using meta-analysis. The effects of inoculation were summarized by type of crop (corn or grass and small grains) and the treatments were classified into the following categories: 1) untreated silage with nothing applied (LB0), 2) silage treated with L. buchneri at < or = 100,000 cfu/g of fresh forage (LB1), and 3) silage treated with L. buchneri at > 100,000 cfu/g (LB2). In both types of crops, inoculation with L. buchneri decreased concentrations of lactic acid, and this response was dose-dependent in corn but not in grass and small-grain silages. Treatment with L. buchneri markedly increased the concentrations of acetic acid in both crops in a dose-dependent manner. The numbers of yeasts were lower in silages treated with LB1 and further decreased in silages treated with LB2 compared with untreated silages. Untreated corn silage spoiled after 25 h of exposure to air but corn silage treated with LB1 did not spoil until 35 h, and this stability was further enhanced to 503 h with LB2. In grass and small-grain silages, yeasts were nearly undetectable; however, inoculation improved aerobic stability in a dose-dependent manner (206, 226, and 245 h for LB0, LB1, and LB2, respectively). The recovery of DM after ensiling was lower for LB2 (94.5%) when compared with LB0 (95.5%) in corn silage and was lower for both LB1 (94.8%) and LB2 (95.3%) when compared with LB0 (96.6%) in grass and small-grain silages.
Dong, Qing; Sugiura, Tsutomu; Toyohira, Yumiko; Yoshida, Yasuhiro; Yanagihara, Nobuyuki; Karasaki, Yuji
2011-02-15
Several lectins, present in beans and edible plant products, have immuno-potentiating and anti-tumor activities. We here report the effects of garlic lectin purified from garlic bulbs on the production of cytokines such as interleukin-12 (IL-12) and interferon-γ (IFN-γ) in the mouse. Garlic lectin induced IFN-γ production in spleen cells in a bell-shaped time (24-60 h)- and concentration (0.25-2.0 mg/ml)-dependent manner. The maximal enhancement was observed at 36 h with 0.5 mg/ml of garlic lectin. The stimulatory effect of garlic lectin on IFN-γ production was completely inhibited by both actinomycin D and cycloheximide, an inhibitor of ribosomal protein synthesis and DNA-dependent RNA polymerase, respectively, and was associated with an increase in IFN-γ mRNA level. Garlic lectin also induced IL-12 production in mouse peritoneal macrophages in a concentration (0.25-1.0 mg/ml)- and bell-shaped time (3-24 h)-dependent manner. The lectin increased the phosphorylation of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) in macrophages. Furthermore, specific pharmacological inhibitors of ERK kinase (U0126) and p38 MAPK (SB203580) also suppressed the production of IL-12 induced by garlic lectin. The present findings suggest that garlic lectin induces IL-12 production via activation of p38 MAPK and ERK in mouse macrophages, which, in turn, stimulates IFN-γ production through an increase in IFN-γ mRNA in the spleen cells. Copyright © 2010 Elsevier GmbH. All rights reserved.
Lee, Seung Yoon; Choi, Jin Hwa; Jeon, Woo Jae; Cheong, Mi Ae
2010-01-01
Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in endothelium. We studied the influences of ketorolac and diclofenac on ROS effects using the endothelium of rabbit abdominal aorta. Methods Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After being stimulated to contract with phenylephrine (PE, 10-6 M), changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh, 3 × 10-8 to 10-6 M). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with ketorolac or diclofenac at the same concentrations (10-5 M to 3 × 10-4 M), and the effects of these agents were compared with the effects of ROS scavengers: catalase, mannitol, sodium salicylate and deferoxamine and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Both ketorolac and diclofenac maintained endothlium-dependent relaxation induced by ACh in a dose-related manner inspite of ROS attack (P < 0.05 vs. control value). The 3AT pretreated ketorolac (3 × 10-3 M) group was decreased more significantly than un-pretreated ketorolac (P < 0.05). Conclusions These findings suggest that ketorlac and diclofenac preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a concentration-related manner. One of the endothelial protection mechanisms of ketorolac may be hydrogen peroxide scavenging. PMID:20877705
Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam
2006-01-01
Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
A. Noormets; O. Kull; A. Sôber; M.E. Kubiske; D.F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (f), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy...
Myocardium distribution of sertindole and its metabolite dehydrosertindole in guinea-pigs.
Canal-Raffin, Mireille; Titier, Karine; Déridet, Evelyne; Martinez, Béatrice; Abouelfath, Abdelilah; Miras, Alain; Gromb, Sophie; Molimard, Mathieu; Moore, Nicholas
2006-05-01
Sertindole, like other atypical antipsychotics, has been shown to increase the action potential duration and QT interval in a concentration dependent manner, in in vitro electrophysiological studies. However, this does not always translate into increased duration of the QT interval, increased risk of torsade de pointes or sudden death in clinical practice. The reasons for these apparent discrepancies are unclear and many studies have underscored the importance of the interpretation of in vitro electrophysiological data in the context of other pharmacodynamic (e.g. cardiac ion channels target, receptor affinity) and pharmacokinetic parameters (total plasma drug concentration and drug distribution). To address the possible relevance of the concentrations used in experimental studies, the myocardium distribution of sertindole and its metabolite was determined after single and repeated intraperitoneal administration to guinea-pigs. The data suggest that the plasma concentration appears to predict the concentration in the myocardium and that the myocardium concentrations of sertindole are 3.1 times higher than plasma concentrations. Using these data, the relevance of in vitro electrophysiological studies to clinical plasma concentrations has been appraised. Copyright 2006 John Wiley & Sons, Ltd.
Quantitation of proteins using a dye-metal-based colorimetric protein assay.
Antharavally, Babu S; Mallia, Krishna A; Rangaraj, Priya; Haney, Paul; Bell, Peter A
2009-02-15
We describe a dye-metal (polyhydroxybenzenesulfonephthalein-type dye and a transition metal) complex-based total protein determination method. The binding of the complex to protein causes a shift in the absorption maximum of the dye-metal complex from 450 to 660 nm. The dye-metal complex has a reddish brown color that changes to green on binding to protein. The color produced from this reaction is stable and increases in a proportional manner over a broad range of protein concentrations. The new Pierce 660 nm Protein Assay is very reproducible, rapid, and more linear compared with the Coomassie dye-based Bradford assay. The assay reagent is room temperature stable, and the assay is a simple and convenient mix-and-read format. The assay has a moderate protein-to-protein variation and is compatible with most detergents, reducing agents, and other commonly used reagents. This is an added advantage for researchers needing to determine protein concentrations in samples containing both detergents and reducing agents.
Time evolution of atmospheric particle number concentration during high-intensity pyrotechnic events
NASA Astrophysics Data System (ADS)
Crespo, Javier; Yubero, Eduardo; Nicolás, Jose F.; Caballero, Sandra; Galindo, Nuria
2014-10-01
The Mascletàs are high-intensity pyrotechnic events, typical of eastern Spanish festivals, in which thousands of firecrackers are burnt at ground level in an intense, short-time (<8 min) deafening spectacle that generates short-lived, thick aerosol clouds. In this study, the impact of such events on air quality has been evaluated by means of particle number concentration measurements performed close to the venue during the June festival in Alicante (southeastern Spain). Peak concentrations and dilution times observed throughout the Mascletàs have been compared to those measured when conventional aerial fireworks were launched 2 km away from the monitoring site. The impact of the Mascletàs on the total number concentration of particles larger than 0.3 μm was higher (maximum ∼2·104 cm-3) than that of fireworks (maximum ∼2·103 cm-3). The effect of fireworks depended on whether the dominant meteorological conditions favoured the transport of the plume to the measurement location. However, the time required for particle concentrations to return to background levels is longer and more variable for firework displays (minutes to hours) than for the Mascletàs (<25 min).
Yasumura, R; Kobayashi, Y; Ochiai, R
2016-05-01
Levobupivacaine is commonly used as the local anaesthetic of choice in peripheral nerve blocks, but its pharmacokinetics have not been fully investigated. We compared the changes in plasma concentrations of levobupivacaine following transversus abdominis plane block and rectus sheath block. Fifty woman undergoing laparoscopy were randomly allocated to receive either a transversus abdominis plane block or an rectus sheath block. In both groups, 2.5 mg.kg(-1) levobupivacaine was administered, and blood samples were obtained 15 min, 30 min, 60 min and 120 min after injection. The mean maximum plasma concentration (Cmax) and mean time to reach Cmax (Tmax) as determined by non-linear regression analysis were 1.05 μg.ml(-1) and 32.4 min in the transversus abdominis plane group and 0.95 μg.ml(-1) and 60.9 min in the rectus sheath group, respectively. The plasma concentration of levobupivacaine peaked earlier in the transversus abdominis plane group than in the rectus sheath group and the maximum plasma concentration depended on the dose administered but not the procedure. © 2016 The Association of Anaesthetists of Great Britain and Ireland.
Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.
Studenik, C; Lemmens-Gruber, R; Heistracher, P
1998-06-01
Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.
Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation
NASA Astrophysics Data System (ADS)
Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.
2004-09-01
The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.
NASA Astrophysics Data System (ADS)
Lovrić, Milivoj
Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].
Ehrke, Eric; Arend, Christian; Dringen, Ralf
2015-07-01
The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes. © 2014 Wiley Periodicals, Inc.
Zargan, Jamil; Umar, Sadiq; Sajad, Mir; Naime, M; Ali, Shakir; Khan, Haider A
2011-12-01
Venom of some species of scorpions induces apoptosis and arrests proliferation in cancer cells. This is an important property that can be harnessed and can lead to isolation of compounds of therapeutic importance in cancer research. Cytotoxicity was investigated using MTT reduction and confirmed with lactate dehydrogenase release following venom exposure. Apoptosis was evaluated with determination of mitochondrial membrane potential, reactive nitrogen species assay, measurement of Caspase-3 activity and DNA fragmentation analysis. To confirm that venom can inhibit DNA synthesis in proliferating breast cancer cells, immunocytochemical detection of BrdU incorporation was done. Our results demonstrated that venom of Odontobuthus doriae not only induced apoptosis but lead to the inhibition of DNA synthesis in human breast cancer cells (MCF-7). Cell viability decreased with parallel increment of LDH release in dose dependent manner after treatment with varying concentrations of venom. Moreover, venom depleted cellular antioxidants evidenced by depression of GSH and Catalases and concomitantly increased reactive nitrogen intermediates (RNI). These events were related to the depolarization of mitochondria and associated Caspase-3 activation following venom treatment in a concentration dependent manner. Finally, fragmentation of nuclear DNA following venom treatment confirmed the apoptotic property of the said venom. These results suggest that venom of O. doriae can be potential source for the isolation of effective anti-proliferative and apoptotic molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.
Polgár, L; Soós, P; Lajkó, E; Láng, O; Merkely, B; Kőhidai, L
2018-06-01
Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function. © 2018 John Wiley & Sons Ltd.
Dimethylaminoethanol affects the viability of human cultured fibroblasts.
Gragnani, Alfredo; Giannoccaro, Fabiana Bocci; Sobral, Christiane S; Moraes, A A F; França, Jeronimo P; Ferreira, A T; Ferreira, Lydia Masako
2007-01-01
In clinical practice, dimethylaminoethanol (DMAE) has been used in the fight against wrinkles and flaccidity in the cervicofacial region. The firming action of DMAE is explained by the fact that its molecule, considered to be a precursor of acetylcholine, alters muscle contraction. However, no experimental studies have confirmed this theory. Because the actual mechanism of DMAE action was not defined and there were no references in the literature regarding its direct action on fibroblasts, this study was performed to evaluate the direct action of DMAE on cultured human fibroblasts. Human fibroblasts obtained from discarded fragments of total skin from patients undergoing plastic or reconstructive surgical procedures performed within the Plastic Surgery Division at the Federal University of São Paulo were used for this study. The explant technique was used. The culture medium was supplemented with different concentrations of DMAE on the fourth cell passage, and the cell proliferation rate, cytosolic calcium levels, and cell cycle were evaluated. Statistical analysis was performed using analysis of variance (ANOVA) followed by a Newman-Keuls test for multiple comparisons. A decrease in fibroblast proliferation was associated with an increase in DMAE concentration. A longer treatment time with trypsin was required for the groups treated with DMAE in a dose-dependent manner. In the presence of DMAE, cytosolic calcium increased in a dose-dependent manner. Apoptosis also increased in groups treated with DMAE. Dimethylaminoethanol reduced the proliferation of fibroblasts, increased cytosolic calcium, and changed the cell cycle, causing an increase in apoptosis in cultured human fibroblasts.
Sakaida, Isao; Tsuchiya, Masako; Kawaguchi, Kotarou; Kimura, Teruaki; Terai, Shuji; Okita, Kiwamu
2003-06-01
The herbal medicine Inchin-ko-to (TJ-135), extract power from three herbs, has recently been reported possessing anti-apoptotic activity. The aim of this study was to investigate whether TJ-135 has any influence on the development of preneoplastic lesions as well as liver fibrosis. The effects of the TJ-135 were examined using the choline-deficient L-amino acid-defined diet-induced liver fibrosis model. In addition, the effect of TJ-135 on mitogen-activated protein (MAP) kinase, type III procollagen mRNA expression and the medium N-terminal procollagen III propeptide (PIIINP) concentration in a hepatic stellate cell line (LI90) were examined. TJ-135 prevented fibrosis in a dose-dependent manner up to 1.5% (w/w). TJ-135 also reduced the expression of type III procollagen mRNA in the liver, as well as the number of activated stellate cells. Furthermore, TJ-135 reduced the area of preneoplastic lesions in the liver. With LI90 cells, TJ-135 reduced MAP kinase (ERK and JNK but not P38) activities resulting in reduced type III procollagen mRNA and PIIINP concentrations in the medium in a dose-dependent manner. These results indicate that although TJ-135 has anti-apoptotic activity, TJ-135 does not increase preneoplastic lesions but significantly reduces liver fibrosis through the inhibition of stellate cell activation without a reduction of hepatocyte cell death.
Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells.
Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M Y; Hoi, Maggie P M; Steiner, Genevieve Z; Liu, Jianxun
2017-01-05
Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng , Ginkgo biloba , and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.
Abu-Basha, E A; Yibchok-Anun, S; Hopper, D L; Hsu, W H
1999-11-01
The study purpose was to investigate the direct effect of amitraz, a formamidine insecticide/acaricide, and its active metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas. Amitraz and BTS 27271 (0.01, 0.1, 1, and 10 micromol/L) inhibited insulin secretion in a concentration-dependent manner. Amitraz increased glucagon secretion at 10 micromol/L, whereas BTS 27271 increased glucagon secretion at 1 and 10 micromol/L. Amitraz- and BTS 27271-induced decreases in insulin secretion and increases in glucagon secretion were not abolished during the 10-minute washout period. During the arginine treatment, both amitraz and BTS 27271 groups (0.1, 1, and 10 micromol/L) had lower insulin secretion and higher glucagon secretion than the control group. Idazoxan, an alpha2A/2D-adrenergic receptor (AR) antagonist, prevented the inhibitory effect of amitraz on insulin secretion in a concentration-dependent manner, but prazosin, an alpha1- and alpha2B/2C-AR antagonist, failed to antagonize the effect of amitraz. These results demonstrate that (1) amitraz and BTS 27271 inhibit insulin and stimulate glucagon secretion from the perfused rat pancreas, (2) amitraz inhibits insulin secretion by activation of alpha2D-ARs, since rats have alpha2D- but not alpha2A-ARs, and (3) amitraz and BTS 27271 may have a high binding affinity to the alpha2D-ARs of pancreatic islets.
Cellek, S; John, A K; Thangiah, R; Dass, N B; Bassil, A K; Jarvie, E M; Lalude, O; Vivekanandan, S; Sanger, G J
2006-09-01
Previous studies have demonstrated mixed inhibitory and facilitatory effects of 5-hydroxytryptamine-4 (5-HT(4)) receptor agonists on electrical field stimulation (EFS)-induced responses in human isolated colon. Here we report three types of responses to EFS in human isolated colon circular muscle: monophasic cholinergic contraction during EFS, biphasic response (nitrergic relaxation during EFS followed by cholinergic contraction after termination of EFS) and triphasic response (cholinergic contraction followed by nitrergic relaxation during EFS and a tachykininergic contraction after EFS). The effects of two 5-HT(4) receptor agonists, prucalopride and tegaserod were then investigated on monophasic responses only. Each compound inhibited contractions during EFS in a concentration-dependent manner. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) however, prucalopride and tegaserod enhanced the contractions in a concentration-dependent manner. In strips where the tone was elevated with substance-P and treated with scopolamine, EFS-induced relaxations were enhanced by the two agonists. The above observed effects by the two agonists were abolished by 5-HT(4) receptor antagonist SB-204070. The two agonists did not alter the tone raised by substance-P in the presence of scopolamine and l-NAME and did not affect carbachol-induced contractions in the presence of tetrodotoxin. These results suggest that in the circular muscle of human colon, 5-HT(4) receptor agonists simultaneously facilitate the activity of neurones which release the inhibitory and excitatory neurotransmitters, nitric oxide and acetylcholine respectively.
Shamsi, Tooba Naz; Parveen, Romana; Afreen, Sumbul; Azam, Mudasser; Sen, Priyankar; Sharma, Yamini; Haque, Qazi Mohd Rizwanul; Fatma, Tasneem; Manzoor, Nikhat; Fatima, Sadaf
2018-01-18
Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostic and pharmacological studies. This study aimed to investigate antioxidant, anti-inflammatory, and antimicrobial activities of trypsin inhibitors (TIs) from two plant sources (Cajanus cajan and Phaseolus limensis). TI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. TI from Phaseolus limensis (lima bean trypsin inhibitor; LBTI) was procured from Sigma-Aldrich, St. Louis, Missouri, United States. The antioxidant activity was analyzed by ferric ion reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory property of TIs was determined by inhibition of albumin denaturation assay. Ascorbic acid and aspirin were used as standards for antioxidant and anti-inflammatory assays, respectively. These TIs were tested against various bacterial and fungal strains. The TIs showed DPPH radical-scavenging activity in a concentration-dependent manner with IC 50 values comparable to ascorbic acid. The FRAP values were also observed comparable to ascorbic acid and followed the trend of dose-dependent manner. The half maximal inhibitory concentration (IC 50 ) values of CCTI and LBTI in anti-inflammatory test showed that LBTI is more potent than CCTI. The TIs showed potent antibacterial activity, but apparently no action against fungi. This study has reported the biological properties of CCTI and LBTI for the first time. The results show that TIs possess the ability to inhibit diseases caused by oxidative stress, inflammation, and bacterial infestation.