Ellens, Harma; Deng, Shibing; Coleman, JoAnn; Bentz, Joe; Taub, Mitchell E.; Ragueneau-Majlessi, Isabelle; Chung, Sophie P.; Herédi-Szabó, Krisztina; Neuhoff, Sibylle; Palm, Johan; Balimane, Praveen; Zhang, Lei; Jamei, Masoud; Hanna, Imad; O’Connor, Michael; Bednarczyk, Dallas; Forsgard, Malin; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hillgren, Kathleen M.; Li, LiBin; Pak, Anne Y.; Perloff, Elke S.; Rajaraman, Ganesh; Salphati, Laurent; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yamagata, Tetsuo
2013-01-01
In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits P-glycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when the maximum concentration of inhibitor at steady state divided by IC50 ([I1]/IC50) is ≥0.1 or concentration of inhibitor based on highest approved dose dissolved in 250 ml divide by IC50 ([I2]/IC50) is ≥10. In this article, refined criteria are presented, determined by receiver operating characteristic analysis, using IC50 values generated by 23 laboratories. P-gp probe substrates were digoxin for polarized cell-lines and N-methyl quinidine or vinblastine for P-gp overexpressed vesicles. Inhibition of probe substrate transport was evaluated using 15 known P-gp inhibitors. Importantly, the criteria derived in this article take into account variability in IC50 values. Moreover, they are statistically derived based on the highest degree of accuracy in predicting true positive and true negative digoxin DDI results. The refined criteria of [I1]/IC50 ≥ 0.03 and [I2]/IC50 ≥ 45 and FDA criteria were applied to a test set of 101 in vitro-in vivo digoxin DDI pairs collated from the literature. The number of false negatives (none predicted but DDI observed) were similar, 10 and 12%, whereas the number of false positives (DDI predicted but not observed) substantially decreased from 51 to 40%, relative to the FDA criteria. On the basis of estimated overall variability in IC50 values, a theoretical 95% confidence interval calculation was developed for single laboratory IC50 values, translating into a range of [I1]/IC50 and [I2]/IC50 values. The extent by which this range falls above the criteria is a measure of risk associated with the decision, attributable to variability in IC50 values. PMID:23620486
Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong
2012-08-01
The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.
Nagappan, Hemlatha; Pee, Poh Ping; Kee, Sandra Hui Yin; Ow, Ji Tsong; Yan, See Wan; Chew, Lye Yee; Kong, Kin Weng
2017-09-01
Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC 50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC 50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC 50 values while FRF (0.68-0.71mg/mL) had significantly higher IC 50 values. The α-glucosidase inhibitory activity of CE (IC 50 value of 0.57-0.69mg/mL) and FRF (IC 50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC 50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio
2014-01-01
Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.
Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio
2014-01-01
Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×106 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4–9%) at their respective IC50 values. For assays with high cell concentrations (2×109 parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis. PMID:25101672
Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).
Bag, Arijit; Ghorai, Pradip Kr
2016-05-01
Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.
Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu
2015-02-01
IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.
Zwartsen, Anne; Hondebrink, Laura; Westerink, Remco Hs
2018-05-01
While the prevalence and the use of new psychoactive substances (NPS) is steadily increasing, data on pharmacological, toxicological and clinical effects is limited. Considering the large number of NPS available, there is a clear need for efficient in vitro screening techniques that capture multiple mechanisms of action. Neuronal cultures grown on multi-well microelectrode arrays (mwMEAs) have previously proven suitable for neurotoxicity screening of chemicals, pharmaceuticals and (illicit) drugs. We therefore used rat primary cortical cultures grown on mwMEA plates to investigate the effects of eight NPS (PMMA, α-PVP, methylone, MDPV, 2C-B, 25B-NBOMe, BZP and TFMPP) and two 'classic' illicit drugs (cocaine, methamphetamine) on spontaneous neuronal activity. All tested drugs rapidly and concentration-dependently decreased the weighted mean firing rate (wMFR) and the weighted mean burst rate (wMBR) during a 30 min acute exposure. Of the 'classic' drugs, cocaine most potently inhibited the wMFR (IC 50 9.8 μM), whereas methamphetamine and the structurally-related NPS PMMA were much less potent (IC 50 100 μM and IC 50 112 μM, respectively). Of the cathinones, MDPV and α-PVP showed comparable IC 50 values (29 μM and 21 μM, respectively), although methylone was 10-fold less potent (IC 50 235 μM). Comparable 10-fold differences in potency were also observed between the hallucinogenic phenethylamines 2C-B (IC 50 27 μM) and 25B-NBOMe (IC 50 2.4 μM), and between the piperazine derivatives BZP (IC 50 161 μM) and TFMPP (IC 50 19 μM). All drugs also inhibited the wMBR and concentration-response curves for wMBR and wMFR were comparable. For most drugs, IC 50 values are close to the estimated human brain concentrations following recreational doses of these drugs, highlighting the importance of this efficient in vitro screening approach for classification and prioritization of emerging NPS. Moreover, the wide range of IC 50 values observed for these and previously tested drugs of abuse, both within and between different classes of NPS, indicates that additional investigation of structure-activity relationships could aid future risk assessment of emerging NPS. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Arbab, Ahmed Hassan; Parvez, Mohammad Khalid; Al-Dosari, Mohammed Salem; Al-Rehaily, Adnan Jathlan
2017-07-01
Currently, >35 Saudi Arabian medicinal plants are traditionally used for various liver disorders without a scientific rationale. This is the first experimental evaluation of the anti-hepatitis B virus (HBV) potential of the total ethanolic and sequential organic extracts of 60 candidate medicinal plants. The extracts were tested for toxicity on HepG2.2.15 cells and cytotoxicity concentration (CC 50 ) values were determined. The extracts were further investigated on HepG2.2.15 cells for anti-HBV activities by analyzing the inhibition of HBsAg and HBeAg production in the culture supernatants, and their half maximal inhibitory concentration (IC 50 ) and therapeutic index (TI) values were determined. Of the screened plants, Guiera senegalensis (dichloromethane extract, IC 50 =10.65), Pulicaria crispa (ethyl acetate extract, IC 50 =14.45), Coccinea grandis (total ethanol extract, IC 50 =31.57), Fumaria parviflora (hexane extract, IC 50 =35.44), Capparis decidua (aqueous extract, IC 50 =66.82), Corallocarpus epigeus (total ethanol extract, IC 50 =71.9), Indigofera caerulea (methanol extract, IC 50 =73.21), Abutilon figarianum (dichloromethane extract, IC 50 =99.76) and Acacia oerfota (total ethanol extract, IC 50 =101.46) demonstrated novel anti-HBV activities in a time- and dose-dependent manner. Further qualitative phytochemical analysis of the active extracts revealed the presence of alkaloids, tannins, flavonoids and saponins, which are attributed to antiviral efficacies. In conclusion, P. crispa, G. senegalensis and F. parviflora had the most promising anti-HBV potentials, including those of C. decidua , C. epigeus, A. figarianum , A. oerfota and I. caerulea with marked activities. However, a detailed phytochemical study of these extracts is essential to isolate the active principle(s) responsible for their novel anti-HBV potential.
Gupta, Sakshi; Singh, Nirmal; Jaggi, Amteshwar Singh
2014-05-01
Aldose reductase is primarily involved in development of long-term diabetic complications due to increased polyol pathway activity. The synthetic aldose reductase inhibitors are not very successful clinically. Therefore, the natural sources may be exploited for safer and effective aldose reductase inhibitors. In the present study, the aldose reductase inhibitory potential of hydroalcoholic and alkaloidal extracts of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera was evaluated. The hydroalcoholic and alkaloidal extracts of the selected plants were prepared. The different concentrations of hydroalcoholic and alkaloidal extracts of these plants were evaluated for their goat lens aldose reductase inhibitory activity using dl-glyceraldehyde as substrate. The aldose reductase inhibitory potential of extracts was assessed in terms of their IC50 value. Amongst the hydroalcoholic extracts, the highest aldose reductase inhibitory activity was shown by P. nigrum (IC50 value 35.64±2.7 μg/mL) followed by M. koenigii (IC50 value 45.67±2.57 μg/mL), A. mexicana (IC50 value 56.66±1.30 μg/mL), and N. nucifera (IC50 value 59.78±1.32 μg/mL). Among the alkaloidal extracts, highest inhibitory activity was shown by A. mexicana (IC50 value 25.67±1.25 μg/mL), followed by N. nucifera (IC50 value 28.82±1.85 μg/mL), P. nigrum (IC50 value 30.21±1.63 μg/mL), and M. koenigii (IC50 value 35.66±1.64 μg/mL). It may be concluded that the alkaloidal extracts of these plants possess potent aldose reductase inhibitory activity and may be therapeutically exploited in diabetes-related complications associated with increased activity of aldose reductase.
Sirc-cvs cytotoxicity test: an alternative for predicting rodent acute systemic toxicity.
Kitagaki, Masato; Wakuri, Shinobu; Hirota, Morihiko; Tanaka, Noriho; Itagaki, Hiroshi
2006-10-01
An in vitro crystal violet staining method using the rabbit cornea-derived cell line (SIRC-CVS) has been developed as an alternative to predict acute systemic toxicity in rodents. Seventy-nine chemicals, the in vitro cytotoxicity of which was already reported by the Multicenter Evaluation of In vitro Toxicity (MEIC) and ICCVAM/ECVAM, were selected as test compounds. The cells were incubated with the chemicals for 72 hrs and the IC(50) and IC(35) values (microg/mL) were obtained. The results were compared to the in vivo (rat or mouse) "most toxic" oral, intraperitoneal, subcutaneous and intravenous LD(50) values (mg/kg) taken from the RTECS database for each of the chemicals by using Pearson's correlation statistics. The following parameters were calculated: accuracy, sensitivity, specificity, prevalence, positive predictability, and negative predictability. Good linear correlations (Pearson's coefficient; r>0.6) were observed between either the IC(50) or the IC(35) values and all the LD(50) values. Among them, a statistically significant high correlation (r=0.8102, p<0.001) required for acute systemic toxicity prediction was obtained between the IC(50) values and the oral LD(50) values. By using the cut-off concentrations of 2,000 mg/kg (LD(50)) and 4,225 microg/mL (IC(50)), no false negatives were observed, and the accuracy was 84.8%. From this, it is concluded that this method could be used to predict the acute systemic toxicity potential of chemicals in rodents.
Inhibition of the acetoclastic methanogenic activity by phenol and alkyl phenols.
Olguin-Lora, P; Puig-Grajales, L; Razo-Flores, E
2003-08-01
Chemical and petrochemical industries are important sources of aromatic pollutants. Petrochemical processes like caustic washing of middle distillates produce the spent caustic liquors highly concentrated in phenol and alkyl phenols. The anaerobic technology is considered a feasible strategy for petrochemical wastewater pre-treatment although high concentrations of phenol could limit its efficiency. The goal of this work was to determine the toxicity of both selected alkyl phenols and a synthetic "spent-caustic phenols mixture" on the acetoclastic Specific Methanogenic Activity (SMA) of unadapted and phenol-adapted granular sludge. Alkyl phenols were responsible for 50% (IC50) and 100% (IC100) inhibition of the SMA at concentrations ranging from 1.6 to 5.0 mM and from 4.1 to 27.5 mM, respectively, for un-adapted granular sludge. In the case of phenol-adapted granular sludge, the inhibitory concentrations ranged from 1.7 to 14.9 mM and from 4.0 to 83.0 for IC50 and IC100, respectively, highlighting the impact of sludge acclimation. The inhibition produced by 2-ethylphenol was more acute compared to phenol and was not reduced by the phenol acclimation process. The IC50 and IC100 values obtained for the synthetic "spent-caustic phenols mixture" were 9.5 mM and 88.4 mM, respectively. The inhibitory concentrations of phenol compounds were closely correlated with compound apolarity (log P), indicating that the lipophilic character of the tested compounds was responsible for their methanogenic toxicity. An inhibition model is confirmed to estimate the IC50 and IC100.
In vitro synergism of trifluorothymidine and ganciclovir against HSV-1.
Hobden, Jeffery A; Kumar, Manish; Kaufman, Herbert E; Clement, Christian; Varnell, Emily D; Bhattacharjee, Partha S; Hill, James M
2011-02-01
To determine whether trifluorothymidine (TFT) and ganciclovir (GCV) are synergistic against herpes simplex virus type 1 (HSV-1). TFT and GCV activity against 12 strains of HSV-1 (including an acyclovir-resistant strain) was measured by plaque-forming unit (PFU) inhibition. Cellular toxicity was assessed with an MTT dye reduction assay. Synergism was determined by calculating fractional inhibitory concentration (FIC indices) based on PFU reduction. Concentrations of TFT resulting in 50% inhibition of PFUs (IC(50)) of acyclovir-susceptible HSV-1 strains ranged from 3.07 ± 0.36 to 12.52 ± 0.61 μM. GCV IC(50) values ranged from 0.40 ± 0.02 to 1.59 ± 0.14 μM. IC(50) values of TFT and GCV against the acyclovir-resistant strain were 15.40 ± 3.17 and 93.00 ± 9.64 μM, respectively. Concentrations of TFT or GCV resulting in 50% cell cytotoxicity (CC(50)) were 0.99 ± 0.01 and 92.91 ± 8.92 μM, respectively. TFT and GCV combined (10:1) were 10 times more potent against all acyclovir-susceptible HSV-1 strains. For 8 of 12 HSV-1 strains, the IC(50) of TFT and GCV combined was lower than the CC(50) of either drug. For acyclovir-susceptible HSV-1 strains, TFT and GCV combined generated a FIC index of <0.5, suggesting strong synergism between the two drugs. The FIC value for TFT and GCV combined against the acyclovir-resistant HSV-1 strain was 0.84, indicating nonantagonism. TFT and GCV are synergistic against acyclovir-susceptible HSV-1 at concentrations significantly less toxic than if each antiviral were used as a sole agent.
In Vitro Synergism of Trifluorothymidine and Ganciclovir against HSV-1
Hobden, Jeffery A.; Kumar, Manish; Kaufman, Herbert E.; Clement, Christian; Varnell, Emily D.; Bhattacharjee, Partha S.
2011-01-01
Purpose. To determine whether trifluorothymidine (TFT) and ganciclovir (GCV) are synergistic against herpes simplex virus type 1 (HSV-1). Methods. TFT and GCV activity against 12 strains of HSV-1 (including an acyclovir-resistant strain) was measured by plaque-forming unit (PFU) inhibition. Cellular toxicity was assessed with an MTT dye reduction assay. Synergism was determined by calculating fractional inhibitory concentration (FIC indices) based on PFU reduction. Results. Concentrations of TFT resulting in 50% inhibition of PFUs (IC50) of acyclovir-susceptible HSV-1 strains ranged from 3.07 ± 0.36 to 12.52 ± 0.61 μM. GCV IC50 values ranged from 0.40 ± 0.02 to 1.59 ± 0.14 μM. IC50 values of TFT and GCV against the acyclovir-resistant strain were 15.40 ± 3.17 and 93.00 ± 9.64 μM, respectively. Concentrations of TFT or GCV resulting in 50% cell cytotoxicity (CC50) were 0.99 ± 0.01 and 92.91 ± 8.92 μM, respectively. TFT and GCV combined (10:1) were 10 times more potent against all acyclovir-susceptible HSV-1 strains. For 8 of 12 HSV-1 strains, the IC50 of TFT and GCV combined was lower than the CC50 of either drug. For acyclovir-susceptible HSV-1 strains, TFT and GCV combined generated a FIC index of <0.5, suggesting strong synergism between the two drugs. The FIC value for TFT and GCV combined against the acyclovir-resistant HSV-1 strain was 0.84, indicating nonantagonism. Conclusions. TFT and GCV are synergistic against acyclovir-susceptible HSV-1 at concentrations significantly less toxic than if each antiviral were used as a sole agent. PMID:20861476
Prior, Allan M; Yu, Xufen; Park, Eun-Jung; Kondratyuk, Tamara P; Lin, Yan; Pezzuto, John M; Sun, Dianqing
2017-12-15
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC 50 = 1.61 μM; 21, IC 50 = 3.05 μM; and 27, IC 50 = 3.34 μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC 50 ) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR = 8.34, CD = 2.75 μM), while 7 showed the most potent CD value of 1.12 μM. A dual acting compound 24 showed aromatase inhibition (IC 50 = 9.00 μM) as well as QR1 induction (CD = 5.76 μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3'-nitrogen coordinating with the heme group. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Two-Step Hierarchial Quantitative Structure-Activity ...
Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET ; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments) . The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models t
Mohamed, Mohamed-Eslam F.
2011-01-01
The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC50) and the volume in which the dose could be diluted to generate an IC50-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC50 value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC50 values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC50 values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC50-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions. PMID:21632963
Inhibitors of 15-lipoxygenase from orange peel.
Malterud, K E; Rydland, K M
2000-11-01
A series of polymethoxylated flavonoids has been isolated from orange peel, and their inhibitory activity toward soybean 15-lipoxygenase was determined. The strongest inhibition was shown by 3,5,6,7,3',4'-hexamethoxyflavone (IC(50) = 49 +/- 5 microM). Sinensetin, nobiletin, tangeretin, tetramethylscutellarein, and 3,5, 6,7,8,3',4'-heptamethoxyflavone were somewhat less active, with IC(50) values of 70-86 microM, comparable to the positive control quercetin (IC(50) = 68 +/- 5 microM). Demethylation apparently results in less active compounds, with 5-O-demethylsinensetin having an IC(50) value of 144 +/- 10 microM. Some other orange peel constituents were isolated and tested as well, hesperidin (IC(50) = 180 +/- 10 microM) and ferulic acid (111 +/- 2 microM), showing moderate activity. The polymethoxylated flavonoids were virtually inactive as scavengers of the diphenylpicrylhydrazyl radical. Hesperidin was only slightly active (24.2 +/- 0.7% scavenged at a concentration of 2 mM), and ferulic acid showed good activity (IC(50) = 86.4 +/- 0.7 microM). From this, it appears that orange peel constituents may counteract enzymatic lipid peroxidation processes catalyzed by 15-lipoxygenase in vitro. The radical scavenging activity of orange peel extracts is only modest.
Liu, Kailin; He, Ying; Xu, Shiji; Hu, Lifeng; Luo, Kun; Liu, Xiangying; Liu, Min; Zhou, Xiaomao; Bai, Lianyang
2018-06-18
The existing form of an ionizable organic compound can simultaneously affect its soil adsorption and plant bioactivity. In this experiment, the adsorption and bioactivity of two weak acid herbicides (WAHs), imazethapyr and 2,4-D, were studied to explore the predominant mechanism by which the soil pH and the addition of biochar can influence the phytotoxicity of WAHs in soil. Then, the WAH concentration extracted by hollow fiber-based liquid-phase microextraction (C HF-LPME ), the in situ pore water concentration (C IPW ) and the added concentration (C AC ) were employed to estimate the phytotoxicity. The results showed that with increased pH from 5.5 to 8.5, the phytotoxicity of the WAHs to rice increased about 1-fold in the soil, but decreased in aqueous solutions, the IC 50 values for imazethapyr and 2,4-D at pH 5.0 were 3- and 2-fold higher than that at pH 8.0. In addition, the soil adsorption decreased, indicating that the adsorption process was the dominant factor for the variation of the phytotoxicity of the WAHs in the tested soil instead of the decreasing bioactivity. The concentration that inhibits plant growth by 50% (IC 50 ) calculated by the C AC in different pH and biochar soils ranged from 0.619 to 3.826 mg/kg for imazethapyr and 1.871-72.83 mg/kg for 2,4-D. The coefficient of variation (CV) of the IC 50 values reached 65.61% for imazethapyr and 130.0% for 2,4-D. However, when IC 50 was calculated by C IPW and C HF-LPME , the CVs of the IC 50 values decreased to 23.51% and 36.23% for imazethapyr and 40.21% and 50.93% for 2,4-D, respectively. These results suggested that C IPW and C HF-LPME may be more appropriate than C AC for estimating the phytotoxicity of WAHs. Copyright © 2018 Elsevier Inc. All rights reserved.
Nishimoto, Tomoyuki; Tozawa, Ryuichi; Amano, Yuichiro; Wada, Takeo; Imura, Yoshimi; Sugiyama, Yasuo
2003-12-01
TAK-475 is a squalene synthase inhibitor, rapidly metabolized to T-91485 in vivo. We investigated the myotoxicities of T-91485 and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in a human rhabdomyosarcoma cell line, RD, and in human skeletal myocytes. In differentiated RD cells, T-91485, atorvastatin (ATV) and simvastatin acid (SIM) inhibited cholesterol biosynthesis, with IC(50) values of 36, 2.8 and 3.8 nM, respectively. ATV and SIM decreased the intracellular ATP content, with IC(25) values (concentrations giving a 25% decrease in intracellular ATP content) of 0.61 and 0.44 microM, respectively. Although T-91485 potently inhibited cholesterol synthesis in RD cells, the IC(25) value exceeded 100 microM. In human skeletal myocytes, T-91485, ATV and SIM concentration-dependently inhibited cholesterol biosynthesis, with IC(50) values of 45, 8.6 and 8.4 nM, respectively. ATV and SIM decreased intracellular ATP content, with IC(25) values of 2.1 and 0.72 microM, respectively. Although T-91485 potently inhibited cholesterol synthesis, the IC(25) value exceeded 100 microM. Myotoxicity induced by ATV was prevented by mevalonate or geranylgeranyl-PP, but not by squalene in skeletal cells. Furthermore, T-91485 attenuated the myotoxicity of ATV. These findings suggest that TAK-475 and T-91485 may not only be far from myotoxic, they may also decrease statin-induced myotoxicity in lipid-lowering therapy.
La, Mylinh; Rand, Michael J
1999-01-01
The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle.Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA).Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 μM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 μM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator.Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 μM and this effect was reversed by SOD (100–1000 u ml−1). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol.Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 μM and 100 μM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 μM for NO and 40 μM for nitrergic nerve stimulation: these reductions were reversed by SOD.The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone. PMID:10051154
Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki
2016-11-01
Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
MMB-4 Inhibition of Aceylcholinesterase Is Similar across Species
2014-11-01
version 5.4). An IC50 value was determined for AChE from each animal species by fitting the percent of AChE activity with respect to MMB 4 concentration...in GraphPad Prism (version 5) using a nonlinear regression dose response model for inhibition (normalized response with variable slope). Assessing the...Therefore, AChE activity and inhibition studies were carried out at 435 nm to reduce interference from MMB 4. Comparison of IC50 Values for MMB 4 with AChE
Interaction of Silymarin Flavonolignans with Organic Anion-Transporting Polypeptides
Köck, Kathleen; Xie, Ying; Oberlies, Nicholas H.; Brouwer, Kim L. R.
2013-01-01
Organic anion-transporting polypeptides (OATPs) are multispecific transporters mediating the uptake of endogenous compounds and xenobiotics in tissues that are important for drug absorption and elimination, including the intestine and liver. Silymarin is a popular herbal supplement often used by patients with chronic liver disease; higher oral doses than those customarily used (140 mg three times/day) are being evaluated clinically. The present study examined the effect of silymarin flavonolignans on OATP1B1-, OATP1B3-, and OATP2B1-mediated transport in cell lines stably expressing these transporters and in human hepatocytes. In overexpressing cell lines, OATP1B1- and OATP1B3-mediated estradiol-17β-glucuronide uptake and OATP2B1-mediated estrone-3-sulfate uptake were inhibited by most of the silymarin flavonolignans investigated. OATP1B1-, OATP1B3-, and OATP2B1-mediated substrate transport was inhibited efficiently by silymarin (IC50 values of 1.3, 2.2 and 0.3 µM, respectively), silybin A (IC50 values of 9.7, 2.7 and 4.5 µM, respectively), silybin B (IC50 values of 8.5, 5.0 and 0.8 µM, respectively), and silychristin (IC50 values of 9.0, 36.4, and 3.6 µM, respectively). Furthermore, silymarin, silybin A, and silybin B (100 µM) significantly inhibited OATP-mediated estradiol-17β-glucuronide and rosuvastatin uptake into human hepatocytes. Calculation of the maximal unbound portal vein concentrations/IC50 values indicated a low risk for silymarin-drug interactions in hepatic uptake with a customary silymarin dose. The extent of silymarin-drug interactions depends on OATP isoform specificity and concentrations of flavonolignans at the site of drug transport. Higher than customary doses of silymarin, or formulations with improved bioavailability, may increase the risk of flavonolignan interactions with OATP substrates in patients. PMID:23401473
2012-01-01
Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548
Liu, Li; Li, Wei; Wei, Ke; Cao, Jun; Luo, Jie; Wang, Bin; Min, Su
2013-06-01
Inhaled anesthetics increase the incidence of postoperative residual neuromuscular blockade, and the mechanism is still unclear. We have investigated the synergistic effect of low-concentration inhaled anesthetics and rocuronium on inhibition of the inward current of the adult-type muscle nicotinic acetylcholine receptor (ε-nAChR). Adult-type mouse muscle ε-nAChR was expressed in HEK293 cells by liposome transfection. The inward current of the ε-nAChR was activated by use of 10 μmol/L acetylcholine alone or in combination with different concentrations of sevoflurane, isoflurane, or rocuronium. The concentration-response curves of five cells were constructed, and the data yielded the 5, 25, and 50 % inhibitory concentrations (IC5, IC25, and IC50, respectively) for single-drug application. Subsequently, the functional channels were perfused by adding 0.5 IC5 of either sevoflurane or isoflurane (aqueous concentrations 140 and 100 μmol/L, respectively) to the solution, followed by addition of IC5, IC25, or IC50 rocuronium. The amount of inhibition was calculated to quantify their synergistic effect. The inhibitory effect of rocuronium was enhanced by sevoflurane or isoflurane in a concentration-dependent manner. Sevoflurane or isoflurane (0.5 IC5) with rocuronium at IC5, IC25, and IC50 synergistically inhibited the current amplitude of adult-type muscle ε-nAChR. When the IC5 of rocuronium was used, isoflurane had a stronger synergistic effect than sevoflurane (p < 0.05). When rocuronium was applied at higher concentrations (IC25 and IC50), sevoflurane had an effect similar to that of isoflurane. For both inhaled anesthetics, the synergistic effect was more intense for rocuronium at IC5 than for rocuronium at IC25 or IC50. Residual-concentration sevoflurane or isoflurane has a strong synergistic effect with rocuronium at clinically relevant residual concentrations. A lower rocuronium concentration resulted in a stronger synergistic effect.
Antileishmanial and antitrypanosomal activities of the 8-aminoquinoline tafenoquine.
Yardley, Vanessa; Gamarro, Francisco; Croft, Simon L
2010-12-01
The 8-aminoquinoline tafenoquine showed significant in vitro activity against Leishmania species, including L. donovani amastigotes in macrophages, with 50% inhibitory concentrations (IC(50)s) between 0.1 and 4.0 μM for both pentavalent antimony (SbV)-sensitive and SbV-resistant strains and by oral administration in BALB/c mice, with 50% effective dose (ED(50)) values of 1.2 to 3.5 mg/kg for 5 days. Tafenoquine was less active against intracellular Trypanosoma cruzi amastigotes, with an IC(50) of 21.9 μM.
Antileishmanial and Antitrypanosomal Activities of the 8-Aminoquinoline Tafenoquine ▿
Yardley, Vanessa; Gamarro, Francisco; Croft, Simon L.
2010-01-01
The 8-aminoquinoline tafenoquine showed significant in vitro activity against Leishmania species, including L. donovani amastigotes in macrophages, with 50% inhibitory concentrations (IC50s) between 0.1 and 4.0 μM for both pentavalent antimony (SbV)-sensitive and SbV-resistant strains and by oral administration in BALB/c mice, with 50% effective dose (ED50) values of 1.2 to 3.5 mg/kg for 5 days. Tafenoquine was less active against intracellular Trypanosoma cruzi amastigotes, with an IC50 of 21.9 μM. PMID:20837750
Durcik, Martina; Lovison, Denise; Skok, Žiga; Durante Cruz, Cristina; Tammela, Päivi; Tomašič, Tihomir; Benedetto Tiz, Davide; Draskovits, Gábor; Nyerges, Ákos; Pál, Csaba; Ilaš, Janez; Peterlin Mašič, Lucija; Kikelj, Danijel; Zidar, Nace
2018-06-25
The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC 50 values against DNA gyrase, and submicromolar IC 50 values against topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compound in the series has an IC 50 value of 13 nM against E. coli gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative 11a, with an IC 50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 μM against Enterococcus faecalis, and 3.13 μM against wild type S. aureus, methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) is 4.6 μM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cacciapaglia, Fabio; Salvatorelli, Emanuela; Minotti, Giorgio; Afeltra, Antonella; Menna, Pierantonio
2014-12-01
Whether tumor necrosis factor-alpha (TNFα) caused beneficial or detrimental cardiovascular effects remains poorly defined. Anti-TNFα agents improved cardiac end points in chronic rheumatic diseases characterized by progressive deterioration of cardiac function. In contrast, anti-TNFα agents did not always improve but actually worsened cardiac function in non-rheumatic patients with heart failure (HF), in spite of that HF usually accompanies with high circulating levels of TNFα. To shed light on these mixed findings, we characterized the effects of TNFα in H9c2 cardiomyocytes. Cells were incubated for 24 h with increasing concentrations of TNFα, hydrogen peroxide, aminotriazole, or etoposide. Posttreatment cell viability was assessed by antimycin A-inhibitable reduction of 3-(4,dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the IC50 value of each test compound was defined. H9c2 cells were also preconditioned with a low non-toxic concentration of TNFα and then re-challenged with increasing concentrations of TNFα and other stressor agents. In re-challenge experiments, all of the IC50 values increased significantly, with the IC50 value of TNFα increasing approximately 16-fold. TNFα preconditioning increased cardiomyocytes shedding of the external portion of transmembrane type 1 and type 2 TNFα receptors [(soluble TNFα receptors (sTNFR)]. Levels of survival-oriented soluble TNFR2 (sTNFR2) always exceeded those of death-oriented sTNFR1. When exposed to TNFα at its IC50 value, preconditioned cardiomyocytes showed an increased release of sTNFR2 but not sTNFR1. These results denoted that preconditioning by "low TNFα" helped cardiomyocyte to withstand toxicity from "high TNFα" or other agents. These results also suggested that beneficial or detrimental effects of anti-TNFα agents might well depend on whether these agents spared or intercepted discrete amounts of TNFα that preconditioned cardiomyocytes and made them more resistant to high concentrations of TNFα.
Nira acidity and antioxidant activity of Palm sugar in Sumowono Village
NASA Astrophysics Data System (ADS)
Winarni, Sri; Arifan, Fahmi; Wisnu Broto, RTD.; Fuadi, Ariza; Alviche, Lola
2018-05-01
The palm sugar not only has potential as natural sweetener but also has antioxidant. The purpose of this study was to analyze antioxidant and pH of the nira in palm sugar. The sample in this study was palm sugar from 6 different production sites. Test of antioxidant activity used DPPH method (1.1-diphenyl-2-picrylhydrazyl) with a wavelength of 517 nm. The value of absorbance solution was measured using spectrophotometry and the value of effective concentration (IC50) was counted. The pH test was measured using a pH meter. Pearson’s correlation test revealed r=-0.045 with significant value 0.932 (>0.005). There was no correlation between pH value and antioxidant activity of palm sugar. IC50 value of palm sugar in Sumowono village revealed that it had a strong antioxidant activity (50 μg/ml - 100 μg/ml) that is 74,73 μg/ml 83.94 μg/ml 82.31 μg/ml 83.94 μg/ml 86.10 μg/ml 82.13 μg/ml 89.17 μg/ml 89.71 μg/ml 89.17 μg/ml and 84.84 μg/ml). Lower IC50 values indicate higher antioxidant activity. Palm sugar with the best antioxidant activity came from the production sites which had IC50 values of 74.73 μg/ml. Potential antioxidants can be optimized by making improvements to the processing system.
Ecotoxicological responses of three ornamental herb species to cadmium.
Liu, Zhouli; He, Xingyuan; Chen, Wei; Zhao, Mingzhu
2013-08-01
Cadmium is one of the most toxic elements. The ideal vegetal cover should be ensured by the selection of appropriate plant species for successful phytoremediation. In the present study, the ecotoxicological effects of Cd on the following 3 ornamental herbs were investigated: Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.), and alfalfa (Medicago sativa L.). Based on the inhibition rate of seed germination, root and shoot elongation, early seedling growth, median inhibition concentration (IC50) values, and index of tolerance (IT) values, ecotoxicological indicators were determined. The results showed that 10 μM to 50 μM Cd had little effect on seed germination or root and shoot elongation of the 3 ornamental herbs (p > 0.01). With an increase in Cd concentrations, alfalfa (M. sativa) was the most sensitive to Cd toxicity in terms of seed germination and root elongation. Based on the IC50 of root elongation, Italian ryegrass (L. multiflorum) was the least sensitive to Cd. Based on the IC50 of seed germination and shoot elongation, white clover had the least sensitivity to Cd. Among the 3 ornamental herbs, based on the IC50 of seed germination and root and shoot elongation, alfalfa (M. sativa) was all the most sensitive plant. According to the index of tolerance, Italian ryegrass (L. multiflorum) was the most tolerant plant. Copyright © 2013 SETAC.
Jaszek, Magdalena; Stefaniuk, Dawid; Ciszewski, Tomasz; Matuszewski, Łukasz
2018-01-01
The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively. PMID:29874240
Inglezakis, V J; Malamis, S; Omirkhan, A; Nauruzbayeva, J; Makhtayeva, Z; Seidakhmetov, T; Kudarova, A
2017-12-01
In this work, the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process was investigated. The inhibition of the aerobic oxidation of organic matter, nitrification and denitrification were examined in batch reactors by measuring the specific oxygen uptake rate (sOUR), the specific ammonium uptake rate (sAUR) and the specific nitrogen uptake rate (sNUR) respectively. The tested cyanide, phenol and 4-nitrophenol concentrations were 0.2-1.7 mg/L, 4.8-73.1 mg/L and 8.2-73.0 mg/L respectively. Cyanide was highly toxic as it significantly (>50%) inhibited the activity of autotrophic biomass, heterotrophic biomass under aerobic conditions and denitrifiers even at relatively low concentrations (1.0-1.7 mgCN - /L). The determination of the half maximum inhibitory concentration (IC 50 ) confirmed this, since for cyanide IC 50 values were very low for the examined bioprocesses (<1.5 mg/L). On the other hand, the IC 50 values for phenol and 4-nitrophenol were much higher (>25 mg/L) for the tested bioprocesses since appreciable concentrations were required to accomplish significant inhibition. The autotrophic bacteria were more sensitive to phenol than the aerobic heterotrophs. The denitrifiers were found to be very resistant to phenol. Copyright © 2016. Published by Elsevier Ltd.
In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol.
Fujisaki, Ryuichi; Kamei, Kiyoko; Yamamura, Mariko; Nishiya, Hajime; Inouye, Shigeharu; Takahashi, Miki; Abe, Shigeru
2012-03-01
Abstract. The anti-plasmodial activity of 47 essential oils and 10 of their constituents were screened for in vitro activity against Plasmodium falciparum. Five of these essential oils (sandalwood, caraway, monarda, nutmeg, and Thujopsis dolabrata var. hondai) and 2 constituents (thymoquinone and hinokitiol) were found to be active against P. falciparum in vitro, with 50% inhibitory concentration (IC50) values equal to or less than 1.0 microg/ml. Furthermore, in vivo analysis using a rodent model confirmed the anti-plasmodial potential of subcutaneously administered sandalwood oil, and percutaneously administered hinokitiol and caraway oil against rodent P. berghei. Notably, these oils showed no efficacy when administered orally, intraperitoneally or intravenously. Caraway oil and hinokitiol dissolved in carrier oil, applied to the skin of hairless mice caused high levels in the blood, with concentrations exceeding their IC50 values.
Mariussen, Espen; Fonnum, Frode
2003-01-01
The environmental levels of brominated flame retardants (BFRs) are increasing, but little is known about their toxic effects. In this paper, we show that some of the most important BFRs in commercial use today, have a neurotoxicological potential. Hexabromocyclododecane (HBCD) and tetrabromobisphenol-A (TBBPA) inhibit plasma membrane uptake of the neurotransmitters dopamine, glutamate and gamma-amino-n-butyric acid (GABA) at a concentration level similar to what previously found for polychlorinated biphenyls (PCBs) and even for ecstasy. The IC(50) value for HBCD on dopamine uptake was 4 microM, and the IC(50) values for TBBPA were 9, 6 and 16 microM for dopamine, glutamate and GABA, respectively. HBCD also inhibited glutamate uptake at low concentrations, but never achieved more than 50% inhibition. The inhibition was primarily due to their effect on the membrane potential, measured by the membrane potential marker tetraphenylphosphonium bromide (TPP(+)). Other brominated flame retardants such as octaBDE and decaBDE did not have any effects on uptake. TBBPA, HBCD and even the pentabrominated diphenylether mixture (pentaBDE, DE-71, Great Lakes) also inhibited the vesicular uptake of dopamine with an IC(50) value of 3, 3 and 8 microM, respectively. The neurotoxicological consequences of these findings for environmental contaminants such as BFRs and PCBs are discussed.
Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika
2017-09-02
This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH • (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC 50 value 10.9 µg/mL) and that against ABTS •+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC 50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe 2+ chelation ability (IC 50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC 50 value 3.13 µg/mL and 5.05 µg/mL, respectively).
Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika
2017-01-01
This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH• (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC50 value 10.9 µg/mL) and that against ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe2+ chelation ability (IC50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC50 value 3.13 µg/mL and 5.05 µg/mL, respectively). PMID:28869499
Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production
Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi
2014-01-01
Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936
Cupello, Mauricio Peixoto; Saraiva, Francis Monique; Ippolito, Pedro; Fernandes, Andréia da Silva; Costa, Debora de Sousa dos Santos; Paula, Jessica Isis Oliveira; Costa, Paulo Roberto Ribeiro; Dias, Ayres Guimarães
2017-01-01
The therapeutic options for Chagas disease are limited and its treatment presents a number of drawbacks including toxicity, drug resistance, and insufficient effectiveness against the chronic stage of the disease. Therefore, new therapeutical options are mandatory. In the present work, we evaluated the effect of a phenyl-tert-butylnitrone (PBN) derivate, LQB 123, against Trypanosoma cruzi forms. LQB 123 presented a trypanocidal effect against bloodstream trypomastigotes (IC50 = 259.4 ± 6.1 μM) and intracellular amastigotes infecting peritoneal macrophages (IC50 = 188.2 ± 47.5 μM), with no harmful effects upon the mammalian cells (CC50 values greater than 4 mM), resulting in a high selectivity index (CC50/IC50 > 20). Additionally, metacyclic trypomastigotes submitted to LQB 123 presented an IC50 of about 191.8 ± 10.5 μM and epimastigotes forms incubated with different concentrations of LQB 123 presented an inhibition of parasite growth with an IC50 of 255.1 ± 3.6 μM. Finally, we investigated the mutagenic potential of the nitrone by the Salmonella/microsome assay and observed no induction of mutagenicity even in concentrations as high as 33000 μM. Taken together, these results present a nonmutagenic compound, with trypanocidal activity against all relevant forms of T. cruzi, offering new insights into CD treatment suggesting additional in vivo tests. PMID:28316976
Cupello, Mauricio Peixoto; Saraiva, Francis Monique; Ippolito, Pedro; Fernandes, Andréia da Silva; Menna-Barreto, Rubem Figueiredo Sadoko; Costa, Debora de Sousa Dos Santos; Paula, Jessica Isis Oliveira; Costa, Paulo Roberto Ribeiro; Nogueira, Natália Pereira; Felzenswalb, Israel; Dias, Ayres Guimarães; Paes, Marcia Cristina
2017-01-01
The therapeutic options for Chagas disease are limited and its treatment presents a number of drawbacks including toxicity, drug resistance, and insufficient effectiveness against the chronic stage of the disease. Therefore, new therapeutical options are mandatory. In the present work, we evaluated the effect of a phenyl- tert -butylnitrone (PBN) derivate, LQB 123, against Trypanosoma cruzi forms. LQB 123 presented a trypanocidal effect against bloodstream trypomastigotes (IC 50 = 259.4 ± 6.1 μ M) and intracellular amastigotes infecting peritoneal macrophages (IC 50 = 188.2 ± 47.5 μ M), with no harmful effects upon the mammalian cells (CC 50 values greater than 4 mM), resulting in a high selectivity index (CC 50 /IC 50 > 20). Additionally, metacyclic trypomastigotes submitted to LQB 123 presented an IC 50 of about 191.8 ± 10.5 μ M and epimastigotes forms incubated with different concentrations of LQB 123 presented an inhibition of parasite growth with an IC 50 of 255.1 ± 3.6 μ M. Finally, we investigated the mutagenic potential of the nitrone by the Salmonella /microsome assay and observed no induction of mutagenicity even in concentrations as high as 33000 μ M. Taken together, these results present a nonmutagenic compound, with trypanocidal activity against all relevant forms of T. cruzi , offering new insights into CD treatment suggesting additional in vivo tests.
Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach.
Antunes, Paula M C; Kreager, Nancy J
2014-10-01
In the present study, predictive measures for Pb toxicity and Lemna minor were developed from bioassays with 7 surface waters having varied chemistries (0.5-12.5 mg/L dissolved organic carbon, pH of 5.4-8.3, and water hardness of 8-266 mg/L CaCO3 ). As expected based on water quality, 10%, 20%, and 50% inhibitory concentration (IC10, IC20, and IC50, respectively) values expressed as percent net root elongation (%NRE) varied widely (e.g., IC20s ranging from 306 nM to >6920 nM total dissolved Pb), with unbounded values limited by Pb solubility. In considering chemical speciation, %NRE variability was better explained when both Pb hydroxides and the free lead ion were defined as bioavailable (i.e., f{OH} ) and colloidal Fe(III)(OH)3 precipitates were permitted to form and sorb metals (using FeOx as the binding phase). Although cause and effect could not be established because of covariance with alkalinity (p = 0.08), water hardness correlated strongly (r(2) = 0.998, p < 0.0001) with the concentration of total Pb in true solution ([Pb]T_True solution ). Using these correlations as the basis for predictions (i.e., [Pb]T_True solution vs water hardness and %NRE vs f{OH} ), IC20 and IC50 values produced were within a factor of 2.9 times and 2.2 times those measured, respectively. The results provide much needed effect data for L. minor and highlight the importance of chemical speciation in Pb-based risk assessments for aquatic macrophytes. © 2014 SETAC.
Urease and serine protease inhibitory alkaloids from Isatis tinctoria.
Ahmad, Ijaz; Fatima, Itrat; Afza, Nighat; Malik, Abdul; Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal
2008-12-01
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3'-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC(50) values 25.63 +/- 0.74, 37.01 +/- 0.41 and 31.72 +/- 0.93, 47.33 +/- 0.31 microM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against alpha-chymotrypsin with IC(50) values of 23.40 +/- 0.21 and 27.45 +/- 0.23 microM, respectively.
Lehmann, David F; Eggleston, William D; Wang, Dongliang
2018-03-01
Use of the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG) to predict torsades de pointes (TdP) risk from culprit drugs is neither sensitive nor specific. The ratio of the half-maximum inhibitory concentration of the hERG channel (hERG IC50) to the peak serum concentration of unbound drug (C max ) is used during drug development to screen out chemical entities likely to cause TdP. To validate the use of the hERG IC50:C max ratio to predict TdP risk from a culprit drug by its correlation with TdP incidence. Medline (between 1966 and March 2017) was accessed for hERG IC50 and C max values from the antihistamine, fluoroquinolone, and antipsychotic classes to identify cases of drug-induced TdP. Exposure to a culprit drug was estimated from annual revenues reported by the manufacturer. Inclusion criteria for TdP cases were provision of an ECG tracing that demonstrated QTc prolongation with TdP and normal serum values of potassium, calcium, and magnesium. Cases reported in patients with a prior rhythm disturbance and those involving a drug interaction were excluded. The Meta-Analysis of Observational Studies in Epidemiology checklist was used for epidemiological data extraction by two authors. Negligible risk drugs were defined by an hERG IC50:C max ratio that correlated with less than a 5% chance of one TdP event for every 100 million exposures (relative risk [RR] 1.0). The hERG IC50:C max ratio correlated with TdP risk (0.312; 95% confidence interval 0.205-0.476, p<0.0001), a ratio of 80 (RR 1.0). The RR from olanzapine is on par with loratadine; ziprasidone is comparable with ciprofloxacin. Drugs with an RR greater than 50 include astemizole, risperidone, haloperidol, and thioridazine. The hERG IC50:C max ratio was correlated with TdP incidence for culprit drugs. This validation provides support for the potential use of the hERG IC50:C max ratio for clinical decision making in instances of drug selection where TdP risk is a concern. © 2018 Pharmacotherapy Publications, Inc.
Anti-Proliferative Effect and Phytochemical Analysis of Cymbopogon citratus Extract
Halabi, Mohammed F.; Sheikh, Bassem Y.
2014-01-01
The antiproliferative and antioxidant potential of Cymbopogon citratus (Lemon grass) extracts were investigated. The extracts were isolated by solvent maceration method and thereafter subjected to antiproliferative activity test on five different cancer cells: human colon carcinoma (HCT-116), breast carcinoma (MCF-7 and MDA-MB 231), ovarian carcinoma (SKOV-3 and COAV), and a normal liver cell line (WRL 68). The cell viability was determined using MTT assay. The DPPH radical scavenging assay revealed a concentration dependent trend. A maximum percentage inhibition of 45% and an IC50 of 278 μg/mL were observed when aqueous extract was evaluated. In contrast, 48.3% and IC50 of 258.9 μg/mL were observed when 50% ethanolic extract was evaluated. Both extracts at concentration of 50 to 800 μg/mL showed appreciative metal chelating activity with IC50 value of 172.2 ± 31 μg/mL to 456.5 ± 30 μg/mL. Depending on extraction solvent content, extract obtained from 50% ethanolic solvent proved to be more potent on breast cancer MCF-7 cell line (IC50 = 68 μg/mL). On the other hand, 90% ethanolic extract showed a moderate potency on the ovarian cancer (COAV) and MCF-7 cells having an IC50 of 104.6 μg/mL each. These results suggested antiproliferative efficacy of C. citratus ethanolic extract against human cancer cell lines. PMID:24791006
Fawcett, William P; Aracava, Yasco; Adler, Michael; Pereira, Edna F R; Albuquerque, Edson X
2009-02-01
This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.
Cadmium Phytoremediation by Arundo donax L. from Contaminated Soil and Water
Sabeen, Maria; Mahmood, Qaisar; Irshad, Muhammad; Fareed, Iftikhar; Ullah, Farid; Hussain, Jamshaid; Hayat, Yousaf; Tabassum, Sobia
2013-01-01
The potential of Arundo donax L. for phytoextraction of cadmium (Cd) from contaminated soil and water was probed. The plants were grown under greenhouse conditions in pots containing a nutrient solution or soil with increasing doses of Cd (0, 50, 100, 250, 500, 750, and 1000 μg L−1) for 21 days. The growth and physiology of plants were evaluated at the end of the experiment. The maximum Cd content in root was 300 μg g−1 during hydroponics experiments over 230 μg g−1 in soil experiment. Cd concentration in stem was 262 μg g−1 at 750 μg L−1 supplied Cd in hydroponics over 191.2 μg g−1 at 1000 in soil experiment. The maximum Cd concentration in leaves from hydroponics was 187 μg g−1. Relatively low Cd uptake occurred during soil experiment with low translocation factor (TF) values. Both Bioaccumulation Factor (BF) and TF values for hydroponics were greater than 1. The IC50 values of ABTS and DPPH showed that both time and increasing Cd concentrations affected the production of antioxidants with lower half maximal inhibitory concentration (IC50) value on the 21st days. A. donax showed better potential for Cd remediation of aquatic environments. PMID:24459667
Fouladvand, M; Barazesh, A; Farokhzad, F; Malekizadeh, H; Sartavi, K
2011-06-01
Leishmaniasis is a protozoan parasitic disease which is transmitted by the female Phlebotomus sand fly and is prevalent in four continents.The first-choice treatment for the leishmaniasis is pentavalent antimonials, which are potentially toxic and often ineffective and use of them exhibit therapeutic failure. These pharmaceutical problems point towards the need to develop novel chemotherapeutic agents. Seaweeds are considered as source of bioactive metabolites characterized by a broad spectrum of biological activities. In this experimental study, cold and hot water crude extracts of four species of green, brown and red marine algae "Caulerpa sertularioides, Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" collected along the Bushehr coast of the Persian Gulf (southwest of Iran), prepared and their in vitro activities against Leishmania major promastigote were evaluated by using the MTT assay test. The cold and hot water crude extracts of four algae species exhibited different anti-Leishmanial activities. The minimum inhibitory concentration of hot water extracts calculated as IC50 was as follows: Caulerpa sertularioides (IC50 < or =85 microg/ml), Gracilaria corticata (IC50 < or =38 microg/ml), Gracillaria salicornia (IC50 < or =46 microg/ml) and Sargassum oligocystum (IC(50)9 < or =78 microg/ml, while these values for cold water extracts were (IC50 >125 microg/ml) for Caulerpa Sertularioides (IC50 >65 microg/ml) for Gracilaria corticata (IC50 >74 microg/ml) for Gracilaria salicornia and (IC50 >105 microg/ml) for Sargassum oligocystum, IC50 values for reference drug (Amphotericin B) was (0.16-0.2 microg/ml). According to the results, inhibitory effects of the crude extracts from these four species algae specially hot water crude extracts from "Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" are significant and in accordance with other studies that has been done on different algae species. So these results are sufficiently promising to be followed with further studies on isolation and characterization of pure compounds from these algae species as well as in vivo experiments, a work that is already under way in our laboratory.
Qureshi, Abid; Tandon, Himani; Kumar, Manoj
2015-11-01
Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp. © 2015 Wiley Periodicals, Inc.
Vaidyanathan, Jayabharathi; Yoshida, Kenta; Arya, Vikram; Zhang, Lei
2016-07-01
Evaluation of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an integral part of drug development and is recommended by regulatory agencies. In this study we compared various prediction methods and cutoff criteria based on in vitro inhibition data to assess the potential of a new molecular entity to inhibit OATP1B1 in vivo. In vitro (eg, IC50 , fu,p ) and in vivo (eg, dose, Cmax , change in area under the curve [AUC]) data for 11 substrates and 61 inhibitors for OATP1B1 were obtained from literature and Drugs@FDA, which include 107 clinical (in vivo) DDI studies. Substrate dependency and variability of IC50 values were noted. In addition to the ratio of unbound or total systemic concentration (Imax,u and Imax ) to IC50 , maximum unbound inhibitor concentration at the inlet to the liver (Iu,in,max ) was used for the estimation of "R value" where R = 1 + Iu,in,max /IC50 . Based on our analyses, Imax /Ki ≥ 0.1, R ≥ 1.04, or R ≥ 1.1 seem to be appropriate for reducing the false-negative (FN) predictions. However, as compared with R ≥ 1.1, Imax /Ki ≥ 0.1 and R ≥ 1.04 resulted in higher false positives (FPs) and lower true negatives (TNs). R ≥ 1.1, Imax,u /Ki ≥ 0.02, and R ≥ 1.25 alone, or combined criterion of Imax /Ki ≥ 0.1 and R ≥ 1.25, were reasonable to determine the need to perform clinical DDI studies with OATP1B1 substrates with similar positive and negative predictive values. Possible reasons of FP or FN from different decision criteria should be considered when interpreting prediction results, and the variability in IC50 determination needs to be understood and minimized. © 2016, The American College of Clinical Pharmacology.
Balijagić, Jasmina; Janković, Teodora; Zdunić, Gordana; Bosković, Jelena; Savikin, Katarina; Godevac, Dejan; Stanojković, Tatjana; Jovancević, Miodrag; Menković, Nebojsa
2012-11-01
LC-ESI-MS and HPLC were used for the identification of the constituents from G. lutea leaves collected at different localities, as well as for quantification of the main compounds. Seven secoiridoids, five C-glucoflavones and three xanthones, were identified. Swertiamarin derivatives, namely eustomorusside (2), eustomoside (3) and septemfidoside (5), were detected in G. lutea for the first time. Concentrations of five constituents (swertiamarin, gentiopicrin, isovitexin, mangiferin and isogentisin) were determined. The relationship between concentrations of y-pyrones and altitude was observed with statistically significant correlation (r = 0.94). The extracts were also evaluated for their content of total phenolics, and antiradical and cytotoxic activities. The total phenolics content ranged from 7.7 to 12.7 mg GAE/g, and the IC50 values for DPPH radical scavenging activity varied between 0.45 to 2.02 mg/mL. The leaf extract exhibited moderate cytotoxic effects toward HeLa cells with an IC50 value of 41.1 microg/mL, while gentiopicrin, mangiferin and isogentisin exerted strong activity against HeLa cells, with IC50 values ranging from 5.7 to 8.8 microg/mL. The results confirm the traditional usage of G. lutea leaves and also suggest their possible utilization as hepatoprotective, hypoglycemic and anti-inflammatory agents.
Flavonoids from Machilus japonica Stems and Their Inhibitory Effects on LDL Oxidation
Joo, Se-Jin; Park, Hee-Jung; Park, Ji-Hae; Cho, Jin-Gyeong; Kang, Ji-Hyun; Jeong, Tae-Sook; Kang, Hee Cheol; Lee, Dae-Young; Kim, Hack-Soo; Byun, Sang-Yo; Baek, Nam-In
2014-01-01
Stems of Machilus japonica were extracted with 80% aqueous methanol (MeOH) and the concentrated extract was successively extracted with ethyl acetate (EtOAc), normal butanol (n-BuOH), and water. Six flavonoids were isolated from the EtOAc fraction: (+)-taxifolin, afzelin, (−)-epicatechin, 5,3'-di-O-methyl-(−)-epicatechin, 5,7,3'-tri-O-methyl-(−)-epicatechin, and 5,7-di-O-methyl-3',4'-methylenedioxyflavan-3-ol. The chemical structures were identified using spectroscopic data including NMR, mass spectrometry and infrared spectroscopy. This is the first report of isolation of these six compounds from M. japonica. The compounds were evaluated for their diphenyl picryl hydrazinyl scavenging activity and inhibitory effects on low-density lipoprotein oxidation. Compounds 1 and 3–6 exhibited DPPH antioxidant activity equivalent with that of ascorbic acid, with half maximal inhibitory concentration (IC50) values of 0.16, 0.21, 0.17, 0.15 and 0.07 mM, respectively. The activity of compound 1 was similar to the positive control butylated hydroxytoluene, which had an IC50 value of 1.9 µM, while compounds 3 and 5 showed little activity. Compounds 1, 3, and 5 exhibited LDL antioxidant activity with IC50 values of 2.8, 7.1, and 4.6 µM, respectively. PMID:25229822
Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P
2012-11-15
Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.
3-Coumaranone derivatives as inhibitors of monoamine oxidase.
Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J
2015-01-01
The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004-1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme-inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson's disease and Alzheimer's disease.
3-Coumaranone derivatives as inhibitors of monoamine oxidase
Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J
2015-01-01
The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004–1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme–inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson’s disease and Alzheimer’s disease. PMID:26491258
Kim, Young-In; Pareek, Rajat; Murphy, Ryan; Harrison, Lisa; Farrell, Eric; Cook, Robert; DeVincenzo, John
2017-11-01
Respiratory syncytial virus (RSV) viral load and disease severity associate, and the timing of viral load and disease run in parallel. An antiviral must be broadly effective against the natural spectrum of RSV genotypes and must attain concentrations capable of inhibiting viral replication within the human respiratory tract. We evaluated a novel RSV fusion inhibitor, MDT-637, and compared it with ribavirin for therapeutic effect in vitro to identify relative therapeutic doses achievable in humans. MDT-637 and ribavirin were co-incubated with RSV in HEp-2 cells. Quantitative PCR assessed viral concentrations; 50% inhibitory concentrations (IC 50 ) were compared to achievable human MDT-637 and ribavirin peak and trough concentrations. The IC 50 for MDT-637 and ribavirin (against RSV-A Long) was 1.42 and 16 973 ng/mL, respectively. The ratio of achievable peak respiratory secretion concentration to IC 50 was 6041-fold for MDT-637 and 25-fold for aerosolized ribavirin. The ratio of trough concentration to IC 50 was 1481-fold for MDT-637 and 3.29-fold for aerosolized ribavirin. Maximal peak and trough levels of oral or intravenous ribavirin were significantly lower than their IC 50 s. We also measured MDT-637 IC 50 s in 3 lab strains and 4 clinical strains. The IC 50 s ranged from 0.36 to 3.4 ng/mL. Achievable human MDT-637 concentrations in respiratory secretions exceed the IC 50 s by factors from hundreds to thousands of times greater than does ribavirin. Furthermore, MDT-637 has broad in vitro antiviral activity on clinical strains of different RSV genotypes and clades. Together, these data imply that MDT-637 may produce a superior clinical effect compared to ribavirin on natural RSV infections. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barile, F.A.; Arjun, S.; Borges, L.
1991-03-11
This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less
Toxicity evaluation and prediction of toxic chemicals on activated sludge system.
Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre
2010-05-15
The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid
2012-01-01
Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL), trypsin hydrolysate (IC50 value of 2.28 mg/mL), papain hydrolysate (IC50 value of 2.48 mg/mL), bromelain hydrolysate (IC50 value of 4.21 mg/mL), and protamex hydrolysate (IC50 value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits. PMID:22927875
Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid
2012-01-01
Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC(50) value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC(50) value of 2.24 mg/mL), trypsin hydrolysate (IC(50) value of 2.28 mg/mL), papain hydrolysate (IC(50) value of 2.48 mg/mL), bromelain hydrolysate (IC(50) value of 4.21 mg/mL), and protamex hydrolysate (IC(50) value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC(50) values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.
Antiviral activity of four types of bioflavonoid against dengue virus type-2
2011-01-01
Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound. Results The half maximal inhibitory concentration (IC50) of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA) were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1) reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other bioflavonoids, including daidzein, naringin and hesperetin showed minimal to no significant inhibition of DENV-2 virus replication. These findings, together with those previously reported suggest that select group of bioflavonoids including quercetin and fisetin, exhibited significant inhibitory activities against dengue virus. This group of flavonoids, flavonol, could be investigated further to discover the common mechanisms of inhibition of dengue virus replication. PMID:22201648
Antiviral activity of four types of bioflavonoid against dengue virus type-2.
Zandi, Keivan; Teoh, Boon-Teong; Sam, Sing-Sin; Wong, Pooi-Fong; Mustafa, Mohd Rais; Abubakar, Sazaly
2011-12-28
Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound. The half maximal inhibitory concentration (IC50) of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA) were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1) reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other bioflavonoids, including daidzein, naringin and hesperetin showed minimal to no significant inhibition of DENV-2 virus replication. These findings, together with those previously reported suggest that select group of bioflavonoids including quercetin and fisetin, exhibited significant inhibitory activities against dengue virus. This group of flavonoids, flavonol, could be investigated further to discover the common mechanisms of inhibition of dengue virus replication.
Tyrosine-like condensed derivatives as tyrosinase inhibitors.
Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella
2012-05-01
We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander
2009-01-01
Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity. PMID:19672406
Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander
2009-08-01
Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity.
Effect of thiopental sodium on N-methyl-D-aspartate-gated currents.
Liu, Hongliang; Dai, Tijun; Yao, Shanglong
2006-05-01
N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC) are closely related with the excitability of pyramidal neurons and PFC function. As the effect of thiopental sodium on the central nervous system may partly result from the inhibition of PFC NMDA receptors, we investigated the effect of thiopental sodium with different concentrations on NMDA-gated currents in acutely dissociated rat PFC pyramidal neurons. We sought to determine whether thiopental sodium inhibits NMDA receptor function. Three to four week old male Sprague-Dawley rats were sacrificed and the PFC was dissected. Pyramidal neurons from the PFC were prepared and standard whole-cell patch clamp recordings were performed. Escalating concentrations from 3-1000 microM NMDA were applied 100 microm from the pyramidal cells, and the concentration in the effect compartment related to 50% effect (EC50) of NMDA was determined for the ensuing experiments. One hundred microM NMDA alone (control) or NMDA with different concentrations (10-1000 microM) of thiopental sodium were applied. After the inhibitory concentration, in 50% of NMDA effect (IC50) of thiopental sodium was established this IC50 and NMDA 3-1000 microM were applied 100 microm from the pyramidal cells. The EC50 value of NMDA under the effect of IC50 thiopental sodium was determined. N-methyl-D-aspartate induced inward currents in a concentration-dependent manner, which were completely antagonized by 50 microM AP5. The maximal amplitude of NMDA-induced current was 1.15 +/- 0.27 nA. The EC50 of NMDA was 53.6 +/- 12.4 microM. The NMDA (100 microM)-gated current was inhibited by thiopental sodium in a concentration-dependent manner, and the IC50 of thiopental sodium was 33.6 +/- 6.1 microM. Under the effect of 33.6 microM thiopental sodium, the maximal amplitude of NMDA-induced current was 0.87 +/- 0.17 nA. The concentration-response curve of NMDA was shifted rightwards. The EC50 of NMDA was 128 +/- 15 microM, which was greater than that of NMDA without thiopental sodium (P < 0.01). Thiopental sodium decreases NMDA-gated currents in acutely dissociated rat prefrontal cortical pyramidal neurons in a concentration-dependent manner.
Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea.
Nguyen, Khang D H; Dang, Phu H; Nguyen, Hai X; Nguyen, Mai T T; Awale, Suresh; Nguyen, Nhan T
2017-07-01
A new lignan, 9'-methoxypinoresinol (1), and two new glycosylated 5-hydroxymethylfurfurals, calofurfuralside A (2), and calofurfuralside B (3), together with nine known compounds (4-12) have been isolated from the active fractions, CHCl 3 (IC 50 , 0.32μgmL -1 ) and EtOAc (IC 50 , 0.55μgmL -1 ) fractions of the leaves of Calotropis gigantea. Their structures were elucidated based on NMR and MS data. Among the isolated compounds, compounds 1 and 9 exhibited potent cytotoxicity against PANC-1 human pancreatic cancer cell line under the normoglycemic condition with IC 50 values of 3.7 and 3.3μM, respectively. 9'-Methoxypinoresinol (1) significantly inhibited the colony formation of PANC-1 cells in a concentration-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of cyclic 1,9-acetal derivatives of forskolin and their bioactivity evaluation.
Ponnam, Devendar; Shilpi, Singh; Srinivas, K V N S; Suiab, Luqman; Alam, Sarfaraz; Amtul, Zehra; Arigari, Niranjan Kumar; Jonnala, Kotesh Kumar; Siddiqui, Lubna; Dubey, Vijaya; Tiwari, Ashok Kumar; Balasubramanian, Sridhar; Khan, Feroz
2014-11-24
A new series of 1,9-acetals of forskolin were synthesized by treating with aromatic and aliphatic aldehydes using Ceric ammonium nitrate as catalyst and evaluated for anticancer and α-glucosidase inhibition activities. Among the synthesized compounds 2a, 2b and 3a showed potential cytotoxic activity towards human cancer cell lines MCF-7 (Human Breast Adenocarcinoma), MDA-MB (Human Breast Carcinoma), HeLa (Human Cervix Adenocarcinoma), A498 (Human Kidney Carcinoma), K562 (Human Erythromyeloblastoid leukemia), SH-SY5Y (Human Neuroblastoma), Hek293 (Human Embryonic Kidney) and WRL68 (Human Hepatic) with IC50 values ranging between 0.95 and 47.96 μg/ml. Osmotic fragility test revealed compound 3a as non-toxic to human erythrocytes at the tested concentrations of 50 and 100 μg/ml. Compounds 1g (IC50 value 0.76 μg/ml) and 1p (IC50 value 0.74 μg/ml) significantly inhibited α-glucosidase in in vitro system. In silico based docking, ADME and toxicity risk assessment studies also showed discernible α-glucosidase activity for compounds 1g, 1p compared to standard acarbose. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Inhibition properties of propolis extracts to some clinically important enzymes.
Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi
2016-01-01
The present study was conducted to envisage inhibition effects of propolis on the crucial enzymes, urease, xanthine oxidase (XO) and acetylcholinesterase (AChE). Some of the antioxidant properties of the propolis samples were determined using the total phenolic content (TPE) and total flavonoids in the eight different ethanolic propolis extracts (EPE) samples. Inhibition values of the enzymes were expressed as inhibition concentration (IC 50 ; mg/mL or μg/mL) causing 50% inhibition of the enzymes with donepezil, acetohydroxamic acid and allopurinol as reference inhibitors. All the propolis extracts exhibited variable inhibition effects on these enzymes, but the higher the phenolic contents the lower the inhibitions values (IC 50 = 0.074 to 1.560 mg/mL). IC 50 values of the P5 propolis sample having the highest TPE, obtained from Zonguldak, for AChE, urease and XO were 0.081 ± 0.009, 0.080 ± 0.006 and 0.074 ± 0.011 μg/mL, respectively. The EPE proved to be a good source of inhibitor agents that can be used as natural inhibitors to serve human health.
Large scale screening of commonly used Iranian traditional medicinal plants against urease activity
2012-01-01
Background and purpose of the study H. pylori infection is an important etiologic impetus usually leading to gastric disease and urease enzyme is the most crucial role is to protect the bacteria in the acidic environment of the stomach. Then urease inhibitors would increase sensitivity of the bacteria in acidic medium. Methods 137 Iranian traditional medicinal plants were examined against Jack bean urease activity by Berthelot reaction. Each herb was extracted using 50% aqueous methanol. The more effective extracts were further tested and their IC50 values were determined. Results 37 plants out of the 137 crude extracts revealed strong urease inhibitory activity (more than 70% inhibition against urease activity at 10 mg/ml concentration). Nine of the whole studied plants crude extracts were found as the most effective with IC50 values less than 500 μg/ml including; Rheum ribes, Sambucus ebulus, Pistachia lentiscus, Myrtus communis, Areca catechu, Citrus aurantifolia, Myristica fragrans, Cinnamomum zeylanicum and Nicotiana tabacum. Conclusions The most potent urease inhibitory was observed for Sambucus ebulus and Rheum ribes extracts with IC50 values of 57 and 92 μg/ml, respectively. PMID:23351780
Schumann, Barbara; Winkler, Janine; Mickenautsch, Nicola; Warnken, Tobias; Dänicke, Sven
2016-08-01
Both deoxynivalenol (DON), zearalenone (ZEN), and their metabolites are known to modulate immune cells in various species whereby viability and proliferation are influenced. Such effects were rarely examined in horses. Therefore, one aim of the present study was to titrate the inhibitory concentrations of DON, 3-acetyl-DON (3AcDON), de-epoxy-DON (DOM-1), ZEN, and α- and β-zearalenol (ZEL) at which viability and proliferation of equine PBMC were reduced by 50 % (IC50) and 10 % (IC10) in vitro. For evaluation of practical relevance of the in vitro findings, a further aim was to screen horses for the background occurrence of DON, ZEN, and their metabolites in systemic circulation and to relate toxin residues both to the inhibitory toxin concentrations and to hematological and clinical-chemical characteristics.The IC50 (μM) for DON, 3AcDON, β-ZEL, α-ZEL, and ZEN were determined at 3.09, 25.90, 75.44, 97.44, and 98.15 in unstimulated cells, respectively, while in proliferating cells, the corresponding IC50 values were 0.73, 6.89, 45.16, 75.96, and 82.51. Neither viability nor proliferation was influenced by DOM-1 up to a concentration of 100 μM.The in vivo screening (N = 49) revealed the occurrence of ZEN (N = 24), α-ZEL (N = 3), β-ZEL (N = 37), DON, and DOM-1 (N = 2). The detected concentrations were much lower than the corresponding IC50 while the IC10 of DON and β-ZEL for proliferating PBMC corresponded to approximately 26 and 35 ng/mL which might be relevant when contaminated diets are fed.Clinical-chemical and hematological traits were not related to mycotoxin residue levels excepting blood urea nitrogen which was positively correlated to the sum of β-ZEL, α-ZEL, and ZEN concentration. Whether this reflects simply the feeding history of the horses or renal failures giving rise to a prolonged half-life of the toxins needs to be clarified further.
Sun, Cathy; McIntyre, Kristina; Saleem, Ammar; Haddad, Pierre Selim; Arnason, John Thor
2012-02-01
Eight commercial grape seed products (GSPs) were assessed for their inhibition of the formation of advanced glycation end-products in vitro. All 8 commercial GSPs included in this study were potent inhibitors of advanced glycation end-product formation with IC(50) values ranging from 2.93 to 20.0 µg/mL. Total procyanidin content ranged from 60% to 73%. HPLC-DAD-ELSD results indicate that (+)-catechin, (-)-epicatechin, procyanidin B1, and procyanidin B2 were predominant and ubiquitously present in all the products under study, while gallic acid and procyanidin B4 were present in relatively minor amounts. The IC(50) values correlated with total phenolic content, and multiple regression analysis indicated that IC(50) is a linear function of the concentration of gallic acid and procyanidins B1, B2, and B4. Based on this study, GSPs have the potential to complement conventional diabetes medication toward disease management and prevention.
van Zanden, Jelmer J; de Mul, Anika; Wortelboer, Heleen M; Usta, Mustafa; van Bladeren, Peter J; Rietjens, Ivonne M C M; Cnubben, Nicole H P
2005-06-01
In the present study, the effects of myricetin on either MRP1 or MRP2 mediated vincristine resistance in transfected MDCKII cells were examined. The results obtained show that myricetin can inhibit both MRP1 and MRP2 mediated vincristine efflux in a concentration dependent manner. The IC50 values for cellular vincristine transport inhibition by myricetin were 30.5+/-1.7 microM for MRP1 and 24.6+/-1.3 microM for MRP2 containing MDCKII cells. Cell proliferation analysis showed that the MDCKII control cells are very sensitive towards vincristine toxicity with an IC50 value of 1.1+/-0.1 microM. The MDCKII MRP1 and MRP2 cells are less sensitive towards vincristine toxicity with IC50 values of 33.1+/-1.9 and 22.2+/-1.4 microM, respectively. In both the MRP1 and MRP2 cells, exposure to 25 microM myricetin enhances the sensitivity of the cells towards vincristine toxicity to IC50 values of 7.6+/-0.5 and 5.8+/-0.5 microM, respectively. The increase of sensitivity represents a reversal of the resistance towards vincristine as a result of MRP1 and MRP2 inhibition. Thus, the present study demonstrates the ability of the flavonoid myricetin to modulate MRP1 and MRP2 mediated resistance to the anticancer drug vincristine in transfected cells, indicating that flavonoids might be a valuable adjunct to chemotherapy to block MRP mediated resistance.
Study of the sensitivity of neonates to digoxin: contribution of erythrocyte /sup 86/Rb uptake test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zannad, F.; Marchal, F.; Royer, R.J.
1981-01-01
In general, there is little agreement how digoxin should be used in newborn, and the results of studies in this field seem contradictory. This study attempts a quantitative assessment of the number and the sensitivity of cellular receptors for digoxin in the organism, by the in vitro measurement of erythrocyte /sup 86/Rb neonates compared with adults and old people. Red blood cells are first incubated with differing concentrations of digoxin, and then incubated with /sup 86/Rb. The initial level of /sup 86/Rb uptake (Rbi) is that observed in the absence of digoxin. The 50% index of captation (IC50) is themore » digoxin concentration in nanograms per ml at which /sup 86/Rb uptake is half Rbi. Three grups of patients were studied: Group I: 12 neonates, less that 5 days old; Group II: 11 adults (26 to 57 years old); Group III: 9 elderly people (71 to 82 years old). Rbi was significantly lower in neonates (Mean +/- SD: 25.8% +/- 3.5, P less than 0.001) and in the elderly (29.9% +/- 3.1) than in adults (36.8% +/- 4.6). IC50 was significantly lower in the elderly (12.1 mg/ml +/- 2.4) than in the adult patients (20.5 ng/ml +/- 5.5, P less than 0.001). In the newborns, values of IC50 were widely scattered (16.2 ng/ml +/- 7.2). The authors suggest that since Rbi reflects Na+, K+-ATPase activity, this activity is diminished in newborn and old people, and indicates that they have fewer cellular recaptors for digoxin than adults. In the elderly, the low IC50 would imply increased sensitivity to digoxin. In neonates, the wide range of values for IC50 suggests considerable individual variation in sensitivity to digoxin. The results aer consistent with the recently recomnended lower dosages of digoxin i neonates.« less
2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.
Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang
2012-05-01
Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).
Bentz, Joe; O’Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei
2013-01-01
A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485
Kosugi, Yohei; Hirabayashi, Hideki; Igari, Tomoko; Fujioka, Yasushi; Okuda, Teruaki; Moriwaki, Toshiya
2014-04-01
1. This study optimized the reported approach for the prediction of drug-drug interactions (DDIs) using hepatocytes suspended in serum (HHSS) and provided a practical usage of HHSS in the early and late phases of drug discovery. 2. First, the IC50 was determined using HHSS and evaluated as a qualitative index for DDI risks in the early phase. A retrospective study on clinical DDI cases revealed that inhibitors with IC50 < 100 μmol/L caused clinical DDIs while those with IC50 > 100 μmol/L showed weak or no potential for DDIs. Meanwhile, a pragmatic cutoff value could not be determined using previously reported Ki values of recombinant human cytochrome P450s. 3. Second, for a more substantial DDI risk assessment in the later phase, quantitative predictions of clinical DDI based on a static model were attempted by optimizing the most appropriate inhibitor concentration ([I]). The use of hepatic input plasma concentrations as a surrogate for [I] achieved the most successful predictions of the magnitude of increase in the AUC (within a 2-fold range of the observed values for 93.8% of inhibitors). 4. Through this study, we proposed the practical application of HHSS for an effective workflow to explore and profile candidates with less DDI liability.
Inhibitory Effect of Crizotinib on Creatinine Uptake by Renal Secretory Transporter OCT2.
Arakawa, Hiroshi; Omote, Saki; Tamai, Ikumi
2017-09-01
Crizotinib, a tyrosine kinase inhibitor, exhibits some cases of an increase in serum creatinine levels. Creatinine is excreted by not only glomerular filtration but also active secretion by organic cation transporters such as organic cation transporter 2 (OCT2). In the present study, we evaluated in vitro inhibitory effect of crizotinib on OCT2 by directly measuring creatinine uptake by OCT2. Coincubation of crizotinib reduced uptake of [ 14 C]creatinine by cultured HEK293 cells expressing OCT2 (HEK293/OCT2) in a concentration-dependent manner with IC 50 values of 1.58 ± 0.24 μM. Preincubation or both preincubation and coincubation (preincubation/coincubation) with crizotinib showed stronger inhibitory effect on [ 14 C]creatinine uptake compared with that in coincubation alone with IC 50 values of 0.499 ± 0.076 and 0.347 ± 0.040 μM, respectively. These IC 50 values of crizotinib on [ 3 H]N-methyl-4-phenylpyridinium acetate uptake by OCT2 were 10-20 times higher than those of [ 14 C]creatinine uptake. Furthermore, preincubation of crizotinib inhibited creatinine uptake by OCT2 in an apparently competitive manner. In conclusion, crizotinib at a clinically relevant concentration has the potential to inhibit creatinine transport by OCT2, suggesting an increase of serum creatinine levels in clinical use. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Pavadai, Elumalai; El Mazouni, Farah; Wittlin, Sergio; de Kock, Carmen; Phillips, Margaret A.; Chibale, Kelly
2016-01-01
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the range of 0.38–20 μM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition to this, thirteen compounds inhibited parasite growth with IC50 values of ≤ 50 μM, four of which showed IC50 values in the range of 5–12 μM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors. PMID:26915022
Compounds from Sedum caeruleum with antioxidant, anticholinesterase, and antibacterial activities.
Bensouici, Chawki; Kabouche, Ahmed; Karioti, Anastasia; Öztürk, Mehmet; Duru, Mehmet Emin; Bilia, Anna Rita; Kabouche, Zahia
2016-01-01
This is the first study on the phytochemistry, antioxidant, anticholinesterase, and antibacterial activities of Sedum caeruleum L. (Crassulaceae). The objective of this study is to isolate the secondary metabolites and determine the antioxidant, anticholinesterase, and antibacterial activities of S. caeruleum. Six compounds (1-6) were isolated from the extracts of S. caeruleum and elucidated using UV, 1D-, 2D-NMR, and MS techniques. Antioxidant activity was investigated using DPPH(•), CUPRAC, and ferrous-ions chelating assays. Anticholinesterase activity was determined against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the Ellman method. Antibacterial activity was performed according to disc diffusion and minimum inhibitory concentration (MIC) methods. Isolated compounds were elucidated as ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6). The butanol extract exhibited highest antioxidant activity in all tests (IC50 value: 28.35 ± 1.22 µg/mL in DPPH assay, IC50 value: 40.83 ± 2.24 µg/L in metal chelating activity, and IC50 value: 23.52 ± 0.44 µg/L in CUPRAC), and the highest BChE inhibitory activity (IC50 value: 36.89 ± 0.15 µg/L). Moreover, the chloroform extract mildly inhibited (MIC value: 80 µg/mL) the growth of all the tested bacterial strains. Ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6) were isolated from Sedum caeruleum for the first time. In addition, a correlation was observed between antioxidant and anticholinesterase activities of bioactive ingredients of this plant.
Antioxidant activities of Physalis peruviana.
Wu, Sue-Jing; Ng, Lean-Teik; Huang, Yuan-Man; Lin, Doung-Liang; Wang, Shyh-Shyan; Huang, Shan-Ney; Lin, Chun-Ching
2005-06-01
Physalis peruviana (PP) is a widely used medicinal herb for treating cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. In this study, the hot water extract (HWEPP) and extracts prepared from different concentrations of ethanol (20, 40, 60, 80 and 95% EtOH) from the whole plant were evaluated for antioxidant activities. Results displayed that at 100 mug/ml, the extract prepared from 95% EtOH exhibited the most potent inhibition rate (82.3%) on FeCl2-ascorbic acid induced lipid peroxidation in rat liver homogenate. At concentrations 10-100 microg/ml, this extract also demonstrated the strongest superoxide anion scavenging and inhibitory effect on xanthine oxidase activities. In general, the ethanol extracts revealed a stronger antioxidant activity than alpha-tocopherol and HWEPP. Compared to alpha-tocopherol, the IC50 value of 95% EtOH PP extract was lower in thiobarbituric acid test (IC50=23.74 microg/ml vs. 26.71 microg/ml), in cytochrome c test (IC50=10.40 microg/ml vs. 13.39 microg/ml) and in xanthine oxidase inhibition test (IC50=8.97 microg/ml vs. 20.68 microg/ml). The present study concludes that ethanol extracts of PP possess good antioxidant activities, and the highest antioxidant properties were obtained from the 95% EtOH PP.
Okada, Muneyoshi; Watanabe, Shinya; Matada, Takashi; Asao, Yoko; Hamatani, Ramu; Yamawaki, Hideyuki; Hara, Yukio
2013-01-01
Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.
Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals.
Carfagna, M A; Ponsler, G D; Muhoberac, B B
1996-03-08
Inhibition of Na+/K+-ATPase and Mg2+-ATPase activities by in vitro exposure to Cd2+, Pb2+ and Mn2+ was investigated in rat brain synaptic plasma membranes (SPMs). Cd2+ and Pb2+ produced a larger maximal inhibition of Na+/K+-ATPase than of Mg2+-ATPase activity. Metal concentrations causing 50% inhibition of Na+/K+-ATPase activity (IC50 values) were Cd2+ (0.6 microM) < Pb2+ (2.1 microM) < Mn2+ (approximately 3 mM), and the former two metals were substantially more potent in inhibiting SPM versus synaptosomal Na+/K+-ATPase. Dixon plots of SPM data indicated that equilibrium binding of metals occurs at sites causing enzyme inhibition. In addition, IC50 values for SPM K+-dependent p-nitrophenylphosphatase inhibition followed the same order and were Cd2+ (0.4 microM) < Pb2+ (1.2 microM) < Mn2+ (300 microM). Simultaneous exposure to the combinations Cd2+/Mn2+ or Pb2+/Mn2+ inhibited SPM Na+/K+-ATPase activity synergistically (i.e., greater than the sum of the metal-induced inhibitions assayed separately), while Cd2+/Pb2+ caused additive inhibition. Simultaneous exposure to Cd2+/Pb2+ antagonistically inhibited Mg2+-ATPase activity while Cd2+/Mn2+ or Pb2+/Mn2+ additively inhibited Mg2+-ATPase activity at low Mn2+ concentrations, but inhibited antagonistically at higher concentrations. The similar IC50 values for Cd2+ and Pb2+ versus Mn2+ inhibition of Na+/K+-ATPase and the pattern of inhibition/activation upon exposure to two metals simultaneously support similar modes of interaction of Cd2+ and Pb2+ with this enzyme, in agreement with their chemical reactivities.
Synthesis of heteroaromatic tropeines and heterogeneous binding to glycine receptors.
Maksay, Gábor; Vincze, Zoltán; Nemes, Péter
2009-10-01
Heteroaromatic carboxylic esters of (nor)tropine were synthesized. Tropine esters displaced [(3)H]strychnine binding to glycine receptors of rat spinal cord with low Hill slopes. Two-site displacement resulted in nanomolar IC(50,1) and micromolar IC(50,2) values, and IC(50,2)/IC(50,1) ratios up to 615 depending on the heteroaromatic rings and N-methyl substitution. Nortropeines displayed high affinity and low heterogeneity. IC(50,1) and IC(50,2) values of tropeines did not correlate suggesting different binding modes/sites. Glycine potentiated only the nanomolar displacement reflecting positive allosteric interactions and potentiation of ionophore function. Affinities of three (nor)tropeines were different for glycine receptors but identical for 5-HT(3) receptors.
[Cytotoxicity of chemicals used in household products: 1997- 2004].
Ikarashi, Yoshiaki; Kaniwa, Masa-aki; Tsuchiya, Toshie
2005-01-01
The cytotoxicities of chemicals used in household products were evaluated using a neutral red (NR) uptake assay. The chemicals tested during 1997-2004 were rubber additives (accelerators, antioxidants and retarders), solvents, plasticizers and biocides, such as antimicrobials, fungicides, preservatives used in paints, paper, wood and plastic products. The cytotoxicity potential of each chemical was classified by determining the concentrations inducing 50% reduction of NR uptake into Chinese hamster fibroblast V79 cells compared to control (IC50). In vivo eye irritancy of each chemical was estimated by the IC50 value. Most biocides tested showed strong cytotoxicity and had a high probability of inducing strong eye irritation.
Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud
2015-01-01
Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871
Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia
2017-01-01
Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.
Antioxidant activities of different solvent extracts of Piper retrofractum Vahl. using DPPH assay
NASA Astrophysics Data System (ADS)
Jadid, Nurul; Hidayati, Dewi; Hartanti, Sylviana Rosyda; Arraniry, Byan Arasyi; Rachman, Rizka Yuanita; Wikanta, Wiwi
2017-06-01
Piper retrofractum Vahl., which belongs to the family Piperaceae, is geographically dispersed in tropical region including Indonesia. They are well-known spice possessing high medicinal properties. This study aimed to determine the antioxidant activity of P. retrofractum fruit, extracted with different solvents (methanol, ethyl acetate, n-hexane) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. This research was carried out using different concentrations of methanol, ethyl acetate, and n-hexane extracts, (0, 5, 15, 30, 45, 60 ppm). Ascorbic acid was also used as positive antioxidant control. The percentage of inhibition and IC50 were measured. The results showed that the DPPH free radicals were scavenged by all plant extracts in a concentration dependent manner. Moreover, the IC50 values for DPPH radicals with methanol, ethyl acetate and n-hexane extract of the P. retrofractum Vahl. were found to be 101.74; 66.12 and 57.66 ppm, respectively. Interestingly, the IC50 value of n-hexane extract (57.66 ppm) was lower than ascorbic acid (66.12 ppm), indicating that n-hexane extract was a more potent scavenger of free radicals than methanol and ethyl acetate extracts. Taken together, our results suggested that n-hexane extract of P. Retrofractum Vahl. might contain potential antioxidant compounds.
Kungolos, A; Emmanouil, C; Tsiridis, V; Tsiropoulos, N
2009-08-01
Three commonly used test organisms of different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) were exposed to selected agrochemicals (fosthiazate, metalaxyl-M, imidacloprid) and copper, in single doses or in binary mixtures. The toxicity of each single compound varied up to two orders of magnitude, depending on the test species examined. V. fischeri was the most sensitive test organism regarding fosthiazate and metalaxyl-M, indicating an IC(50) value of 0.20 mg/L (0.17-0.25 mg/L) and 0.88 mg/L (0.35-1.57 mg/L), respectively. Imidacloprid was the least toxic compound, indicating an EC(50) value on D. magna of 64.6 mg/L (43.3-122.5 mg/L) and an IC(50) value on V. fischeri of 226 mg/L (159-322 mg/L), while for imidacloprid at a concentration of 1000 mg/L the effect on P. subcapitata was lower than 50%. Copper was the most toxic compound towards all test organisms exhibiting the highest toxic effect on P. subcapitata, with an IC(50) value of 0.05 mg/L (0.003-0.008 mg/L). The toxic effects of the binary mixtures have been compared to the theoretically expected effect, resulting from a simple mathematical model based on the theory of probabilities. The independent action model was used in order to predict the theoretically expected effect. The interactive effects were mostly antagonistic or additive, while in few cases (interactive effects of metalaxyl-M and copper on V. fischeri) a synergistic mode of action was observed for some concentration combinations. Experiments showed that interactive effects of chemicals may vary depending on the test species used as well as on the chemicals and their respective concentrations. Although most of the concentrations of chemicals tested in this study are higher than the ones usually found in natural environment, the evaluation of their interactive toxic effects using a battery of bioassays may comprise a useful tool for the estimation of the environmental hazard of chemicals.
Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors
Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G
1998-01-01
The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA receptors on cerebellar granule neurones, which are known to express δ-subunit-containing receptors. This novel mechanism is masked when a γ2 subunit is incorporated into the receptor complex, revealing further diversity in the response of native GABAA receptors to endogenous cations. PMID:9508826
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
Background: The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum. Materials & Methods: Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. Results: The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC50 values of greater than 500 μmol Conclusion: The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents. PMID:28480379
Masaki, H; Atsumi, T; Sakurai, H
1995-01-01
Previously we demonstrated that hamamelitannin (2',5-di-O-galloyl hamamelose) in Hamamelis virginiana L. exhibits potent superoxide-anion scavenging activity. We then examined the physiological and pharmacological activities of hamamelitannin as well as its functional homologues, gallic acid and syringic acid. The following results were obtained: (1) Hamamelitannin has a higher protective activity against cell damages induced by superoxide anions than gallic acid which is the functional moiety of hamamelitannin. The protective activity of hamamelitannin on murine fibroblast-damage induced by superoxide anions was found at a minimum concentration of 50 microM, while the corresponding figure for gallic acid was 100 microM. (2) Pre-treatment of fibroblasts with hamamelitannin enhances cell survival. (3) The superoxide-anion scavenging activity of the compound in terms of its IC50 value (50% inhibition concentration of superoxide anion radicals generated) was evaluated by ESR spin-trapping. Both hamamelitannin (IC50 = 1.31 +/- 0.06 microM) and gallic acid (IC50 = 1.01 +/- 0.03 microM) exhibited high superoxide-anion scavenging activity followed by syringic acid (IC50 = 13.90 +/- 2.38 microM). (4) When hamamelitannin was treated with superoxide anions generated by a KO2-crown ether system, HPLC analysis showed the disappearance of hamamelitannin and the concomitant formation of hamamelitannin-derived radicals (g = 2.005, delta H1 = 2.16 G, delta H2 = 4.69 G) was detected by ESR spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)
Jayaprakasam, Bolleddula; Yang, Nan; Wen, Ming-Chun; Wang, Rong; Goldfarb, Joseph; Sampson, Hugh; Li, Xiu-Min
2015-01-01
OBJECTIVE Anti-asthma herbal medicine intervention (ASHMI™), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI™ exhibited synergy. METHODS Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION By comparing the interaction index values, we find that constituents in ASHMI™ synergistically inhibited eotaxin-1 production as well as Th2 cytokine production. PMID:23743163
Pharmacokinetic-pharmacodynamic modelling of the antihistaminic (H1) effect of bilastine.
Jauregizar, Nerea; de la Fuente, Leire; Lucero, Maria Luisa; Sologuren, Ander; Leal, Nerea; Rodríguez, Mónica
2009-01-01
To model the pharmacokinetic and pharmacodynamic relationship of bilastine, a new histamine H(1) receptor antagonist, from single- and multiple-dose studies in healthy adult subjects. The pharmacokinetic model was developed from different single-dose and multiple-dose studies. In the single-dose studies, a total of 183 subjects received oral doses of bilastine 2.5, 5, 10, 20, 50, 100, 120, 160, 200 and 220 mg. In the multiple-dose studies, 127 healthy subjects received bilastine 10, 20, 40, 50, 80, 100, 140 or 200 mg/day as multiple doses during a 4-, 7- or 14-day period. The pharmacokinetic profile of bilastine was investigated using a simultaneous analysis of all concentration-time data by means of nonlinear mixed-effects modelling population pharmacokinetic software NONMEM version 6.1. Plasma concentrations were modelled according to a two-compartment open model with first-order absorption and elimination. For the pharmacodynamic analysis, the inhibitory effect of bilastine (inhibition of histamine-induced wheal and flare) was assessed on a preselected time schedule, and the predicted typical pharmacokinetic profile (based on the pharmacokinetic model previously developed) was used. An indirect response model was developed to describe the pharmacodynamic relationships between flare or wheal areas and bilastine plasma concentrations. Finally, once values of the concentration that produced 50% inhibition (IC(50)) had been estimated for wheal and flare effects, simulations were carried out to predict plasma concentrations for the doses of bilastine 5, 10 and 20 mg at steady state (72-96 hours). A non-compartmental analysis resulted in linear kinetics of bilastine in the dose range studied. Bilastine was characterized by two-compartmental kinetics with a rapid-absorption phase (first-order absorption rate constant = 1.50 h(-1)), plasma peak concentrations were observed at 1 hour following administration and the maximal response was observed at approximately 4 hours or later. Concerning the selected pharmacodynamic model to fit the data (type I indirect response model), this selection is attributable to the presence of inhibitory bilastine plasma concentrations that decrease the input response function, i.e. the production of the skin reaction. This model resulted in the best fit of wheal and flare data. The estimates (with relative standard errors expressed in percentages in parentheses) of the apparent zero-order rate constant for flare or wheal spontaneous appearance (k(in)), the first-order rate constant for flare or wheal disappearance (k(out)) and bilastine IC(50) values were 0.44 ng/mL/h (14.60%), 1.09 h(-1) (15.14%) and 5.15 ng/mL (16.16%), respectively, for wheal inhibition, and 11.10 ng/mL/h (8.48%), 1.03 h(-1) (8.35%) and 1.25 ng/mL (14.56%), respectively, for flare inhibition. The simulation results revealed that bilastine plasma concentrations do not remain over the IC(50) value throughout the inter-dose period for doses of 5 and 10 mg. However, with a dose of 20 mg of bilastine administered every 24 hours, plasma concentrations remained over the IC(50) value during the considered period for the flare effect, and up to 20 hours for the wheal effect. Pharmacokinetic and pharmacodynamic relationships of bilastine were reliably described with the use of an indirect response pharmacodynamic model; this led to an accurate prediction of the pharmacodynamic activity of bilastine.
Pan, Yan; Tiong, Kai Hung; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Ong, Chin Eng
2014-10-15
This study was designed to investigate eight herbal active constituents (andrographolide, asiaticoside, asiatic acid, madecassic acid, eupatorin, sinensetin, caffeic acid, and rosmarinic acid) on their potential inhibitory effects on human cytochrome P450 1A2 (CYP1A2) activity. A fluorescence-based enzyme assay was performed by co-incubating human cDNA-expressed CYP1A2 with its selective probe substrate, 3-cyano-7-ethoxycoumarin (CEC), in the absence or presence of various concentrations of herbal active constituents. The metabolite (cyano-hydroxycoumarin) formed was subsequently measured in order to obtain IC50 values. The results indicated that only eupatorin and sinensetin moderately inhibited CYP1A2 with IC50 values of 50.8 and 40.2 μM, while the other active compounds did not significantly affect CYP1A2 activity with IC50 values more than 100 μM. Ki values further determined for eupatorin and sinensetin were 46.4 and 35.2 μM, respectively. Our data indicated that most of the investigated herbal constituents have negligible CYP1A2 inhibitory effect. In vivo studies however may be warranted to ascertain the inhibitory effect of eupatorin and sinensetin on CYP1A2 activity in clinical situations. Copyright © 2014 Elsevier GmbH. All rights reserved.
Go, Mei-Lin; Liu, Mei; Wilairat, Prapon; Rosenthal, Philip J; Saliba, Kevin J; Kirk, Kiaran
2004-09-01
A series of alkoxylated and hydroxylated chalcones previously reported to have antiplasmodial activities in vitro were investigated for their effects on the new permeation pathways induced by the malaria parasite in the host erythrocyte membrane. Of 21 compounds with good antiplasmodial activities (50% inhibitory concentrations [IC(50)s], < or = 20 microM), 8 members were found to inhibit sorbitol-induced lysis of parasitized erythrocytes to a significant extent (< or = 40% of control values) at a concentration (10 microM) that was close to their antiplasmodial IC(50)s. Qualitative structure-activity analysis suggested that activity was governed to a greater extent by a substitution on ring B than on ring A of the chalcone template. Most of the active compounds had methoxy or dimethoxy groups on ring B. Considerable variety was permitted on ring A in terms of the electron-donating or -withdrawing property. Lipophilicity did not appear to be an important determinant for activity. Although they are not exceptionally potent as inhibitors (lowest IC(50), 1.9 microM), the chalcones compare favorably with other more potent inhibitors in terms of their selective toxicities against plasmodia and their neutral character.
Bioactive components from the heartwood of Pterocarpus santalinus.
Wu, Shou-Fang; Hwang, Tsong-Long; Chen, Shu-Li; Wu, Chin-Chung; Ohkoshi, Emika; Lee, Kuo-Hsiung; Chang, Fang-Rong; Wu, Yang-Chang
2011-09-15
One new phenanthrenedione, pterolinus K (1), and one new chalcone, pterolinus L (2) were isolated from the heartwood extract of Pterocarpus santalinus. The structures were elucidated by spectroscopic methods. Both 1 and 2 showed inhibitory effect on elastase release by human neutrophils in response to fMLP with an IC(50) value of 4.24 and 0.95 μM, and compound 1 also inhibited superoxide anion generation with IC(50) value of 0.99 μM. In addition, compound 1 showed selective cytotoxicity against HepG2 with IC(50) value of 10.86 μM, while compound 2 showed a moderate cytotoxicity against KB with IC(50) values of 17.18 μM. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsjeh, Sabirin; Swasono, Respati Tri; Anwar, Chairil; Solikhah, Eti Nurwening; Lestari, Endang
2017-03-01
The compound 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone have been synthesized through Claisen-Schmidt reaction from 2-hydroxyacetophenone and 2,4-dihydroxyacetophenone with 4-hydroxy-3-methoxy benzaldehida (vanillin) in aqueous KOH 40% and KSF montmorillonite as catalyst in methanol. All these products were characterized by FT-IR, TLC Scanner, GC-MS, MS-Direct, and 1H-NMR and 13C-NMR spectrometer. Both of these compounds were tested citotoxycity activity as an anticancer against cervical, colon, and breast cancer cells (Hela, WiDr, and T47D cell lines) using MTT assay in vitro. Dose series given test solution concentration on Hela, WiDr, and T47D cells started from 6,25; 25; 50 and 100 µg/mL with incubation treatment for 24 hours. The result of study showed that the 2',4-dihydroxy-3-methoxychalcone as bright yellow crystal with the melting point of 114-115 °C and the yield of 13.77% and the 2',4',4-trihydroxy-3-methoxychalcone as bright yellow crystals with the melting point of 195-197 °C and the yield of 6%. Other 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone also exhibited cytotoxic activity against the cancer cell lines, with the 2',4',4-trihydroxy-3-methoxychalcone showed greater activities than the 2',4-dihydroxy-3-methoxychalcone in WiDr cell lines. The 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone exhibited strong anticancer activities with IC50 value below 20 µg/mL. The activity of 2',4',4-trihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 8.53 and 2.66 µg/mL respectively, than T47D cell lines with IC50 value 24.61 µg/mL. The test results cytotoxic of 2',4-dihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 12.80, 19.57 µg/mL than T47D cell lines with IC50 value of 20.73 µg/mL. IC50 value indicated that 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone potential as inhibitors in Hela, WiDr and T47D cell lines.
Sutaria, Dhruvitkumar S; Moya, Bartolome; Green, Kari B; Kim, Tae Hwan; Tao, Xun; Jiao, Yuanyuan; Louie, Arnold; Drusano, George L; Bulitta, Jürgen B
2018-06-01
Penicillin-binding proteins (PBPs) are the high-affinity target sites of all β-lactam antibiotics in bacteria. It is well known that each β-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite β-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae , PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using β-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After β-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC 50 ]) were reported as the β-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by β-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC 50 , <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC 50 , <0.0075 mg/liter) and avibactam (IC 50 , 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC 50 , 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC 50 , 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC 50 , 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double β-lactam and β-lactam-β-lactamase inhibitor combinations. Copyright © 2018 American Society for Microbiology.
Begum, S; Achary, P Ganga Raju
2015-01-01
Quantitative structure-activity relationship (QSAR) models were built for the prediction of inhibition (pIC50, i.e. negative logarithm of the 50% effective concentration) of MAP kinase-interacting protein kinase (MNK1) by 43 potent inhibitors. The pIC50 values were modelled with five random splits, with the representations of the molecular structures by simplified molecular input line entry system (SMILES). QSAR model building was performed by the Monte Carlo optimisation using three methods: classic scheme; balance of correlations; and balance correlation with ideal slopes. The robustness of these models were checked by parameters as rm(2), r(*)m(2), [Formula: see text] and randomisation technique. The best QSAR model based on single optimal descriptors was applied to study in vitro structure-activity relationships of 6-(4-(2-(piperidin-1-yl) ethoxy) phenyl)-3-(pyridin-4-yl) pyrazolo [1,5-a] pyrimidine derivatives as a screening tool for the development of novel potent MNK1 inhibitors. The effects of alkyl group, -OH, -NO2, F, Cl, Br, I, etc. on the IC50 values towards the inhibition of MNK1 were also reported.
Wang, Zhanhui; Beier, Ross C; Sheng, Yajie; Zhang, Suxia; Jiang, Wenxiao; Wang, Zhaopeng; Wang, Jin; Shen, Jianzhong
2013-05-01
Immunoassays based on the current available antibodies for large multi-sulfonamide screening programs have suffered from high selectivity for individual sulfonamides and a wide range of selectivities for different sulfonamides. In this study, five synthesized haptens, HS, BS, CS, SA10, and TS and two sulfonamides, SG and SMX were used as haptens, which may or may not contain a ring structure at the N1 position of the sulfonamides, were selected to evaluate the effectiveness for producing group-specific monoclonal antibodies (MAbs). Mice immunized with three different two-ring haptens were used for hybridoma production, which resulted in three unique MAbs recognizing 10, 13, and 15 sulfonamides showing 50 % inhibition (IC50) at concentrations below 100 ng mL(-1). MAb 4D11 derived from one novel immunizing hapten could recognize 12 sulfonamides with IC50 values ranging from 1.2 to 12.4 ng mL(-1), almost within 1 order of magnitude. These produced MAbs show lower IC50 values in addition to significantly improved group specificity compared with previously generated MAbs. This study clearly indicates that the careful selection of the immunizing hapten has an important effect on the specificity of the generated antibodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul
Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less
Satheeshkumar, N; Mukherjee, Pulok K; Bhadra, S; Saha, B P
2010-03-01
Ethno pharmacological approach has provided several leads to identify potential new drugs from plant sources, including those for memory disorders. Acetylcholinesterase inhibitors (AChEI) give a symptomatic relief to some of the clinical manifestations of the disease. The main objective of this study is to standardize the extract of Trigonella foenum graecum L with trigonelline by HPTLC method and determine the in vitro AChE inhibitory activity of Trigonella foenum graecum L and its constituents using galanthamine as a reference. Different concentrations of hydro alcoholic extract of Trigonella foenum graecum and trigonelline were subjected to HPTLC analysis using the mobile phase n propanol, methanol and water (4:1:2, v/v). The R(f) of trigonelline was found to be 0.43, and the correlation coefficient of 0.99 was indicative of good linear dependence of peak area on concentration. The concentration of trigonelline was found to be 13mgg(-1)w/w in the hydro alcoholic extract of Trigonella foenum graecum. The AChE inhibitory activity of crude fenugreek seed extracts, fractions and trigonelline was evaluated using Ellman's method in 96-well micro plate's assay and TLC bioassay detection. The ethyl acetate fraction of the alcohol extract (IC50 53.00 +/- 17.33microg/ml), and total alkaloid fraction (IC50 9.23+/-6.08microg/ml) showed potential AChE inhibition. Trigonelline showed IC50 233+/-0.12microM. Galanthamine was used as standard and it showed inhibition of acetyl cholinesterase with an IC50 value of 1.27+/-0.21microM. Copyright 2009 Elsevier GmbH. All rights reserved.
Hypoxia affects cellular responses to plant extracts.
Liew, Sien-Yei; Stanbridge, Eric J; Yusoff, Khatijah; Shafee, Norazizah
2012-11-21
Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions. Pereskia grandifolia, Orthosiphon aristatus, Melastoma malabathricum, Carica papaya, Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides, Pereskia bleo and Clinacanthus nutans leaves were dried, blended into powder form, extracted in methanol and evaporated to produce crude extracts. Human Saos-2 osteosarcoma cells were treated with various concentrations of the plant extracts under normoxia or hypoxia (0.5% oxygen). 24h after treatment, an MTT assay was performed and the IC(50) values were calculated. Effect of the extracts on hypoxia inducible factor (HIF) activity was evaluated using a hypoxia-driven firefly luciferase reporter assay. The relative cytotoxicity of each plant extract on Saos-2 cells was different in hypoxic versus normoxic conditions. Hypoxia increased the IC(50) values for Pereskia grandifola and Orthosiphon aristatus extracts, but decreased the IC(50) values for Melastoma malabathricum and Carica papaya extracts. Extracts of Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides had equivalent cytotoxic effects under both conditions. Pereskia bleo and Clinacanthus nutans extracts were not toxic to cells within the concentration ranges tested. The most interesting result was noted for the Carica papaya extract, where its IC(50) in hypoxia was reduced by 3-fold when compared to the normoxic condition. This reduction was found to be associated with HIF inhibition. Hypoxia variably alters the cytotoxic effects of TCM plant extracts on cancer cells. Carica papaya showed enhanced cytotoxic effect on hypoxic cancer cells by inhibiting HIF activities. These findings provide a plausible approach to killing hypoxic cancer cells in solid tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Engdal, S; Nilsen, O G
2008-06-01
1. The herbal products Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic were investigated for in vitro inhibitory potential on P-glycoprotein (P-gp)-mediated transport of digoxin (30 nM) in differentiated and polarized Caco-2 cells. 2. Satisfactory cell functionality was demonstrated through measurements of assay linearity, transepithelial electric resistance (TEER), cytotoxicity, mannitol permeability, and inclusion of the positive inhibition control verapamil. 3. The most potent inhibitors of the net digoxin flux (IC(50)) were mistletoe > Natto K2 > Agaricus > green tea (0.022, 0.62, 3.81, >4.5 mg ml(-1), respectively). Mistletoe also showed the lowest IC(25) value, close to that obtained by verapamil (1.0 and 0.5 microg ml(-1), respectively). The IC(50)/IC(25) ratio was found to be a good parameter for the determination of inhibition profiles. Garlic and noni juice were classified as non-inhibitors. 4. This study shows that mistletoe, Natto K2, Agaricus and green tea inhibit P-gp in vitro. Special attention should be paid to mistletoe due to very low IC(50) and IC(25) values and to Natto K2 due to a low IC(50) value and a low IC(50)/IC(25) ratio.
Jakobsen, Øyvind M.; Brautaset, Trygve; Degnes, Kristin F.; Heggeset, Tonje M. B.; Balzer, Simone; Flickinger, Michael C.; Valla, Svein; Ellingsen, Trond E.
2009-01-01
Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar Vmax values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK. PMID:19060158
Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E
2009-02-01
Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.
Amides and neolignans from the aerial parts of Piper bonii.
Ding, Duo-Duo; Wang, Yue-Hu; Chen, Ya-Hui; Mei, Ren-Qiang; Yang, Jun; Luo, Ji-Feng; Li, Yan; Long, Chun-Lin; Kong, Yi
2016-09-01
Six amides, piperbonamides A-F, three neolignans piperbonins A-C, and 11 known compounds were isolated from the aerial parts of Piper bonii (Piperaceae). The structures of piperbonamides A-F and piperbonins A-C were elucidated based on the analysis of 1D and 2D NMR and MS data. Piperbonin A, (+)-trans-acuminatin, (+)-cis-acuminatin, (+)-kadsurenone, and pipernonaline showed weak activity against platelet aggregation with IC50 values of 118.2, 108.5, 90.02, 107.3, and 116.3 μM, respectively, as compared with the positive control, tirofiban, with an IC50 value of 5.24 μM. Piperbonamides A-F were inactive against five tumor cell lines at concentrations up to 40 μM. Copyright © 2016. Published by Elsevier Ltd.
Assessment of Mycosphaerella graminicola resistance to azoxystrobin.
Siah, A; Deweer, C; Morand, E; Reignault, Ph; Halama, P
2008-01-01
Azoxystrobin resistance levels of twenty two strains sampled from ten French locations and two reference isolates (IPO323 and IPO94269) of the wheat pathogen Mycosphaerella graminicola were investigated in vitro. French strains assayed were selected from twenty two genetic groups determined from three hundred sixty three strains previously characterised using microsatellites, actine and beta-tubuline markers. For the first time, the evaluation was carried out using four distinct methods: spotting on PDA medium, spore germination on PDA medium and using microtitre plates with and without Alamar blue, a growth indicator. From dose-response curve, half maximal inhibitory concentration (IC50) was determined for each strain. The results obtained using microtitre plates with the addition of Alamar blue displayed high standard deviations from the growth averages observed. Therefore, we suggest that this method is inadequate to assess M. graminicolo resistance to fungicides. However, a good correlation was observed between the rankings of strains according to their IC50 values with the three other methods used. The two reference isolates, as expected, were inhibited by low azoxystrobin concentrations. On the other hand, the IC50 values obtained showed presence of a threshold between sensitive and resistant strains that corroborates the disruptive resistance of M. graminicola against strobilurin fungicides. In addition, the strains showing resistance were those sampled mainly from northern France, where a high frequency of strobilurin resistant isolates among M. graminicola populations was reported by several studies.
Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors.
Zhou, Yumei; Cui, Huaqing; Yu, Xiaoming; Peng, Tao; Wang, Gang; Wen, Xiaoxue; Sun, Yunbo; Liu, Shuchen; Zhang, Shouguo; Hu, Liming; Wang, Lin
2017-08-14
A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1-3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC 50 (half maximal inhibitory concentration) values at the micromolar level. The preliminary structure-activity relationships were analyzed and the binding features of compound 7e (IC 50 3.81 µM) was predicted using the CDOCKER program. The results of this research could provide informative guidance for further optimizing benzofuran derivatives as potent SIRT2 inhibitors.
Lalegani, Sajjad; Ahmadi Gavlighi, Hassan; Azizi, Mohammad Hossein; Amini Sarteshnizi, Roghayeh
2018-03-01
Phenolic compounds as agro-industrial by-products have been associated with health benefits since they exhibit high antioxidant activity and anti-diabetic properties. In this study, polyphenol-rich extract from pistachio green hull (PGH) was evaluated for antioxidant activity and its ability to inhibit α-amylase and α-glucosidase activity in vitro. The effect of PGH extract powder on in vitro starch digestibility was also evaluated. The results showed that PGH had stronger antioxidant activity than Trolox. The inhibitory effect of PGH extract against α-amylase from porcine pancreas was dose dependent and the IC 50 value was ~174μgGAE/mL. The crude PGH extract was eight times more potent on baker yeast α-glucosidase activity (IC 50 ~6μgGAE/mL) when compared to acarbose, whereas the IC 50 value of PGH extract against rat intestinal maltase activity obtained ~2.6mgGAE/mL. The non-tannin fraction of PGH extract was more effective against α-glucosidase than tannin fraction whereas the α-amylase inhibitor was concentrated in the tannin fraction. In vitro starch digestibility and glycemic index (GI) of pasta sample supplemented with PGH extract powder (1.5%) was significantly lower than the control pasta. The IC 50 value of PGH extract obtained from cooked pasta against α-amylase and α-glucosidase was increased. These results have important implications for the processing of PGH for food industry application and therefore could comply with glucose control diets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quashie, Neils B; Duah, Nancy O; Abuaku, Benjamin; Quaye, Lydia; Ayanful-Torgby, Ruth; Akwoviah, George A; Kweku, Margaret; Johnson, Jacob D; Lucchi, Naomi W; Udhayakumar, Venkatachalam; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A
2013-12-17
Based on report of declining efficacy of chloroquine, Ghana shifted to the use of artemisinin-based combination therapy (ACT) in 2005 as the first-line anti-malarial drug. Since then, there has not been any major evaluation of the efficacy of anti-malarial drugs in Ghana in vitro. The sensitivity of Ghanaian Plasmodium falciparum isolates to anti-malarial drugs was, therefore, assessed and the data compared with that obtained prior to the change in the malaria treatment policy. A SYBR Green 1 fluorescent-based in vitro drug sensitivity assay was used to assess the susceptibility of clinical isolates of P. falciparum to a panel of 12 anti-malarial drugs in three distinct eco-epidemiological zones in Ghana. The isolates were obtained from children visiting health facilities in sentinel sites located in Hohoe, Navrongo and Cape Coast municipalities. The concentration of anti-malarial drug inhibiting parasite growth by 50% (IC50) for each drug was estimated using the online program, ICEstimator. Pooled results from all the sentinel sites indicated geometric mean IC50 values of 1.60, 3.80, 4.00, 4.56, 5.20, 6.11, 10.12, 28.32, 31.56, 93.60, 107.20, and 8952.50 nM for atovaquone, artesunate, dihydroartemisin, artemether, lumefantrine, amodiaquine, mefloquine, piperaquine, chloroquine, tafenoquine, quinine, and doxycycline, respectively. With reference to the literature threshold value indicative of resistance, the parasites showed resistance to all the test drugs except the artemisinin derivatives, atovaquone and to a lesser extent, lumefantrine. There was nearly a two-fold decrease in the IC50 value determined for chloroquine in this study compared to that determined in 2004 (57.56 nM). This observation is important, since it suggests a significant improvement in the efficacy of chloroquine, probably as a direct consequence of reduced drug pressure after cessation of its use. Compared to that measured prior to the change in treatment policy, significant elevation of artesunate IC50 value was observed. The results also suggest the existence of possible cross-resistance among some of the test drugs. Ghanaian P. falciparum isolates, to some extent, have become susceptible to chloroquine in vitro, however the increasing trend in artesunate IC50 value observed should be of concern. Continuous monitoring of ACT in Ghana is recommended.
Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl
2014-01-01
Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.
Temml, Veronika; Maghradze, David; Vanek, Tomas
2014-01-01
Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682
2011-01-01
Background In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. Methods The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. Results The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. Conclusion This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications. PMID:21936887
Zarai, Zied; Kadri, Adel; Ben Chobba, Ines; Ben Mansour, Riadh; Bekir, Ahmed; Mejdoub, Hafedh; Gharsallah, Néji
2011-09-21
In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrato, Laura; Valeri, Antonio; Bueren, Juan A.
The ACuteTox Project (part of the EU 6th Framework Programme) was started up in January 2005. The aim of this project is to develop a simple and robust in vitro strategy for prediction of human acute systemic toxicity, which could replace animal tests used for regulatory purposes. Our group is responsible for the characterization of the effect of the reference chemicals on the hematopoietic tissue. CFU-GM assay based on the culture of human mononuclear cord blood cells has been used to characterize the effects of the selected compounds on the myeloid progenitors. Previous results have shown the relevance of themore » CFU-GM assay for the prediction of human acute neutropenia after treatment of antitumoral compounds, and this assay has been recently approved by the ECVAM's Scientific Advisory Committee. Among the compounds included in the study there were pharmaceuticals, environmental pollutants and industrial chemicals. Eleven out of 55 chemicals did not show any cytotoxic effect at the maximum concentration tested. The correlation coefficients of CFU-GM IC50, IC70 and IC90 values with human LC50 values (50% lethal concentration calculated from time-related sublethal and lethal human blood concentrations) were 0.4965, 0.5106 and 0.5142 respectively. Although this correlation is not improve respect to classical in vitro basal cytotoxicity tests such as 3T3 Neutral Red Uptake, chemicals which deviate substantially in the correlation with these assays (colchicine, digoxin, 5-Fluorouracil and thallium sulfate) fitted very well in the linear regression analysis of the CFU-GM progenitors. The results shown in the present study indicate that the sensitivity of CFU-GM progenitors correlates better than the sensitivity of HL-60 cells with human LC50 values and could help to refine the predictability for human acute systemic toxicity when a given chemical may affect to the hematopoietic myeloid system.« less
Carreño Otero, Aurora L; Vargas Méndez, Leonor Y; Duque L, Jonny E; Kouznetsov, Vladimir V
2014-05-06
Girgensohnine alkaloid was used as a natural model in the design and generation of new alkaloid-like α-aminonitrile series that was completed by the use of SSA-catalyzed Strecker reaction between commercial and inexpensive substituted benzaldehydes, piperidine (pyrrolidine, morpholine and N-methylpiperazine) and acetone cyanohydrin. Calculated ADMETox parameters of the designed analogs revealed their good pharmacokinetic profiles indicating lipophilic characteristics. In vitro AChE enzyme test showed that obtained α-aminonitriles could be considered as AChEIs with micromolar IC50 values ranging from 42.0 to 478.0 μM (10.3-124.0 μg/mL). Among this series, the best AChE inhibitor was the pyrrolidine α-aminonitrile 3 (IC50 = 42 μM), followed by the piperidine α-aminonitriles 2 and 6 (IC50 = 45 μM and IC50 = 51 μM, respectively), and the compound 7 (IC50 = 51 μM). In vivo insecticidal activity of more active AChEIs against Aedes aegypti larvae was also performed showing a good larvicidal activity at concentrations less than 140 ppm, highlighting products 2 and 7 that could serve as lead compounds to develop new potent and selective insecticides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Antioxidant potential of n-butanol fraction from extract of Jasminum mesnyi Hance leaves.
Borar, Sakshi; Punia, Priyanka; Kalia, A N
2011-01-01
Methanolic extract of Jasminum mesnyi Hance leaves having antidiabetic activity was subjected to fractionation to obtain antioxidant and antihyperglycemic rich fraction. Different concentrations of ethyl acetate and n-butanol fractions were subjected to antioxidant assay by DPPH method, nitric oxide scavenging activity and reducing power assay. The fractions showed dose dependent free radical scavenging property in all the models. IC50 values for ethyl acetate and n-butanol fractions were 153.45 +/- 6.65 and 6.22 +/- 0.25 microg/ml, respectively, as compared to L-ascorbic acid and rutin (as standards; IC50 values 6.54 +/- 0.24 and 5.43 +/- 0.21 microg/ml, respectively) in DPPH model. In nitric oxide scavenging activity, IC50 values were 141.54 +/- 9.95 microg/ml, 35.12 +/- 1.58 microg/ml, 21.06 +/- 0.95 microg/ml and 29.93 +/- 0.32 microg/ml for ethyl acetate, n-butanol fractions, L-ascorbic acid and rutin, respectively. n-Butanol fraction showed a good reducing potential and better free radical scavenging activity as compared to ethyl acetate fraction. Potent antioxidant n-butanol fraction showed better oral glucose tolerance test (antihyperglycemic) at par with metformin (standard drug), n-Butanol fraction contained secoiridoid glycosides which might be responsible for both antioxidant and antihyperglycemic activity.
[Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].
Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian
2015-06-01
To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.
Assessment of anti-cholinesterase activity and cytotoxicity of cagaita (Eugenia dysenterica) leaves.
Gasca, Cristian A; Castillo, Willian O; Takahashi, Catarina Satie; Fagg, Christopher W; Magalhães, Pérola O; Fonseca-Bazzo, Yris M; Silveira, Dâmaris
2017-11-01
Eugenia dysenterica ex DC Mart. (Myrtaceae) is a Brazilian tree with pharmacological and biological properties. The aqueous leaf extract, rich in polyphenols, was tested in the human neuroblastoma cell line SH-SY5Y to evaluate its effect on cell viability. The extract and two isolated compounds were also assessed for the potential inhibitory activity on acetylcholinesterase, an enzyme related to Alzheimer's disease. A simple chromatographic method using Sephadex LH-20 was developed to separate catechin and quercetin from the aqueous leaf extract of E. dysenterica. Identification was carried out by spectroscopic techniques IR, UV, and 1 H and 13 C NMR. The IC 50 values were obtained by constructing dose-response curves on a graph with percentage inhibition versus log of inhibitor concentration and compared with physostigmine, a well-known AChE inhibitor. The extract was toxic for SH-SY5Y cells at concentrations higher than 7.8 μg/ml given for 24 h. The decline in SH-SY5Y cell viability appears to be related to its antiproliferative activity. The extract also showed relatively moderate acetylcholinesterase inhibitory activity of 66.33% ± 0.52% at 1.0 mg/ml with an IC 50 value of 155.20 ± 2.09 μg/ml. Physostigmine, quercetin, and catechin showed IC 50 values of 18.69 ± 0.07, 46.59 ± 0.49, and 42.39 ± 0.67 μg/ml, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mushrooms as possible antioxidant and antimicrobial agents.
Kosanić, Marijana; Ranković, Branislav; Dašić, Marko
2012-01-01
The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases.
Dos Santos Passos, Carolina; Soldi, Tatiane Cristina; Torres Abib, Renata; Anders Apel, Miriam; Simões-Pires, Cláudia; Marcourt, Laurence; Gottfried, Carmem; Henriques, Amélia Teresinha
2013-06-01
Alkaloid fractions of Psychotria suterella (SAE) and Psychotria laciniata (LAE) as well as two monoterpene indole alkaloids (MIAs) isolated from these fractions were evaluated against monoamine oxidases (MAO-A and -B) obtained from rat brain mitochondria. SAE and LAE were analysed by HPLC-PDA and UHPLC/HR-TOF-MS leading to the identification of the compounds 1, 2, 3 and 4, whose identity was confirmed by NMR analyses. Furthermore, SAE and LAE were submitted to the enzymatic assays, showing a strong activity against MAO-A, characterized by IC(50) values of 1.37 ± 1.05 and 2.02 ± 1.08 μg/mL, respectively. Both extracts were also able to inhibit MAO-B, but in higher concentrations. In a next step, SAE and LAE were fractionated by RP-MPLC affording three and four major fractions, respectively. The RP-MPLC fractions were subsequently tested against MAO-A and -B. The RP-MPLC fractions SAE-F3 and LAE-F4 displayed a strong inhibition against MAO-A with IC(50) values of 0.57 ± 1.12 and 1.05 ± 1.15 μg/mL, respectively. The MIAs 1 and 2 also inhibited MAO-A (IC(50) of 50.04 ± 1.09 and 132.5 ± 1.33 μg/mL, respectively) and -B (IC(50) of 306.6 ± 1.40 and 162.8 ± 1.26 μg/mL, respectively), but in higher concentrations when compared with the fractions. This is the first work describing the effects of MIAs found in neotropical species of Psychotria on MAO activity. The results suggest that species belonging to this genus could consist of an interesting source in the search for new MAO inhibitors.
Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics
Lew, Kim H.; Ludwig, Elizabeth A.; Milad, Mark A.; Donovan, Kathleen; Middleton, Elliott; Ferry, James J.; Jusko, William J.
2014-01-01
The pharmacokinetics and selected pharmacodynamic responses to methylprednisolone were investigated in six men and six premenopausal women after a dose of 0.6 mg/kg ideal body weight. Women (luteal phase) exhibited a greater methylprednisolone clearance (0.45 versus 0.29 L/hr/kg) and shorter elimination half-life (1.7 versus 2.6 hours) than men. The volume of distribution of methylprednisolone was similar when normalized for ideal body weight. Pharmacodynamic models were used to examine the methylprednisolone suppressive effects on cortisol secretion and basophil and helper T lymphocyte trafficking. A significantly smaller 50% inhibitory concentration (IC50) value (0.1 versus 1.7 ng/ml) was seen in the women for suppression of cortisol secretion, indicating increased sensitivity. However, the area under the concentration-time curve of effect was similar for both groups. The IC50 values for effects of methylprednisolone on basophil trafficking related to estradiol concentrations in a log-linear fashion in women, with increased sensitivity found at higher estradiol concentrations. Men displayed a greater 24-hour net suppression in blood basophil numbers, but no difference was observed in net cortisol and helper T lymphocyte suppression between the sexes. These findings suggest that methylprednisolone dosages should be based on ideal body weight. Although women are more sensitive to methylprednisolone as measured by cortisol suppression, they eliminate the drug more quickly, generally producing a similar net response. PMID:8222483
Activity of medicinal plants from Ghana against the parasitic gut protist Blastocystis.
Bremer Christensen, Charlotte; Soelberg, Jens; Stensvold, Christen R; Jäger, Anna K
2015-11-04
The plants tested in this study were examples of plants historically used to treat or alleviate several types of stomach disorders manifested by e.g. stomachache, diarrhoea or dysentery. These plants have been consumed typically as a decoction, sometimes mixed with other flavourings. The aim of this study was to evaluate the anti-Blastocystis activity of 24 plant parts from 21 medicinal plants from Ghana. The medicinal plants were collected in the Greater Accra region of Ghana. Every plant part was tested in three different extracts; an ethanolic, a warm, and a cold water extract, at a final concentration of 1 mg/mL for the initial screening, and in a range from 0.0156 to 1mg/mL for determination of inhibitory concentrations. The obligate anaerobic parasitic gut protist Blastocystis (subtype 4) was used as a 48 h old subcultivated isolate in the final concentration of 10(6) cells/mL. Plant extracts inoculated with Blastocystis were incubated at 37 °C for 24 h and 48 h. Both MIC minimum inhibitory concentration (MIC90) assays and minimal lethal concentration (MLC) assays were performed after 24 h and 48 h. The half maximal inhibitory concentration (IC50) was derived after 24 h and 48 h. Antimicrobial activity was tested against two Gram-positive and two Gram-negative bacteria for all 24 plant parts at a final concentration of 1mg/mL. Screening of the 24 different plant parts showed significant anti-Blastocystis activity of six of the ethanolic extracts: Mallotus oppositifolius, IC50, 24 h 27.8 µg/mL; Vemonia colorata, IC50, 24 h 117.9 µg/mL; Zanthoxylum zanthoxyloides, cortex IC50, 24 h 255.6 µg/mL; Clausena anisata, IC50, 24 h 314.0 µg/mL; Z. zanthoxyloides, radix IC50, 24 h 335.7 µg/mL and Eythrina senegalensis, IC50, 24 h 527.6 µg/mL. The reference anti-protozoal agent metronidazole (MTZ) had an IC50, 24 h of 7.6 µg/mL. Only C. anisata showed antimicrobial activity at a concentration of 800 µg/mL. Six ethanolic plant extracts showed significant anti-parasitic activity against Blastocystis. M. oppositifolius showed nearly as good activity as the reference anti-protozoal drug MTZ. Historically, the active plants found in this study have been used against dysentery, diarrhoea or other stomach disorders. Nowadays they are not used specifically for dysentery, but they are being used as medicinal plants against various stomach disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kwon, J Y; Jeong, H W; Kim, H K; Kang, K H; Chang, Y H; Bae, K S; Choi, J D; Lee, U C; Son, K H; Kwon, B M
2000-08-01
Selective inhibition against the yeast MetAP2 (methionine aminopeptidase type 2) was detected in the fermentation broth of a fungus F2757 that was later identified as Penicillium janczewskii. A new compound cis-fumagillin methyl ester (1) was isolated from the diazomethane treated fermentation extracts together with the known compound fumagillin methyl ester (2). The cis-fumagillin methyl ester, a stereoisomer of fumagillin methyl ester at the C2'-C3' position of the aliphatic side chain, selectively inhibited growth of the map1 mutant yeast strain (MetAP1 deletion strain) at a concentration as low as 1 ng. However, the wild type yeast w303 and the mutant map2 (MetAP2 deleted) strains were resistant up to 10 microg of the compound. In enzyme experiments, compound 1 inhibited the MetAP2 with an IC50 value of 6.3 nM, but it did not inhibit the MetAP1 (IC50 >200 microM). Compound 2 also inhibited the MetAP2 with an IC50 value of 9.2 nM and 105 microM against MetAP1.
Srivastava, Kumkum; Agarwal, Pooja; Soni, Awakash; Puri, S K
2017-07-01
Present efforts have been made to establish a correlation between in vitro and in vivo antimalarial activity using MIC, IC 50 and IC 90 values against CQ-sensitive (3D7) and CQ-resistant (K1) strains of Plasmodium falciparum and in vivo activity against Plasmodium yoelii. The method of discriminant function analysis (DFA) was applied to analyze the data. It was observed that in vitro IC 90 values against both 3D7 and K1 strains (p < 0.001) have strong correlation with in vivo curative activity. The respective IC 50 and IC 90 values of compounds, which cured mice (i.e., animals did not show recrudescence of parasitemia even after 60 days posttreatment), ranged between 3 and 14 nM and 14 and 186 nM against 3D7 and between 9 and 65 nM and 24 and 359 nM against the K1 strain of P. falciparum. Whereas the IC 50 and IC 90 values of compounds which exhibited in vivo suppressive activity in mice ranged between 10 and 307 nm and 61 and >965 nM, respectively, against 3D7 and 75 and >806 nm and 241 and >1232 nM against the K1 strain of P. falciparum. The findings suggest that IC 90 values against both 3D7 and K1 strains (p < 0.02) are the main contributors for the prediction of in vivo curative activity of a new molecule. Apart from this, a reasonable correlation between MIC and IC 50 values of compounds has also been established.
Ma, Ke; Ren, Jinwei; Han, Junjie; Bao, Li; Li, Li; Yao, Yijian; Sun, Chen; Zhou, Bing; Liu, Hongwei
2014-08-22
Three new nortriterpenes, ganoboninketals A-C (1-3), featuring rearranged 3,4-seco-27-norlanostane skeletons and highly complex polycyclic systems were isolated from the medicinal mushroom Ganoderma boninense. The structures of the new metabolites were established by spectroscopic methods. The absolute configurations in 1-3 were assigned by electronic circular dichroism (ECD) calculations. Compounds 1-3 showed antiplasmodial activity against Plasmodium falciparum with IC50 values of 4.0, 7.9, and 1.7 μM, respectively. Compounds 1 and 3 also displayed weak cytotoxicity against A549 cell line with IC50 values of 47.6 and 35.8 μM, respectively. Compound 2 showed weak cytotoxicity toward HeLa cell line with an IC50 value of 65.5 μM. Compounds 1-3 also presented NO inhibitory activity in the LPS-induced macrophages with IC50 values of 98.3, 24.3, and 60.9 μM, respectively.
Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo
2009-04-01
Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.
Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael
2015-11-02
Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.
Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents.
Ramírez-Erosa, Irving; Huang, Yaoge; Hickie, Robert A; Sutherland, Ronald G; Barl, Branka
2007-11-01
Xanthatin and xanthinosin, 2 sesquiterpene lactones isolated from the burs of Xanthiun strumarium L. (cocklebur), showed moderate to high in vitro cytotoxic activity in the human cancer cell lines WiDr ATCC (colon), MDA-MB-231 ATCC (breast), and NCI-417 (lung). Xanthatin and xanthinosin were purified as the result of a multi-screening bioassay-guided study of wild plant species of the family Asteraceae, collected from various sites in Saskatchewan, Canada. Seventy-five extracts at a single concentration of 100 microg/mL were evaluated for in vitro cytotoxicity to the human cancer cell lines used. The chloroform extract of Carduus nutans L. (nodding thistle) aerial parts (IC50, 9.3 microg/mL) and the hexane extract of Echinacea angustifolia DC. (narrow-leaved purple coneflower) root (IC50, 4.0 microg/mL) were moderately to highly cytotoxic to the lung cancer cell line. The chloroform extracts of X. strumarium L. burs and Tanacetum vulgare L. (tansy) aerial parts exhibited the highest cytotoxicity for all cell lines tested; their IC50 values, obtained from multidose testing, ranged from 0.1 to 6.2 microg/mL (X. strumarium) and from 2.4 to 9.1 microg/mL (T. vulgare). Further purification of the chloroform fraction of X. strumarium yielded xanthatin and xanthinosin in high yields. This is the first time that these compounds have been reported in the burs of X. strumarium. Their IC50 values are also reported herein.
Prevalidation of the ex-vivo model PCLS for prediction of respiratory toxicity.
Hess, A; Wang-Lauenstein, L; Braun, A; Kolle, S N; Landsiedel, R; Liebsch, M; Ma-Hock, L; Pirow, R; Schneider, X; Steinfath, M; Vogel, S; Martin, C; Sewald, K
2016-04-01
In acute inhalation toxicity studies, animals inhale substances at given concentrations. Without additional information, however, appropriate starting concentrations for in-vivo inhalation studies are difficult to estimate. The goal of this project was the prevalidation of precision-cut lung slices (PCLS) as an ex-vivo alternative to reduce the number of animals used in inhalation toxicity studies. According to internationally agreed principles for Prevalidation Studies, the project was conducted in three independent laboratories. The German BfR provided consultancy in validation principles and independent support with biostatistics. In all laboratories, rat PCLS were prepared and exposed to 5 concentrations of 20 industrial chemicals under submerged culture conditions for 1h. After 23 h post-incubation, toxicity was assessed by measurement of released lactate dehydrogenase and mitochondrial activity. In addition, protein content and pro-inflammatory cytokine IL-1α were measured. For all endpoints IC50 values were calculated if feasible. For each endpoint test acceptance criteria were established. This report provides the final results for all 20 chemicals. More than 900 concentration-response curves were analyzed. Log10[IC50 (μM)], obtained for all assay endpoints, showed best intra- and inter-laboratory consistency for the data obtained by WST-1 and BCA assays. While WST-1 and LDH indicated toxic effects for the majority of substances, only some of the substances induced an increase in extracellular IL-1α. Two prediction models (two-group classification model, prediction of LC50 by IC50) were developed and showed promising results. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sülsen, Valeria P.; Frank, Fernanda M.; Cazorla, Silvia I.; Anesini, Claudia A.; Malchiodi, Emilio L.; Freixa, Blanca; Vila, Roser; Muschietti, Liliana V.; Martino, Virginia S.
2008-01-01
Bioassay-guided fractionation of the organic extract of Ambrosia tenuifolia Sprengel (Asteraceae) led to the isolation of two bioactive sesquiterpene lactones with significant trypanocidal and leishmanicidal activities. By spectroscopic methods (1H- and 13C-nuclear magnetic resonance, distortionless enhancement by polarization transfer, correlated spectroscopy, heteronuclear multiple-quantum coherence, electron impact-mass spectrometry, and infrared spectroscopy), these compounds were identified as psilostachyin and peruvin. Both compounds showed a marked in vitro trypanocidal activity against Trypanosoma cruzi epimastigotes with 50% inhibitory concentration (IC50) values of less than 2 μg/ml. Psilostachyin exerted a significant in vitro activity against the trypomastigote forms of T. cruzi (IC50, 0.76 μg/ml) and was selected for in vivo testing. Psilostachyin-treated mice had a survival of 100% and lower parasitemia values than control mice. Both compounds were also tested on Leishmania sp. promastigotes: psilostachyin (IC50, 0.12 μg/ml) and peruvin (IC50, 0.39 μg/ml) exerted significant leishmanicidal activities. This is the first time that the trypanocidal and leishmanicidal activities of these compounds have been reported. The selectivity index (SI) was employed to evaluate the cytotoxic effect of lactones on T lymphocytes. Although the SIs of both compounds were high for T. cruzi epimastigotes, psilostachyin was more selective against trypomastigotes (SI, 33.8) while peruvin showed no specificity for this parasite. Both compounds presented high selectivity for Leishmania spp. The results shown herein suggest that psilostachyin and peruvin could be considered potential candidates for the development of new antiprotozoal agents against Chagas' disease and leishmaniasis. PMID:18443111
Khan, K M; Shah, Zarbad; Ahmad, V U; Ambreen, N; Khan, M; Taha, M; Rahim, F; Noreen, S; Perveen, S; Choudhary, M I; Voelter, W
2012-02-15
6-Nitrobenzimidazole derivatives (1-30) synthesized and their phosphodiesterase inhibitory activities determined. Out of thirty tested compounds, ten showed a varying degrees of phosphodiesterase inhibition with IC(50) values between 1.5±0.043 and 294.0±16.7 μM. Compounds 30 (IC(50)=1.5±0.043 μM), 1 (IC(50)=2.4±0.049 μM), 11 (IC(50)=5.7±0.113 μM), 13 (IC(50)=6.4±0.148 μM), 14 (IC(50)=10.5±0.51 μM), 9 (IC(50)=11.49±0.08 μM), 3 (IC(50)=63.1±1.48 μM), 10 (IC(50)=120.0±4.47 μM), and 6 (IC(50)=153.2±5.6 μM) showed excellent phosphodiesterase inhibitory activity, much superior to the standard EDTA (IC(50)=274±0.007 μM), and thus are potential molecules for the development of a new class of phosphodiesterase inhibitors. A structure-activity relationship is evaluated. All compounds are characterized by spectroscopic parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Seasonal behavior of Thalassia testudinum (Hydrocharitaceae) metabolites.
Hernández, Yasnay; González, Kethia; Valdés-Iglesias, Olga; Zarabozo, Akaena; Portal, Yéssica; Laguna, Abilio; Martínez-Daranas, Beatriz; Rodríguez, Maria; Gutiérrez, Richard
2016-12-01
The marine angiosperm Thalassia testudinum, commonly known as turtle grass, is a dominant seagrass that grows in the Caribbean Sea shelf associated to Syringodium filiforme. The hydroalcoholic extract of T. testudinum is rich in polyphenols; the most abundant metabolite in this extract is thalassiolin B, a glycosilated flavonoid with skin damage repairing properties, and antioxidant capacity among others. The present study aimed at generating information about the seasonal behavior of secondary metabolites, as well as to study the antioxidant capacity of the T. testudinum leaves extract, collected monthly during 2012 from the Northeast coastline of Havana, Cuba. For this study, spectrophotometric methods were used to determine the concentrations of polyphenols, flavonoids, anthocyanins, soluble carbohydrates and proteins, chlorophylls a and b, and antioxidant activity of the extracts. In general, results demonstrated seasonal variations of the analyzed parameters. Extracts prepared from the vegetal material collected in October and November showed the highest values of polyphenols (58.81 ± 1.53 and 52.39 ± 0.63 mg/g bs, respectivally) and flavonoids (44.12 ± 1.30 and 51.30 ± 0.67 mg/gdw, respectively). On the contrary, the lowest values of polyphenols were found in extracts of leaves collected in July and August (15.51 ± 0.84 and 13.86 ± 0.48 mg/g,respectively). In accordance with these results, the lower value of Inhibitory Concentration (IC50) was obtained to get a 50 % of maximal effect on free radical scavenging activity with the extracts prepared from leaves collected in October and November, and less significant IC50 was obtained from the extract prepared from leaves collected in August (5.63 mg/mL). A negative correlation (r= -0.694) was observed in this study between the content of polyphenols and the IC50 necessary to get the half of its antioxidant maximal effect. The high correspondence between the maximum values of polyphenols, flavonoids, carbohydrates and proteins in October and November, revealed a close relationship between these metabolites found in the extract of T. testudinum. Our hypothesis about the annual variation in the concentration of these metabolites was validated; and these results will support the correct harvesting of T. testudinum leaves for biotechnology and industrial purposes.
Monatrakul, Preeyaporn; Mungthin, Mathirut; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Wilairatana, Polrat; White, Nicholas J; Chotivanich, Kesinee
2010-11-16
The efficacy of anti-malarial drugs is determined by the level of parasite susceptibility, anti-malarial drug bioavailability and pharmacokinetics, and host factors including immunity. Host immunity improves the in vivo therapeutic efficacy of anti-malarial drugs, but the mechanism and magnitude of this effect has not been characterized. This study characterized the effects of 'immune' plasma to Plasmodium falciparumon the in vitro susceptibility of P. falciparum to anti-malarial drugs. Titres of antibodies against blood stage antigens (mainly the ring-infected erythrocyte surface antigen [RESA]) were measured in plasma samples obtained from Thai patients with acute falciparum malaria. 'Immune' plasma was selected and its effects on in vitro parasite growth and multiplication of the Thai P. falciparum laboratory strain TM267 were assessed by light microscopy. The in vitro susceptibility to quinine and artesunate was then determined in the presence and absence of 'immune' plasma using the 3H-hypoxanthine uptake inhibition method. Drug susceptibility was expressed as the concentrations causing 50% and 90% inhibition (IC50 and IC90), of 3H-hypoxanthine uptake. Incubation with 'immune' plasma reduced parasite maturation and decreased parasite multiplication in a dose dependent manner. 3H-hypoxanthine incorporation after incubation with 'immune' plasma was decreased significantly compared to controls (median [range]; 181.5 [0 to 3,269] cpm versus 1,222.5 [388 to 5,932] cpm) (p= 0.001). As a result 'immune' plasma reduced apparent susceptibility to quinine substantially; median (range) IC50 6.4 (0.5 to 23.8) ng/ml versus 221.5 (174.4 to 250.4) ng/ml (p = 0.02), and also had a borderline effect on artesunate susceptibility; IC50 0.2 (0.02 to 0.3) ng/ml versus 0.8 (0.2 to 2.3) ng/ml (p = 0.08). Effects were greatest at low concentrations, changing the shape of the concentration-effect relationship. IC90 values were not significantly affected; median (range) IC90 448.0 (65 to > 500) ng/ml versus 368.8 (261 to 501) ng/ml for quinine (p > 0.05) and 17.0 (0.1 to 29.5) ng/ml versus 7.6 (2.3 to 19.5) ng/ml for artesunate (p = 0.4). 'Immune' plasma containing anti-malarial antibodies inhibits parasite development and multiplication and increases apparent in vitro anti-malarial drug susceptibility of P. falciparum. The IC90 was much less affected than the IC50 measurement.
Haslinda, M S; Aiyub, Z; Bakar, N K A; Tohar, N; Musa, Y; Abdullah, N R; Ibrahim, H; Awang, K
2015-03-01
An antiplasmodial screening of Phyllanthus debilis and Phyllanthus urinaria was carried out. The medicinal plants were extracted and evaluated for in vitro antiplasmodial activity against D10 (chloroquine-sensitive, CQS) and Gombak A (chloroquine-resistant, CQR) strains of Plasmodium falciparum. The methanolic crudes from the soxhlet extraction were active against both strains however, P. urinaria (IC50 8.9 μg/ml with CQR strain) exhibited better anti-malarial activity compared to P. debilis (IC50 12.2 μg/ml with CQR strain). Furthermore, the methanolic crude of P. urinaria obtained by the cold extraction has good anti-malarial activity towards CQS (IC50 4.1 μg/ml). The concentration of macronutrients (calcium and magnesium) and trace metals (copper, manganese, iron and zinc) from three Phyllanthus species i.e. P. debilis Klein ex Wild., Phyllanthus niruri L., P. urinaria L. and Alpinia conchigera Griff. were determined using microwave digestion method and analyzed by Flame Atomic Absorption Spectroscopy. Standard Reference Material 1547 (peach leaves) was used to validate the method throughout this study. The recovery values were in the range of 80% to 120% which were in very good agreement with the certified values. The three Phyllanthus species and leaves of A. conchigera showed the highest concentration of calcium compared to other metals and macronutrients studied. The significant presence of all the important macronutrients and trace metals which are essential for human health and well-being substantiate their use medicinally in traditional practices.
Antioxidant and free radical scavenging activity of Spondias pinnata
Hazra, Bibhabasu; Biswas, Santanu; Mandal, Nripendranath
2008-01-01
Background Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract. Methods A 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents. Results The extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC) value of 0.78 ± 0.02. The IC50 values for scavenging of free radicals were 112.18 ± 3.27 μg/ml, 13.46 ± 0.66 μg/ml and 24.48 ± 2.31 μg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 ± 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 ± 32.25 μg/ml, 58.07 ± 5.36 μg/ml and 127.99 ± 6.26 μg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 ± 0.84 μg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg) yielded 91.47 ± 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 ± 0.004 mg/ml quercetin-equivalent flavonoid content. Conclusion The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants. PMID:19068130
Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D
2016-01-01
Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
Valcheva-Kuzmanova, Stefka V; Beronova, Anna B; Momekov, Georgi Tz
2013-01-01
The aim of the present study was to investigate the protective potential of Aronia melanocarpa fruit juice in a model of cisplatin-induced cytotoxicity in the human embryonal kidney cell line HEK293T. The cellular viability was assessed using the MTT-dye reduction assay based on the reduction of the yellow tetrazolium dye MTT to a violet formazan product via the mitochondrial succinate dehydrogenase in viable cells. Cisplatin was applied in various concentrations either alone or after a 24-hour pretreatment of the cells with Aronia melanocarpa fruit juice at 0.1 and 0.05 mg/ml. The half maximal inhibitory concentrations (IC50 values) were derived from the concentration-response curves to cisplatin. Applied alone, the anticancer drug caused a prominent decrease of cellular viability with IC50 8.3 +/- 1.1 microM. The juice proved to significantly ameliorate the in vitro cytotoxicity of the platinum drug, in a concentration-dependent manner. The pretreatment of the cells with Aronia melanocarpa fruit juice resulted in a significant increase (p < 0.001) of IC50 for cisplatin to 25.1 +/- 2.7 microM (at 0.05 mg/ml) and 34.4 +/- 3.4 microM (at 0.1 mg/ml), respectively. The protective effect of Aronia melanocarpa fruit juice observed in this study is most probably due to its well appreciated antioxidant activity as oxidative stress plays a central role in the toxic effects of cisplatin.
Kosanić, Marijana; Ranković, Branislav; Rančić, Aleksandar; Stanojković, Tatjana
2016-07-01
This study is designed for the determination of metal concentrations, antioxidant, antimicrobial, and anticancer potential of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Concentrations of nine metals are determined and all metals are present in the allowable concentrations in the tested mushrooms except Cd in M. procera. Antioxidant activity was evaluated by free radical scavenging and reducing power. M. procera extract had more potent free radical scavenging activity (IC 50 =311.40 μg/mL) than L. deliciosus extract. Moreover, the tested extracts had effective reducing power. The total content of phenol in the extracts was examined using Folin-Ciocalteu reagent and obtained values expressed as pyrocatechol equivalents. Further, the antimicrobial potential was determined with a microdilution method on 15 microorganisms. Among the tested species, extract of L. deliciosus showed a better antimicrobial activity with minimum inhibitory concentration values ranging from 2.5 mg/mL to 20 mg/mL. Finally, the cytotoxic activity was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method on human epithelial carcinoma HeLa cells, human lung carcinoma A549 cells, and human colon carcinoma LS174 cells. Extract of both mushrooms expressed similar cytotoxic activity with IC 50 values ranging from 19.01 μg/mL to 80.27 μg/mL. Copyright © 2016. Published by Elsevier B.V.
Hérault, J-P; Cappelle, M; Bernat, A; Millet, L; Bono, F; Schaeffer, P; Herbert, J-M
2003-09-01
Factor (F)Xa and thrombin bound to the clot during its formation contribute to the propensity of thrombi to activate the coagulation system. The aim of this work was to study the inhibition of clot-bound FXa and clot-bound thrombin by SanOrg123781A, a synthetic hexadecasaccharide that enhances the inhibition of thrombin and FXa by antithrombin (AT). SanOrg123781A, designed to exhibit low non-specific binding to proteins other than AT, was compared with heparin. In buffer, heparin and SanOrg123781A inhibited FXa and thrombin at similar concentrations [concentration inhibiting 50% (IC50) of Xa and IIa activity were, respectively: heparin 120 +/- 7 and 3 +/- 1 ng mL-1; SanOrg123781A 77 +/- 5 and 4 +/- 1 ng mL-1]. In human plasma, the activity of both compounds was reduced, although the activity of heparin was much more affected than that of SanOrg123781A (IC50 values for inhibition of FXa and FIIa activity were, respectively: heparin 100 +/- 5 and 800 +/- 40 ng mL-1; SanOrg123781A 10 +/- 5 and 30 +/- 3 ng mL-1). We demonstrated, in agreement with our previous results, that the procoagulant activity of the clot is essentially due to clot-bound FXa and to some extent to clot-bound thrombin. We showed that heparin and SanOrg123781A were able to inhibit fragment F1+2 generation induced by clot-bound FXa with IC50 values of 2 +/- 0.5 micro g mL-1 and 0.6 +/- 0.2 micro g mL-1, respectively. Both compounds also inhibited clot-bound thrombin activity, the IC50 values of heparin and SanOrg123781A being 1 +/- 0.01 micro g mL-1 and 0.1 +/- 0.1 micro g mL-1, respectively. Moreover, both heparin and SanOrg123781A significantly inhibited fibrinopeptide A generated by the action of clot-bound thrombin on fibrinogen but also by free thrombin generated from prothrombin by clot-bound FXa with IC50 values of 4 +/- 0.6 and 1 +/- 0.1 micro g mL-1, respectively. As with clot-bound enzymatic activities, SanOrg123781A was three times more active than heparin in vivo on fibrinogen accretion onto a pre-existing thrombus and as activators of recombinant tissue-type plasminogen activator-induced thrombolysis. In conclusion, due to the specific activities of SanOrg123781A, this compound is much more active than heparin in the presence of plasma proteins, on clot-bound enzymes and in in vivo models of thrombosis/thrombolysis.
Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.
Ercan, Pınar; El, Sedef Nehir
2018-04-28
In this study, the aim was to determine the bioaccessibilities of carnosic acid in sage and rosemary and in vitro inhibitory effects of these samples on lipid and starch digestive enzymes by evaluating the lipase, α-amylase and α-glucosidase enzyme inhibition activities. The content of carnosic acid in rosemary (18.72 ± 0.33 mg/g) was found to be higher than that content of that in sage (3.76 ± 0.13 mg/g) (p < 0.05). The carnosic acid bioaccessibilities were found as 45.10 ± 1.88% and 38.32 ± 0.21% in sage and rosemary, respectively. The tested sage and rosemary showed inhibitory activity against α-glucosidase (Concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction - IC 50 88.49 ± 2.35, 76.80 ± 1.68 μg/mL, respectively), α-amylase (IC 50 107.65 ± 12.64, 95.65 ± 2.73 μg/mL, respectively) and lipase (IC 50 6.20 ± 0.63, 4.31 ± 0.62 μg/mL, respectively). Furthermore, to the best of our knowledge, this is the first work that carnosic acid standard equivalent inhibition capacities (CAEIC 50 ) for these food samples were determined and these values were in agreement with the IC 50 values. These results show that sage and rosemary are potent inhibitors of lipase, α-amylase and α-glucosidase digestive enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.
Kilic, Burcu; Gulcan, Hayrettin O; Aksakal, Fatma; Ercetin, Tugba; Oruklu, Nihan; Umit Bagriacik, E; Dogruer, Deniz S
2018-05-08
A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC 50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC 50 = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC 50 for AChE = 0.16 µM and IC 50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC 50 for AChE = 0.59 µM and IC 50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2018 Elsevier Inc. All rights reserved.
Drug Synergy of Tenofovir and Nanoparticle-Based Antiretrovirals for HIV Prophylaxis
Chaowanachan, Thanyanan; Krogstad, Emily; Ball, Cameron; Woodrow, Kim A.
2013-01-01
Background The use of drug combinations has revolutionized the treatment of HIV but there is no equivalent combination product that exists for prevention, particularly for topical HIV prevention. Strategies to combine chemically incompatible agents may facilitate the discovery of unique drug-drug activities, particularly unexplored combination drug synergy. We fabricated two types of nanoparticles, each loaded with a single antiretroviral (ARV) that acts on a specific step of the viral replication cycle. Here we show unique combination drug activities mediated by our polymeric delivery systems when combined with free tenofovir (TFV). Methodology/Principal Findings Biodegradable poly(lactide-co-glycolide) nanoparticles loaded with efavirenz (NP-EFV) or saquinavir (NP-SQV) were individually prepared by emulsion or nanoprecipitation techniques. Nanoparticles had reproducible size (d ∼200 nm) and zeta potential (-25 mV). The drug loading of the nanoparticles was approximately 7% (w/w). NP-EFV and NP-SQV were nontoxic to TZM-bl cells and ectocervical explants. Both NP-EFV and NP-SQV exhibited potent protection against HIV-1 BaL infection in vitro. The HIV inhibitory effect of nanoparticle formulated ARVs showed up to a 50-fold reduction in the 50% inhibitory concentration (IC50) compared to free drug. To quantify the activity arising from delivery of drug combinations, we calculated combination indices (CI) according to the median-effect principle. NP-EFV combined with free TFV demonstrated strong synergistic effects (CI50 = 0.07) at a 1∶50 ratio of IC50 values and additive effects (CI50 = 1.05) at a 1∶1 ratio of IC50 values. TFV combined with NP-SQV at a 1∶1 ratio of IC50 values also showed strong synergy (CI50 = 0.07). Conclusions ARVs with different physicochemical properties can be encapsulated individually into nanoparticles to potently inhibit HIV. Our findings demonstrate for the first time that combining TFV with either NP-EFV or NP-SQV results in pronounced combination drug effects, and emphasize the potential of nanoparticles for the realization of unique drug-drug activities. PMID:23630586
Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria.
Ghania, Aissaoui; Nabila, Belyagoubi-Benhammou; Larbi, Belyagoubi; Elisabeth, Mouray; Philippe, Grellier; Mariem, Benmahdjoub; Khadidja, Kerzabi-Kanoun; Wacila, Benguedda-Rahal; Fawzia, Atik-Bekkara
2017-11-22
The objective of this study was to investigate the biological activities of Algerian algae, Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa. Antimicrobial activity of the crude extracts and their fractions was assessed using the disc diffusion assay, the minimum inhibitory concentration and the minimum bactericidal concentration. Antiparasitic activity was studied in vitro against the blood stream forms of Trypanosoma brucei brucei and the intraerythrocytic stages of Plasmodium falciparum. Ethyl acetate (EA) fractions of the three tested algae showed more potent antimicrobial activity against S. aureus (7-14.5 mm) and B. cereus (7-10.75 mm), MIC values ranged from 0.9375 to 7.5 mg mL -1 and MBC values > 15 mg mL -1 . Concerning the antiparasitic activity, EA factions of S. vulgare (IC 50 = 9.3 μg mL -1 ) and R. verruculosa (IC 50 = 11.0 μg mL -1 ) were found to be more effective against T. brucei brucei, whereas the three EA fractions were little active against P. falciparum.
Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Kim, Eun Ji; Kang, Jung Il; Kang, Hee Kyoung; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Minh, Chau Van; Kim, Young Ho
2015-01-01
Bioassay-directed fractionation and purification were used to isolate 12 steroids (1-12) from a CH(2)Cl(2) extract of the edible Vietnamese sea urchin Diadema savignyi Michelin. The cytotoxic activity of the CH(2)Cl(2) extract and 12 steroids was evaluated in three human cancer cell lines (HL-60, PC-3, and SNU-C5). Relative to the effects of the positive control, mitoxantrone, the CH(2)Cl(2) extract (with an inhibitory concentration of 50% [IC(50)] values ranging from 1.37±0.15 to 3.11±0.15 μg/mL) and compounds 2 (with IC(50) values ranging from 5.29±0.11 to 6.80±0.67 μM) and 11 (with IC(50) values ranging from 4.95±0.07 to 6.99±0.28 μM) exhibited potent cytotoxic effects against all three tested human cancer cell lines. In addition, the CH(2)Cl(2) extract and compounds 2 and 11 were found to induce apoptosis. The induction of apoptosis was accompanied by alterations of the apoptosis-related protein expression, inactivation of ERK1/2 mitogen-activated protein kinase signaling, and decreased c-Myc expression. These data suggest that compounds 2 and 11 from the edible sea urchin D. savignyi may have potential for the treatment of colon cancer, leukemia, and prostate cancer as complementary cancer remedies.
Takeda, Shuso; Usami, Noriyuki; Yamamoto, Ikuo; Watanabe, Kazuhito
2009-08-01
The inhibitory effect of nordihydroguaiaretic acid (NDGA) (a nonselective lipoxygenase (LOX) inhibitor)-mediated 15-LOX inhibition has been reported to be affected by modification of its catechol ring, such as methylation of the hydroxyl group. Cannabidiol (CBD), one of the major components of marijuana, is known to inhibit LOX activity. Based on the phenomenon observed in NDGA, we investigated whether or not methylation of CBD affects its inhibitory potential against 15-LOX, because CBD contains a resorcinol ring, which is an isomer of catechol. Although CBD inhibited 15-LOX activity with an IC(50) value (50% inhibition concentration) of 2.56 microM, its monomethylated and dimethylated derivatives, CBD-2'-monomethyl ether and CBD-2',6'-dimethyl ether (CBDD), inhibited 15-LOX activity more strongly than CBD. The number of methyl groups in the resorcinol moiety of CBD (as a prototype) appears to be a key determinant for potency and selectivity in inhibition of 15-LOX. The IC(50) value of 15-LOX inhibition by CBDD is 0.28 microM, and the inhibition selectivity for 15-LOX (i.e., the 5-LOX/15-LOX ratio of IC(50) values) is more than 700. Among LOX isoforms, 15-LOX is known to be able to oxygenate cholesterol esters in the low-density lipoprotein (LDL) particle (i.e., the formation of oxidized LDL). Thus, 15-LOX is suggested to be involved in development of atherosclerosis, and CBDD may be a useful prototype for producing medicines for atherosclerosis.
Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E
2016-06-28
Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.
Price, Theodore J.; Patwardhan, Amol M.; Flores, Christopher M.; Hargreaves, Kenneth M.
2007-01-01
Many n-acylethanolamines utilize the anandamide membrane transporter (AMT) to gain facilitated access to the intracellular compartment, hence, we hypothesized that this mechanism might be important for anandamide (AEA)- and N-arachidonoyl-dopamine (NADA)-evoked CGRP release from cultured trigeminal ganglion (TG) neurons. Using [14C]AEA we demonstrated that TG neurons transported AEA in a FAAH- and AMT-inhibitable fashion. Although TRPV1-positive TG neurons were found to express fatty acid amide hydrolase, the application of FAAH inhibitors had no effect on AEA-evoked CGRP release. In contrast, application of the AMT inhibitors OMDM-2 or VDM-11 significantly reduced the potency and efficacy of AEA-, NADA- and capsaicin-evoked CGRP release. Moreover OMDM-2 (IC50 values ranging from 6.4–9.6 μM) and VDM-11 (IC50 values ranging from 5.3–11 μM) inhibited CGRP release evoked by EC80 concentrations of AEA, NADA and CAP and these values were consistent with IC50s obtained for inhibition of uptake. OMDM-2 had no effect on CGRP release per se while VDM-11 evoked CGRP release on its own (EC50 ~35 μM) in a CPZ-insensitive, but ruthenium red (RR)-sensitive fashion. This is the first demonstration that TG sensory neurons possess an AMT-like mechanism suggesting that this mechanism is important for the pharmacological action of AEA and NADA at native TRPV1 channels. PMID:15992578
Mushrooms as Possible Antioxidant and Antimicrobial Agents
Kosanić, Marijana; Ranković, Branislav; Dašić, Marko
2012-01-01
The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases. PMID:24250542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotufo, G.R.
1995-12-31
Adult females of the meiobenthic copepod Schizopera knabeni were exposed to sediment-associated fluoranthene for 3, 6, 12, 24, 96, and 240 h. Sediment concentrations ranged from 25 to 1,661 nmol (5--336 {micro}g)/gdw and the TOC was 1.5%. Body burden increased to an apparent steady state after only 6 h. Elimination half-lives were 4.6 and 3.2 h in uncontaminated water and sediment, respectively. Toxic effects were only detected after 240 h as increased mortality and decreased offspring production. Significant mortality was observed only at the highest concentration; the LC50 was 1,011 nmol (204 {micro}g)/dgw. In contrast, offspring production was decreased atmore » much lower concentrations, yielding an IC25 value of 148 nmol (30 {micro}g)/dgw. Lethal critical body residue (CBR) was determined as a 10-d LD50 of 15.5 {micro}mol/g dry tissue. By measuring PAH concentrations in the body and eggs of females, CBRs for reproductive output were determined as IC25 values of 2 and 3.1 {micro}mol/gdw, respectively. PAH sublethal effects on feeding rate were also investigated Adult copepods were exposed to {sup 14}C sediment-associated fluoranthene for 24 h were fed {sup 3}H-labeled algae for 3 h. Ingestion rate was significantly decreased at tissue concentrations as low as 1 {micro}mol/gdw and yielded an IC25 value of 0.6 {micro}mol/gdw. Similar findings were obtained using another species of estuarine copepod, Coullana sp. Non-polar narcotic compounds such as PAH cause a nonspecific disturbance of the functioning of cell membrane which results in decreased overall activity. Measurement of CBR associated with decreased feeding is proposed as a direct method to quantify sublethal narcotizing effects of organic compounds.« less
Polyketides from two Chaetomium species and their biological functions.
Li, He; Liao, Zhong-Bin; Tang, Dan; Han, Wen-Bo; Zhang, Qiang; Gao, Jin-Ming
2018-04-16
Four new secondary metabolites, chaetosemins G-J (1-4), along with 11 known ones (5-15) were isolated from the culture of C. seminudum C208 and Chaetomium sp. C521. Their structures were determined by extensive NMR spectroscopic analyses. These metabolites were evaluated in vitro for antifungal, antioxidant, toxicity, and α-glucosidase inhibitory activities. Chaetosemin J (4) and monaschromone (5) significantly inhibited the growth of four plant pathogenic fungi Botrytis cinerea, Alternaria solani, Magnaporthe oryzae, and Gibberella saubinettii with the minimum inhibitory concentrations (MIC) values ranging from 6.25 to 25.0 μM. Moreover, both epicoccone B (11) and flavipin (14) exhibited the DPPH free radical scavenging ability with IC 50 values of 10.8 and 7.2 μM, respectively, and had more potent α-glucosidase inhibition than the drug acarbose with IC 50 values of 27.3 and 33.8 μM, respectively. Monaschromone (5) might act as the lead compound of pesticide.
Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate.
Whitaker, P M; Seeman, P
1978-01-01
Since it was known that d-lysergic acid diethylamide (LSD) affected catecholaminergic as well as serotoninergic neurons, the objective in this study was to enhance the selectivity of [3H]LSD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of a combination of 50 nM each of phentolamine (added to preclude the binding of [3H]LSD to alpha-adrenoceptors), apomorphine, and spiperone (added to preclude the binding of [3H]LSD to dopamine receptors), it was found by Scatchard analysis that the total number of [3H]LSD sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catecholamine-blocking drugs. The IC50 values (concentrations to inhibit binding by 50%) for various drugs were tested on the binding of [3H]LSD in the presence of 50 nM each of apomorphine (A), phentolamine (P) and spiperone (S). With this combination, the IC50 for serotonin was 35 nM (compared to 1000 nM without it), indicating that [3H]LSD had become considerably more selectively displaceable by serotonin under these conditions whereas the effects of norepinephrine and dopamine on [3H]LSD binding were eliminated. Various ergots had approximately equal IC50 values against [3H]serotonin and [3H]LSD but tryptamines were much more selective against [3H]serotonin; the data may indicate the existence of the two types of serotonin receptors. PMID:32537
Hou, Jun; Hong, Zhixian; Feng, Fan; Chai, Yantao; Zhang, Yunkai; Jiang, Qiyu; Hu, Yan; Wu, Shunquan; Wu, Yingsong; Gao, Xunian; Chen, Qiong; Wan, Yong; Bi, Jingfeng; Zhang, Zheng
2017-11-08
Patients suffering from advanced stage hepatocellular carcinoma (HCC) often exhibit a poor prognosis or dismal clinical outcomes due to ineffective chemotherapy or a multi-drug resistance (MDR) process. Thus, it is urgent to develop a new chemotherapeutic sensitivity testing system for HCC treatment. The presence study investigated the potential application of a novel chemotherapeutic sensitivity-testing system based on a collagen gel droplet embedded 3D-culture system (CD-DST). Primary cells were separating from surgical resection specimens and then tested by CD-DST. To identify whether HCC cell lines or cells separating from clinical specimens contain MDR features, the cells were treated with an IC 50 (half maximal inhibitory concentration) or IC max (maximal inhibitory concentration) concentration of antitumor agents, e.g., 5-furuolouracil (5-FU), paclitaxel (PAC), cisplatin (CDDP), epirubicin (EPI), or oxaliplatin (L-OHP), and the inhibitory rates (IRs) were calculated. HepG2 cells were sensitive to 5-FU, PAC, CDDP, EPI, or L-OHP; the IC 50 value is 0.83 ± 0.45 μg/ml, 0.03 ± 0.02 μg/ml, 1.15 ± 0.75 μg/ml, 0.09 ± 0.03 μg/ml, or 1.76 ± 0.44 μg/ml, respectively. Only eight (8/26), nine (9/26), or five (5/26) patients were sensitive to the IC max concentration of CDDP, EPI, or L-OHP; whereas only three (3/26), four (4/26), or two (2/26) patients were sensitive to the IC 50 concentration of CDDP, EPI, or L-OHP. No patients were sensitive to 5-FU or PAC. The in vitro drug sensitivity exanimation revealed the MDR features of HCC and examined the sensitivity of HCC cells from clinical specimens to anti-tumor agents. CD-DST may be a useful method to predict the potential clinical benefits of anticancer agents for HCC patients.
Briolant, Sébastien; Baragatti, Meili; Parola, Philippe; Simon, Fabrice; Tall, Adama; Sokhna, Cheikh; Hovette, Philippe; Mamfoumbi, Modeste Mabika; Koeck, Jean-Louis; Delmont, Jean; Spiegel, André; Castello, Jacky; Gardair, Jean Pierre; Trape, Jean Francois; Kombila, Maryvonne; Minodier, Philippe; Fusai, Thierry; Rogier, Christophe; Pradines, Bruno
2009-01-01
The distribution and range of 50% inhibitory concentrations (IC50s) of doxycycline were determined for 747 isolates obtained between 1997 and 2006 from patients living in Senegal, Republic of the Congo, and Gabon and patients hospitalized in France for imported malaria. The statistical analysis was designed to answer the specific question of whether Plasmodium falciparum has different phenotypes of susceptibility to doxycycline. A triple normal distribution was fitted to the data using a Bayesian mixture modeling approach. The IC50 geometric mean ranged from 6.2 μM to 11.1 μM according to the geographical origin, with a mean of 9.3 μM for all 747 parasites. The values for all 747 isolates were classified into three components: component A, with an IC50 mean of 4.9 μM (±2.1 μM [standard deviation]); component B, with an IC50 mean of 7.7 μM (±1.2 μM); and component C, with an IC50 mean of 17.9 μM (±1.4 μM). According to the origin of the P. falciparum isolates, the triple normal distribution was found in each subgroup. However, the proportion of isolates predicted to belong to component B was most important in isolates from Gabon and Congo and in isolates imported from Africa (from 46 to 56%). In Senegal, 55% of the P. falciparum isolates were predicted to be classified as component C. The cutoff of reduced susceptibility to doxycycline in vitro was estimated to be 35 μM. PMID:19047651
Johnson, Emily J.; Won, Christina S.; Köck, Kathleen; Paine, Mary F.
2017-01-01
Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells and the probe substrate estrone 3-sulfate, IC50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6′,7′-dihydroxybergamottin), and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice juice. Nobiletin was the most potent (IC50, 3.7 μM); 6′,7′-dihydroxybergamottin, naringin, naringenin, and tangeretin were moderately potent (IC50, 20–50 μM); and bergamottin and hesperidin were the least potent (IC50, >300 μM) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine ratios of unbound concentration to IC50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. PMID:28032362
The Anti-Inflammatory Activity of Boron Derivatives in Rodents
Hall, Iris H.; Burnham, Bruce S.; Chen, Shang Y.; Sood, Anup; Spielvogel, Bernard F.; Morse, Karen W.
1995-01-01
Acyclic amine-carboxyboranes were effective anti-inflammatory agents in mice at 8 mg/kg x 2. These amine-carboxyboranes were more effective than the standard indomethacin at 8 mg/kg x 2, pentoxifylline at 50 mg/kg x 2, and phenylbutazone at 50 mg/kg x 2. The heterocyclic amine derivatives as well as amine-carbamoylboranes, carboalkoxyboranes, and cyanoboranes were generally less active. However, selected aminomethyl-phosphonate-N-cyanoboranes demonstrated greater than 60% reduction of induced inflammation. The boron compounds were also active in the rat induced edema, chronic arthritis, and pleurisy screens, demonstrating activity similar to the standard indomethacin. The compounds were effecive in reducing local pain and decreased the tail flick reflex to pain. The derivatives which demonstrated good anti-inflammatory activity were effective inhibitors of hydrolytic lysosomal, and proteolytic enzyme activities with IC50 50 values equal to -6M in mouse macrophages, human leukocytes, and Be Sal osteofibrolytic cells. In these same cell lines, the agents blocked prostaglandin cyclooxygenase activity with IC50 values of -6M. In mouse macrophage and human leukocytes, 5′ lipoxygenase activity was also inhibited by the boron derivatives with IC50 values of 10-6M. These IC50 values for inhibition of these enzyme activities are consistent with published values of known anti-inflammatory agents which target these enzymes. PMID:18472741
de Morais-Teixeira, Eliane; Gallupo, Mariana Kolos; Rodrigues, Lucas Fonseca; Romanha, Alvaro José; Rabello, Ana
2014-01-01
To evaluate in vitro interactions between paromomycin sulphate and the antileishmanial drugs meglumine antimoniate, amphotericin B, miltefosine and azithromycin against intracellular Leishmania (Leishmania) infantum chagasi, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis amastigotes in peritoneal mouse macrophages. First, drug susceptibility was assessed in 3, 5 and 7 day assays, followed by drug interaction assays with a modified fixed-ratio method. An overall mean sum fractional inhibitory concentration (∑FIC) was calculated for each combination and each Leishmania species. The nature of the interactions was classified as synergistic if the mean ∑FIC was ≤ 0.5, indifferent if the mean ∑FIC was >0.5-4.0 and antagonistic if the mean ∑FIC was >4.0. In vitro synergism was observed for the combinations of paromomycin plus miltefosine [at 50% and 90% inhibitory concentrations (IC50 and IC90, respectively)] and paromomycin plus amphotericin B (at the IC90 level) against L. (L.) amazonensis, paromomycin plus meglumine antimoniate (at the IC50 and IC90 levels) and paromomycin plus amphotericin B (at the IC50 level) against L. (V.) braziliensis, and paromomycin plus miltefosine, paromomycin plus amphotericin B (both at the IC90 level) and paromomycin plus azithromycin (at the IC50 level) against L. (L) infantum chagasi. This work provides a preclinical dataset that supports future studies on multidrug treatment schedules against New World leishmaniasis.
Hyoscine butylbromide potently blocks human nicotinic acetylcholine receptors in SH-SY5Y cells.
Weiser, Thomas; Just, Stefan
2009-02-06
Hyoscine butylbromide (HBB; tradenames: Buscopan/Buscapina is an antispasmodic drug for the treatment of abdominal pain associated with gastrointestinal cramping. As a hyoscine derivative, this compound competitively inhibits muscarinic acetylcholine (ACh) receptors on smooth muscle cells in the gastrointestinal tract. Preliminary investigations suggested that it might also inhibit nicotinic ACh receptors. This study investigated the effect of HBB on nicotinic ACh receptor-mediated membrane currents in SH-SY5Y cells. ACh and nicotine application-induced comparable membrane currents with EC(50) values of 25.9+/-0.6 and 40.1+/-0.4microM, respectively. When coapplied with 100microM ACh, HBB concentration-dependently suppressed currents with an IC(50) value of 0.19+/-0.04microM, and was approximately seven-times more potent than the ganglionic blocker, hexamethonium (IC(50)=1.3+/-0.3microM). Increasing the agonist concentration to 5mM did not affect the amount of block by HBB, which suggests a non-competitive mode of action. These functional in vitro data demonstrate for the first time that HBB blocks neuronal nicotinic ACh receptors in the same concentration range as it inhibits muscarinic ACh receptors. If one hypothesizes that HBB might also affect nicotinic receptors in autonomic neurons in vivo (e. g. in the enteric nervous system), this effect could contribute to its spasmolytic activity.
Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.
1994-01-01
1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694
van der Lee, R; Pfaffendorf, M; van Zwieten, P A
2000-11-01
To investigate a possible relationship between the time courses of action of various calcium antagonists and their lipophilicity, characterized as log P-values. The functional experiments were performed in vitro in human small subcutaneous arteries (internal diameter 591 +/- 51 microm, n = 7 for each concentration), obtained from cosmetic surgery (mamma reduction and abdominoplasty). The vessels were investigated in an isometric wire myograph. The vasodilator effect of the calcium antagonists was quantified by means of log IC50-values, and the onset of the vasodilator effect for each concentration studied was expressed as time to Eeq90-values (time to reach 90% of the maximal effect). Log IC50-values were -8.46 +/- 0.09, -8.33 +/- 0.25 and -8.72 +/- 0.16 for nifedipine, felodipine and (S)-lercanidipine, respectively (not significant). On average, nifedipine reached time to Eeq90 in 11 +/- 1 min. For felodipine and (S)-lercanidipine the corresponding values were 60 +/- 11 min and 99 +/- 9 min, respectively. The differences between these values were statistically significant (P< 0.01). In spite of these differences in the in-vitro human vascular model, the three calcium antagonists are equipotent with regard to their vasodilator effects. Linear regression analysis of the correlation between the logarithm of the membrane partition coefficient (log P-values) of the calcium antagonists tested [2.50, 4.46 and 6.88 for nifedipine, felodipine and (S)-lercanidipine, respectively] and their respective values found for time to Eeq90 was highly significant. It appears that a higher log P-value is correlated with a slower onset of action.
Comparative assessment of three in vitro exposure methods for combustion toxicity.
Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J
2006-01-01
A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.
2012-01-01
Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844
Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J
2014-09-01
The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.
Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box
Spalenka, Jérémy; Escotte-Binet, Sandie; Bakiri, Ali; Hubert, Jane; Renault, Jean-Hugues; Velard, Frédéric; Duchateau, Simon; Aubert, Dominique; Huguenin, Antoine
2017-01-01
ABSTRACT Toxoplasma gondii is a cosmopolitan protozoan parasite which affects approximately 30% of the population worldwide. The drugs currently used against toxoplasmosis are few in number and show several limitations, such as drug intolerance, poor bioavailability, or drug resistance mechanism developed by the parasite. Thus, it is important to find new compounds able to inhibit parasite invasion or proliferation. In this study, the 400 compounds of the open-access Pathogen Box, provided by the Medicines for Malaria Venture (MMV) foundation, were screened for their anti-Toxoplasma gondii activity. A preliminary in vitro screening performed over 72 h by an enzyme-linked immunosorbent assay (ELISA) revealed 15 interesting compounds that were effective against T. gondii at 1 μM. Their cytotoxicity was estimated on Vero cells, and their 50% inhibitory concentrations (IC50) were further calculated. As a result, eight anti-Toxoplasma gondii compounds with an IC50 of less than 2 μM and a selectivity index (SI) value of greater than 4 were identified. The most active was MMV675968, showing an IC50 of 0.02 μM and a selectivity index value equal to 275. Two other compounds, MMV689480 and MMV687807, also showed a good activity against T. gondii, with IC50s of 0.10 μM (SI of 86.6) and 0.15 μM (SI of 11.3), respectively. Structure-activity relationships for the eight selected compounds also were discussed on the basis of fingerprinting similarity measurements using the Tanimoto method. The anti-Toxoplasma gondii compounds highlighted here represent potential candidates for the development of new drugs that could be used against toxoplasmosis. PMID:29133550
Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box.
Spalenka, Jérémy; Escotte-Binet, Sandie; Bakiri, Ali; Hubert, Jane; Renault, Jean-Hugues; Velard, Frédéric; Duchateau, Simon; Aubert, Dominique; Huguenin, Antoine; Villena, Isabelle
2018-02-01
Toxoplasma gondii is a cosmopolitan protozoan parasite which affects approximately 30% of the population worldwide. The drugs currently used against toxoplasmosis are few in number and show several limitations, such as drug intolerance, poor bioavailability, or drug resistance mechanism developed by the parasite. Thus, it is important to find new compounds able to inhibit parasite invasion or proliferation. In this study, the 400 compounds of the open-access Pathogen Box, provided by the Medicines for Malaria Venture (MMV) foundation, were screened for their anti- Toxoplasma gondii activity. A preliminary in vitro screening performed over 72 h by an enzyme-linked immunosorbent assay (ELISA) revealed 15 interesting compounds that were effective against T. gondii at 1 μM. Their cytotoxicity was estimated on Vero cells, and their 50% inhibitory concentrations (IC 50 ) were further calculated. As a result, eight anti- Toxoplasma gondii compounds with an IC 50 of less than 2 μM and a selectivity index (SI) value of greater than 4 were identified. The most active was MMV675968, showing an IC 50 of 0.02 μM and a selectivity index value equal to 275. Two other compounds, MMV689480 and MMV687807, also showed a good activity against T. gondii , with IC 50 s of 0.10 μM (SI of 86.6) and 0.15 μM (SI of 11.3), respectively. Structure-activity relationships for the eight selected compounds also were discussed on the basis of fingerprinting similarity measurements using the Tanimoto method. The anti- Toxoplasma gondii compounds highlighted here represent potential candidates for the development of new drugs that could be used against toxoplasmosis. Copyright © 2018 Spalenka et al.
Alvi, Sahir Sultan; Iqbal, Danish; Ahmad, Saheem; Khan, M Salman
2016-09-01
This study initially aimed to depict the molecular rationale evolving the role of lycopene in inhibiting the enzymatic activity of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) reductase via in vitro and in silico analysis. Our results illustrated that lycopene exhibited strong HMG-CoA reductase inhibitory activity (IC50 value of 36 ng/ml) quite better than pravastatin (IC50 = 42 ng/ml) and strong DPPH free radical scavenging activity (IC50 value = 4.57 ± 0.23 μg/ml) as compared to ascorbic acid (IC50 value = 9.82 ± 0.42 μg/ml). Moreover, the Ki value of lycopene (36 ng/ml) depicted via Dixon plot was well concurred with an IC50 value of 36 ± 1.8 ng/ml. Moreover, molecular informatics study showed that lycopene exhibited binding energy of -5.62 kcal/mol indicating high affinity for HMG-CoA reductase than HMG-CoA (ΔG: -5.34 kcal/mol). Thus, in silico data clearly demonstrate and support the in vitro results that lycopene competitively inhibit HMG-CoA reductase activity by binding at the hydrophobic portion of HMG-CoA reductase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaggiari, Dany, E-mail: dany.spaggiari@unige.ch
Acute exposure to environmental factors strongly affects the metabolic activity of cytochrome P450 (P450). As a consequence, the risk of interaction could be increased, modifying the clinical outcomes of a medication. Because toxic agents cannot be administered to humans for ethical reasons, in vitro approaches are therefore essential to evaluate their impact on P450 activities. In this work, an extensive cocktail mixture was developed and validated for in vitro P450 inhibition studies using human liver microsomes (HLM). The cocktail comprised eleven P450-specific probe substrates to simultaneously assess the activities of the following isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6,more » 2E1, 2J2 and subfamily 3A. The high selectivity and sensitivity of the developed UHPLC-MS/MS method were critical for the success of this methodology, whose main advantages are: (i) the use of eleven probe substrates with minimized interactions, (ii) a low HLM concentration, (iii) fast incubation (5 min) and (iv) the use of metabolic ratios as microsomal P450 activities markers. This cocktail approach was successfully validated by comparing the obtained IC{sub 50} values for model inhibitors with those generated with the conventional single probe methods. Accordingly, reliable inhibition values could be generated 10-fold faster using a 10-fold smaller amount of HLM compared to individual assays. This approach was applied to assess the P450 inhibition potential of widespread insecticides, namely, chlorpyrifos, fenitrothion, methylparathion and profenofos. In all cases, P450 2B6 was the most affected with IC{sub 50} values in the nanomolar range. For the first time, mixtures of these four insecticides incubated at low concentrations showed a cumulative inhibitory in vitro effect on P450 2B6. - Highlights: • Ten P450 isoforms activities assessed simultaneously with only one incubation. • P450 activity levels measured using the metabolic ratio approach. • IC{sub 50} values generated 10-fold faster and cheaper compared to individual assays. • P450 2B6 was the most affected by pesticides with IC{sub 50} in the nanomolar range. • Cumulative inhibition of P450 2B6 by mixtures of four low-dosed insecticides.« less
García-Broncano, Pilar; Ceña-Diez, Rafael; de la Mata, Francisco J; Gómez, Rafael; Resino, Salvador; Muñoz-Fernández, M Ángeles
2017-09-15
Amyloid fibrils, which are present in semen, were considered to be a cause of topical vaginal gel ineffectiveness in vivo after microbicides failed as HIV-1 prophylaxis. Therefore, it was necessary to determine whether a dendrimer was suitable for further evaluation in an in vitro model of semen-enhanced viral infection (SEVI). We demonstrated that SEVI in TZM.bl cell cultures increased the infectivity of R5-HIV-1 NL(AD8) , pTHRO.c and pCH058.c isolates, causing higher IC 50 values for two polyanionic carbosilane dendrimers, G2-STE16 and G3-S16. However, both dendrimers maintained protection rates of 90% at non-toxic concentrations. When dendrimers were combined with Tenofovir/Maraviroc (TDF/MVC), the anti-HIV-1 effect remained at a minimum IC 50 increase between 1- and 7-fold in the presence of amyloid fibrils. In peripheral blood mononuclear cells (PBMC), IC 50 values were slightly influenced by the presence of semen. In brief, dendrimers combined with antiretrovirals showed a synergistic effect. This result plays a crucial role in new microbicide formulations, as it overcomes the negative effects of amyloid fibrils. Copyright © 2017 Elsevier B.V. All rights reserved.
Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A
1996-10-25
The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.
Identification of Diet-Derived Constituents as Potent Inhibitors of Intestinal Glucuronidation
Gufford, Brandon T.; Chen, Gang; Lazarus, Philip; Graf, Tyler N.; Oberlies, Nicholas H.
2014-01-01
Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance–drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance–drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC50 determination. The IC50 values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC50 determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance–drug interactions that warrant advanced modeling and simulation to inform clinical assessment. PMID:25008344
O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe
2015-02-01
Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined "no inhibition" and "complete inhibition" plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic.
O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe
2015-01-01
Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined “no inhibition” and “complete inhibition” plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic. PMID:25692007
The antioxidant activity test by using DPPH method from the white tea using different solvents
NASA Astrophysics Data System (ADS)
Darmajana, Doddy A.; Hadiansyah, Firman; Desnilasari, Dewi
2017-11-01
The solvents used in this study are: aquades, ethanol and glacial acetic acid. The raw material as the source of antioxidants is white tea. Pure Quercetin is used as a comparing antioxidant. The treatment design was the solvent type for extraction, while the antioxidant activity was tested using DPPH method, with IC50 as the reference of antioxidant activity value. The results of antioxidant activity tests with three different solvent types are IC50 of 22,499 µg/mL for aquades, IC50 of 13,317 µg/mL for Ethanol and IC50 of 60,555 µg/mL for Glacial Acetic Acid. As a control of the standard antioxidant activity value of Quercetin is 4,313 µg/mL.
A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.
Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe
2015-08-01
Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zharifah, A.; Kusumowardani, E.; Saputro, A.; Sarwinda, D.
2017-07-01
According to data from GLOBOCAN (IARC) at 2012, breast cancer was the highest rated of new cancer case by 43.3 % (after controlled by age), with mortality rated as high as 12.9 %. Oncology is a major field which focusing on improving the development of drug and therapeutics cancer in pharmaceutical and biotechnology companies. Nowadays, many researchers lead to computational chemistry and bioinformatic for pharmacophore generation. A pharmacophore describes as a group of atoms in the molecule which is considered to be responsible for a pharmacological action. Prediction of biological function from chemical structure in silico modeling reduces the use of chemical reagents so the risk of environmental pollution decreased. In this research, we proposed QSAR model to analyze the composition of cancer drugs which assumed to be homogenous in character and treatment. Atomic interactions which analyzed are learned through parameters such as log p as descriptors hydrophobic, n_poinas descriptor contour strength and molecular structure, and also various concentrations inhibitor (micromolar and nanomolar) from NCBI drugs bank. The differences inhibitor activity was observed by the presence of IC 50 residues value from inhibitor substances at various concentration. Then, we got a general overview of the state of safety for drug stability seen from its IC 50 value. In our study, we also compared between micromolar and nanomolar inhibitor effect from QSAR model results. The QSAR model analysis shows that the drug concentration with nanomolar is better than micromolar, related with the content of inhibitor substances concentration. This QSAR model got the equation: Log 1/IC50 = (0.284) (±0.195) logP + (0.02) (±0.012) n_poin + (-0.005) (±0.083) Inhibition10.2nanoM + (0.1) (±0.079) Inhibition30.5nanoM + (-0.016) (±0.045) Inhibition91.5nanoM + (-2.572) (±1.570) (n = 13; r = 0.813; r2 = 0.660; s = 0.764; F = 2.720; q2 = 0.660).
Bioactivity-guided isolation of spasmolytic components of Pycnocycla spinosa Decne ex Boiss.
Sadraei, H; Asghari, G; Behzad, S
2011-07-01
Hydroalcoholic extract of Pycnocycla spinosa has spasmolytic effect in vitro and antidiarrhoeal action in vivo. The aim of this research was to separate fractions of total hydroalcoholic extract of P. spinosa guided by their spasmolytic activity. Aerial parts of P. spinosa were extracted with ethanol. The concentrated extract was subjected to column chromatography and thin layer chromatography. Initially four fractions were obtained (F1, F2, F3, and F4) and their spasmolytic activities were determined on ileum contraction induced by KCl (80 mM). The more active fraction was subjected to further isolation and tested to find its most active components. The active component was phytochemically characterized using phytochemical methods including ultraviolet and infrared spectroscopy. Hydroalcoholic extract of P. spinosa (10-320 μg/ml) in a concentration dependent manner inhibited ileum contraction with the IC(50) value of 47 ± 8.1 μg/ml (mean ± S.E.M., n=6). Fraction F2 was the most potent inhibitor of ileum contraction (IC(50)= 3.4 ± 0.33 μg/ml). From five sub-fractions separated from fraction F2 (F2a, F2b, F2c, F2d, and F2e, respectively), F2c was a more active component with the IC(50) value of 2.6 ± 0.27 μg/ml. The primary results of target fraction (F2c) showed sugar moiety in its structure or in one of its components. In this research we have isolated pharmacological active fraction which is most likely responsible for antispasmodic action of P. spinosa hydroalcoholic extract.
Biological activities of two macroalgae from Adriatic coast of Montenegro
Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana
2014-01-01
In the present investigation the acetone extracts of macroalgae Ulva lactuca and Enteromorpha intestinalis were tested for antioxidant, antimicrobial and cytotoxic potential. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic and flavonoid compounds in extracts. As a result of the study, U. lactuca extract was found to have a better free radical scavenging activity (IC50 = 623.58 μg/ml) than E. intestinalis extract (IC50 = 732.12 μg/ml). Moreover, the tested extracts had effective ferric reducing power and superoxide anion radical scavenging. The total content of phenol in extracts of U. lactuca and E. intestinalis was 58.15 and 40.68 μg PE/mg, while concentrations of flavonoids were 39.58 and 21.74 μg RE/mg, respectively. Furthermore, among the tested species, extracts of U. lactuca showed a better antimicrobial activity with minimum inhibitory concentration values ranging from 0.156 to 5 mg/ml, but it was relatively weak in comparison with standard antibiotics. Bacillus mycoides and Bacillus subtilis were the most susceptible to the tested extracts. Contrary to this Aspergillus flavus, Aspergillus fumigatus and Penicillium purpurescens were the most resistant. Finally, cytotoxic activity of tested extracts was evaluated on four human cancer cell lines. Extract of E. intestinalis expressed the stronger cytotoxic activity towards all tested cell lines with IC50 values ranging from 74.73 to 155.39 μg/ml. PMID:26150743
Metal transport capabilities of anticancer copper chelators.
Gaál, Anikó; Orgován, Gábor; Mihucz, Victor G; Pape, Ian; Ingerle, Dieter; Streli, Christina; Szoboszlai, Norbert
2018-05-01
In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC 50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC 50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC 50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85). Copyright © 2018 Elsevier GmbH. All rights reserved.
Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee
2016-06-25
Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi
2015-05-01
Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chamni, Supakarn; Sirimangkalakitti, Natchanun; Chanvorachote, Pithi; Saito, Naoki; Suwanborirux, Khanit
2017-05-26
A series of hydroquinone 5-O-monoester analogues of renieramycin M were semisynthesized via bishydroquinonerenieramycin M (5) prepared from renieramycin M (1), a major cytotoxic bistetrahydroisoquinolinequinone alkaloid isolated from the Thai blue sponge Xestospongia sp. All 20 hydroquinone 5-O-monoester analogues possessed cytotoxicity with IC 50 values in nanomolar concentrations against the H292 and H460 human non-small-cell lung cancer (NSCLC) cell lines. The improved cytotoxicity toward the NSCLC cell lines was observed from the 5-O-monoester analogues such as 5-O-acetyl ester 6a and 5-O-propanoyl ester 7e, which exhibited 8- and 10-fold increased cytotoxicity toward the H292 NSCLC cell line (IC 50 3.0 and 2.3 nM, respectively), relative to 1 (IC 50 24 nM). Thus, the hydroquinone 5-O-monoester analogues are a new generation of the renieramycins to be further developed as potential marine-derived drug candidates for lung cancer treatment.
Satoh, T; Fujita, K I; Munakata, H; Itoh, S; Nakamura, K; Kamataki, T; Itoh, S; Yoshizawa, I
2000-11-15
To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information. Copyright 2000 Academic Press.
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M
2010-11-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.
2010-01-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. PMID:20855214
Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C.; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien
2017-01-01
Background: The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora, a plant species known for its proprieties in folk medicine and its antibacterial activity. Objective: However, its antiprotozoal activity was not yet explored. Materials and Methods: We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma brucei gambiense, and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. Results and Conclusion: The fractions showed no cytotoxicity against L-6 cells (IC50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum, anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. SUMMARY Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum, Trypanosoma Cruzi, and Trypanosoma brucei gambienseNo fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC50: Concentration inhibiting 50% of parasite growth, IC90: Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity − TC50/IC50, TC50: Concentration causing 50% of cell growth inhibition, TC90: Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography PMID:29200731
Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien
2017-01-01
The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora , a plant species known for its proprieties in folk medicine and its antibacterial activity. However, its antiprotozoal activity was not yet explored. We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum , Trypanosoma cruzi , and Trypanosoma brucei gambiense , and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. The fractions showed no cytotoxicity against L-6 cells (IC 50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum , anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum , Trypanosoma Cruzi , and Trypanosoma brucei gambiense No fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC 50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC 50 : Concentration inhibiting 50% of parasite growth, IC 90 : Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity - TC 50 /IC 50 , TC 50 : Concentration causing 50% of cell growth inhibition, TC 90 : Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography.
Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series.
Roussaki, Marina; Hall, Belinda; Lima, Sofia Costa; da Silva, Anabela Cordeiro; Wilkinson, Shane; Detsi, Anastasia
2013-12-01
A series of novel quinolinone-chalcone hybrids and analogues were designed, synthesized and their biological activity against the mammalian stages of Trypanosoma brucei and Leishmania infantum evaluated. Promising molecular scaffolds with significant microbicidal activity and low cytotoxicity were identified. Quinolinone-chalcone 10 exhibited anti-parasitic properties against both organisms, being the most potent anti-L. infantum agent of the entire series (IC50 value of 1.3±0.1 μM). Compounds 4 and 11 showed potency toward the intracellular, amastigote stage of L. infantum (IC50 values of 2.1±0.6 and 3.1±1.05 μM, respectively). Promising trypanocidal compounds include 5 and 10 (IC50 values of 2.6±0.1 and 3.3±0.1 μM, respectively) as well as 6 and 9 (both having IC50 values of <5 μM). Chemical modifications on the quinolinone-chalcone scaffold were performed on selected compounds in order to investigate the influence of these structural features on antiparasitic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Johnson, Emily J; Won, Christina S; Köck, Kathleen; Paine, Mary F
2017-04-01
Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health-care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells (Madin-Darby canine kidney type II) and the probe substrate estrone 3-sulfate, IC 50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6',7'-dihydroxybergamottin) and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice. Nobiletin was the most potent (IC 50 , 3.7 μm); 6',7'-dihydroxybergamottin, naringin, naringenin and tangeretin were moderately potent (IC 50 , 20-50 μm); and bergamottin and hesperidin were the least potent (IC 50 , >300 μm) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine the ratios of unbound concentration to IC 50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Khan, Huma; Ullah, Hayat; Salar, Uzma; Khan, Khalid Mohammed
2016-10-01
Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Current statins show calcium channel blocking activity through voltage gated channels.
Ali, Niaz; Begum, Robina; Faisal, Muhammad Saleh; Khan, Aslam; Nabi, Muhammad; Shehzadi, Gulfam; Ullah, Shakir; Ali, Waqar
2016-09-21
Statins are used for treatment of hypercholestremia. Common adverse reports associated with use of statins are generalized bodyache, rhabdomyolysis, muscles weakness and gastrointestinal disorders. The current work is an attempt to explain how smooth muscles of gastrointestinal tissues are affected by the current statins (Simvastatin, atorvastatin, fluvastatin and rosuvastatin). Effects of the current statins were studied on spontaneous activity of isolated rabbits' jejunal preparations. Different molar concentrations (10(-12)-10(-2)M) of the statins were applied on spontaneously contracting rabbits' jejunal preparations. As statins relaxed spontaneous activity, so we tested the statins on KCl (80 mM) induced contractions in similar test concentrations. Positive relaxant statins were tested again through construction of Calcium Concentration Response Curves (CCRCs) in the absence and presence of the statins using verapamil, a standard calcium channel blocker. CCRCs of statins were compared with CCRCs of verapamil. Simvastatin, atorvastatin, fluvastatin and rosuvastatin relaxed the spontaneous and KCl-induced contractions. IC50 for simvastatin on spontaneous rabbit's jejunal preparations is -5.08 ± 0.1 Log 10 M. Similarly, IC50 for KCl-induced contractions is -4.25 ± 0.01 Log 10 M. Mean IC50 (Log 10 M) for atorvastatin on spontaneous rabbit's jejunal preparations and KCl-induced contractions are -5.19 ± 0.07 and -4.37 ± 0.09, respectively. Fluvastatin relaxed spontaneous activity of rabbits' jejunal preparations with an IC50 (Log 10 M) -4.5 ± 0.03. Rosuvastatin relaxed spontaneous as well as KCl (80 mM) induced contractions with respective IC50 (Log 10 M) -3.62 ± 0.04 and -4.57 ± 0.06. In case of CCRCs, tissues pre-treated with 4.6 μg/ml of simvastatin, have IC50 = -1.84 ± 0.03 [log (Ca(++)) M] vs control IC50 = -2.54 ± 0.04 [log (Ca(++)) M]. Similarly, atorvastatin, fluvastatin and rosuvastatin produced significant right shift in IC50 for CCRCs (P ≤ 0.05). In case of verapamil, IC50 for control curves is -2.45 ± 0.06 [log (Ca (++)) M], while IC50 in presence of verapamil (0.1 μM) is -1.69 ± 0.05 [log (Ca (++)) M]. Statins produced right shift in the IC50 of CCRCs. The effects of statins are like that of effects of verapamil, a standard calcium channel blocker. Our findings suggest that current statins have calcium antagonistic effects that act on voltage gated calcium channels that may provide a rationale for cause muscle weakness and gastrointestinal disorders.
Halladay, Jason S; Delarosa, Erlie Marie; Tran, Daniel; Wang, Leslie; Wong, Susan; Khojasteh, S Cyrus
2011-08-01
Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.
Gui, Wen-Jun; Liu, Yi-Hua; Wang, Chun-Mei; Liang, Xiao; Zhu, Guo-Nian
2009-10-01
A heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) for parathion residue determination is described based on a monoclonal antibody and a new competitor. The effects of several physicochemical factors, such as methanol concentration, ionic strength, pH value, and sample matrix, on the performance of the ELISA were optimized for the sake of obtaining a satisfactory assay sensitivity. Results showed that when the assay medium was in the optimized condition (phosphate buffer solution [PBS] containing 10% [v/v] methanol and 0.2 mol/L NaCl at a pH value of 5.0), the sensitivity (estimated as the IC(50) value) and the limit of detection (LOD, estimated as the IC(10) value) were 1.19 and 0.08 ng/ml, respectively. The precision investigation indicated that the intraassay precision values all were below 10% and that the interassay precision values ranged from 4.89 to 19.12%. In addition, the developed ELISA showed a good linear correlation (r(2)=0.9962) to gas chromatography within the analyte's concentration range of 0.1 to 16 ng/ml. When applied to the fortified samples (parathion adding level: 5-15 microg/kg), the developed ELISA presented mean recoveries of 127.46, 122.52, 91.92, 124.01, 129.72, 99.37, and 87.17% for tomato, cucumber, banana, apple, orange, pear, and sugarcane, respectively. Results indicated that the established ELISA is a potential tool for parathion residue determination.
Shuaibu, M N; Wuyep, P A; Yanagi, T; Hirayama, K; Tanaka, T; Kouno, I
2008-05-01
In vitro antiplasmodial activity of methanolic extracts of 16 medicinal plants was evaluated by fluorometric assay using PicoGreen. The IC50s, as determined by parasite DNA concentration, ranged from <11 to >200 and <13 to >200 microg/ml for Plasmodium falciparum 3D7 and K1, respectively; and the most active extracts were those from Anogeissus leiocarpus and Terminalia avicennoides (<11-> or =14 microg/ml). Aqueous, butanolic, ethyl acetate, and methanolic fractions of these two extracts revealed butanolic fraction to have a relatively better activity (IC50, 10-12 microg/ml). Activity-guided chromatographic separation of the butanolic fraction on Sephadex LH-20 followed by nuclear magnetic resonance and correlation high-performance liquid chromatography revealed the presence of known hydrolysable tannins and some related compounds-castalagin, ellagic acid, flavogallonic acid, punicalagin, terchebulin, and two other fractions. The IC50s of all these compounds ranged between 8-21 microg/ml (8-40 microM) against both the strains. Toxicity assay with mouse fibroblasts showed all the extracts and isolated compounds to have IC50 > or = 1500 microg/ml, except for Momordica balsamina with <1500 microg/l. All the extracts and isolated compounds did not affect the integrity of human erythrocyte membrane at the observed IC50s. However, adverse effects manifest in a concentration-dependent fashion (from IC50 > or = 500 microg/ml).
Jain, Surendra; Jacob, Melissa; Walker, Larry; Tekwani, Babu
2016-05-18
Human African Trypanosomiasis (HAT) is a protozoan parasitic disease caused by Trypanosoma brucei. The disease is endemic in regions of sub-Saharan Africa, covering 36 countries and more than 60 million people at the risk. Only few drugs are available for the treatment of HAT. Current drugs suffer from severe toxicities and require intramuscular or intravenous administrations. The situation is further aggravated due to the emergence of drug resistance. There is an urgent need of new drugs that are effective orally against both stages of HAT. Natural products offer an unmatched source for bioactive molecules with new chemotypes. The extracts prepared from 522 plants collected from various parts of the North America were screened in vitro against blood stage trypamastigote forms of T. brucei. Active extracts were further screened at concentrations ranging from 10 to 0.4 μg/mL. Active extracts were also investigated for toxicity in Differentiated THP1 cells at 10 μg/mL concentration. The results were computed for dose-response analysis and determination of IC50/IC90 values. A significant number (150) of extracts showed >90 % inhibition of growth of trypomastigote blood forms of T. brucei in primary screening at 20 μg/mL concentration. The active extracts were further investigated for dose-response inhibition of T. brucei growth. The antitrypansomal activity of 125 plant extracts was confirmed with IC50 < 10 μg/mL. None of these active extracts showed toxicity against differentiated THP1 cells. Eight plants extracts namely, Alnus rubra, Hoita macrostachya, Sabal minor, Syzygium aqueum, Hamamelis virginiana, Coccoloba pubescens, Rhus integrifolia and Nuphar luteum were identified as highly potent antitrypanosomal extracts with IC50 values <1 μg/mL. Limited phytochemical and pharmacological reports are available for the lead plant extracts with potent antitrypanosomal activity. Follow up evaluation of these plant extracts is likely to yield new antitrypanosomal drug-leads or alternate medicines for treatment of HAT.
Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan.
Zhang, Nenling; Shen, Xiangchun; Jiang, Xiaofei; Cai, Jiazhong; Shen, Xiaoling; Hu, Yingjie; Qiu, Samuel X
2018-01-01
Two new stilbenoid dimers, cajanstilbenoids A (1) and B (2), were isolated from the leaves of Cajanus cajan. Planar structures of these compounds were verified by NMR (1D and 2D) and high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Absolute configurations were assigned by comparing experimental and calculated electronic CD values. The cytotoxicity of 1 and 2 against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7), and human lung cancer (A549) cells were evaluated in vitro. Compound 1 showed strong cytotoxicity against all the tested cell lines (IC 50 values: 2.14-2.56 µM), whereas compound 2 showed strong toxicity only against HepG2 (IC 50 value: 5.99 µM) and A549 cells (IC 50 value: 6.18 µM).
Kawaii, S; Yamashita, K; Nakai, M; Takahashi, M; Fusetani, N
1999-02-01
The influence of Ca2+ and Mg2+ ions on both atrichous isorhiza (AI) discharge and settlement of actinular larvae of the hydroid Tubularia mesembryanthemum was investigated. Mg2+-supplemented artificial seawater (ASW) completely inhibited both events at a concentration of 206 mM, whereas lowered Mg2+ concentrations enhanced them. Ca2+ ions in the bathing solution highly regulated AI discharge and settlement, and Mg2+ ions may down-regulate these events. The effect of inorganic Ca2+-channel blockers, including Gd3+ and La3+, was also examined. Larval settlement was inhibited by Co2+, Ni2+, Cd2+, La3+, and Gd3+, with half inhibitory concentrations (IC50) of 5800, 260, 53, 45, and 7 {mu}M, respectively; AI discharge was also inhibited by these ions, with IC50 values of 6600, 500, 78, 41, and 5 {mu}M, respectively. These results suggest possible involvement of stretch-activated Ca2+ channels in the signal transmission of both AI discharge and larval settlement. Copyright © 1999 by Marine Biological Laboratory.
NASA Astrophysics Data System (ADS)
Zeb, BibiSaima; Ping, Zheng; Mahmood, Qaisar; Lin, Qiu; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad; Shaheen, Shahida
2017-07-01
This research work is focusing on the toxicities of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phosphoreum T3S was used as an indicator organism. The acute toxicities of heavy metals on P. phosphoreum T3S were assessed during 15-min half inhibitory concentration (IC50) as indicator at pH 5.5-6. Toxicity assays involved the assessment of multicomponent mixtures using TU and MTI approaches. The results of individual toxicity indicated that the toxicity of Cd, Cu and Pb on P. phosphoreum increased with increasing concentrations and there was a linear correlation. The 15-min IC50 values of Cd, Cu and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, and their toxic order was Cd > Pb > Cu. The combined effects of Cd, Cu and Pb were assayed by equivalent concentration mixing method. The results showed that the combined effects of Cd + Cu, Cd + Pb, Cu + Pb, Cd + Cu + Pb were antagonistic, antagonistic and partly additive. The combined effect of three heavy metals was partly additive.
Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L
2016-01-01
To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.
CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Martínez, D., E-mail: dansanm@gmail.com; Gomez-Solis, C.; Torres-Martinez, Leticia M.
2015-01-15
Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystalmore » structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.« less
Pawar, R; Gopalakrishnan, C; Bhutani, K K
2001-11-01
The hydroalcoholic extract of the whole plant of Bacopa monniera Wettst. (Scrophulariaceae), exhibited an inhibitory effect on superoxide released from polymorphonuclear (PMN) cells in the nitroblue tetrazolium (NBT) assay. The major saponin bacoside A(3) was found to be responsible for this effect in the herb. This compound showed 85, 91.66, 91.66, and 83 % inhibitions of NBT reduction at the concentrations of 200, 100, 50, and 25 microg/ml, respectively, with an IC(50) value of 10.22 microg/ml. These inhibitory effects were compared with those of the standard positive controls, quercetin and ascorbic acid with IC(50) of 111 and 14.16 microg/ml, respectively. Another major saponin bacopasaponin C was found to be much less potent as compared to bacoside A(3) whereas the remaining two mixtures of saponins were found to be inactive.
Jiang, Jin-Qing; Zhang, Hai-Tang; Zhang, Hui-Hui; Wang, Zi-Liang; Yang, Xue-Feng; Fan, Guo-Ying
2014-08-01
Clopidol is mainly used for the prevention and treatment of coccidiosis, which poses a serious potential hazard to public health, in veterinary medicine. The aim of this study was to prepare monoclonal antibodies (mAbs) against clopidol (CLOP) and develop an immunoassay for detecting CLOP residues in chicken tissues. After derivation, CLOP hapten was conjugated to carrier proteins to synthesize the artificial antigen, and immunized Balb/C mice were employed to screen mAbs. A sensitive hybridoma named C1G3 was screened out and two indirect competitive enzyme-linked immunosorbent assay (icELISA) standard curves were established. For the traditional two-step assay the linear range was from 0.06 to 98 ng mL(-1) , with half-maximal inhibitory concentration (IC50 ) and limit of detection (LOD) values of 2.76 ng mL(-1) and 0.03 ng mL(-1) respectively, while the rapid one-step icELISA had a working range from 0.08 to 102 ng mL(-1) , with IC50 and LOD values of 3.52 ng mL(-1) and 0.03 ng mL(-1) respectively. It was also indicated that a 10-fold dilution in chicken muscles gave an inhibition curve almost the same as that obtained in phosphate-buffered saline. When applied to spiking tests in chicken samples, the correlation coefficient (R(2) ) between concentrations added and measured was 0.9534. The results of this study suggest that the immunoassay described is a promising alternative for screening CLOP residues in biological matrices and is suitable for routine diagnostics. © 2014 Society of Chemical Industry.
New synthesis and antiparasitic activity of model 5-aryl-1-methyl-4-nitroimidazoles.
Saadeh, Haythem A; Mosleh, Ibrahim M; El-Abadelah, Mustafa M
2009-07-27
A number of 5-aryl-1-methyl-4-nitroimidazoles 5a-f have been synthesized in good yields by the Suzuki coupling reaction between 5-chloro-1-methyl-4-nitroimidazole (3) and arylboronic acids 4a-f, aided by dichlorobis-(triphenylphosphine)palladium(II), K(2)CO(3, )and tetrabutylammonium bromide in water at 70-80 degrees C. Compounds 5a-f were characterized by elemental analysis, NMR and MS spectral data. On the basis of in vitro screening data, 5-(3-chlorophenyl)-1-methyl-4-nitro-1H-imidazole (5f) exhibited potent lethal activity against Entamoeba histolytica and Giardia intestinalis with IC(50) = 1.47 microM/mL, a value lower by a factor of two than that of the standard drug, metronidazole. The boosted activity of 5f was not accompanied by any increased cytotoxicity.The rest of the series also exhibited potent antiparasitic activity with IC(50 ) values in the 1.72-4.43 microM/mL range. The cytotoxicity of the derivatives 5c and 5e was increased compared to the precursor compound, metronidazole, although they remain non-cytotoxic at concentrations much higher than the antiparasitic concentration of the two derivatives.
Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio
2015-08-15
The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Yanni; Guo, Lingling; Liu, Liqiang; Song, Shanshan; Kuang, Hua; Xu, Chuanlai
2017-09-20
Group-specific monoclonal antibodies (Mabs) with selectivity for 27 sulfonamides were developed based on new combinations of immunogen and coating antigen. The Mab was able to recognize 27 sulfonamides with 50% inhibition concentration (IC 50 ) values ranging from 0.15 to 15.38 μg/L. In particular, the IC 50 values for five sulfonamides (sulfamethazine, sulfaquinoxaline, sulfamonomethoxine, sulfadimethoxine, and sulfamethoxazole) were 0.51, 0.15, 0.56, 0.54, and 2.14 μg/L, respectively. On the basis of the Mab, an immunochromatographic lateral flow strip test was established for rapid screening of sulfonamides in honey samples. The visual limit of detection of the strip test for most sulfonamides in spiked honey samples was below 10 μg/kg, satisfying the requirements of authorities. Positive honey and pork liver samples, which had been confirmed by high-performance liquid chromatography/mass spectrometry, were used to validate the reliability of the proposed strip test. The immunochromatographic lateral flow strip test provides a rapid and convenient method for fast screening of sulfonamides in honey samples.
Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay
2016-01-01
To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), TFC: Total flavonoid content, TPC: Total phenolic content.
Sila, Assaâd; Bayar, Nadia; Ghazala, Imen; Bougatef, Ali; Ellouz-Ghorbel, Raoudha; Ellouz-Chaabouni, Semia
2014-08-01
Water-soluble polysaccharides were isolated from almond (AWSP) and pistachio (PWSP) juice processing by-products. Their chemical and physical characteristics were determined using NMR and Infrared spectroscopic analysis. The complexities of the spectra reflected the heterogeneity of these polysaccharides. The ACE inhibitory activities (IC50 AWSP=2.81mgmL(-1) and IC50 PWSP=2.59mgmL(-1)) and antioxidant properties of AWSP and PWSP were investigated based on the DPPH radical-scavenging capacity assay (IC50 AWSP=2.87mgmL(-1) and IC50 PWSP=1.61mgmL(-1)). Reducing power, β-carotene bleaching inhibition (IC50AWSP=4.46mgmL(-1) and IC50 PWSP=3.39mgmL(-1)), and ferrous chelating assays (IC50 AWSP=0.22mgmL(-1) and IC50 PWSP=0.19mgmL(-1)) were also performed. The findings revealed that water-soluble polysaccharides exhibited antioxidant and antihypertensive activities. AWSP and PWSP showed excellent interfacial concentration-dependent properties. Overall, the results suggested that both AWSP and PWSP are promising sources of natural antioxidants and ACE inhibitory agents and could, therefore, be used as alternative additives in food, pharmaceutical and cosmetic preparations. Copyright © 2014 Elsevier B.V. All rights reserved.
Ji, Mingshan; Liang, Yaping; Gu, Zumin; Li, Xiuwei
2015-01-01
Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively. PMID:26307964
Martín-Navarro, Carmen M; Lorenzo-Morales, Jacob; Cabrera-Serra, M Gabriela; Rancel, Fernando; Coronado-Alvarez, Nieves M; Piñero, José E; Valladares, Basilio
2008-11-01
Pathogenic strains of the genus Acanthamoeba are causative agents of a serious sight-threatening infection of the eye known as Acanthamoeba keratitis. The prevalence of this infection has risen in the past 20 years, mainly due to the increase in number of contact lens wearers. In this study, the prevalence of Acanthamoeba in a risk group constituted by asymptomatic contact lens wearers from Tenerife, Canary Islands, Spain, was evaluated. Contact lenses and contact lens cases were analysed for the presence of Acanthamoeba isolates. The isolates' genotypes were also determined after rDNA sequencing. The pathogenic potential of the isolated strains was subsequently established using previously described molecular and biochemical assays, which allowed the selection of three strains with high pathogenic potential. Furthermore, the sensitivity of these isolates against two standard drugs, ciprofloxacin and chlorhexidine, was analysed. As the three selected strains were sensitive to chlorhexidine, its activity and IC(50) were evaluated. Chlorhexidine was found to be active against these strains and the obtained IC(50) values were compared to the concentrations of this drug present in contact lens maintenance solutions. It was observed that the measured IC(50) was higher than the concentration found in these maintenance solutions. Therefore, the ineffectiveness of chlorhexidine-containing contact lens maintenance solutions against potentially pathogenic strains of Acanthamoeba is demonstrated in this study.
Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.
Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L
2015-11-01
The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anti-inflammatory and cytotoxic activities of Bursera copallifera
Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica
2015-01-01
Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022
Anti-inflammatory and cytotoxic activities of Bursera copallifera.
Columba-Palomares, M F María C; Villareal, Dra María L; Acevedo Quiroz, M C Macdiel E; Marquina Bahena, M C Silvia; Álvarez Berber, Dra Laura P; Rodríguez-López, Dra Verónica
2015-10-01
The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain. The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera.
Rodrigues, Klinger Antonio da Franca; Amorim, Layane Valéria; Dias, Clarice Noleto; Moraes, Denise Fernandes Coutinho; Carneiro, Sabrina Maria Portela; Carvalho, Fernando Aécio de Amorim
2015-02-03
Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as "jambolão" in Brazil is widely used in folk medicine against leishmaniasis, inflammation, chronic diarrhea, and ulcers. It is one of the most commonly used plants for the treatment of diabetes worldwide. In previous studies, Syzygium cumini was shown to possess antihyperlipidemic and anti-allergic properties, and to exhibit good performance as an antimicrobial agent against bacteria, fungi, and protozoa parasites of the genus Leishmania and Trypanosoma. This study was aimed at evaluating the effects of S. cumini essential oil (ScEO) and its major component α-pinene on Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. To evaluate the anti-proliferative effect on Leishmania, effects on promastigote and axenic amastigote forms were assessed using tetrazolium salt (MTT) assay. The intramacrophagic amastigotes were exposed to ScEO and α-pinene to determine the survival index. To gain insight into the mechanism of action involved in the effect on the samples, we evaluated the modulation of macrophage activation state by observing structural (phagocytic and lysosomal activities) and cellular (nitric oxide increase) changes. To assess the safety profile of ScEO and α-pinene, murine macrophages and human red blood cells were treated with ScEO and α-pinene and the selectivity index was calculated for each treatment. α-Pinene was effective against Leishmania amazonensis promastigote forms, with a half-maximal inhibitory concentration (IC50) value of 19.7µg/mL. α-Pinene was more active (IC50 values of 16.1 and 15.6µg/mL against axenic and intracellular amastigotes, respectively) than ScEO (IC50 values of 43.9 and 38.1µg/mL against axenic and intracellular amastigotes, respectively). Our results showed that the anti-Leishmania effects were mediated by immunomodulatory activity, as evidenced by the observed increases in both phagocytic and lysosomal activity, and the elevated NO levels. ScEO and α-pinene exhibited low cytotoxicity against murine macrophages and human erythrocytes. The 50% cytotoxicity concentration (CC50) values for the macrophages in the MTT assay were 614.1 and 425.2µg/mL for ScEO and α-pinene, respectively, while the corresponding half-maximal hemolytic concentration (HC50) values were 874.3 and 233.3µg/mL. Taken together, the results demonstrate that ScEO and its major constituent α-pinene have significant anti-Leishmania activity, modulated by macrophage activation, with acceptable levels of cytotoxicity in murine macrophages and human erythrocytes. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Netala, Vasudeva Reddy; Bethu, Murali Satyanarayana; Pushpalatha, Bobbu; Baki, Vijaya Bhaskar; Aishwarya, Sani; Rao, J Venkateswara; Tartte, Vijaya
An endophytic fungal strain isolated from the leaves of Gymnema sylvestre was identified as Pestalotiopsis microspora VJ1/VS1 based on nucleotide sequencing of internal transcribed spacer region (ITS 1-5.8S-ITS 2) of 18S rRNA gene (NCBI accession number KX213894). In this study, an efficient and ecofriendly approach has been reported for the synthesis of silver nanoparticles (AgNPs) using aqueous culture filtrate of P. microspora . Ultraviolet-visible analysis confirmed the synthesis of AgNPs by showing characteristic absorption peak at 435 nm. Fourier transform infrared spectroscopy analysis revealed the presence of phenolic compounds and proteins in the fungal filtrate, which are plausibly involved in the biosynthesis and capping of AgNPs. Transmission electron microscopy (TEM) showed that the AgNPs were spherical in shape of 2-10 nm in size. Selected area electron diffraction and X-ray diffraction studies determined the crystalline nature of AgNPs with face-centered cubic (FCC) lattice phase. Dynamic light scattering analysis showed that the biosynthesized AgNPs possess high negative zeta potential value of -35.7 mV. Biosynthesized AgNPs were proved to be potential antioxidants by showing effective radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl and H 2 O 2 radicals with IC 50 values of 76.95±2.96 and 94.95±2.18 µg/mL, respectively. The biosynthesized AgNPs exhibited significant cytotoxic effects against B16F10 (mouse melanoma, IC 50 =26.43±3.41 µg/mL), SKOV3 (human ovarian carcinoma, IC 50 =16.24±2.48 µg/mL), A549 (human lung adenocarcinoma, IC 50 =39.83±3.74 µg/mL), and PC3 (human prostate carcinoma, IC 50 =27.71±2.89 µg/mL) cells. The biosynthesized AgNPs were found to be biocompatible toward normal cells (Chinese hamster ovary cell line, IC 50 =438.53±4.2 µg/mL). Cytological observations on most susceptible SKOV3 cells revealed concentration-dependent apoptotic changes that include cell membrane blebbing, cell shrinkage, pyknotic nuclei, karyorrhexis followed by destructive fragmentation of nuclei. The results together in this study strongly provided a base for the development of potential and versatile biomedical applications of biosynthesized AgNPs in the near future.
Netala, Vasudeva Reddy; Bethu, Murali Satyanarayana; Pushpalatha, Bobbu; Baki, Vijaya Bhaskar; Aishwarya, Sani; Rao, J Venkateswara; Tartte, Vijaya
2016-01-01
An endophytic fungal strain isolated from the leaves of Gymnema sylvestre was identified as Pestalotiopsis microspora VJ1/VS1 based on nucleotide sequencing of internal transcribed spacer region (ITS 1-5.8S-ITS 2) of 18S rRNA gene (NCBI accession number KX213894). In this study, an efficient and ecofriendly approach has been reported for the synthesis of silver nanoparticles (AgNPs) using aqueous culture filtrate of P. microspora. Ultraviolet-visible analysis confirmed the synthesis of AgNPs by showing characteristic absorption peak at 435 nm. Fourier transform infrared spectroscopy analysis revealed the presence of phenolic compounds and proteins in the fungal filtrate, which are plausibly involved in the biosynthesis and capping of AgNPs. Transmission electron microscopy (TEM) showed that the AgNPs were spherical in shape of 2–10 nm in size. Selected area electron diffraction and X-ray diffraction studies determined the crystalline nature of AgNPs with face-centered cubic (FCC) lattice phase. Dynamic light scattering analysis showed that the biosynthesized AgNPs possess high negative zeta potential value of −35.7 mV. Biosynthesized AgNPs were proved to be potential antioxidants by showing effective radical scavenging activity against 2,2′-diphenyl-1-picrylhydrazyl and H2O2 radicals with IC50 values of 76.95±2.96 and 94.95±2.18 µg/mL, respectively. The biosynthesized AgNPs exhibited significant cytotoxic effects against B16F10 (mouse melanoma, IC50 =26.43±3.41 µg/mL), SKOV3 (human ovarian carcinoma, IC50 =16.24±2.48 µg/mL), A549 (human lung adenocarcinoma, IC50 =39.83±3.74 µg/mL), and PC3 (human prostate carcinoma, IC50 =27.71±2.89 µg/mL) cells. The biosynthesized AgNPs were found to be biocompatible toward normal cells (Chinese hamster ovary cell line, IC50 =438.53±4.2 µg/mL). Cytological observations on most susceptible SKOV3 cells revealed concentration-dependent apoptotic changes that include cell membrane blebbing, cell shrinkage, pyknotic nuclei, karyorrhexis followed by destructive fragmentation of nuclei. The results together in this study strongly provided a base for the development of potential and versatile biomedical applications of biosynthesized AgNPs in the near future. PMID:27826190
Jaganathan, L; Boopathy, R
1998-06-01
The effect of non-ionic detergents like Triton X-100, Lubrol PX, Brij 35 and Tween 80 on the esterase activity and inhibitor sensitivity of human serum butyrylcholinesterase (BuChE) were studied. The results showed that though BuChE is not a detergent dependent enzyme, the esterase activity and inhibitor sensitivity of it can be modulated by the presence of detergents. All the detergents caused a marginal activation of the esterase activity. The presence of Lubrol PX, Brij 35 or Tween 80 did not affect the 50% molar inhibition concentration (IC50) of the inhibitors tested. But in the presence of Triton X-100 the IC50 values were increased for neostigmine, eserine and tetraisopropylpyrophosphoramide (acylation site interacting inhibitors), whereas for inhibitors like ethopropazine, imipramine and procainamide (choline binding pocket specific inhibitors) the IC50 values were unaltered. In addition, in the presence of Triton X-100 the bimolecular reaction constant for phosphorylation reaction (ki) of BuChE for the acyl pocket specific tetraisopropylpyrophosphoramide was reduced. Triton X-100 partially protected BuChE against this tetraisopropylpyrophosphoramide inactivation. These results indicate that Triton X-100 by interacting with the acyl pocket hydrophobic region is able to activate the esterase activity of BuChE. Further it reduces the capacity of the enzyme to react with inhibitors that inactivate it by interacting with the serine residue of the acylation site.
Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel
2012-08-13
The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.
Arzanlou, M; Bohlooli, S; Jannati, E; Mirzanejad-Asl, H
2011-03-15
Pneumolysin (PLY) is a key virulence factor contributes to the pathogenesis of Streptococcus pneumoniae. In this study we investigated the effect of allicin and aqueous garlic extracts on hemolytic activity of PLY both in prelysed and intact cells. Additionally the antimicrobial activity of allicin was tested against the bacteria. All tested materials potently inhibited the PLY hemolytic activity. Allicin neutralizes PLY in a concentration- and time-dependent manner. Twenty five minute incubation of PLY (2 HU/mL) with 0.61 μM/mL concentration of allicin, totally inhibited hemolytic activity of PLY (IC50 = 0.28 μM/mL). The inhibitory activity of old extract of garlic was similar to pure allicin (IC50 = 50.46 μL/mL; 0.31 μM/mL; P < 0.05). In contrast fresh extract of garlic inhibits the PLY hemolytic activity at lower concentrations (IC50 = 13.96 μL/mL; 0.08 μM/mL allicin). Exposure of intact cells to allicin (1.8 μM) completely inhibited hemolytic activity of PLY inside bacterial cells. The inhibitory effect of the allicin was restored by addition of reducing agent DTT at 5 mM, proposing that allicin likely inhibits the PLY by binding to cysteinyl residue in the binding site. The MIC value of allicin was determined to be 512 μg/mL (3.15 μM/mL). These results indicate that PLY is a novel target for allicin and may provide a new line of investigation on pneumococcal diseases in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ikematsu, Hideyuki; Kawai, Naoki; Iwaki, Norio; Kashiwagi, Seizaburo
2016-09-01
To assess the extent of viral resistance to the four neuraminidase inhibitors (NAIs), we measured their 50% inhibitory concentration (IC50) for influenza virus isolates from the 2014-2015 influenza season for comparison with those circulating in the 2010-2011 to 2013-2014 influenza seasons. Viral isolation was done with specimens obtained prior to treatment, and the type and subtype of influenza was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. IC50 was measured for 200 influenza A(H3N2) and 19 influenza B in the 2014-2015 season, and no virus with highly reduced sensitivity to the four NAIs was detected. The ratios of the geometric means of the A(H3N2) IC50s of 2014-2015 to those of the 2010-2011, 2011-2012, 2012-2013, and 2013-2014 seasons ranged from 0.72 to 1.05, 0.82 to 1.22, 0.69 to 1.00, and 0.70 to 1.03, respectively. The ratios of the geometric mean of the B IC50s to the previous four seasons ranged from 0.59 to 1.28, 0.66 to 1.34, 0.84 to 1.21, and 1.06 to 1.47, respectively. There was no trend in the change of the IC50s for A(H3N2) or B. Significant differences were found in some seasons, but the differences in the IC50s were all less than two fold. These results show change in the geometric mean IC50 by season but with no trend, which indicates that the influence of viral mutation on the effectiveness of these NAIs was minute for A(H3N2) and B over the past five seasons. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts.
Lordan, Sinéad; Smyth, Thomas J; Soler-Vila, Anna; Stanton, Catherine; Ross, R Paul
2013-12-01
To date, numerous studies have reported on the antidiabetic properties of various plant extracts through inhibition of carbohydrate-hydrolysing enzymes. The objective of this research was to evaluate extracts of seaweeds for α-amylase and α-glucosidase inhibitory effects. Cold water and ethanol extracts of 15 seaweeds were initially screened and from this, five brown seaweed species were chosen. The cold water and ethanol extracts of Ascophyllum nodosum had the strongest α-amylase inhibitory effect with IC50 values of 53.6 and 44.7 μg/ml, respectively. Moreover, the extracts of Fucus vesiculosus Linnaeus were found to be potent inhibitors of α-glucosidase with IC50 values of 0.32 and 0.49 μg/ml. The observed effects were associated with the phenolic content and antioxidant activity of the extracts, and the concentrations used were below cytotoxic levels. Overall, our findings suggest that brown seaweed extracts may limit the release of simple sugars from the gut and thereby alleviate postprandial hyperglycaemia. Copyright © 2013. Published by Elsevier Ltd.
Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J
2015-04-01
Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.
Synthesis of sulfadimethoxine based surfactants and their evaluation as antitumor agents.
Khowdiary, Manal Mohmed; Mostafa, Nashwa S
2016-01-01
Synthesized CO (II) and Pt (II) of sulfadimethoxine. These compounds were tested for potential antitumor activity against two of human tumor cell lines, colon carcinoma cell line [Hct116], and breast carcinoma cell line MCF7. The structures of the resulting compounds have been investigated by elemental, FT-IR and H 1 NMR analyzes to insure the purity and confirmed the structures of them. The surface properties studies and octanol/water partition coefficients, Po/w were measured. The synthesized compounds exhibit biological activities with the lowest log Po/w and critical micelle concentration (CMC) values. In addition, in this article we provide an insight into this subject in order to increase the drug bioavailability. Inhibitory activity against colon carcinoma cells was detected for Pt and cobalt ion complex with IC50 = 4.5, 2.2 µg and against breast carcinoma cells IC50 = 18.2, 5.7 µg, respectively. The main goal of cancer therapy is to attain the maximum therapeutic damage of tumor cells in combination with a minimum concentration of the drug. This can be achieved in principle via selective antitumor preparations, the cytostatic effects of which would be restricted within tumor tissue. While 100% selectivity may be impractical, the achievement of reasonably high selectivity seems to be a feasible aim. Platinum and cobalt complex surfactants in our research affect tumor tissue at a very low concentration at values lower than their CMC values; this indicate that the sulfadimethoxine complexes merit further investigation as potential antitumor drugs.
Biological Activities of the Essential Oil from Erigeron floribundus.
Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana
2016-08-13
Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).
Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay
Jouan, Elodie; Le Vée, Marc; Mayati, Abdullah; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier
2016-01-01
In vitro evaluation of P-glycoprotein (P-gp) inhibitory potential is now a regulatory issue during drug development, in order to predict clinical inhibition of P-gp and subsequent drug–drug interactions. Assays for this purpose, commonly based on P-gp-expressing cell lines and digoxin as a reference P-gp substrate probe, unfortunately exhibit high variability, raising thus the question of developing alternative or complementary tests for measuring inhibition of P-gp activity. In this context, the present study was designed to investigate the use of the fluorescent dye rhodamine 123 as a reference P-gp substrate probe for characterizing P-gp inhibitory potential of 16 structurally-unrelated drugs known to interact with P-gp. 14/16 of these P-gp inhibitors were found to increase rhodamine 123 accumulation in P-gp-overexpressing MCF7R cells, thus allowing the determination of their P-gp inhibitory potential, i.e., their half maximal inhibitor concentration (IC50) value towards P-gp-mediated transport of the dye. These IC50 values were in the range of variability of previously reported IC50 for P-gp and can be used for the prediction of clinical P-gp inhibition according to Food and Drug Administration (FDA) criteria, with notable sensitivity (80%). Therefore, the data demonstrated the feasibility of the use of rhodamine 123 for evaluating the P-gp inhibitory potential of drugs. PMID:27077878
A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.
Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin
2014-09-01
Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®
Keogh, John P; Kunta, Jeevan R
2006-04-01
Regulatory interest is increasing for drug transporters generally and P-glycoprotein (Pgp) in particular, primarily in the area of drug-drug interactions. To aid in both identifying and discharging the potential liabilities associated with drug-transporter interactions, the pharmaceutical industry has a growing requirement for routine and robust non-clinical assays. An assay was designed, optimised and validated to determine the in vitro inhibitory potency of new chemical entities (NCEs) towards human Pgp-mediated transport. [3H]-Digoxin was established as a suitable probe substrate by investigating its characteristics in the in vitro system (MDCKII-MDR1 cells grown in 24-multiwell inserts). The inhibitory potencies (apparent IC50) of known Pgp inhibitors astemizole, GF120918, ketoconazole, itraconazole, quinidine, verapamil and quinine were determined over at least a 1000-fold concentration range. Validation was carried out using manual and automatic techniques. [3H]-Digoxin was found to be stable and have good mass balance in the system. In contrast to [A-->B] transport, [3H]-digoxin [B-->A] transport rates were readily measured with good reproducibility. There was no evidence of saturation of transport up to 10 microM digoxin and 30 nM digoxin was selected for routine assay use, reflecting clinical therapeutic concentrations. IC50 values ranged over approximately 100-fold with excellent reproducibility. Results from manual and automated versions were in close agreement. This method is suitable for routine use to assess the in vitro inhibitory potency of NCEs on Pgp-mediated digoxin transport. Comparison of IC50 values against clinical interaction profiles for the probe inhibitors indicated the in vitro assay is predictive of clinical digoxin-drug interactions mediated via Pgp.
Mertens-Talcott, Susanne U; De Castro, Whocely Victor; Manthey, John A; Derendorf, Hartmut; Butterweck, Veronika
2007-04-04
Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.
Yang, Chuang-Bo; Zhang, Shuang; Jia, Yong-Jun; Yu, Yong; Duan, Hai-Feng; Zhang, Xi-Rong; Ma, Guang-Ming; Ren, Chenglong; Yu, Nan
2017-10-01
To study the clinical value of dual-energy spectral CT in the quantitative assessment of microvascular invasion of small hepatocellular carcinoma. This study was approved by our ethics committee. 50 patients with small hepatocellular carcinoma who underwent contrast enhanced spectral CT in arterial phase (AP) and portal venous phase (VP) were enrolled. Tumour CT value and iodine concentration (IC) were measured from spectral CT images. The slope of spectral curve, normalized iodine concentration (NIC, to abdominal aorta) and ratio of IC difference between AP and VP (RIC AP-VP : [RIC AP-VP =(IC AP -IC VP )/IC AP ]) were calculated. Tumours were identified as either with or without microvascular invasion based on pathological results. Measurements were statistically compared using independent samples t test. The receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of tumours microvascular invasion assessment. The 70keV images were used to simulate the results of conventional CT scans for comparison. 56 small hepatocellular carcinomas were detected with 37 lesions (Group A) with microvascular invasion and 19 (Group B) without. There were significant differences in IC, NIC and slope in AP and RIC AP-VP between Group A (2.48±0.70mg/ml, 0.23±0.05, 3.39±1.01 and 0.28±0.16) and Group B (1.65±0.47mg/ml, 0.15±0.05, 2.22±0.64 and 0.03±0.24) (all p<0.05). Using 0.188 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.87 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.71 with CT value at 70keV and improved to 0.81 at 40keV. Dual-energy Spectral CT provides additional quantitative parameters than conventional CT to improve the differentiation between small hepatocellular carcinoma with and without microvascular invasion. Quantitative iodine concentration measurement in spectral CT may be used to provide a new method to improve the evaluation for small hepatocellular carcinoma microvascular invasion. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.
2017-02-01
A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-03-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-01-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099
In vitro antitumour activity of orsellinates.
Bogo, Danielle; de Matos, Maria Fatima Cepa; Honda, Neli Kika; Pontes, Elenir Curi; Oguma, Patricia Midori; da Santos, Evelyn Cristina Silva; de Carvalho, João Ernesto; Nomizo, Auro
2010-01-01
Lichen phenolic compounds exhibit antioxidant, antimicrobial, antiproliferative, and cytotoxic activities. The purpose of this study was to evaluate the anticancer activity of lecanoric acid, a secondary metabolite of the lichen Parmotrema tinctorum, and its derivatives, orsellinates, obtained by structural modification. A cytotoxicity assay was carried out in vitro with sulforhodamine B (SRB) using HEp-2 larynx carcinoma, MCF7 breast carcinoma, 786-0 kidney carcinoma, and B16-F10 murine melanoma cell lines, in addition to a normal (Vero) cell line in order to calculate the selectivity index of the compounds. n-Butyl orsellinate was the most active compound, with IC50 values (the concentration that inhibits 50% of growth) ranging from 7.2 to 14.0 microg/mL, against all the cell lines tested. The compound was more active (IC50 = 11.4 microg/mL) against B16-F10 cells than was cisplatin (12.5 microg/mL). Conversely, lecanoric acid and methyl orsellinate were less active against all cell lines, having an IC50 value higher than 50 microg/mL. Ethyl orsellinate was more active against HEp-2 than against MCF7, 786-0, or B16-F10 cells. The same pattern was observed for n-propyl and n-butyl orsellinates. n-Pentyl orsellinate was less active than n-propyl or n-butyl orsellinates against HEp-2 cells. The orsellinate activity increased with chain elongation (from methyl to n-butyl), a likely consequence of an increase in lipophilicity. The results revealed that the structural modification of lecanoric acid increases the cytotoxic activity of the derivatives tested.
Wetherall, N T; Trivedi, T; Zeller, J; Hodges-Savola, C; McKimm-Breschkin, J L; Zambon, M; Hayden, F G
2003-02-01
The increasing use of influenza virus neuraminidase (NA) inhibitors (NIs) necessitates the development of reliable methods for assessing the NI susceptibility of clinical isolates. We evaluated three NA inhibition assays against a panel of five clinical isolates each of influenza virus A/H1N1, A/H3N2, and B strains and four viruses with a defined resistance genotype (R292K, H274Y, R152K, and E119V). For fluorometric enzyme assay (FA) 1 (FA-1), 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (MUNANA) at 100 microM was used as the substrate, with pretitration of the virus input. For FA-2, MUNANA at 200 microM was used as the substrate, with a fixed 1:10 dilution of input virus. For the chemiluminescence (CL) assay, the 1,2-dioxetane derivative of sialic acid at 100 microM was used as the substrate, with pretitration of the virus. Four different operators repeated the assays several times in a blinded fashion with both zanamivir and oseltamivir carboxylate (GS4071) to determine intra- and interassay variations. Mean 50% inhibitory concentration (IC(50)) values were lower and generally less variable with the CL assay. FA-1 displayed greater variation than the CL assay or FA-2 and the highest IC(50) values with zanamivir; FA-2 showed the highest values with oseltamivir, particularly for influenza virus B, and was more variable with zanamivir than was the CL assay. All three assays detected 40-fold or greater changes in IC(50) values for the resistant viruses with at least one drug. Mixing experiments, whereby increasing fractions (0, 20, 40, 60, 80, and 100%) of NA from a known NI-resistant virus were mixed with the corresponding NI-sensitive parental NA, indicated that the resolution of IC(50) values was clearer with the CL assay than with FA-2 for two of the resistant variants (R152K and E119V). The FA and CL methods were reliable for the detection of NI resistance, but all assays have certain limitations. Based on reproducibility, ease of automation, time required for the assay, and greater sensitivity, the CL assay was selected for future susceptibility testing of influenza virus isolates circulating globally.
Palmieri, Marcel José; Luber, Jaquelini; Andrade-Vieira, Larissa Fonseca; Davide, Lisete Chamma
2014-03-15
Spent pot-liner (SPL) is a hazardous solid waste produced by the aluminum industry. Although its composition may vary, fluoride and cyanide salts as well as aluminum are predominant components. A seed-germination and root-elongation test was performed with Lactuca sativa seeds as a test system. SPL induced decrease of seed germination rate and root elongation. The concentration of 26.5g/L SPL was established from a regression curve as the IC50 (inhibition concentration 50%). Through chemical analyses, the concentrations of fluoride, cyanide and aluminum in SPL solutions of 26.5g/L (IC50), 39.75g/L (1.5IC50) and 13.25g/L (0.5IC50) were determined. Further, a cell-cycle test was conducted with root tips of L. sativa exposed to these same SPL solutions. All test chemicals presented toxic effects on meristematic cells of L. sativa. Aluminum was identified as the SPL component mainly responsible for reduction of the mitotic index. Chromosomal alterations resulted from the interactions among the three main chemical components of SPL, without a clear predominantly responsible agent. Induction of condensed nuclei was mainly due to effects of aluminum and fluoride, and may serve as an indicator of induced cell death. Copyright © 2014 Elsevier B.V. All rights reserved.
Vietri, M; Pietrabissa, A; Spisni, R; Mosca, F; Pacifici, G M
2000-09-01
The aim of this investigation was to determine whether mefenamic acid and salicylic acid inhibit the sulfation of (-)-salbutamol and minoxidil in the human liver and duodenum, and if so, to ascertain whether the 50% inhibitory concentration (IC50) estimates are different in the two tissues. Sulfotransferase activities were measured for 10 mM (-)-salbutamol and 5 mM minoxidil, and the concentration of 3'-phosphoadenosine-5'-phosphosulphate-[35S] was 0.4 microM. The IC50 estimates for (-)-salbutamol and minoxidil sulfation of mefenamic acid were 72 +/- 5.4 nM and 1.5 +/- 0.6 microM (liver), respectively, and 161 + 23 microM and 420 +/- 18 microM (duodenum), respectively. The figures for the liver were significantly lower (P < 0.0001) than those for the duodenum. The IC50 estimates for (-)-salbutamol sulfation of salicylic acid were 93 +/- 11 microM (liver) and 705 +/- 19 microM (duodenum, P < 0.0001). Salicylic acid was a poor inhibitor of minoxidil sulfation. The IC50 estimates for (-)-salbutamol sulfation of mefenamic acid and salicylic acid are lower than their unbound plasma concentrations after standard dosing, suggesting that mefenamic acid and salicylic acid should inhibit the hepatic sulfation of (-)-salbutamol in vivo.
Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco
2010-10-01
This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).
Screening of selected indigenous plants of Cambodia for antiplasmodial activity.
Hout, Sotheara; Chea, Aun; Bun, Sok-Siya; Elias, Riad; Gasquet, Monique; Timon-David, Pierre; Balansard, Guy; Azas, Nadine
2006-08-11
The in vitro antiplasmodial activity of 117 aqueous, methanol and dichloromethane extracts derived from different parts of 28 indigenous wild plant species was studied. These plants are commonly used in Cambodian traditional medicine. The plant extracts were tested for in vitro activity against a chloroquine resistant Plasmodium falciparum strain (W2). Nine extracts were moderately active with IC(50) values ranging between 5 and 10 microg/ml, 17 extracts were active with IC(50) values ranging between 1 and 5 microg/ml. These 26 extracts derived from eight plants belong to six families. The most active extracts were dichloromethane and came from Stephania rotunda and Brucea javanica with IC(50) values of 1 microg/ml and a selectivity index > or = 25. It is interesting to note that some aqueous extracts were as active as dichloromethane extracts especially aqueous extracts of Stephania rotunda, Brucea javanica, Phyllanthus urinaria and Eurycoma longifolia with IC(50) values of < or = 4 microg/ml. These results are in agreement with statements of healers on traditional uses of these plants for the treatment of malaria and/or fever. In this study, we report the antiplasmodial potential activity of eight plant species from Cambodia. Among them four are tested for the first time.
Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe
2017-07-01
The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC 50 and K i values via nonlinear regression. Obtained K i values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. In this study, 49 IC 50 experiments were conducted. In six cases, IC 50 values lower than the calculated threshold for drug-drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained K i values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained K i values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). In vitro / in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations.
Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe
2017-01-01
Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations. PMID:28747995
NASA Astrophysics Data System (ADS)
Matsjeh, Sabirin; Anwar, Chairil; Solikhah, Eti Nurwening; Farah, Harra Ismi; Nurfitria, Kurnia
2017-03-01
The compound 7-hydroxy-4'-methoxyflavanone and 7-hydroxy-4'-methoxyflavone have been synthesized through cyclization reaction of 2 ', 4'-dihydroxy-4-methoxychalcone (1,3-diphenyl-2-propene-1-one). The 2 ', 4'-dihydroxy-4-methoxychalcone were synthesized through Claisen-Schmidt condensation from 2,4-dihydroxyacetophenone and 4-methoxybenzaldehyde (anisaldehyde) in aqueous KOH as a catalyst in ethanol. The 7-hydroxy-4'-methoxyflavanone has been synthesized through cyclization reaction of 2 ', 4'-dihydroxy-4-methoxychalcone by Oxa-Michael addition reaction with sulfuric acid as a catalyst in ethanol. The 7-hydroxy-4'-methoxyflavone has been synthesized through oxidative cyclization reaction of 2 ', 4'-dihydroxy-4-methoxychalcone using I2 in DMSO as a catalyst with a mole ratio (1: 1) mol. All these producets were characterized by FT-IR, GC-MS, and 1H-NMR and 13C-NMR spectrometer. Both of these compounds were tested citotoxycity activity as an anticancer against cervical and colon cancer cells (HeLa and WiDr cell lines) using MTT assay in vitro. Dose series given test solution concentration on HeLa and WiDr cells starting from 0,78; 1,56; 3,12; 6,25; 12,50; 25; 50 and 100 µg/mL with a long incubation treatment for 24 hours. The results study showed that the 7-hydroxy-4'-methoxyflavanone as bright yellow crystals with a melting point 172-174 ° C and a yield of 56.67% and the 7-hydroxy-4'-methoxyflavone as bright yellow crystals with a yield of 88, 31%, and a melting point of 263-265 ° C. The test results cytotoxic 7-hydroxy-4-methoxyflavone showed active against HeLa cells with IC50 value of 25.73 µg/mL and was quite active in the WiDr cells with IC50 value of 83.75 µg/mL. The result of the activity of 7-hydroxy-4-methoxyflavanone show active cytotoxic activity against HeLa and WiDr cell growth with IC50 value of 40.13 µg/mL and 37.85 µg/mL. IC50 value indicated that 7-hydroxy-4'-methoxyflavone and 7-hydroxy-4'-methoxyflavanone potential as inhibitors in HeLa and WiDr. cells
Tommasi, S; Elliot, D J; Da Boit, M; Gray, S R; Lewis, B C; Mangoni, A A
2018-02-27
The inhibition of arginase, resulting in higher arginine (ARG) availability for nitric oxide synthesis, may account for the putative protective effect of homoarginine (HOMOARG) against atherosclerosis and cardiovascular disease. However, uncertainty exists regarding the significance of HOMOARG-induced arginase inhibition in vivo. A novel UPLC-MS method, measuring the conversion of ARG to ornithine (ORN), was developed to determine arginase 1 and arginase 2 inhibition by HOMOARG, lysine (LYS), proline (PRO), agmatine (AG), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and NG-Monomethyl-L-arginine (L-NMMA). Plasma HOMOARG, ARG and ORN concentrations were further measured in 50 healthy older adults >65 years (27 males and 23 females). HOMOARG inhibited arginase 1 with IC 50 and K i values of 8.14 ± 0.52 mM and 6.1 ± 0.50 mM, and arginase 2 with IC 50 and K i values of 2.52 ± 0.01 mM and 1.73 ± 0.10 mM, respectively. Both arginase isoforms retained 90% activity vs. control when physiological HOMOARG concentrations (1-10 µM) were used. In partial correlation analysis, plasma HOMOARG was not associated with ARG (P = 0.38) or ARG/ORN ratio (P = 0.73) in older adults. Our results suggest that arginase inhibition is unlikely to play a significant role in the reported cardio-protective effects of HOMOARG.
da Cruz Almeida, Erika Tayse; da Silva, Maria Cristina Delgado; Oliveira, José Marcos Dos Santos; Kamiya, Regianne Umeko; Arruda, Rodolfo Elleson Dos Santos; Vieira, Danilo Abreu; Silva, Valdemir da Costa; Escodro, Pierre Barnabé; Basílio-Júnior, Irinaldo Diniz; do Nascimento, Ticiano Gomes
2017-10-01
The aim of this study was to characterize tinctures and microcapsules loaded with an ethanol extract of red propolis through chemical, physicochemical and microbiological assays in order to establish quality control tools for nutraceutical preparations of red propolis. The markers (isoflavonoids, chalcones, pterocarpans, flavones, phenolic acids, terpenes and guttiferones) present in the tinctures A and B were identified and confirmed using LC/ESI/FTMS/Orbitrap. Four compositions (A, B, C and D) were prepared to contain B tincture of the red propolis with some pharmaceutical excipients and submitted to two drying processes, i. e. spray-drying and freeze-drying to obtain microcapsules loaded with the red propolis extract. The tinctures and microcapsules of the red propolis were submitted to the total flavonoid content and antioxidant activity tests. The antibacterial activity and minimum inhibitory concentration (MIC) were tested using Staphylococcus aureus ATCC 25293 and Pseudomonas aeruginosa ATCC 27853 strains. The tinctures and microcapsules presented high flavonoid quantities from 20.50 to 40.79 mg/100 mg of the microcapsules. The antioxidant activity and IC 50 were determined for the tinctures A and B (IC 50 : 6.95 µg/mL and 7.48 µg/mL), the spray-dried microcapsules (IC50: 8.89-15.63 µg/mL) and the freeze-dried microcapsules (IC50: 11.83-23.36 µg/mL). The tinctures and microcapsules were proved to be bioactive against gram-positive and gram-negative bacteria with inhibition halos superior to 10 mm at concentration of 200 µg/mL and MIC values of 135.87-271.74 µg/mL using gram-positive strain and 271.74-543.48 µg/mL using gram-negative strain. The tinctures and microcapsules of the red propolis have a potential application for nutraceutical products.
Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc
2018-04-24
Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.
Parada-Turska, Jolanta; Rzeski, Wojciech; Majdan, Maria; Kandefer-Szerszeń, Martyna; Turski, Waldemar A
2006-03-27
One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts. It is not known whether the massive synovial hyperplasia characteristic of rheumatoid arthritis is due to the proliferation of synovial fibroblasts or to defective apoptosis. It has been found that glutamate receptor antagonists inhibit proliferation of different human tumour cells and the anticancer potential of glutamate receptor antagonists was suggested. Here, we investigated the effect of glutamate receptor antagonists and selected antirheumatic drugs on proliferation of synoviocytes in vitro. Experiments were conducted on rabbit synoviocytes cell line HIG-82 obtained from American Type Culture Collection (Menassas, VA, USA). Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 value (the concentration of drug necessary to induce 50% inhibition) together with confidence limits was calculated. Glutamate receptor antagonists, 1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one (CFM-2), riluzole, memantine, 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), dizocilpine, ketamine and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.014, 0.017, 0.065, 0.102, 0.15, 0.435 and 1.16, respectively. Antirheumatic drugs, celecoxib, diclofenac, nimesulide, sulfasalazine, naproxen and methotrexate, inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.0043, 0.034, 0.044, 0.096, 0.385 and 1.123, respectively. Thus, the antiproliferative potential of glutamate receptor antagonists is comparable to that of antirheumatic drugs.
Calzada, Fernando; Juárez, Teresa; García-Hernández, Normand; Valdes, Miguel; Ávila, Oscar; Mulia, Lilian Yepez; Velázquez, Claudia
2017-01-01
Chiranthodendron pentadactylon Larreat. (Sterculiaceae) is a Mexican plant used in traditional medicine for the treatment of heart disease symptoms and infectious diarrhea. To evaluate in vitro antiprotozoal and antibacterial activities and in vivo antidiarrheal activity from the flowers of C. pentadactylon using the extract, fractions, and major isolated flavonoids. Bioassay-guided fractionation of the methanol extract of C. pentadactylon (MECP) led to the isolation of five flavonoids, tiliroside, astragalin, isoquercitrin, (+)-catechin, and (-)-epicatechin. Antimicrobial activities were tested on two protozoa ( Entamoeba histolytica and Giardia lamblia ) and nine bacterial enteropathogens (two Escherichia coli strains, two Shigella sonnei strains, two Shigella flexneri strains, two Salmonella sp. strains, and Vibrio cholerae ) isolated from feces of children with acute diarrhea or dysentery and resistant to chloramphenicol. Also, antidiarrheal activity was tested on cholera toxin-induced diarrhea in male Balb-c mice. Epicatechin was the most potent antiamoebic and antigiardial compound with IC 50 values of 1.9 μg/mL for E. histolytica and 1.6 μg/mL for G. lamblia ; tiliroside showed moderate antiprotozoal activity against both protozoan. In contrast, in the antibacterial activity, tiliroside was the most potent compound on all microorganisms with minimum inhibitory concentration values less than 0.7 mg/mL. In the case of cholera toxin-induced diarrhea, epicatechin was the most potent flavonoid with IC 50 of 14.7 mg/kg. Epicatechin and tiliroside were the flavonoids responsible for antimicrobial andantidiarrheal activities of C. pentadactylon . Its antiprotozoal, antibacterial, and antidiarrheal properties are in good agreement with the traditional medicinal use of C. pentadactylon for the treatment of infectious diarrhea. Epicatechin was the most potent antiamoebic and antigiardial compound with IC 50 values of 1.9 μg/mL for E. histolytica and 1.6 μg/mL for G. lamblia .Tiliroside showed antibacterial activity against all microorganisms tested with MIC values less than 0.7 mg/mL.Epicatechin was the most potent flavonoid on cholera toxin-induced diarrhea with IC 50 of 14.7 mg/kg. Abbreviations used: MECP: Methanol extract of C. pentadactylon .
Jaszewska, Edyta; Kośmider, Anita; Kiss, Anna K; Naruszewicz, Marek
2009-09-23
Three extracts of defatted seeds of Oenothera paradoxa Hudziok, aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract, differing by their total content of phenolic compounds and by their contents of individual polyphenols, were investigated in this study. The extracts exerted cytotoxic action on HTB-140 human skin melanoma cells. After 24 h of incubation, IC(50) values of 169.7 +/- 5.9 micog/mL, 72.4 +/- 3.8 microg/mL, and 155.3 +/- 6.3 microg/mL were obtained for HTB-140 cells with the aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract at the tested concentrations (5-200 microg/mL), respectively, while IC(50) for normal fibroblast cells NHDFs was not attained. Moreover, for HTB-140 cells, LD(50) (concentration at which 50% of cells were dead) of 89.2 +/- 4.3 microg/mL and 181.4 +/- 6.5 microg/mL were obtained with 60% ethanolic extract and 30% isopropanolic extract, respectively. In melanoma cells, all three extracts caused a concentration-dependent increase of ROS production, GSH, and ATP lowering, and appearance of phosphatidylserine on the external surface of cellular membranes where it was bound to annexin V-FITC; furthermore, apoptosis without activation of caspase-3 took place. The most effective was 60% ethanolic extract, which had the greatest total content of phenolic compounds and the greatest content of pentagalloyloglucose (PGG).
Filho, Valdir Cechinel; Meyre-Silva, Christiane; Niero, Rivaldo; Bolda Mariano, Luisa Nathália; Gomes do Nascimento, Fabiana; Vicente Farias, Ingrid; Gazoni, Vanessa Fátima; dos Santos Silva, Bruna; Giménez, Alberto; Gutierrez-Yapu, David; Salamanca, Efrain; Malheiros, Angela
2013-01-01
This study evaluated extracts, fractions, and isolated compounds from some selected Brazilian medicinal plants against strains of promastigotes of Leishmania amazonensis and L. brasiliensis in vitro. The cell viability was determined, comparing the results with reference standards. The dichloromethane fractions of the roots, stems, and leaves of Allamanda schottii showed IC50 values between 14.0 and 2.0 μg/mL. Plumericin was the main active compound, with IC50 of 0.3 and 0.04 μg/mL against the two species of Leishmania analyzed. The hexane extract of Eugenia umbelliflora fruits showed IC50 of 14.3 and 5.7 μg/mL against L. amazonensis and L. brasiliensis, respectively. The methanolic extracts of the seeds of Garcinia achachairu and guttiferone A presented IC50 values of 35.9 and 10.4 μg/mL, against L. amazonensis, respectively. The ethanolic extracts of the stem barks of Rapanea ferruginea and the isolated compound, myrsinoic acid B, presented activity against L. brasiliensis with IC50 of 24.1 and 6.1 μg/mL. Chloroform fraction of Solanum sisymbriifolium exhibited IC50 of 33.8 and 20.5 μg/mL, and cilistol A was the main active principle, with IC50 of 6.6 and 3.1 μg/mL against L. amazonensis and L. brasiliensis, respectively. It is concluded that the analyzed plants are promising as new and effective antiparasitic agents. PMID:23840252
Ullah, Farhat; Ayaz, Muhammad; Sadiq, Abdul; Hussain, Abid; Ahmad, Sajjad; Imran, Muhammad; Zeb, Anwar
2016-06-01
This study was designed to investigate antioxidant and anticholinesterase potential of Iris germanica var; florentina. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential of plant samples were investigated by Ellman's assay. Antioxidant activity was performed using DPPH, H2O2 and ABTS free radical scavenging assays. Total phenolics and flavonoids contents were expressed in mg GAE/g dry weight and mg RTE/g, respectively. In AChE inhibition assay, Ig.Fl, Ig.Sp and Ig.Cf fractions exhibited highest activity with IC50 values of < 0.1, 5.64 and 19 μg/mL, respectively. In BChE inhibitory assay, Ig.Fl, Ig.Sp, Ig.Cf and Ig.Cr were most active with IC50 of < 0.1, < 0.1, 31 and 78 μg/mL, respectively. In DPPH assay, Ig.Fl and Ig.Cf exhibited highest inhibition of free radicals, 80.52% (IC50 = 9 μg/mL) and 78.30% (IC50 = 8 μg/mL), respectively. In ABTS assay Ig.Cr, Ig.Cf, Ig.Fl and Ig.Sp exhibited IC50 values of < 0.1, 2, 2 and 3 μg/mL, respectively.
Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook
2011-09-01
6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.
Biofunctional Properties of Enzymatic Squid Meat Hydrolysate
Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo
2015-01-01
Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752
Direct led-fluorescence method for Mao-B inactivation in the treatment of Parkinson's
NASA Astrophysics Data System (ADS)
Castillo, Jimmy A.; Hung, Jannett; Rodriguez, M.; Bastidas, E.; Laboren, I.; Jaimes, A.
2004-10-01
A led-fluorescence spectroscopy method determinate the inhibitory effects of probe compounds on MAO-B activity is described. In this assay, we demonstrate the possibility of determinate the activity of MAO-B efficiently and rapidly without the use of reference substrate. Measuring variations in fluorescence intensity of MAO-B enzyme during the reaction with inhibitors, L-deprenyl and berberine IC50 and KI values were obtained. For L-deprenyl (IC50 = 0.017 μM and KI = 0.019 μM) and berberine (IC50 = 90 μM and KI = 47 μM) were in agreement to the values obtained with a standard method and literature reported.
Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links.
Lee, Ji-Young; Oh, Jun-Gu; Kim, Jin Sook; Lee, Kwang-Won
2014-01-01
Advanced glycation end-products (AGEs) have been implicated in the development of diabetic complications. We report the antiglycating activity of chebulic acid (CA), isolated from Terminalia chebula on breaking the cross-links of proteins induced by AGEs and inhibiting the formation of AGEs. Aminoguanidine (AG) reduced 50% of glycated bovine serum albumin (BSA) with glycolaldehyde (glycol-BSA)-induced cross-links of collagen at a concentration of 67.8 ± 2.5 mM, the level of CA required for exerting a similar antiglycating activity was 38.8 ± 0.5 µM. Also, the breaking activity on collagen cross-links induced by glycol-BSA was potent with CA (IC50=1.46 ± 0.05 mM), exhibiting 50-fold stronger breaking activity than with ALT-711, a well-known cross-link breaker (IC50=72.2 ± 2.4 mM). IC50 values of DPPH· scavenging activity for CA and ascorbic acid (AA) were 39.2 ± 4.9 and 19.0 ± 1.2 µg dry matter (DM) mL(-1), respectively, and ferric reducing and antioxidant power (FRAP) activities for CA and AA were 4.70 ± 0.06 and 11.4 ± 0.1 mmol/FeSO4·7H2O/g DM, respectively. The chelating activities of CA, AG and ALT711 on copper-catalyzed oxidation of AA were compared, and in increasing order, ALT-711 (IC50 of 1.92 ± 0.20 mM)
Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O
2018-05-19
Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.
Lacrimal secretion stimulants: sigma receptors and drug implications.
Shirolkar, S; Schoenwald, R D; Barfknecht, C F; Xia, E; Cheng, B; Iwai, Y; Ignace, C C; Vidvauns, S; Newton, R E
1993-01-01
3H-DTG (1.3-di(2-[5-3H]tolyl)guanidine) or 3H-haloperidol was added to sigma-receptors (25 nM) in the presence of 25 nM spiperone and incubated with increasing concentrations of bromhexine derivatives (phenylalkylamines; 10(-9) to 10(-2)M) in membrane homogenate suspensions. IC50 values for two derivatives ranged from 3.2 to 8.8 nM for both radioligands. A preferred derivative, 7A (N,N'-dimethyl-2-phenyl-ethylamine), yielded an IC50 of 7.8 nM for 3H-haloperidol but showed much less affinity in displacing 3H-DTG (IC50 = 900 nM). Applying the technic of Bromberg [Exp. Eye Res., 40:313-320, 1985], in vitro protein secretion rates were measured following stimulation of either lacrimal gland slices or isolated, intact lacrimocytes with the compounds. In vitro protein secretion rates exhibit a dose-response relationship with increases in protein release up to a concentration of 10(-8) to 10(-4) M for various derivatives of bromhexine and 10(-4) M for carbachol. By means of Schirmer strips, tear fluid was collected over a five minute period at 10 and 60 minutes post-dosing following the topical application (50 microliters) to the right eye of New Zealand white rabbits (n = 20-24) of 7A at various concentrations. Incubation of lacrimocytes with 7A alone (10(-4) M), with haloperidol (10(-4) M) alone or in combination show that 7A is acting as an agonist to stimulate protein release, whereas haloperidol is acting as an antagonist to inhibit release. In vivo protein secretion rates also show a dose-response curve (at both 10 and 60 minutes post-dosing) for 7A that reach a statistically significant maximum in the dosed eye at a concentration of 0.15% w/v. Analysis of protein extracts using size exclusion HPLC shows an increase in secretory proteins, particularly tear-specific prealbumin.
Penrose, Kerri J; Wallis, Carole L; Brumme, Chanson J; Hamanishi, Kristen A; Gordon, Kelley C; Viana, Raquel V; Harrigan, P Richard; Mellors, John W; Parikh, Urvi M
2017-02-01
A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1 LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC 50 ) from 12 recombinant subtype C HIV-1 LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC 50 s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC 50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. Copyright © 2017 American Society for Microbiology.
Penrose, Kerri J.; Wallis, Carole L.; Brumme, Chanson J.; Hamanishi, Kristen A.; Gordon, Kelley C.; Viana, Raquel V.; Harrigan, P. Richard; Mellors, John W.
2016-01-01
ABSTRACT A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. PMID:27895013
Chemsa, Ahmed Elkhalifa; Erol, Ebru; Öztürk, Mehmet; Zellagui, Amar; Özgür, Ceylan; Gherraf, Noureddine; Duru, Mehmet Emin
2016-09-01
Twenty compounds were detected in the essential oil of Rhanterium suaveolens representing 98.01% of the total oil content. Perillaldehyde (45.79%), caryophyllene oxide (24.82%) and β-cadinol (5.61%) were identified as the main constituents. In β-carotene-linoleic acid assay, both the oil and the methanol extract exhibited good lipid peroxidation inhibition activity, with IC50 values of 17.97 ± 5.40 and 11.55 ± 3.39 μg/mL, respectively. In DPPH and CUPRAC assays, however, the methanol extract exhibited a good antioxidant activity. The highest antibiofilm activity has been found 50.30% against Staphylococcus epidermidis (MU 30) at 20 μg/mL for essential oil and 58.34% against Micrococcus luteus (NRRL B-4375) at 25 mg/mL concentration for methanol extract. The in vitro anticholinesterase activity of methanol extract showed a moderate acetylcholinesterase inhibitory (IC50 = 168.76 ± 0.62 μg/mL) and good butyrylcholinesterase inhibitory (IC50 = 54.79 ± 1.89 μg/mL) activities. The essential oil was inactive against both enzymes.
Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna
2014-03-01
Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing power with an EC50 of 871.25 microg/mL. The metal chelating activity of the extracts increased with concentration. Chelating effect was 83.60% for fruit extract at 1mg/mL concentration. Oil content of fruit and mixed parts were detected as 6.71 and 6.14%, respectively. A total of 32 fatty acids were found in the oil. Essential fatty acids (linoleic and a-linolenic acid) were identified as the most abundant fatty acids in the oil. These results demonstrated that this plant species can be considered as an alternative to synthetic antioxidants. Likewise, the oil obtained from the plant can be used as a source of essential fatty acids for food and pharmacological applications.
Datta, Sandipan; Baudouin, Christophe; Brignole-Baudouin, Francoise; Denoyer, Alexandre; Cortopassi, Gino A
2017-04-01
Benzalkonium chloride (BAK) is the most commonly used eye drop preservative. Benzalkonium chloride has been associated with toxic effects such as "dry eye" and trabecular meshwork degeneration, but the underlying biochemical mechanism of ocular toxicity by BAK is unclear. In this study, we propose a mechanistic basis for BAK's adverse effects. Mitochondrial O2 consumption rates of human corneal epithelial primary cells (HCEP), osteosarcoma cybrid cells carrying healthy (control) or Leber hereditary optic neuropathy (LHON) mutant mtDNA [11778(G>A)], were measured before and after acute treatment with BAK. Mitochondrial adenosine triphosphate (ATP) synthesis and cell viability were also measured in the BAK-treated control: LHON mutant and human-derived trabecular meshwork cells (HTM3). Benzalkonium chloride inhibited mitochondrial ATP (IC50, 5.3 μM) and O2 consumption (IC50, 10.9 μM) in a concentration-dependent manner, by directly targeting mitochondrial complex I. At its pharmaceutical concentrations (107-667 μM), BAK inhibited mitochondrial function >90%. In addition, BAK elicited concentration-dependent cytotoxicity to cybrid cells (IC50, 22.8 μM) and induced apoptosis in HTM3 cells at similar concentrations. Furthermore, we show that BAK directly inhibits mitochondrial O2 consumption in HCEP cells (IC50, 3.8 μM) at 50-fold lower concentrations than used in eye drops, and that cells bearing mitochondrial blindness (LHON) mutations are further sensitized to BAK's mitotoxic effect. Benzalkonium chloride inhibits mitochondria of human corneal epithelial cells and cells bearing LHON mutations at pharmacologically relevant concentrations, and we suggest this is the basis of BAK's ocular toxicity. Prescribing BAK-containing eye drops should be avoided in patients with mitochondrial deficiency, including LHON patients, LHON carriers, and possibly primary open-angle glaucoma patients.
Datta, Sandipan; Baudouin, Christophe; Brignole-Baudouin, Francoise; Denoyer, Alexandre; Cortopassi, Gino A.
2017-01-01
Purpose Benzalkonium chloride (BAK) is the most commonly used eye drop preservative. Benzalkonium chloride has been associated with toxic effects such as “dry eye” and trabecular meshwork degeneration, but the underlying biochemical mechanism of ocular toxicity by BAK is unclear. In this study, we propose a mechanistic basis for BAK's adverse effects. Method Mitochondrial O2 consumption rates of human corneal epithelial primary cells (HCEP), osteosarcoma cybrid cells carrying healthy (control) or Leber hereditary optic neuropathy (LHON) mutant mtDNA [11778(G>A)], were measured before and after acute treatment with BAK. Mitochondrial adenosine triphosphate (ATP) synthesis and cell viability were also measured in the BAK-treated control: LHON mutant and human-derived trabecular meshwork cells (HTM3). Results Benzalkonium chloride inhibited mitochondrial ATP (IC50, 5.3 μM) and O2 consumption (IC50, 10.9 μM) in a concentration-dependent manner, by directly targeting mitochondrial complex I. At its pharmaceutical concentrations (107–667 μM), BAK inhibited mitochondrial function >90%. In addition, BAK elicited concentration-dependent cytotoxicity to cybrid cells (IC50, 22.8 μM) and induced apoptosis in HTM3 cells at similar concentrations. Furthermore, we show that BAK directly inhibits mitochondrial O2 consumption in HCEP cells (IC50, 3.8 μM) at 50-fold lower concentrations than used in eye drops, and that cells bearing mitochondrial blindness (LHON) mutations are further sensitized to BAK's mitotoxic effect. Conclusions Benzalkonium chloride inhibits mitochondria of human corneal epithelial cells and cells bearing LHON mutations at pharmacologically relevant concentrations, and we suggest this is the basis of BAK's ocular toxicity. Prescribing BAK-containing eye drops should be avoided in patients with mitochondrial deficiency, including LHON patients, LHON carriers, and possibly primary open-angle glaucoma patients. PMID:28444329
Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong
2015-06-01
The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hayes, M.; Stanton, C.; Slattery, H.; O'Sullivan, O.; Hill, C.; Fitzgerald, G. F.; Ross, R. P.
2007-01-01
This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract. PMID:17483275
Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R
1994-03-01
Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.
Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts
Ramos, Joseph F; Webster, Thomas J
2012-01-01
Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842
Dzoyem, Jean Paul; Nkuete, Antoine H L; Ngameni, Barthelemy; Eloff, Jacobus N
2017-10-01
This study was aimed at investigating the anti-inflammatory and anticholinesterase activity of six naturally occurring flavonoids: (-) pinostrobin (1), 2',4'-dihydroxy-3',6'-dimethoxychalcone (2), 6-8-diprenyleriodictyol (3), isobavachalcone (4), 4-hydroxylonchocarpin (5) and 6-prenylapigenin (6). These compounds were isolated from Dorstenia and Polygonum species used traditionally to treat pain. The anti-inflammatory activity was determined by using the Griess assay and the 15-lipoxygenase inhibitory activity was determined with the ferrous oxidation-xylenol orange assay. Acetylcholinesterase inhibition was determined by the Ellman's method. At the lowest concentration tested (3.12 µg/ml), compounds 2, 3 and 4 had significant NO inhibitory activity with 90.71, 84.65 and 79.57 % inhibition respectively compared to the positive control quercetin (67.93 %). At this concentration there was no significant cytotoxicity against macrophages with 91.67, 72.86 and 70.86 % cell viability respectively, compared to 73.1 % for quercetin. Compound 4 had the most potent lipoxygenase inhibitory activity (IC 50 of 25.92 µg/ml). With the exception of (-) pinostrobin (1), all the flavonoids had selective anticholinesterase activity with IC 50 values ranging between 5.93 and 8.76 µg/ml compared to the IC 50 4.94 µg/ml of eserine the positive control. These results indicate that the studied flavonoids especially isobavachalcone are potential anti-inflammatory natural products that may have the potential to be developed as therapeutic agents against inflammatory conditions and even Alzheimer's disease.
Viji, V; Helen, A
2008-07-23
Bacopa monniera Linn is described in the Ayurvedic Materia Medica, as a therapeutically useful herb for the treatment of inflammation. In the current study, we investigated the anti-inflammatory activity of methanolic extract of Bacopa monniera (BME). For some experiments EtOAc and bacoside fractions were prepared from BME. The effect of these extracts in modulating key mediators of inflammation was evaluated. Carrageenan-induced rat paw edema, rat mononuclear cells and human whole blood assay were employed as in vivo and in vitro models. In carrageenan-induced rat paw edema, BME brought about 82% edema inhibition at a dose of 100mg/kg i.p. when compared to indomethacin (INDO) (3mg/kg) that showed 70% edema inhibition. BME also significantly inhibited 5-lipoxygenase (5-LOX), 15-LOX and cyclooxygenase-2 (COX-2) activities in rat monocytes in vivo. Among the fractions tested in vitro, EtOAc fraction possessed significant 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with IC(50) value of 30 microg/ml compared to butylated hydroxyl toluene (IC(50) = 13 microg/ml). This fraction also exerted significant hydroxyl radical scavenging activity with IC(50) value of 25 microg/ml in comparison with quercetin (IC(50) = 5 microg/ml). Inhibitory effects of EtOAc and bacoside fractions on LOX and COX activities in Ca-A23187 stimulated rat mononuclear cells were also assessed. 5-LOX IC(50) values were 25 microg/ml for EtOAc, 68 microg/ml for bacosides and 2 microg/ml for nordihydroguaiaretic acid (NDGA) where as COX-2 IC(50) values were 1.32 microg/ml for EtOAc, 1.19 microg/ml for bacoside fraction and 0.23 microg/ml for indomethacin. EtOAc and bacoside fractions also brought about significant decrease in TNF-alpha release ex vivo. Bacopa monniera possesses anti-inflammatory activity through inhibition of COX and LOX and downregulation of TNF-alpha.
Sayeed, Iqbal; Parvez, Suhel; Winkler-Stuck, Kirstin; Seitz, Gordon; Trieu, Isabelle; Wallesch, Claus-Werner; Schönfeld, Peter; Siemen, Detlef
2006-03-01
The dopamine-D2-agonist pramipexole (PPX) was tested for blocking mitochondrial permeability transition (PT) in order to give a possible explanation for its neuroprotective effect seen in PPX-treated Parkinson's disease patients. Patch-clamp techniques for studying single-channel currents in the inner mitochondrial membrane and large-amplitude swelling of energized mitochondria were used to study PPX action on the permeability transition pore (PTP), a key player in the mitochondrial route of the apoptotic cascade. Identity of the PTP was proven by measuring the concentration-response relation for cyclosporin A-blockade (IC50=26 nM). PPX inhibits the PTP reversibly with an IC50 of 500 nM, which is close to the values determined earlier as plasma concentrations after PPX medication in patients. Interaction of PPX with the PTP is further supported by demonstrating that it abolished Ca2+-triggered swelling in functionally intact mitochondria. Blockade of the PTP by PPX was attenuated by increasing concentrations of inorganic phosphate and by acidification. We suggest that PPX could exert part of its neuroprotective effect by inhibition of the PTP and thus, probably, blocking of the mitochondrial pathway of the apoptosis cascade.
Winder, Priscilla L.; Baker, Heather L.; Linley, Patricia; Guzmán, Esther; Pomponi, Shirley A.; Diaz, M. Cristina; Reed, John K.; Wright, Amy E.
2011-01-01
Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinone A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC50 values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC50 values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC50 value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone and xestoquinone. PMID:22014756
Verma, Vivek; Singh, Nirmal; Jaggi, Amteshwar Singh
2014-02-01
The involvement of sodium-hydrogen exchangers (NHE) has been described in the pathophysiology of diseases including ischemic heart and brain diseases, cardiomyopathy, congestive heart failure, epilepsy, dementia, and neuropathic pain. Synthetic NHE inhibitors have not achieved much clinical success; therefore, plant-derived phytoconstituents may be explored as NHE inhibitors. In the present study, the NHE inhibitory potential of hydroalcoholic and alkaloidal fractions of Malus domestica, Musa × paradisiaca, Daucus carota, and Symphytum officinale was evaluated. The different concentrations of hydroalcoholic and alkaloidal extracts of the selected plants were evaluated for their NHE inhibitory activity in the platelets using the optical swelling assay. Among the hydroalcoholic extracts, the highest NHE inhibitory activity was shown by M. domestica (IC50=2.350 ± 0.132 μg/mL) followed by Musa × paradisiaca (IC50=7.967 ± 0.451 μg/mL), D. carota (IC50=37.667 ± 2.517 μg/mL), and S. officinale (IC50=249.330 ± 1.155 μg/mL). Among the alkaloidal fractions, the highest NHE inhibitory activity was shown by the alkaloidal fraction of Musa × paradisiacal (IC50=0.010 ± 0.001 μg/mL) followed by D. carota (IC50=0.024 ± 0.002 μg/mL), M. domestica (IC50=0.031 ± 0.005 μg/mL), and S. officinale (IC50=4.233 ± 0.379 μg/mL). The IC50 of alkaloidal fractions was comparable to the IC50 of synthetic NHE inhibitor, EIPA [5-(N-ethyl-N-isopropyl)amiloride] (IC50=0.033 ± 0.004 μg/mL). It may be concluded that the alkaloidal fractions of these plants possess potent NHE inhibitory activity and may be exploited for their therapeutic potential in NHE activation-related pathological complications.
Kamal, Zul; Ullah, Farhat; Ayaz, Muhammad; Sadiq, Abdul; Ahmad, Sajjad; Zeb, Anwar; Hussain, Abid; Imran, Muhammad
2015-04-01
Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer's and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman's assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively. In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL). These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer's and other neurological disorders.
NASA Astrophysics Data System (ADS)
Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül
2017-12-01
The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.
Touihri-Barakati, Imen; Kallech-Ziri, Olfa; Ayadi, Wiem; Kovacic, Hervé; Hanchi, Belgacem; Hosni, Karim; Luis, José
2017-02-15
Integrins are essential protagonists in the complex multistep process of cancer progression and are thus attractive targets for the development of anticancer agents. Cucurbitacin B, a triterpenoid purified from the leaves of Tunisian Ecballium elaterium exhibited an anticancer effect and displayed anti-integrin activity on human glioblastoma U87 cells, without being cytotoxic at concentrations up to 500nM. Here we show that cucurbitacin B affected the adhesion and migration of U87 cells to fibronectin in a dose-dependent manner with IC50 values of 86.2nM and 84.6nM, respectively. Time-lapse videomicroscopy showed that cucurbitacin B significantly reduced U87 cells motility and affected directional persistence. Cucurbitacin B also inhibited proliferation with IC50 value of 70.1nM using Crystal Violet assay. Moreover, cucurbitacin B efficiently inhibited in vitro human microvascular endothelial cells (HMEC) angiogenesis with concentration up to 10nM. Interestingly, we demonstrate for the first time that this effect was specifically mediated by α5β1 integrins. These findings reveal a novel mechanism of action for cucurbitacin B, which displays a potential interest as a specific anti-integrin drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Bartlett, M S; Shaw, M; Navaran, P; Smith, J W; Queener, S F
1995-11-01
Many antifolates are known to inhibit dihydrofolate reductase from murine Pneumocystis carinii, with 50% inhibitory concentrations (IC50s) ranging from 10(-4) to 10(-11) M. The relationship of the potency against isolated enzyme to the potency against intact murine P. carinii cells was explored with 17 compounds that had proven selectivity for or potency against P. carinii dihydrofolate reductase. Pyrimethamine and one analog were inhibitory to P. carinii in culture at concentrations two to seven times the IC50s for the enzyme, suggesting that the compounds may enter P. carinii cells in culture. Methotrexate was a potent inhibitor of P. carinii dihydrofolate reductase, but the concentrations effective in culture were more than 1,000-fold higher than IC50s for the enzyme, since P. carinii lacks an uptake system for methotrexate. Analogs of methotrexate in which chlorine, bromine, or iodine was added to the phenyl ring had improved potency against the isolated enzyme but were markedly less effective in culture; polyglutamation also lowered the activity in culture but improved activity against the enzyme. Substitution of a naphthyl group for the phenyl group of methotrexate produced a compound with improved activity against the enzyme (IC50, 0.00019 microM) and excellent activity in culture (IC50, 0.1 microM). One trimetrexate analog in which an aspartate or a chlorine replaced two of the methoxy groups of trimetrexate was much more potent and was much more selective toward P. carinii dihydrofolate reductase than trimetrexate; this analog was also as active as trimetrexate in culture. These studies suggest that modifications of antifolate structures can be made that facilitate activity against intact organisms while maintaining the high degrees of potency and the selectivities of the agents can be made.
Narimatsu, Eichi; Niiya, Tomohisa; Takahashi, Kazunobu; Yamauchi, Masanori; Yamakage, Michiaki
2012-07-01
The composite effects of organophosphorus (OP)-cholinesterase (ChE) inhibitors and oximes on the actions of nondepolarizing neuromuscular blockers in acute OP-ChE inhibitor intoxication have not been evaluated in detail. We investigated the effects of paraoxon (Pox) (an OP-ChE inhibitor) and pralidoxime (PAM) (an oxime) on the nondepolarizing neuromuscular blocking action of rocuronium. Isometric twitch tensions of rat left phrenic nerve-hemidiaphragm preparations elicited by indirect (phrenic nerve) supramaximal stimulation at 0.1 Hz were evaluated. Analysis of variance with post hoc testing was used for statistical comparison, and P < .05 was accepted as significant. Rocuronium reduced the indirectly elicited twitch tensions in normal (50% inhibitory concentration [IC(50)], 9.84 [9.64-10.04] μM, mean [95% confidence interval]) and all pretreated diaphragms (P < .01, n = 6) in a concentration-dependent fashion. Paraoxon caused a rightward shift in the rocuronium concentration-twitch tension curve (IC(50), 15.48 [15.24-15.72] μM). The rightward shift was completely inhibited by previous copretreatment (IC(50), 9.98 [9.77-10.20] μM) and partially inhibited by simultaneous copretreatment (IC(50), 11.68 [11.45-11.91] μM) with PAM but was not inhibited by subsequent copretreatment (IC(50), 13.69 [13.39-13.99] μM) with PAM (P < .01, n = 6). Atropine did not influence the rightward shift (P < .01, n = 6). Paraoxon depressed rocuronium-induced neuromuscular block by inhibiting ChEs, and the action of Pox was inhibited by PAM. Pralidoxime acts more intensely when applied earlier. The time-dependent effect of PAM indicates that the preceding presence of PAM in proximity to ChEs before Pox is necessary for definite suppression of the Pox-induced ChE inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.
Yin, Caiping; Jin, Liping; Sun, Feifei; Xu, Xiao; Shao, Mingwei; Zhang, Yinglao
2018-04-19
Four metabolites ( 1 ⁻ 4 ), including a new macrolide, O -demethylated-zeaenol ( 2 ), and three known compounds, zeaenol ( 1 ), adenosine ( 3 ), and ergosta-5,7,22-trien-3b-ol ( 4 ) were isolated and purified from Curvularia crepinii QTYC-1, a fungus residing in the gut of Pantala flavescens . The structures of isolated compounds were identified on the basis of extensive spectroscopic analysis and by comparison of the corresponding data with those reported in the literature previously. The new compound 2 showed good phytotoxic activity against Echinochloa crusgalli with an IC 50 value of less than 5 µg/mL, which was comparable to that of positive 2,4-dichlorophenoxyacetic acid (2,4-D). Compound 1 exhibited moderate herbicidal activity against E. crusgalli with an IC 50 value of 28.8 μg/mL. Furthermore, the new metabolite 2 was found to possess moderate antifungal activity against Valsa mali at the concentration of 100 µg/mL, with the inhibition rate of 50%. These results suggest that the new macrolide 2 and the known compound 1 have potential to be used as biocontrol agents in agriculture.
Elisha, Ishaku Leo; Dzoyem, Jean-Paul; McGaw, Lyndy Joy; Botha, Francien S; Eloff, Jacobus Nicolaas
2016-08-23
Oxidative stress predisposes the human and animal body to diseases like cancer, diabetes, arthritis, rheumatoid arthritis, atherosclerosis and chronic inflammatory disorders. Hence, this study seeks to determine the antioxidant, anti-inflammatory and anti-arthritic activities of acetone leaf extracts of nine South African medicinal plants that have been used traditionally to treat arthritis and inflammation. The anti-inflammatory activity of the extracts was determined by investigating inhibition of nitric oxide production in lipopolysaccharide activated RAW 264.7 macrophages as well as 15-lipoxygenase enzyme inhibition. An anti-protein denaturation assay was used to determine the anti-arthritic properties of the extracts. The antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays and ferric reducing antioxidant power (FRAP). The total phenolic and total flavonoid concentration of extracts were determined by using standard methods. All extracts inhibited nitric oxide production in a dose-dependent manner in the LPS-stimulated RAW 264.7 macrophages. Extracts of Maesa lanceolata and Heteromorpha arborescens inhibited NO production by 99.16 % and 89.48 % at a concentration of 30 μg/ml respectively. Elaeodendron croceum and Calpurnia aurea extracts had strong activity against 15-lipoxygenase activity with IC50 values of 26.23 and 34.70 μg/ml respectively. Morus mesozygia and Heteromorpha arborescens extracts had good in vitro anti-arthritic activity with IC50 values of 11.89 and 53.78 μg/ml, the positive control diclofenac sodium had IC50 value of 32.37 μg/ml. The free radical scavenging activity of the extracts in DPPH assays ranged between 7.72 and 154.77 μg/ml. Trolox equivalent antioxidant capacity (TEAC) and FRAP values ranged from 0.06 to 1.32 and 0.06 to 0.99 respectively. Results from this study support the traditional use of the selected medicinal plants in the management of arthritis and other inflammatory conditions. The free radical scavenging capacity of the extracts may be related to an immune boosting potential.
In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts.
Santos, Wanderson Praxedes; da Silva Carvalho, Ana Carla; dos Santos Estevam, Charles; Santana, Antônio Euzébio Goulart; Marçal, Rosilene Moretti
2012-07-01
Erythrina velutina (EV) Willd (Fabaceae-Faboideae) is a medicinal tree that is commonly used in Brazil for the treatment of several central nervous system disorders. The anticholinesterase activity of EV is described in this work. Concentration-response curves (0-1.6 mg/mL) for EV leaf aqueous extract (AE) and alkaloid-rich extracts (AKEs) were performed in vitro. Cholinesterase inhibition was examined in mouse brains, as the cholinesterase source, and in pure acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE). Mice were treated with AE or AKE (100, 200, and 400 mg/kg, p.o.) and their brains were used for the measurement of cholinesterase activity (CA) ex vivo. CA was inhibited by AE (IC(50) = 0.57 [0.43-0.75] mg/mL) and AKE (IC(50) = 0.52 [0.39-0.70] mg/mL) in brain homogenates in a concentration-dependent manner. The ex vivo experiments indicated that AE (400 mg/kg, p < 0.05, 32.2 ± 3.9% of inhibition) and AKE (all doses: p < 0.05-p < 0.001, 29.6 ± 3.2% as the maximum inhibition) significantly inhibited CA in the central nervous system after oral administration. AE and AKE inhibited AChE and BuChE activities in a concentration-dependent manner (AE: IC(50AChE) = 0.56 [0.38-0.81] mg/mL, IC(50BuChE) = 2.95 [1.51-5.76] mg/mL, AKE: IC(50AChE) = 0.87 [0.60-12.5] mg/mL, IC(50BuChE) = 2.67 [0.87-8.11] mg/mL). These data indicated that AE and AKE crossed the blood-brain barrier to inhibit CA in the brain. AE and AKE also exhibited a dual inhibitory action on acetyl- and BuChE.
Venkatesalu, V; Gopalan, N; Pillai, C R; Singh, Vineeta; Chandrasekaran, M; Senthilkumar, A; Chandramouli, N
2012-07-01
The anti-plasmodial activity of different solvent extracts of Adhatoda vasica (root), Caesalpinia pulcherrima (leaf), Carica papaya (pulp), Erythroxylum monogynum (leaf), Lantana camara (whole plant), Ocimum sanctum (root) and Phyllanthus niruri (whole plant) were studied against Plasmodium falciparum. Of the 35 extracts tested, seven extracts showed good anti-plasmodial activity. Methanol extract of C. pulcherrima showed the lowest IC50 value (10.96 μg/mL) followed by methanol extract of A. vasica (IC(50)=11.1 μg/mL), chloroform extract of O. sanctum (IC(50)=11.47 μg/mL), methanol extract of E. monogynum (IC(50)=12.23 μg/mL), acetone extract of C. pulcherrima (IC(50)=12.49 μg/mL), methanol extract of O. sanctum and acetone extract of A. vasica (IC(50)=14.04 μg/mL). The results of the present study justify the use of these medicinal plants in traditional practice, and also, a further study on the isolation of anti-plasmodial molecules from their active crude extracts is in progress.
Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J
2001-10-01
The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.
Hsp70 as an indicator of stress in the cells after contact with nanoparticles
NASA Astrophysics Data System (ADS)
Hardilová, Šárka; Havrdová, Markéta; Panáček, Aleš; Kvítek, Libor; Zbořil, Radek
2015-05-01
In recent years, production of nanoparticles is increased and thus grows our contact with them too. Question of safety is closely related to the issue of use nanoparticles. There are a number of tests that monitor the viability, ROS production, the effect on the DNA and cell cycle, however, rarely encountered studies on stress in the cells after contact with nanoparticles. Heat shock proteins (HSP) are among the substances that can be used for monitoring stress in cells. HSP are structures with a chaperone activity. They are evolutionarily very old, conservative and they are found with a high degree of homology in prokaryotes and eukaryotes including humans. They exist at low concentrations under physiological conditions, while in the denaturing conditions e.g. high or low temperature, radiation, exposure to chemicals, heavy metals, or nanoparticles their expression is changed. HSPs are involved in maintaining homeostasis in the cell that the denatured protein conformations allow recovery to the original stage. One of the most common proteins from HSP family is Hsp70 - protein with a molecular weight of 70 kDa. The level of Hsp70 in a cell after exposure to the stress changes depending on the stress level to which the cell is exposed to and a time period during which lasted stressful conditions. Our research monitors stress levels of cells manifesting by Hsp70 production after contact with silver nanoparticles. Nanoparticles show different toxicity towards different types of target cells, which is reflected in the values of IC50 - concentration that kills 50% tested cells. Concentration of test substance toxic to one cell type may be innocuous to cells of another type. IC50 obtained from the MTT assay provides a suitable default data and if multiples of IC50 values are used, we can compare and generalize. Studies can be used to compare stress levels in cells that show different sensitivity to the tested nanoparticles compared with cells under optimal growth conditions. The study was done on two types of mouse fibroblasts NIH-3T3 and L929. While NIH-3T3 cells exhibit stress response proportional to the concentration of silver nanoparticles, for L929 cells this was not observed.
Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae).
Dos Santos, Vania A F F M; Leite, Karoline M; da Costa Siqueira, Mariana; Regasini, Luis O; Martinez, Isabel; Nogueira, Camila T; Galuppo, Mariana Kolos; Stolf, Beatriz S; Pereira, Ana Maria Soares; Cicarelli, Regina M B; Furlan, Maysa; Graminha, Marcia A S
2013-01-15
The present study describes the leishmanicidal and trypanocidal activities of two quinonemethide triterpenes, maytenin (1) and pristimerin (2), isolated from Maytenus ilicifolia root barks (Celastraceae). The compounds were effective against the Trypanosomatidae Leishmania amazonensis and Leishmania chagasi and Trypanosoma cruzi, etiologic agents of leishmaniasis and Chagas' disease, respectively. The quinonemethide triterpenes 1 and 2 exhibited a marked in vitro leishmanicidal activity against promastigotes and amastigotes with 50% inhibitory concentration (IC(50)) values of less than 0.88 nM. Both compounds showed IC(50) lower than 0.3 nM against Trypanosoma cruzi epimastigotes. The selectivity indexes (SI) based on BALB/c macrophages for L. amazonensis and L. chagasi were 243.65 and 46.61 for (1) and 193.63 and 23.85 for (2) indicating that both compounds presented high selectivity for Leishmania sp. The data here presented suggests that these compounds should be considered in the development of new and more potent drugs for the treatment of leishmaniasis and Chagas' disease.
The activity of aminoglycoside antibiotics against Trypanosoma brucei.
Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S
1998-01-01
The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.
Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.
Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph
2008-10-01
Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.
Baureithel, K H; Büter, K B; Engesser, A; Burkard, W; Schaffner, W
1997-06-01
Flower extracts of Hypericum perforatum, Hypericum hirsutum, Hypericum patulum and Hypericum olympicum efficiently inhibited binding of [3H]flumazenil to rat brain benzodiazepine binding sites of the GABAA-receptor in vitro with IC50 values of 6.83, 6.97, 13.2 and 6.14 micrograms/ml, respectively. Single constituents of the extracts like hypericin, the flavones quercetin and luteolin, the glycosylated flavonoides rutin, hyperoside and quercitrin and the biflavone 13, II8-biapigenin did not inhibit binding up to concentrations of 1 microM. In contrast, amentoflavone revealed an IC50 = 14.9 +/- 1.9 nM on benzodiazepine binding in vitro. Comparative HPLC analyses of hypericin and amentoflavone in extracts of different Hypericum species revealed a possible correlation between the amentoflavone concentration and the inhibition of flumazenil binding. For hypericin no such correlation was observed. Our experimental data demonstrate that amentoflavone, in contrast to hypericin, presents a very active compound with regard to the inhibition of [3H]-flumazenil binding in vitro and thus might be involved in the antidepressant effects of Hypericum perforatum extracts.
Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang
2011-08-01
To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.
Comparative Study of Erythrina indica Lam. (Febaceae) Leaves Extracts for Antioxidant Activity
Sakat, SS; Juvekar, AR
2010-01-01
The present study was designed to investigate the antioxidant activity of aqueous and methanol extracts of Erythrina indica Lam leaves by in vitro methods viz. 1, 1-Diphenyl-2-Picrylhydrazyl, nitric oxide radical scavenging activity, and inhibition of lipid peroxidation by thiobarbituric acid reactive substances (TBARS) method on isolated rat liver tissues. Quantitative analysis of antioxidative components like total amount of phenolics, flavonoids, and flavonols were estimated using the spectrophotometric method. Linear regression analysis was used to calculate the IC50 value. Results showed that the aqueous and methanol extracts exhibited significant DPPH radicals scavenging activity with an IC50 value 342.59 ± 19.59, 283.24 ± 12.28 µg/mL respectively. Nitric oxide radicals were significantly scavenged by the aqueous and methanol extracts (IC50 = 250.12 ± 10.66; 328.29 ± 3.74 µg/mL). Lipid peroxidation induced by the Fe2+ was inhibited by the aqueous extract with low IC50 value (97.29 ± 2.05 µg/mL) as compared to methanol extract (IC50 = 283.74 ± 5.70 µg/mL). Both the extracts were exhibited similar quantities of total phenolics. Total flavonoids were found to be in higher quantities than total flavonols in aqueous extract as compared to methanol extract. From the results, it is concluded that the aqueous and methanol extracts of E. indica leaves possesses significant antioxidant activity that may be due to the presence of flavonoids and related polyphenolic compounds. PMID:21331194
Ganou, C A; Eleftheriou, P Th; Theodosis-Nobelos, P; Fesatidou, M; Geronikaki, A A; Lialiaris, T; Rekka, E A
2018-02-01
PTP1b is a protein tyrosine phosphatase involved in the inactivation of insulin receptor. Since inhibition of PTP1b may prolong the action of the receptor, PTP1b has become a drug target for the treatment of type II diabetes. In the present study, prediction of inhibition using docking analysis targeted specifically to the active or allosteric site was performed on 87 compounds structurally belonging to 10 different groups. Two groups, consisting of 15 thiomorpholine and 10 thiazolyl derivatives exhibiting the best prediction results, were selected for in vitro evaluation. All thiomorpholines showed inhibitory action (with IC 50 = 4-45 μΜ, Ki = 2-23 μM), while only three thiazolyl derivatives showed low inhibition (best IC 50 = 18 μΜ, Ki = 9 μΜ). However, free binding energy (E) was in accordance with the IC 50 values only for some compounds. Docking analysis targeted to the whole enzyme revealed that the compounds exhibiting IC 50 values higher than expected could bind to other peripheral sites with lower free energy, E o , than when bound to the active/allosteric site. A prediction factor, E- (Σ Eo × 0.16), which takes into account lower energy binding to peripheral sites, was proposed and was found to correlate well with the IC 50 values following an asymmetrical sigmoidal equation with r 2 = 0.9692.
Valdivieso, Elizabeth; Mejías, Fabiola; Torrealba, Carlos; Benaim, Gustavo; Kouznetsov, Vladimir V; Sojo, Felipe; Rojas-Ruiz, Fernando A; Arvelo, Francisco; Dagger, Francehuli
2018-07-01
The present study evaluates in vitro the effect of two synthetic compounds of the 7-chloro-4-aryloxyquinoline series, QI (C 17 H 12 ClNO 3 ) and QII (C 18 H 15 ClN 4 O 2 S), on Leishmania donovani parasites. The results obtained demonstrate that these compounds are able to inhibit the proliferation of L. donovani promastigotes in a dose-dependent way (QI IC 50 = 13.03 ± 3.4 and QII IC 50 = 7.90 ± 0.6 μM). Likewise, these compounds significantly reduced the percentage of macrophage infection by amastigotesand the number of amastigotes within macrophage phagolysosomes, the clinical relevant phase of these parasites. Compound QI showed an IC 50 value of 0.66 ± 0.2 μM, while for derivative QII, the corresponding IC 50 was 1.02 ± 0.17 μM. Interestingly, the amastigotes were more susceptible to the drug treatment when compared to promastigotes. Furthermore, no cytotoxic effect of these compounds was observed on the macrophage cell line at the concentrations tested. The combination of these compounds with miltefosine and amphotericin B on both parasite morphotypes was evaluated. The isobolograms showed a synergistic effect for both combinations; with a Fractional Inhibitory Concentration (FIC) Index lower than 1 for promastigotes and less than 0.3 for intracellular amastigotes. The effect of QI and QII on mitochondrial membrane potential was also studied. The combination of quinolone derivatives compounds with miltefosine and amphotericin B showed 5-8-fold stronger depolarization of membrane mitochondrial potential when compared to drugs alone. The present work validates the combination of drugs as an effective alternative to potentiate the action of anti-Leishmania agents and points to the quinoline compounds studied here as possible leishmanicidal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Castillo-Garit, Juan Alberto; del Toro-Cortés, Oremia; Vega, Maria C; Rolón, Miriam; Rojas de Arias, Antonieta; Casañola-Martin, Gerardo M; Escario, José A; Gómez-Barrio, Alicia; Marrero-Ponce, Yovani; Torrens, Francisco; Abad, Concepción
2015-01-01
Two-dimensional bond-based bilinear indices and linear discriminant analysis are used in this report to perform a quantitative structure-activity relationship study to identify new trypanosomicidal compounds. A data set of 440 organic chemicals, 143 with antitrypanosomal activity and 297 having other clinical uses, is used to develop the theoretical models. Two discriminant models, computed using bond-based bilinear indices, are developed and both show accuracies higher than 86% for training and test sets. The stochastic model correctly indentifies nine out of eleven compounds of a set of organic chemicals obtained from our synthetic collaborators. The in vitro antitrypanosomal activity of this set against epimastigote forms of Trypanosoma cruzi is assayed. Both models show a good agreement between theoretical predictions and experimental results. Three compounds showed IC50 values for epimastigote elimination (AE) lower than 50 μM, while for the benznidazole the IC50 = 54.7 μM which was used as reference compound. The value of IC50 for cytotoxicity of these compounds is at least 5 times greater than their value of IC50 for AE. Finally, we can say that, the present algorithm constitutes a step forward in the search for efficient ways of discovering new antitrypanosomal compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R
2016-08-01
Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phytochemical and cytotoxic studies on the roots of Euphorbia fischeriana.
Shi, Qun; Sun, Yi-Wei; Meng, Dali
2017-01-15
With the aim of supporting the folk applications of Euphorbia fischeriana, a phytochemical study was performed, which led to the discovery of 9 compounds, including three new ones (1-3) and six known ones (4-9). Their structures were determined by 1D, 2D NMR, and HRESIMS analysis. In the cytotoxic assays on Hep-3B cell line, 2 showed stronger inhibitory effects (IC 50 8.1μmol/L) than that of positive control, and 1, 8 and 9 also gave inhibitory effects in a certain degree with IC 50 values of 12.5, 12.0 and 18.7μmol/L, respectively. While on A549, the cytotoxic activities of 1 (IC 50 11.9μmol/L) and 8 (IC 50 9.4μmol/L) were superior to that of 5-Fu, and those of 4 and 9 were moderate with IC 50 values of 28.2 and 29.8μmol/L, respectively. In addition, both petroleum ether and dichloromethane extracts showed cytotoxic activities with different degree, while n-butanol extracts had no effect. The results clarified that the low-polarity fractions of E. fischeriana, including triterpenoids, abietane and tigliane-type diterpenoids might be the potential bioactive ingredients which will exert strong antitumor effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R
2017-06-01
Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.
Antiviral properties of prodelphinidin B-2 3'-O-gallate from green tea leaf.
Cheng, Hua-Yew; Lin, Chun-Ching; Lin, Ta-Chen
2002-07-01
Prodelphinidin B-2 3-O-gallate, a proanthocyanidin gallate isolated from green tea leaf, was investigated for its anti-herpes simplex virus type 2 properties in vitro. Prodelphinidin B-2 3'-O-gallate exhibited antiviral activity with IC50 of 5.0 +/-1.0 microM and 1.6 +/-0.3 pM for XTT and plaque reduction (PRA) assays, respectively. Cytotoxicity assay had shown that prodelphinidin B-2 3'-O-gallate possessed cytotoxic effect toward Vero cell at concentration higher than its IC50. The 50% cytotoxic concentration for cell growth (CC50) was 33.3 +/- 3.7 microM. Thus, the selectivity index (SI) (ratio of IC50 to CC50) for XTT assay and PRA was 6.7 and 20.8, respectively. Prodelphinidin B-2 3'-O-gallate significantly reduced viral infectivity at concentrations 10 microM or more. Result of time-of-addition studies suggested that prodelphinidin B-2 3'-O-gallate affected the late stage of HSV-2 infection. In addition, it was also shown to inhibit the virus from attaching and penetrating into the cell. Thus, prodelphinidin B-2 3'-O-gallate was concluded to possess antiviral activity with mechanism of inhibiting viral attachment and penetration, and disturbing the late stage of viral infection.
USDA-ARS?s Scientific Manuscript database
Four diterpenes with biological activity were isolated from Salvia deserta roots. Taxodione was considered leishmanicidal, with IC50 value of 0.46 µg/mL against Leishimania donovani and also exhibited antifungal and antimicrobial activities. Ferruginol displayed the greatest activity (24-h IC50 1.29...
Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay
2016-01-01
Aim: To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. Materials and Methods: The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. Results: We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. Conclusion: We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. SUMMARY In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), TFC: Total flavonoid content, TPC: Total phenolic content. PMID:27034603
Antiproliferative Activity of Xanthones Isolated from Artocarpus obtusus
Hashim, Najihah Mohd; Rahmani, Mawardi; Ee, Gwendoline Cheng Lian; Sukari, Mohd Aspollah; Yahayu, Maizatulakmal; Oktima, Winda; Ali, Abd Manaf; Go, Rusea
2012-01-01
An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC50 values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC50 values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC50 values of more than 30 μg/mL. PMID:21960741
In vitro metabolism of brucine by human liver microsomes and its interactions with CYP substrates.
Li, Xin; Wang, Kai; Wei, Wei; Liu, Yong-yu; Gong, Lu
2013-08-25
Brucine, one of the main active ingredients in semen Strychni, has been included in many oral prescriptions of traditional Chinese medicine. In this study, we investigated the in vitro metabolism of brucine by human liver microsomes (HLMs) and the metabolic interactions of brucine with the substrates of cytochrome P450 (CYP450). Brucine was incubated with HLMs or CYP3A4 and then analysed by Liquid chromatography/mass spectrometry. The Km and Vmax values for HLMs were 30.53±3.14μM and 0.08±0.0029nmol/mg protein/min, respectively, while the corresponding values for CYP3A4 were 20.12±3.05μM and 6.40±0.21nmol/nmol P450/min. CYP3A4 may be the major enzyme responsible for brucine metabolism in HLMs, other human isoforms of CYP showed minimal or no effect on brucine metabolism. The inhibitory action of brucine was observed in CYP3A4 for the 1'-hydroxylation of midazolam, with inhibitory concentration 50 (IC50) of 8.4-fold higher than specific inhibitors in HLMs. Furthermore, brucine significantly inhibited the CYP3A4-catalyzed midazolam 1'-hydroxylation (Ki=2.14μM) at a concentration lower than 10μM, but no obvious inhibitory effects were observed on other CYP substrates (IC50>50μM). These results suggest that brucine has the potential to interact with a wide range of xenobiotics and endogenous chemicals especially CYP3A4 substrates. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran
2014-04-01
Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Winder, Priscilla L; Baker, Heather L; Linley, Patricia; Guzmán, Esther A; Pomponi, Shirley A; Diaz, M Cristina; Reed, John K; Wright, Amy E
2011-11-15
Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinones A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC(50) values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC(50) values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC(50) value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone, and xestoquinone. Copyright © 2011 Elsevier Ltd. All rights reserved.
Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB.
Jiang, Wei; Huang, Ri-Zhen; Zhang, Jing; Guo, Tong; Zhang, Meng-Ting; Huang, Xiao-Chao; Zhang, Bin; Liao, Zhi-Xin; Sun, Jing; Wang, Heng-Shan
2018-05-08
A series of inhibitors of NF-κB based on ursolic acid (UA) derivatives containing long-chain diamine moieties were designed and synthesized as well as evaluated the antitumor effects. These compounds exhibited significant inhibitory activity to the NF-κB with IC 50 values at micromolar concentrations in A549 lung cancer cell line. Among them, compound 8c exerted potent activity against the test tumor cell lines including multidrug resistant human cancer lines, with the IC 50 values ranged from 5.22 to 8.95 μM. Moreover, compound 8c successfully suppressed the migration of A549 cells. Related mechanism study indicated compound 8c caused cell cycle arrest at G1 phase and triggered apoptosis in A549 cells through blockage of NF-κB signalling pathway. Molecular docking study revealed that key interactions between 8c and the active site of NF-κB in which the bulky and strongly electrophilic group of long-chain diamine moieties were important for improving activity. Copyright © 2018 Elsevier Inc. All rights reserved.
In vitro antiprotozoal activity of (S)-cis-Verbenol against Leishmania spp. and Trypanosoma cruzi.
Yaluff, Gloria; Vega, Celeste; Alvarenga, Nelson
2017-04-01
(S)-cis-Verbenol, a monoterpene frequently found as a component of essential oils, was assayed against Leishmania amazonensis, Leishmania infantum, Leishmania brasiliensis and against two strains of Trypanosoma cruzi. The cytotoxicity of the compound was also assayed against human fibroblast cells using a colorimetric method. Benznidazole was used as reference drug against T. cruzi and amphotericin B was used against Leishmania spp. The compound showed good activity against the trypanosomes, being more active against the CL Brenner strain, with an IC 50 value of 8.3μg/mL. Against Leishmania, the IC 50 values were between 2.1 and 3.8μg/mL. The compound showed no cytotoxicity against human fibroblasts at the concentrations assayed and was 100-500 times more toxic for the parasites than for the human cells, as indicated by the selectivity indexes. The results open interesting perspectives about the potential of (S)-cis-Verbenol and other individual components of essential oils for the treatment of these diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Kšonžeková, Petra; Mariychuk, Ruslan; Eliašová, Adriana; Mudroňová, Dagmar; Csank, Tomáš; Király, Ján; Marcinčáková, Dana; Pistl, Juraj; Tkáčiková, L'udmila
2016-03-15
Anthocyanins, compounds that represent the major group of flavonoids in berries, are one of the most powerful natural antioxidants. The aim of this study was to evaluate biological activities and comparison of anthocyanin-rich extracts prepared from chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), bilberry (Vaccinium myrtillus) and blueberry (V. corymbosum) on the porcine intestinal epithelial IPEC-1 cell line. The IC50 values calculated in the antioxidant cell-based dichlorofluorescein assay (DCF assay) were 1.129 mg L(-1) for chokeberry, 1.081 mg L(-1) for elderberry, 2.561 mg L(-1) for bilberry and 2.965 mg L(-1) for blueberry, respectively. We found a significant negative correlation (P < 0.001) between cyanidin glycosides content and IC50 values. Moreover, extracts rich in cyanidin glycosides stimulated proliferation of IPEC-1 cells and did not have cytotoxic effect on cells at an equivalent in vivo concentration. We found that the chokeberry and elderberry extracts rich in cyanidin glycosides possess better antioxidant and anticytotoxic activities in comparison to blueberry or bilberry extracts with complex anthocyanin profiles. © 2015 Society of Chemical Industry.
Jitviriyanon, Surapan; Phanthong, Phanida; Lomarat, Pattamapan; Bunyapraphatsara, Nuntavan; Porntrakulpipat, Sarthorn; Paraksa, Nuanchan
2016-09-15
This study was designed to evaluate the in vitro anticoccidial properties against Eimeria tenella of different essential oils and their major active components. Efficacy of ten essential oils from different Thai indigenous plants were preliminarily screened and only those with potential were further tested for effective concentrations and identifying their active compounds. Oocysticidal property was evaluated in term of sporulation inhibition of oocysts and the percentage of unsporulated, sporulated and degenerated oocysts, after treatment with 125μg/ml of the selected essential oil, the sample was enumerated by haemocytometer, while coccidiocidal activity was assessed by the inhibition of sporozoite invasion in MDBK cell lines. Results showed that only Boesenbergia pandurata and Ocimum basilicum essential oils had strong sporulation inhibition activity by providing a higher ratio of degenerated oocysts and their IC 50 were 0.134 and 0.101mg/ml, respectively. GC-MS analysis of B. pandurata essential oil found trans-b-ocimene, camphor, 1,8-cineole, geraniol, camphene, methyl cinnamate, l-limonene and linalool as the major components, while methyl chavicol, α-bergamotene, 1,8-cineole and trans-β-ocimene were the main compounds of O. basilicum essential oil. Methyl cinnamate and camphor were the active components of B. pandurata oil, whereas methyl chavicol was the active component of O. basilicum oil by exhibiting the oocysticidal effect against E. tenella with IC 50 values of 0.008, 0.023 and 0.054mg/ml, respectively. Furthermore, B. pandurata and O. basilicum oils also showed a strong cytotoxic property against coccidia with more than 70% inhibition of sporozoite invasion in MDBK cell lines, and their IC 50 were 0.004 and 0.004mg/ml, respectively. Methyl cinnamate as well as camphor from B. pandurata and methyl chavicol from O. basilicum were also effective with IC 50 values of 0.029, 0.023, and 0.022mg/ml, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R
2014-09-01
Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and competitively with respect to CDNB. While red pomegranate extracts inhibited rRaGST activity competitively with respect to GSH, uncompetitive inhibition was observed with respect to CDNB. Copyright © 2014 Elsevier GmbH. All rights reserved.
Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S
2009-01-01
Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.
Arsenosugars are commonly associated with seaweed products which have total arsenic concentrations that can exceed 50 ppm on a dry weight basis. Arsenosugars are also present in other seafood products but the associated concentrations are usually considerably lower. The analyti...
Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung
2014-10-01
In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia
2016-11-01
Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.
San Martín, B; Muñoz, R; Cornejo, J; Martínez, M A; Araya-Jordán, C; Maddaleno, A; Anadón, A
2016-08-01
Ribavirin is an antiviral used in human medicine, but it has not been authorized for use in veterinary medicine although it is effective against infectious salmon anemia (ISA) virus, between others. In this study, we present a pharmacokinetic profile of ribavirin in Atlantic salmon (Salmo salar), efficacy prediction indexes, and the measure of its withdrawal time. To determine the pharmacokinetic profile, fishes were orally administered with a single ribavirin dose of 1.6 mg/kg bw, and then, plasma concentrations were measured at different times. From the time-vs.-concentration curve, Cmax = 413.57 ng/mL, Tmax = 6.96 h, AUC = 21394.01 μg·h/mL, t1/2 = 81.61 h, and K10 = 0.0421/h were obtained. Ribavirin reached adequate concentrations during the pharmacokinetic study, with prediction indexes of Cmax /IC50 = 20.7, AUC/IC50 = 1069.7, and T>IC50 = 71 h, where IC is the inhibitory concentration 50%. For ribavirin depletion study, fishes were orally administered with a dairy dose of 1.6 mg/kg bw during 10 days. Concentrations were measured on edible tissue on different days post-treatment. A linear regression of the time vs. concentration was conducted, obtaining a withdrawal time of 1966 °C days. Results obtained reveal that the dose of 1.6 mg/kg bw orally administered is effective for ISA virus, originating a reasonable withdrawal period within the productive schedules of Atlantic salmon. © 2016 John Wiley & Sons Ltd.
Deethae, A; Peerapornpisal, Y; Pekkoh, J; Sangthong, P; Tragoolpua, Y
2018-06-01
To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC 50 ) of 4363·30 μg ml -1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC 50 ) and selective index (SI) values of 164·20 and 2·17 μg ml -1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC 50 and SI values of 75·03 and 3·34 μg ml -1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection. © 2018 The Society for Applied Microbiology.
Boonyaketgoson, Sirada; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak; Trisuwan, Kongkiat
2018-01-01
Four new naphthoquinones (1-4), named rhinacanthins S (1), T (2), U (3) and V (4), together with 13 known naphthoquinones were isolated from the leaf extract of Rhinacanthus nasutus. The structures of isolated compounds were elucidated by spectroscopic methods, especially 1D and 2D NMR spectroscopy and mass spectrometry. Rhinacanthin S (1) exhibited acetylcholinesterase inhibition activity with a % inhibition value of 48.04±3.25. The known rhinacanthin A (5) showed cytotoxicity against a MCF-7 cell line with an IC 50 value of 8.79μM, while rhinacanthin N (15) was active against the NCI-H187 cell line with an IC 50 =2.24μM and Vero cells (IC 50 =3.00μM). Copyright © 2017 Elsevier B.V. All rights reserved.
Dhakad, Raghvendra Singh; Tekade, Rakesh Kumar; Jain, Narendra Kumar
2013-08-01
The objective of this investigation was aimed to explore the cancer targeting potential of folate conjugated dendrimer (polypropylene imine, PPI) under strategic influence of folate receptor up-regulators (all trans Retinoic acid, ATRA and Dexamethasone, DEXA). The folate conjugated dendrimer nanoconjugate (FPPI) was synthesized and characterized by FTIR, and (1)H-NMR spectroscopy. The cell line studies investigations were performed on MCF-7 cells. ATRA and DEXA caused 2.17 and 1.65 folds selective up-regulation of folate receptor respectively, when compared with untreated control, after 48 h of pretreatment. ATRA caused 50.47±2.11% more up regulation of folate receptor, than DEXA treated cell. Both up regulators showed a lag phase of 12 h in up-regulating the folate receptors. After 48 h, the IC50 values of naked docetaxel (DTX) and DTX loaded dendrimer (PPI-DTX) were found to be 678.93±11.99 nM and 663.51±15.23 nM, respectively, while DTX loaded folate-anchored dendrimer (FPPI-DTX) showed a selectively lowered IC50 value of 468.56±20.86 nM. FPPI-DTX further showed a significant reduction in IC50 value in ATRA and DEXA pretreated cells, wherein IC50 values of 184.21 nM and 290.40±14.05 nM, respectively were observed. The study also concludes ATRA to be a superior receptor up-regulator as well as promoter of folate based targeting compared to DEXA.
Shamsi, Tooba Naz; Parveen, Romana; Afreen, Sumbul; Azam, Mudasser; Sen, Priyankar; Sharma, Yamini; Haque, Qazi Mohd Rizwanul; Fatma, Tasneem; Manzoor, Nikhat; Fatima, Sadaf
2018-01-18
Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostic and pharmacological studies. This study aimed to investigate antioxidant, anti-inflammatory, and antimicrobial activities of trypsin inhibitors (TIs) from two plant sources (Cajanus cajan and Phaseolus limensis). TI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. TI from Phaseolus limensis (lima bean trypsin inhibitor; LBTI) was procured from Sigma-Aldrich, St. Louis, Missouri, United States. The antioxidant activity was analyzed by ferric ion reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory property of TIs was determined by inhibition of albumin denaturation assay. Ascorbic acid and aspirin were used as standards for antioxidant and anti-inflammatory assays, respectively. These TIs were tested against various bacterial and fungal strains. The TIs showed DPPH radical-scavenging activity in a concentration-dependent manner with IC 50 values comparable to ascorbic acid. The FRAP values were also observed comparable to ascorbic acid and followed the trend of dose-dependent manner. The half maximal inhibitory concentration (IC 50 ) values of CCTI and LBTI in anti-inflammatory test showed that LBTI is more potent than CCTI. The TIs showed potent antibacterial activity, but apparently no action against fungi. This study has reported the biological properties of CCTI and LBTI for the first time. The results show that TIs possess the ability to inhibit diseases caused by oxidative stress, inflammation, and bacterial infestation.
Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser
2012-01-01
Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOH–H2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 ± 4.09 μg/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665
Sukumaran, Nimisha Pulikkal; Yadav, R Hiranmai
2016-01-01
D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds.
Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai
2016-01-01
Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds. PMID:27621524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkes, J.M.; Kajimura, M.; Scott, D.R.
Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of themore » H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.« less
Liang, Jidong; Olivares, Christopher; Field, Jim A; Sierra-Alvarez, Reyes
2013-11-15
2,4-Dinitroanisole (DNAN) is an insensitive munitions compound considered to replace conventional explosives such as 2,4,6-trinitrotoluene (TNT). DNAN undergoes facile microbial reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN). This study investigated the inhibitory effect of DNAN, MENA, and DAAN toward various microbial targets in anaerobic (acetoclastic methanogens) and aerobic (heterotrophs and nitrifiers) sludge, and the bioluminescent bacterium, Aliivibrio fischeri, used in the Microtox assay. Aerobic heterotrophic and nitrifying batch experiments with DAAN could not be performed because the compound underwent extensive autooxidation in these assays. DNAN severely inhibited methanogens, nitrifying bacteria, and A. fischeri (50% inhibitory concentrations (IC50) ranging 41-57μM), but was notably less inhibitory to aerobic heterotrophs (IC50>390 μM). Reduction of DNAN to MENA and DAAN lead to a marked decrease in methanogenic inhibition (i.e., DNAN>MENA≈DAAN). Reduction of all nitro groups in DNAN also resulted in partial detoxification in assays with A. fischeri. In contrast, reduction of a single nitro group did not alter the inhibitory impact of DNAN toward A. fischeri and nitrifying bacteria given the similar IC50 values determined for MENA and DNAN in these assays. These results indicate that reductive biotransformation could reduce the inhibitory potential of DNAN. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis.
Paulino, Niraldo; Teixeira, Cristiane; Martins, Regiane; Scremin, Amarilis; Dirsch, Verena M; Vollmar, Angelika M; Abreu, Sheila R; de Castro, Solange L; Marcucci, Maria Cristina
2006-08-01
Phamacological activities of a standard ethanol extract G1 from Brazilian green propolis, typified as BRP1, was evaluated in mouse models of pain and inflammation. Intraperitoneal injection ( I. P.) of G1 inhibited acetic acid-induced abdominal constrictions with an ID (50) = 0.75 +/- 0.05 mg/kg, and in the formalin test the ID (50) values were 0.85 +/- 0.07 mg/kg and 13.88 +/- 1.12 mg/kg, respectively, for the neurogenic and inflammatory phases. The extract was ineffective when assessed in the hot-plate assay. In serotonin-induced paw edema, G1 led to a maximal inhibition (MI) of 51.6 % after 120 min when administered I. P. and of 36 % after 15 min by the oral route ( O. R.). When the inflammatory agent was complete Freund's adjuvant, inhibition of paw edema was also observed after administration of the extract by both routes. In the capsaicin-induced ear edema the ID (50) values were 1.09 +/- 0.08 mg/kg ( I. P.) and 10.00 +/- 0.90 mg/kg ( O. R.). In the acute carrageenan-induced inflammatory reaction induced by carrageenan, G1 reduced the number of neutrophils in the peritoneal cavity with IC (50) values of 0.72 +/- 0.08 mg/kg and 4.17 +/- 0.50 mg/kg, by I. P. or O. R. administration, with a preferential migration of polymorphonuclear neutrophils. IN VITRO, G1 decreased nitric oxide production in LPS-stimulated RAW 264.7 cells (IC (50) = 41.60 microg/mL), and also the luciferase activity in TNF-alpha-stimulated HEK 293 cells transfected with NF-kappaB-luciferase reporter gene driven by the nuclear factor kappaB (NF-kappaB) (IC (50) = 200 microg/mL). This extract, which at low concentrations induces anti-inflammatory and analgesic effects in mouse models, presents a high content of flavonoids, known to inhibit inducible NOS (iNOS) activity. These data taken together led us to reinforce the hypothesis in the literature that the anti-inflammatory effect of propolis may be a due to inhibition of iNOS gene expression, through interference with NF-kappaB sites in the iNOS promoter.
Antimicrobial and antiprotozoal activities of secondary metabolites from the fungus Eurotium repens
Gao, Jiangtao; Radwan, Mohamed M.; León, Francisco; Wang, Xiaoning; Jacob, Melissa R.; Tekwani, Babu L.; Khan, Shabana I.; Lupien, Shari; Hill, Robert A.; Dugan, Frank M.; Cutler, Horace G.
2011-01-01
In this study, we examined in vitro antibacterial, antifungal, antimalarial, and antileishmanial activities of secondary metabolites (1–8) isolated from the fungus Eurotium repens. All compounds showed mild to moderate antibacterial or antifungal or both activities except 7. The activity of compound 6 was the best of the group tested. The in vitro antimalarial evaluation of these compounds revealed that compounds 1–3, 5, and 6 showed antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 1.1–3.0 μg/ml without showing any cytotoxicity to the mammalian cells. Compound 5 displayed the highest antimalarial activity. Antileishmanial activity against Leishmania donovani promastigotes was observed for compounds 1–6 with IC50 values ranging from 6.2 to 23 μg/ml. Antileishmanial activity of compounds 5 and 6 (IC50 values of 7.5 and 6.2 μg/ml, respectively) was more potent than 1–4 (IC50 values ranging from 19–23 μg/ml). Compounds 7 and 8 did not show any antiprotozoal effect. Preliminary structure and activity relationship studies indicated that antibacterial, antifungal, antimalarial, and antileishmanial activities associated with phenol derivates (1–6) seem to be dependent on the number of double bonds in the side chain, which would be important for lead optimization in the future. PMID:23024574
Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship.
Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi
2009-12-01
Thirteen cycloartane-type tritepenes (1-13) and four prenylated flavanones (14-17) isolated from propolis collected in Myanmar, were evaluated for their cytotoxic activity against a panel of six different cancer cell lines; three murine cancer cell lines (colon 26-L5 carcinoma, B16-BL6 melanoma, and Lewis lung carcinoma) and three human cancer cell lines (lung A549 adenocarcinoma, cervix HeLa adenocarcinoma and HT-1080 fibrosarcoma). Among them, a cycloartane-type triterpene, 3alpha,27-dihydroxycycloart-24E-en-26-oic acid (3), showed the most potent cytotoxicity against B16-BL6 cells with an IC(50) value of 5.91 microM, comparable to those of positive controls, doxorubicin (IC(50), 5.66 microM) and 5-fluorouracil (IC(50), 4.88 microM). In addition, (2S)-5,7-dihydroxy-4'-methoxy-8,3'-diprenylflavanone (14) exhibited strong cytotoxicity against all the tested cancer cell lines with the IC(50) values ranging from 14.0 to 26.4 microM. Based on the observed results, the structure-activity relationships are discussed.
Anti-Inflammatory Components of the Starfish Astropecten polyacanthus
Thao, Nguyen Phuong; Cuong, Nguyen Xuan; Luyen, Bui Thi Thuy; Quang, Tran Hong; Hanh, Tran Thi Hong; Kim, Sohyun; Koh, Young-Sang; Nam, Nguyen Hoai; Kiem, Phan Van; Minh, Chau Van; Kim, Young Ho
2013-01-01
Inflammation is important in biomedical research, because it plays a key role in inflammatory diseases including rheumatoid arthritis and other forms of arthritis, diabetes, heart disease, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, and even cancer. In the present study, we describe the inhibitory effect of crude extracts and steroids isolated from the starfish Astropecten polyacanthus on pro-inflammatory cytokine (Interleukin-12 (IL-12) p40, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α)) production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs). Among those tested, compounds 5 and 7 showed potent inhibitory effects on the production of all three pro-inflammatory cytokines with IC50 values ranging from 1.82 ± 0.11 to 7.00 ± 0.16 μM. Potent inhibitory activities were also observed for compound 1 on the production of IL-12 p40 and IL-6 with values of 3.96 ± 0.12 and 4.07 ± 0.13 μM, respectively, and for compounds 3 and 4 on the production of IL-12 p40 with values of 6.55 ± 0.18 and 5.06 ± 0.16 μM, respectively. Moreover, compounds 2 (IC50 = 34.86 ± 0.31 μM) and 6 (IC50 = 79.05 ± 2.05 μM) exhibited moderate inhibitory effects on the production of IL-12 p40, whereas compounds 3 (IC50 = 22.80 ± 0.21 μM) and 4 (IC50 = 16.73 ± 0.25 μM) moderately inhibited the production of TNF-α and IL-6, respectively. PMID:23945602
Wacker, Soren; Noskov, Sergei Yu
2018-05-01
Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance with a coefficient of determination of up to R 2 ~0.8 for pIC 50 values in evaluation datasets, surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform developed in our work is a scalable framework with automation potential to interact with other developing technologies in cardiotoxicity field, including high-throughput electrophysiology measurements delivering large datasets of profiled drugs, rapid synthesis and drug development via progress in synthetic biology.
Cao, Lei; Kwara, Awewura; Greenblatt, David J
2017-12-01
Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC 50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. Inhibition of human CYP activity by luteolin and quercetin occurred with IC 50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity. © 2017 Royal Pharmaceutical Society.
Parise-Filho, Roberto; Pasqualoto, Kerly Fernanda Mesquita; Magri, Fátima Maria Motter; Ferreira, Adilson Kleber; da Silva, Bárbara Athayde Vaz Galvão; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Azevedo, Ricardo Alexandre; Auada, Aline Vivian Vatti; Polli, Michelle Carneiro; Brandt, Carlos Alberto
2012-12-01
In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50) = 69.3 µM) and Leishmania brasiliensis (IC(50) = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50) = 99.9 µM for L. amazonensis and IC(50) = 90.5 µM for L. braziliensis) and 3 (IC(50) = 122.9 µM for L. amazonensis and IC(50) = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang
2018-03-28
ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Ishida, Kelly; Visbal, Gonzalo; Rodrigues, Juliany Cola Fernandes; Urbina, Julio A; de Souza, Wanderley; Rozental, Sonia
2011-08-01
Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 μg/ml, E5700 and ER-119884 showed antifungal activity against C. tropicalis ATCC 28707, a strain resistant to FLC, ITC, and AMB, with IC(50) and IC(90) values (i.e., the minimum inhibitory concentrations of the drugs determined as the lowest drug concentrations leading to a 50 and 90% of reduction in turbidity at 492 nm, respectively, after 48 h of incubation) of 1 and 4 μg/ml, respectively. Analysis of free sterols showed that non-treated C. tropicalis ATCC 28707 cells contained only 14-methylated sterols and that treatment with E5700 or ER-119884 led to a marked reduction of squalene content and the complete disappearance of the endogenous sterols. The fatty acid and phospholipid profiles in C. tropicalis ATCC 28707 cells grown in the presence of E5700 and ER-119884 were also markedly altered, with a large increase in the content of linolenic acid (C18:3), associated with a reduction in the content of linoleic (C18:2) and oleic (C18:1) acids. Treatment of C. tropicalis ATCC 28707 with E5700 or ER-119884 IC(50) values induced several ultrastructural alterations, including a marked increase in the thickness of the cell wall and the appearance of a large number of electron-dense vacuoles. In conclusion, our results indicated that E5700 and ER-119884 inhibited the growth and altered the lipid prolife and the ultrastructure of a multiple drug-resistant C. tropicalis strain. Therefore, such compounds could act as leads for the development of new treatment options against multidrug resistant Candida species.
Frank, Fernanda M.; Laurella, Laura C.; Muschietti, Liliana V.; Catalán, Cesar A.; Martino, Virginia S.; Malchiodi, Emilio L.
2013-01-01
Among the natural compounds, terpenoids play an important role in the drug discovery process for tropical diseases. The aim of the present work was to isolate antiprotozoal compounds from Ambrosia elatior and A. scabra. The sesquiterpene lactone (STL) cumanin was isolated from A. elatior whereas two other STLs, psilostachyin and cordilin, and one sterol glycoside, daucosterol, were isolated from A. scabra. Cumanin and cordilin were active against Trypanosoma cruzi epimastigotes showing 50% inhibition concentrations (IC50) values of 12 µM and 26 µM, respectively. Moreover, these compounds are active against bloodstrean trypomastigotes, regardless of the T. cruzi strain tested. Psilostachyin and cumanin were also active against amastigote forms with IC50 values of 21 µM and 8 µM, respectively. By contrast, daucosterol showed moderate activity on epimastigotes and trypomastigotes and was inactive against amastigote forms. We also found that cumanin and psilostachyin exhibited an additive effect in their trypanocidal activity when these two drugs were tested together. Cumanin has leishmanicidal activity with growth inhibition values greater than 80% at a concentration of 5 µg/ml (19 µM), against both L. braziliensis and L. amazonensis promastigotes. In an in vivo model of T. cruzi infection, cumanin was more active than benznidazole, producing an 8-fold reduction in parasitemia levels during the acute phase of the infection compared with the control group, and more importantly, a reduction in mortality with 66% of the animals surviving, in comparison with 100% mortality in the control group. Cumanin also showed nontoxic effects at the doses assayed in vivo, as determined using markers of hepatic damage. PMID:24130916
Kondo, Mika; Yamashita, Hiroshi; Uchigashima, Mikiko; Kono, Takeshi; Takemoto, Toshihide; Fujita, Masahiro; Saka, Machiko; Iwasa, Seiji; Ito, Shigekazu; Miyake, Shiro
2009-01-28
A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for the analysis of emamectin residues in agricultural products was developed using a prepared mouse monoclonal antibody. The working range was 0.3-3.0 ng/mL, and the 50% inhibition concentration (IC(50)) was 1.0 ng/mL. The assay was sufficiently sensitive for analysis of the maximum residue limits in agricultural products in Japan (>0.1 microg/g). Emamectin residues contain the following metabolites: the 4''-epi-amino analogue, the 4''-epi-(N-formyl)amino analogue, the 4''-epi-(N-formyl-N-methyl)amino analogue, and the 8,9-Z isomer. The dc-ELISA reacted with these compounds at ratios of 113, 55, 38, and 9.1% of the IC(50) value of emamectin benzoate. Seven kinds of vegetables were spiked with emamectin benzoate at concentrations of 15-300 ng/g, and the recoveries were 91-117% in the dc-ELISA. The dc-ELISA results agreed reasonably well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using spiked samples and actual (incurred) samples. The results indicate that the dc-ELISA was useful for the analysis of emamectin benzoate residues in agricultural products.
Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.
Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena
2010-05-01
The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.
Ikematsu, Hideyuki; Kawai, Naoki; Iwaki, Norio; Kashiwagi, Seizaburo
2017-09-01
To assess the extent of susceptibility to the four most commonly used neuraminidase inhibitors (NAIs) in the viruses epidemic in the 2015-2016 influenza season in Japan, we measured the 50% inhibitory concentration (IC 50 ) of NAIs for influenza virus isolates and compared them with the results from the 2010-11 to 2014-15 influenza seasons. Viral isolation was done with specimens obtained prior to treatment, and the type and subtype of influenza was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. Influenza viruses were isolated: 210 influenza A(H1N1)pdm09 (67.3%), 20 A(H3N2) (6.4%), and 82 B (26.3%), and for the Victoria and Yamagata lineages the numbers were 53 (64.6%) and 28 (34.1%), respectively, with one unknown. Two A(H1N1)pdm09 isolates showed a high IC50 for oseltamivir (130 and 150 nM). No isolate showed a very high IC50 for A(H3N2) or B. The ratios of geometric mean IC50 of the 2015-2016 influenza season to those of the 2010-2011 to 2014-2015 influenza seasons ranged from 0.62 to 1.78 for A(H1N1) pdm09. The range was 0.73-1.35 for A(H3N2) and 0.48-1.12 for B. No significant trend of increase or decrease in IC50 was found for any of the four NAIs. Although some isolates showed highly reduced sensitivity to oseltamivir among the A(H1N1)pdm09 isolates, the currently epidemic influenza A(H1N1)pdm09, A(H3N2), and B viruses are susceptible to all four NAIs, with no trend toward decreased sensitivity. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.
Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J
2018-08-01
1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.
Živković, Marijana B; Matić, Ivana Z; Rodić, Marko V; Novaković, Irena T; Krivokuća, Ana M; Sladić, Dušan M; Krstić, Natalija M
2017-11-01
The synthesis and cytotoxic activities determination of new steroidal mono- and bis(thiazolidin-4-ones) 4a-f and 5a-f have been performed. Their anticancer action was also evaluated in comparison to previously synthesized and reported corresponding steroidal thiosemicarbazones. All compounds were obtained as stereoisomeric mixtures with different configuration (E or Z) in the hydrazone moiety at the C-3 position. After several consecutive crystallizations diastereomerically pure major (E)-isomers of mono-thiazolidin-4-ones were isolated. The structure and stereochemistry of 2,4-thiazolidinedione,2-[(17-oxoandrost-4-en-3-ylidene)hydrazone] were confirmed by X-ray analysis. A pathway for the formation of thiazolidin-4-one ring was proposed. The steroid thiazolidinone derivatives examined in this study exerted selective concentration-dependent cytotoxic activities on six tested malignant cell lines. Ten out of twelve examined compounds exhibited strong cytotoxic effects on K562 cells (IC 50 values from 8.5μM to 14.9μM), eight on HeLa cells (IC 50 values ranging from 8.9μM to 15.1μM) while against MDA-MB-361 cells six compouds exerted similar or even higher cytotoxic action (IC 50 values from 12.7μM to 25.6μM) than cisplatin (21.5μM) which served as a positive control. Eight of these ten compounds showed high selectivity in the cytotoxic action against HeLa and K562 cancer cell lines when compared with normal human fibroblasts MRC-5 and normal human PBMC. The study of mechanisms of the anticancer activity of the two selected compounds, mono- and bis(thiazolidin-4-one) derivatives of 19-norandrost-4-ene-3,17-dione 4a and 5a, revealed that both of these compounds induced apoptosis in HeLa cells through extrinsic and intrinsic signalling pathways. Treatment of EA.hy926 cells with sub-toxic concentrations of these compounds led to the inhibition of cell connecting and sprouting, and tube formation. The synthesized compounds exhibited poor antioxidant activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johari, Seyed Ali; Sarkheil, Mehrdad; Behzadi Tayemeh, Mohammad; Veisi, Shakila
2018-06-13
This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO 3 ) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO 3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC 50 ) of AgNPs and AgNO 3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO 3 based on IC 50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO 3 inhibited the growth of D. salina at different saltwater medium. Copyright © 2018 Elsevier Ltd. All rights reserved.
EI-2128-1, a novel interleukin-1beta converting enzyme inhibitor produced by Penicillium sp. E-2128.
Koizumi, Fumito; Agatsuma, Tsutomu; Ando, Katsuhiko; Kondo, Hidemasa; Saitoh, Yutaka; Matsuda, Yuzuru; Nakanishi, Satoshi
2003-11-01
EI-2128-1, a novel interleukin-1beta converting enzyme (ICE) inhibitor, was isolated from the culture broths of Penicillium sp. E-2128. EI-2128-1 selectively inhibited human recombinant ICE activity with IC50 value of 0.59 microM, without inhibiting elastase and cathepsin B. EI-2128-1 also inhibited mature interleukin-1beta secretion from THP-1 cells induced by LPS with IC50 value of 0.28 microM.
NASA Astrophysics Data System (ADS)
Kortagere, Sandhya; Mui, Ernest; McLeod, Rima; Welsh, William J.
2011-05-01
Toxoplasma (T.) gondii, the causative agent of toxoplasmosis, is a ubiquitous opportunistic pathogen that infects individuals worldwide, and is a leading cause of severe congenital neurologic and ocular disease in humans. No vaccine to protect humans is available, and hypersensitivity and toxicity limit the use of the few available medicines. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. Using the Hybrid Structure Based (HSB) method, we have previously identified small molecule inhibitors of P. falciparum that seem to target a novel protein-protein interaction between the Myosin tail interacting protein and myosin light chain. This pathway has been hypothesized to be involved in invasion of host erythrocytes by the parasite and is broadly conserved among the apicomplexans. Guided by similar computational drug design approaches, we investigated this series of small molecules as potential inhibitors of T. gondii. Compound C3-21, identified as the most active inhibitor in this series, exhibited an IC50 value 500 nM against T. gondii. Among the 16 structural analogs of C3-21 tested thus far, nine additional compounds were identified with IC50 values <10.0 μM. In vitro assays have revealed that C3-21 markedly limits intracellular growth of T. gondii tachyzoites, but has no effect on host cell human foreskin fibroblasts (HFF) at concentrations more than a log greater than the concentration that inhibits the parasites.
Pinto, Erika Gracielle; Pimenta, Daniel C; Antoniazzi, Marta Maria; Jared, Carlos; Tempone, Andre Gustavo
2013-12-01
Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25-0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50=34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX(®) Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Law, Simon; Panwar, Preety; Li, Jody; Aguda, Adeleke H; Jamroz, Andrew; Guido, Rafael V C; Brömme, Dieter
2017-01-01
Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 μM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 μM. Two compounds exhibited IC50 values below 5 μM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects.
Law, Simon; Panwar, Preety; Li, Jody; Aguda, Adeleke H.; Jamroz, Andrew; Guido, Rafael V. C.
2017-01-01
Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 μM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 μM. Two compounds exhibited IC50 values below 5 μM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects. PMID:29088253
Yang, Dan-Dan; Chen, Ya-Nan; Wu, Yu-Shan; Wang, Rui; Chen, Zhi-Jian; Qin, Jie; Qian, Shao-Song; Zhu, Hai-Liang
2016-07-15
Four novel mononuclear complexes, [Cd(L)2·2H2O] (1), [Ni(L)2·2H2O] (2) [Cu(L)2·H2O] (3), and [Zn(L)2·2H2O] (4) (CCDC numbers: 1444630-1444633 for complexes 1-4) (HL=4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid) were synthesized, and have been characterized by IR spectroscopy, elemental analysis, and X-ray crystallography. Molecular docking study preliminarily revealed that complex 1 had potential telomerase inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complex 1 against telomerase showed complex 1 (IC50=8.17±0.91μM) had better inhibitory activities, while complexes 2, 3 and 4 showed no inhibitory activities. Antiproliferative activity in human cancer cell line HepG2 was further determined by MTT assays. The IC50 value (6.5±0.2μM) for the complex 1 having good inhibitory activity against HepG2 was at the same micromolar concentrations with cis-platinum (2.2±1.2μM). While the IC50 value for the metal-free ligand, complex 2, 3 and 4 was more than 100μM. These results indicated that telomerase was potentially an anticancer drug target and showed that complex 1 was a potent inhibitor of human telomerase as well as an antiproliferative compound. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iranawati, F.; Muhammad, F.; Fajri, H.; Kasitowati, R. D.; Arifin, S.
2018-04-01
Free radicals are highly reactive molecules due to unpaired electron in their outer orbital. Excess of free radicals inside human body as consequences of environmental exposure such cigarette smoke may lead to degenerative diseases such as diabetic, cancer etc. This negative effect can be limited by the utilization of natural antioxidant substances, especially produced from plant. Avicennia alba dan A. marina are mangrove species that widely distributed in Indonesia and are expected potential as antioxidant. The objective of this study is to evaluated Avicennia alba dan A. marina potency as antioxidant performed with DPPD (1,1-diphenyl-β-picryl hydrazyl) method. Leaf and bark of Avicennia alba dan A. marina were collected from Nguling District, Pasuruan, East Java. Results shows that based on 50% inhibition Concentration (IC50), Avicennia alba leaf were categorized had a very high antioxidant potential (IC50 14,85 ppm) whereas the bark were categorized had a weak antioxidant potential IC50 167,17 ppm). For A. marina, the leaf were categorized had a moderate antioxidant (IC50 123,23 ppm) whereas the bark were categorized had a weak antioxidant potential (IC50 198,15 ppm).
2014-01-01
Background We investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders. Methods Plant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight). Results Among different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50 < 0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions. Conclusions In this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders. PMID:24884823
Ayaz, Muhammad; Junaid, Muhammad; Ahmed, Jawad; Ullah, Farhat; Sadiq, Abdul; Ahmad, Sajjad; Imran, Muhammad
2014-05-03
We investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders. Plant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight). Among different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50<0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions. In this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders.
Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh
2014-01-01
In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μg/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μg/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects. PMID:24977052
Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh
2014-01-01
In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μ g/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μ g/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects.
Comparative rice seed toxicity tests using filter paper, growth pouch-tm, and seed tray methods
Wang, W.
1993-01-01
Paper substrate, especially circular filter paper placed inside a Petri dish, has long been used for the plant seed toxicity test (PSTT). Although this method is simple and inexpensive, recent evidence indicates that it gives results that are significantly different from those obtained using a method that does not involve paper, especially when testing metal cations. The study compared PSTT using three methods: filter paper, Growth Pouch-TM, and seed tray. The Growth Pouch-TM is a commercially available device. The seed tray is a newly designed plastic receptacle placed inside a Petri dish. The results of the Growth Pouch-TM method showed no toxic effects on rice for Ag up to 40 mg L-1 and Cd up to 20 mg L-1. Using the seed tray method, IC50 (50% inhibitory effect concentration) values were 0.55 and 1.4 mg L-1 for Ag and Cd, respectively. Although results of filter paper and seed tray methods were nearly identical for NaF, Cr(VI), and phenol, the toxicities of cations Ag and Cd were reduced by using the filter paper method; IC50 values were 22 and 18 mg L-1, respectively. The results clearly indicate that paper substrate is not advisable for PSTT.
Wang, Wei; Zu, Yuangang; Fu, Yujie; Efferth, Thomas
2012-01-01
In this study, the aqueous and ethanolic extracts (leaves, stems and fruits) from Morus alba L., a traditional Chinese medicine, were evaluated for their antioxidant and antimicrobial properties. Ethanolic extracts showed higher contents of both total phenolics and flavonoids than aqueous extracts. The total phenolic content was in the order of: leaf extracts > fruit extracts > stem extracts, whereas the total flavonoids was: leaf extracts > stem extracts > fruit extracts. Using DPPH assays, the concentrations providing 50% inhibition (IC(50)) values of aqueous extracts from leaves, stems and fruits were 7.11 ± 1.45 mg/ml, 86.78 ± 3.21 mg/ml and 14.38 ± 2.83 mg/ml, respectively, whereas the IC(50) values of ethanolic extracts were 3.11 ± 0.86 mg/ml, 14.62 ± 2.45 mg/ml and 12.42 ± 2.76 mg/ml, respectively. In sum, the antioxidant activities of ethanolic extracts from M. alba L. were stronger than the aqueous extracts, and in the order of: leaf extracts > fruit extracts > stem extracts. The ethanolic extracts exhibited moderate antimicrobial activities, whereas the aqueous extracts showed poor antimicrobial properties in our test system. This study validated the medicinal potential of M. alba L.
Garg, Munish; Lata, Kusum; Satija, Saurabh
2016-01-01
To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids.
Nile, Shivraj Hariram; Keum, Young Soo; Nile, Arti Shivraj; Jalde, Shivkumar S; Patel, Rahul V
2018-01-01
The synthesized flavonoid derivatives were examined for their antioxidant, anti-inflammatory, xanthine oxidase (XO), urease inhibitory activity, and cytotoxicity. Except few, all the flavonoids under this study showed significant antioxidant activity (45.6%-85.5%, 32.6%-70.6%, and 24.9%-65.5% inhibition by DPPH, ferric reducing/antioxidant power, and oxygen radical absorption capacity assays) with promising TNF-α inhibitory activity (42%-73% at 10 μM) and IL-6 inhibitory activity (54%-81% at 10 μM) compared with that of control dexamethasone. The flavonoids luteolin, apigenin, diosmetin, chrysin, O 3Ꞌ , O 7 -dihexyl diosmetin, O 4Ꞌ , O 7 -dihexyl apigenin, and O 7 -hexyl chrysin, showed an inhibition with IC 50 values (4.5-8.1 μg/mL), more than allopurinol (8.5 μg/mL) at 5 μM against XO and showing more than 50% inhibition at a final concentration (5 mM) with an IC 50 value of ranging from 4.8 to 7.2 (μg/mL) in comparison with the positive control thiourea (5.8 μg/mL) for urease inhibition. Thus, the flavonoid derivatives may be considered as potential antioxidant and antigout agents. © 2017 Wiley Periodicals, Inc.
Capsofulvesins A-C, cholinesterase inhibitors from Capsosiphon fulvescens.
Fang, Zhe; Yang Jeong, Su; Ah Jung, Hyun; Sue Choi, Jae; Sun Min, Byung; Hee Woo, Mi
2012-01-01
Activity-directed isolation of the n-hexane and dichloromethane fractions of Capsosiphon fulvescens resulted in the identification of four new glycolipids (1-3): (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetraenoyl)-3-O-β-D-galactopyranosyl glycerol (1, capsofulvesin A), (2S)-l-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(10Z,13Z-hexadecadienoyl)-3-O-β-D-galactopyranosyl glycerol (2, capsofulvesin B), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galacatopyranosyl glycerol (3, capsofulvesin C). Compounds 1-6 exhibited acetylcholinesterase (AChE) inhibitory activities with IC(50) values ranging from 50.90 to 82.83 µM, whereas 2-6 showed butyrylcholinesterase (BChE) inhibitory activities with IC(50) values of 114.75-185.55 µM. Although most of the compounds isolated lacked scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO(-)), compound 8 showed ONOO(-) scavenging activity with an IC(50) value of 26.23 µg/mL.
Le, Tao; Yu, Huan; Niu, Xiaodong
2015-05-15
An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluoroimmunoassay (TR-FIA) based on an anti-N-butylquinoxaline-2-carboxamide (BQCA) monoclonal antibody were standardized and validated for quinoxaline-2-carboxylic acid (QCA) screening in animal tissues and its performance were compared to HPLC. The sensitivities obtained for edible tissue extracts were 1.62 and 1.12 ng ml(-1) for ic-ELISA and TR-FIA detection, respectively. Two samples were spiked with QCA and analyzed by both methods. The recovery values ranged from 92.6% to 112.2% and the coefficients of variation were less than 15% for QCA spiking into swine tissue samples at concentrations of 2.5-50.0 μg kg(-1). Excellent correlations (r(2)=0.987-0.996) of the ic-ELISA/HPLC and TR-FIA/HPLC data were observed for processed samples. The results demonstrated that the ic-ELISA and TR-FIA methods were rapid and accurate for the residue detection of QCA in animal tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro
2001-01-01
YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400
Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A
2001-07-01
YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.
Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak
2016-01-01
Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.
Vulfius, Catherine A; Spirova, Ekaterina N; Serebryakova, Marina V; Shelukhina, Irina V; Kudryavtsev, Denis S; Kryukova, Elena V; Starkov, Vladislav G; Kopylova, Nina V; Zhmak, Maxim N; Ivanov, Igor A; Kudryashova, Ksenia S; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N
2016-10-01
Phospholipase A 2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC 50 of about 50 μM and 250 μM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC 50 of about 3 μM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 μM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC 50 of 20.6 ± 3.93 μM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 μM, the value being close to IC 50 on α7 nAChR. These data are in accord with non-competitive inhibition as follows from α-bungarotoxin binding experiments. The described peptides are the shortest peptides without disulfide bridges isolated from animal venom and capable to inhibit nAChR by non-competitive way. Copyright © 2016. Published by Elsevier Ltd.
Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents.
Rahim, Fazal; Zaman, Khalid; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Ashraf, Muhammad; Uddin, Reaz; Uddin, Imad; Asghar, Humna; Khan, Aftab Ahmad; Khan, Khalid M
2015-12-01
4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest.
Liu, Yixi; Harinantenaina, Liva; Brodie, Peggy J; Bowman, Jessica D; Cassera, Maria B; Slebodnick, Carla; Callmander, Martin W; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E; Applequist, Wendy; Birkinshaw, Chris; Lewis, Gwilym P; Kingston, David G I
2013-12-15
Bioassay-directed fractionation of the leaf and root extracts of the antiproliferative Madagascar plant Stuhlmannia moavi afforded 6-acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone (stuhlmoavin, 1) as the most active compound, with an IC50 value of 8.1 μM against the A2780 human ovarian cancer cell line, as well as the known homoisoflavonoid bonducellin (2) and the stilbenoids 3,4,5'-trihydroxy-3'-methoxy-trans-stilbene (3), piceatannol (4), resveratrol (5), rhapontigenin (6), and isorhapontigenin (7). The structure elucidation of all compounds was based on NMR and mass spectroscopic data, and the structure of 1 was confirmed by a single crystal X-ray analysis. Compounds 2-5 showed weak A2780 activities, with IC50 values of 10.6, 54.0, 41.0, and 74.0 μM, respectively. Compounds 1-3 also showed weak antimalarial activity against Plasmodium falciparum with IC50 values of 23, 26, and 27 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents
Kondratyuk, Tamara P.; Park, Eun-Jung; Yu, Rui; van Breemen, Richard B.; Asolkar, Ratnakar N.; Murphy, Brian T.; Fenical, William; Pezzuto, John M.
2012-01-01
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects. PMID:22412812
Akkari, Hafidh; Hajaji, Soumaya; B'chir, Fatma; Rekik, Mourad; Gharbi, Mohamed
2016-05-15
Phenolic content, antioxidant and anthelmintic activities of herbal extracts are of particular interest to drug industry; plant extracts with significant anthelmintic activity have the potential to be used as alternatives to conventional chemical drugs. In the present study, Rubus ulmifolius fruit extracts obtained using solvents of increasing polarity (water, methanol, chloroform and hexane) were examined for their antioxidant and anthelmintic activities in correlation with their polyphenolic content. In vitro antioxidant activity of all extracts was carried out using free radical-scavenging activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethilenebenzotiazolin)-6-sulfonic acid (ABTS) radical cation. In vitro anthelmintic activities were investigated on the egg and adult worms of Haemonchus contortus from sheep in comparison to albendazole. Total polyphenol content of R. ulmifolius was higher in more polar extract, ranging from 64.5 in aqueous extract to 1.57 mg gallic acid equivalents per gram of dry weight (GAE/g DW) in hexanic extract. Likewise, highest amounts of flavonoids and condensed tannins were found in aqueous extract (28.06 mg QE/g and 7.42 mg CE/g DW, respectively) compared to hexanic extract (0.71 mg QE/g and 0.29 mg CE/g DW, respectively) (p<0.05). Both DPPH and ABTS antioxidant assays showed that all tested extracts possess free radical scavenging activity, while the inhibitory concentration 50% (IC50) range values were similar for both assays (2.13-45.54 μg/mL and 1.2-43.82 μg/mL, respectively). All plant extracts showed ovicidal activity at all tested concentrations. Fruit methanolic (IC50=2.76mg/mL) and aqueous (IC50=2.08 mg/mL) extracts showed higher inhibitory effects than chloroformic (IC50=7.62 mg/mL) and hexanic (IC50=12.93 mg/mL) extracts on egg hatching (p<0.05). There was a significant correlation of total polyphenol, flavonoids and tannins content with scavenging of either DPPH (r=0.722, 0.764 and 0.752, p<0.01, respectively) or ABTS radicals (r=0.893, 0.765 and 0.722, p<0.01, respectively) and with inhibition of egg hatching (r=0.874, 0.883 and 0.862, p<0.01, respectively). Highest inhibition of motility (100%) of worms was observed 8h post-exposure in aqueous and methanolic extract at 8 mg/mL. To our knowledge, these results depict for the first time that R. ulmifolius possesses in vitro anthelmintic properties. Published by Elsevier B.V.
N-cinnamoylated aminoquinolines as promising antileishmanial agents.
Vale-Costa, S; Costa-Gouveia, J; Pérez, B; Silva, T; Teixeira, C; Gomes, P; Gomes, M S
2013-10-01
A series of cinnamic acid conjugates of primaquine and chloroquine were evaluated for their in vitro antileishmanial activities. Although primaquine derivatives had modest activity, chloroquine conjugates exhibited potent activity against both promastigotes (50% inhibitory concentration [IC50] = 2.6 to 21.8 μM) and intramacrophagic amastigotes (IC50 = 1.2 to 9.3 μM) of Leishmania infantum. Both the high activity of these chloroquine analogues and their mild-to-low toxicity toward host cells make them promising leads for the discovery of new antileishmanial agents.
Prigol, Marina; Wilhelm, Ethel A; Schneider, Caroline C; Nogueira, Cristina W
2008-11-25
Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3
Albassam, Ahmed A; Frye, Reginald F; Markowitz, John S
2017-06-01
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC 50 ) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC 50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC 50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4
Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph
2017-01-01
Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, H.R.; Pechere, J.C.
1988-04-01
The effect of four macrolides against intracellular Toxoplasma gondii was determined in three different in vitro systems. Unactivated murine peritoneal macrophages were infected with the virulent RH strain of T. gondii. The activity of the macrolides was first measured with (/sup 3/H)uracil, which is incorporated by the parasite but not the host cell. The 50% inhibitory concentrations (IC50s) and 95% confidence limits were calculated at 54 (38 to 73), 140 (98 to 201), 147 (101 to 214), and 246 (187 to 325) micron for roxithromycin, azithromycin (CP-62,993), A-56268, and spiramycin, respectively. Inhibition of Toxoplasma growth was confirmed by microscopic examinationmore » of the infected macrophages after treatment with roxithromycin. Compared with untreated controls, roxithromycin concentrations near the IC50s decreased the number of infected cells, the number of tachyzoites per vacuole, and the number of cells containing rosettes (i.e., clusters of more than eight tachyzoites). After treatment with the four macrolides, tachyzoites were released from the macrophages and subcultured in HeLa cells, which are nonprofessional phagocytes, to assess the viability of the remaining parasites. This showed that the macrolides at concentrations corresponding to four times their 90% inhibitory concentrations (IC90s) had no significant killing effect. At 8 times the IC90, roxithromycin showed an incomplete killing effect, similar to that of the combination of pyrimethamine (0.41 microM)-sulfadiazine (99.42 microM). All macrolides tested showed inhibitory effects against intracellular T. gondii, but amounts of azithromycin and A-56268 corresponding to the IC90 appeared to be toxic against the host macrophages, which might have had nonspecific activity against Toxoplasma metabolism.« less
Ikarashi, Y; Tsuchiya, T; Nakamura, A
1997-01-01
Cytotoxicity potential of chemicals was evaluated by determining the concentrations inducing 50% reduction of neutral red (NR) uptake into Chinese hamster fibroblast V79 cells compared with control culture (IC50). The results of cytotoxicity test for surfactants with the data produced by the in vivo Draize eye and skin irritation test were compared. There was a good correlation between cytotoxicity and eye irritation score obtained from the Draize test. In contrast, no correlation was observed between Draize skin irritation score and cytotoxic potential of chemicals. Therefore, the NR cytotoxicity test was regarded as a possible in vitro model for predicting eye irritation. Based on the IC50 values in the NR cytotoxicity test, the eye irritation classification (weak, moderate and strong) for each chemical used in household products has been established. We evaluated the cytotoxicity of 25 chemicals used for antimicrobial, rubber accelerator, rubber antioxidant, ultraviolet absorber etc. in household products, and estimated the eye irritating potency of these test chemicals according to the criterion.
Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia
2014-09-01
A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.
Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G
2017-10-01
Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.
Kuo, Heng-Lan; Lien, Jin-Cherng; Chung, Ching-Hu; Chang, Chien-Hsin; Lo, Shyh-Chyi; Tsai, I-Chun; Peng, Hui-Chin; Kuo, Sheng-Chu; Huang, Tur-Fu
2010-06-01
The established antiplatelet and anticoagulant agents show beneficial effects in the treatment of thromboembolic diseases; however, these drugs still have considerable limitations. The effects of NP-184, a synthetic compound, on platelet functions, plasma coagulant activity, and mesenteric venule thrombosis in mice were investigated. NP-184 concentration-dependently inhibited the human platelet aggregation induced by collagen, arachidonic acid (AA), and U46619, a thromboxane (TX)A(2) mimic, with IC(50) values of 4.5 +/- 0.2, 3.9 +/- 0.1, and 9.3 +/- 0.5 microM, respectively. Moreover, NP-184 concentration-dependently suppressed TXA(2) formations caused by collagen and AA. In exploring effects of NP-184 on enzymes involved in TXA(2) synthesis, we found that NP-184 selectively inhibited TXA(2) synthase activity with an IC(50) value of 4.3 +/- 0.2 microM. Furthermore, NP-184 produced a right shift of the concentration-response curve of U46619, indicating a competitive antagonism on TXA(2)/prostaglandin H(2) receptor. Intriguingly, NP-184 also caused a concentration-dependent prolongation of the activated partial thromboplastin time (aPTT) with no changes in the prothrombin and thrombin time, indicating that it selectively impairs the intrinsic coagulation pathway. Oral administration of NP-184 significantly inhibited thrombus formation of the irradiated mesenteric venules in fluorescein sodium-treated mice without affecting the bleeding time induced by tail transection. However, after oral administration, NP-184 inhibited the ex vivo mouse platelet aggregation triggered by collagen and U46619 and also prolonged aPTT. Taken together, the dual antiplatelet and anticoagulant activities of NP-184 may have therapeutic potential as an oral antithrombotic agent in the treatment of thromboembolic disorders.
The inhibitory effect of somatostatin peptides on the rat anococcygeus muscle in vitro.
Priestley, T.; Woodruff, G. N.
1988-01-01
1. Electrically evoked contractions of the rat anococcygeus muscle were inhibited in a concentration-dependent manner by somatostatin-14 (SS14), -28 (SS28) and two synthetic hexapeptide analogues: L-363,301 (Pro-Phe-D-Trp-Lys-Thr-Phe) and L-363,586 (N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe), with pIC50 values of 7.41, 7.38, 7.07 and 8.34, respectively. 2. The inhibitory effects of SS14 were dependent on stimulation frequency and external calcium ion concentration. Calcium behaved as a non-competitive antagonist of SS14, it reduced the maximal inhibitory effect of the peptide and at a concentration of 5.08 mM it significantly affected the pIC50 value. 3. SS14 (3 x 10(-7) M) did not affect the tonic actions of bath-applied noradrenaline in the absence of field stimulation. 4. The effects of SS14 persisted in naloxone (10(-5) M) and were, therefore, not due to an action at opiate receptors. Furthermore, experiments involving the lyophilization of bath contents, showed no evidence to support an indirect mechanism involving the release of an endogenous inhibitory substance. 5. High concentrations (10(-5) M) of SS14 or L-363,301 inhibited the relaxation response evoked by electrical stimulation of guanethidine (3 x 10(-4) M)-treated preparations. 6. These results are consistent with similar actions of SS14 on other smooth muscle preparations and are presumed to reflect a presynaptic inhibition of transmitter release by a direct action on somatostatin receptors. The antagonistic effect of calcium on this response is discussed with reference to a possible role in receptor desensitization. PMID:2900039
Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H
2011-05-01
The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.
Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative.
Zhang, Yanli; Zhang, Hui; Chen, Jingbo; Zhao, Haixia; Zeng, Xianghui; Zhang, Hongbin; Qing, Chen
2012-02-01
This study showed that 13-chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315), a gibberellin derivative, possessed high antitumor and antiangiogenic activity in vitro and in vivo. Cytotoxicity assays showed that GA-13315 was a potential and efficient antitumor compound, with inhibitory concentration 50 (IC(50)) values ranging from 0.13 to 30.28 μg/ml in 12 human tumor cell lines, and it showed moderate toxicity to peripheral blood mononuclear cells with an IC(50) value of 14.2 μg/ml. Administration of 0.5 or 2.5 mg/kg GA-13315 for 23 days significantly inhibited tumor growth of human non-small cell lung tumor (A549) xenografts, with relative growth rates ranging from 29.91% to 35.05%. Acute toxicity was determined in ICR mice, and the lethal dose 50 (LD(50)) was 4.19 g/kg after intragastric administration. The high antitumor potency of GA-13315 occurred in parallel with its antiangiogenic activity. In vitro, GA-13315 inhibited recombinant human epithelial growth factor-induced chemotactic motility and capillary-like tube formation of primary cultured human endothelial cells. Furthermore, GA-13315 decreased the factor VIII(+) microvessel density and vascular endothelial growth factor expression in A549 tumors, indicating its antiangiogenic efficacy in vivo. These results indicate that the antiangiogenic activity of GA-13315 contributes to its anticancer properties. Further studies are needed to investigate the use of GA-13315 as an anticancer drug.
Leishmanicidal activity of lipophilic extracts of some Hypericum species.
Dagnino, Ana Paula; Barros, Francisco Maikon Corrêa de; Ccana-Ccapatinta, Gari Vidal; Prophiro, Josiane Somariva; Poser, Gilsane Lino von; Romão, Pedro R T
2015-01-15
Leishmaniasis has emerged as the third most prevalent parasite-borne disease worldwide after malaria and filariasis, with about 350 million people at risk of infection. Antileishmanial drugs currently available have various limitations, mainly because of the parasite resistance and side effects. The search of new antileishmanial drugs is ventured throughout the world. The purpose of this study was to assess the leishmanicidal activity of lipophilic extracts of eight Hypericum species against promastigote forms of Leishmania (Leishmania) amazonensis. The dried and powered materials of aerial parts of H. andinum Gleason, H. brevistylum Choisy, H. caprifoliatum Cham. & Schltdl., H. carinatum Griseb., H. linoides A. St.-Hil., H. myrianthum Cham. & Schltdl., H. polyanthemum Klotzsch ex Reichardt and H. silenoides Juss. were extracted by static maceration with n-hexane. Extracts were evaporated to dryness under reduced pressure and stored at -20°C until biological evaluation and HPLC analysis. The metabolites investigated were dimeric phloroglucinol derivatives, benzophenones and benzopyrans. The yields were expressed as mean of three injections in mg of compound per g of extract (mg/g extract). The effect of Hypericum species on the viability of infective forms of L. (L.) amazonensis was determined using a hemocytometer. Amphotericin B was used as a standard drug. The 50% inhibitory concentration (IC50) values for each extract were determined by linear regression analysis. The cytotoxic effects of extracts were assessed on peritoneal macrophages of BALB/c mice by MTT assay. The concentration that causes 50% of macrophage cytotoxicity (CC50) was determined by linear regression analysis. The selectivity index (SI) of the extracts was determined considering the following equation: CC50 against mammalian cells/IC50 against L. amazonensis. We demonstrated that H. carinatum, H. linoides and H. polyanthemum were able to kill the parasites in a dose dependent manner. These extracts presented low cytotoxicity against murine macrophages. At 48h of incubation H. polyanthemum presented significant leishmanicidal activity with a 50% inhibitory concentration (IC50) of 36.1µg/ml. The leishmanicidal activity of H. myrianthum was significantly lower than that presented by H. polyanthemum, H. carinatum and H. linoides extracts. H. brevistylum and H. caprifoliatum showed significant leishmanicidal activity only at high concentrations (500 and 1000µg/ml), while H. andinum and H. silenoides were ineffective. The promising results demonstrate the importance of the species of the genus Hypericum as source of compounds potentially useful for the treatment of leishmaniasis. Copyright © 2014 Elsevier GmbH. All rights reserved.
Guetat, Arbi; Boulila, Abdennacer; Boussaid, Mohamed
2018-04-16
The present study describes the chemical composition of the essential oil of different plant parts of Devrra tortuosa; in vivo and in vitro biological activities of plant extract and essential oils. Apiol was found to be the major component of the oil (between 65.73% and 74.41%). The best antioxidant activities were observed for the oil of flowers (IC50 = 175 μg/ml). The samples of stems and roots exhibit lower antioxidant activity (IC50 = 201 μg/ml and 182 μg/ml, respectively). The values of IC50 showed that the extracts of methanol exhibit the highest antioxidants activities (IC50 = 64.8 102 μg/ml). EOs showed excellent antifungal activity against yeasts with low azole susceptibilities (i.e. Malassezia spp. and Candida krusei). The MIC values of oils varied between 2.85 mg/mL and 27 mg/mL. The obtained results also showed that the plant extracts inhibited the germination and the shoot and root growth of Triticum æstivum seedlings.
Chemical and biological analyses of the essential oils and main constituents of Piper species.
Moura do Carmo, Dominique F; Amaral, Ana Cláudia Fernandes; Machado, Gérzia M C; Leon, Leonor Laura; Silva, Jefferson Rocha de Andrade
2012-02-13
The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3%) and β-elemene (33.1%) and in P. duckei oil the major components found were germacrene D (14.7%) and trans-caryophyllene (27.1%). P. demeraranum and P. duckei oils exhibited biological activity, with IC(50) values between 15 to 76 μg mL(-1) against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC(50) = 278 μM) and caryophyllene (IC(50) = 96 μM), were tested against the strains of Leishmania amazonensis, and the IC(50) values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs.
Rahim, Fazal; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Nawaz, Mohsan; Ashraf, Muhammad; Ali, Muhammad; Sajid, Muhammad; Ali, Farman; Khan, Muhammad Naseem; Khan, Khalid Mohammed
2016-10-01
To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001μM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed. Copyright © 2016 Elsevier Inc. All rights reserved.
Avinash, B; Venu, R; Alpha Raj, M; Srinivasa Rao, K; Srilatha, Ch; Prasad, T N V K V
2017-04-15
An investigation was undertaken to study, for the first time, in vitro acaricidal activity of green silver nanoparticles on deltamethrin resistance Rhipicephalus (Boophilus) microplus. The compounds tested were neem coated silver nanoparticles (N-Ag NPs), deltamethrin neem coated silver nanoparticles (DN-Ag NPs), 2, 3 dehydrosalannol (2,3 DHS), 2, 3 DHS coated silver nanoparticles (2, 3-DHS-Ag NPs), Quercetin dihydrate (QDH) and QDH coated silver nanoparticles (QDH-Ag NPs). Also included in this study, for the purpose of comparison, were neem leaf extract (NLE), silver nitrate (AgNO 3 ) and deltamethrin (D). Acaricidal activity on larvae and adults of R. (B.) microplus was tested by larval packet test (LPT) and adult immersion test (AIT) respectively. In the LPT, 100% mortality was obtained at concentrations (ppm) of 360, 6000, 260, 200, 50, 300, 85, 600 and 200 for the compounds, D, NLE, Ag NO 3 , N-Ag NPs, DN-Ag NPs, 2, 3 DHS, 2, 3 DHS-Ag NPs, QDH, QDH-Ag NPs respectively. In AIT, the proportions of mortality and oviposition inhibition were proportionate but the reproductive index was inversely proportional to the concentration of the compounds used. The effect of DN-Ag NPs on mortality was the highest (93.33%) at 50ppm concentration. The mean reproductive index (0.01) and oviposition inhibition (99.16%) values were statistically significant when compared to control group. DN-Ag NPs showed significantly (P<0.05) lower LC 50 (3.87ppm; 21.95ppm) and LC 99 (53.05ppm; 90.06ppm) values against both the larvae and adults of R. (B.) microplus. The oviposition inhibiting ability of various compounds was determined to assess the reproductive performance of adult female ticks. The DN-Ag NPs had potent oviposition inhibitory activity with significantly lower IC 50 and IC 99 values compared to the rest of the treatments at 0.034 and 51.07ppm respectively. These results showed that the DN-Ag NPs had significant acaricidal activity against R. (B.) microplus. Copyright © 2017 Elsevier B.V. All rights reserved.
Dahan, Arik; Amidon, Gordon L
2009-04-01
To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP-BL and BL-AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6'-7'-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP-BL permeability was increased and BL-AP was decreased by GFJ in a concentration-dependent manner (IC(50) values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6'-7'-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL-AP secretion (IC(50) values of 90, 592 and 11.6 microM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.
Berger, Michael L
2016-01-01
Membranes prepared from rat brain were treated with increasing concentrations of cationic, neutral, anionic and zwitterionic surfactants. Potent inactivation of [(3)H]MK-801 binding to NMDA receptors (NRs) was provided by the cation cetyl pyridinium (IC50 25 μM) and the neutral digitonin (IC50 37 μM). A 2 h incubation of rat brain membranes at 24°C with 100 μM of the neutral Triton X-100 resulted in about 50% reversible inhibition (without inactivation). Reversible inhibition was also effected by the anion deoxycholate (IC50 700 μM), and by the zwitterions N-lauryl sulfobetaine (12-SB(±), 400 μM) and CHAPS (1.5 mM), with inactivation at higher concentrations. Keeping the NR cation channel in the closed state significantly protected against inactivation by cations and by 12-SB(±), but not by the other detergents. Inactivation depended differentially on the amount of the membranes, on the duration of the treatment, and on the temperature. Varying the amount of membranes by a factor 8 yielded for cetyl trimethylammonium (16-NMe3(+)) IC50s of inactivation from 10 to 80 μM, while for deoxycholate the IC50 of inactivation was 1.2 mM for all tissue quantities. Some compounds inactivated within a few min (16-NMe3(+), digitonin, CHAPS), while inactivation by others took at least half an hour (Triton X-100, deoxycholate, 12-SB(±)). These last 3 ones also exhibited the steepest temperature dependence. Knowledge about the influence of various parameters is helpful in selecting appropriate conditions allowing the treatment of brain membranes with amphiphiles without risking irreversible inactivation. Copyright © 2015 Elsevier B.V. All rights reserved.
Biological activities of aqueous extract from Cinnamomum porrectum
NASA Astrophysics Data System (ADS)
Farah, H. Siti; Nazlina, I.; Yaacob, W. A.
2013-11-01
A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.
Yi, Chengxue; Zhong, Hui; Tong, Shanshan; Cao, Xia; Firempong, Caleb K; Liu, Hongfei; Fu, Min; Yang, Yan; Feng, Yingshu; Zhang, Huiyun; Xu, Ximing; Yu, Jiangnan
2012-01-01
Purpose To investigate the growth inhibition activity of Flammulina velutipes sterol (FVS) against certain human cancer cell lines (gastric SGC and colon LoVo) and to evaluate the optimum microemulsion prescription, as well as the pharmacokinetics of encapsulated FVS. Methods Molecules present in the FVS isolate were identified by gas chromatography/mass spectrometry analysis. The cell viability of FVS was assessed with methyl thiazolyl tetrazolium (MTT) bioassay. Based on the solubility study, phase diagram and stability tests, the optimum prescription of F. velutipes sterol microemulsions (FVSMs) were determined, followed by FVSMs characterization, and its in vivo pharmacokinetic study in rats. Results The chemical composition of FVS was mainly ergosterol (54.8%) and 22,23-dihydroergosterol (27.9%). After 72 hours of treatment, both the FVS (half-maximal inhibitory concentration [IC50] = 11.99 μg · mL−1) and the standard anticancer drug, 5-fluorouracil (IC50 = 0.88 μg · mL−1) exhibited strong in vitro antiproliferative activity against SGC cells, with IC50 > 30.0 μg · mL−1; but the FVS performed poorly against LoVo cells (IC50 > 40.0 μg · mL−1). The optimal FVSMs prescription consisted of 3.0% medium chain triglycerides, 5.0% ethanol, 21.0% Cremophor EL and 71.0% water (w/w) with associated solubility of FVS being 0.680 mg · mL−1 as compared to free FVS (0.67 μg · mL−1). The relative oral bioavailability (area-under-the-curve values of ergosterol and 22,23-dihydroergosterol showed a 2.56-fold and 4.50-fold increase, respectively) of FVSMs (mean diameter ~ 22.9 nm) as against free FVS were greatly enhanced. Conclusion These results indicate that the FVS could be a potential candidate for the development of an anticancer drug and it is readily bioavailable via microemulsion formulations. PMID:23049254
Torres-Naranjo, María; Suárez, Alirica; Gilardoni, Gianluca; Cartuche, Luis; Flores, Paola; Morocho, Vladimir
2016-11-02
The phytochemical investigation of Muehlenbeckia tamnifolia , collected in Loja-Ecuador, led to the isolation of nine known compounds identified as: lupeol acetate ( 1 ); cis - p -coumaric acid ( 2 ); lupeol ( 3 ); β-sitosterol ( 4 ) trans - p -coumaric acid ( 5 ); linoleic acid ( 6 ) (+)-catechin ( 7 ); afzelin ( 8 ) and quercitrin ( 9 ). The structures of the isolated compounds were determined based on analysis of NMR and MS data, as well as comparison with the literature. The hypoglycemic activity of crude extracts and isolated compounds was assessed by the ability to inhibit α-amylase and α-glucosidase enzymes. The hexane extract showed weak inhibitory activity on α-amylase, with an IC 50 value of 625 µg·mL -1 , while the other extracts and isolated compounds were inactive at the maximum dose tested. The results on α-glucosidase showed more favorable effects; the hexanic and methanolic extracts exhibited a strong inhibitory activity with IC 50 values of 48.22 µg·mL -1 and 19.22 µg·mL -1 , respectively. Four of the nine isolated compounds exhibited strong inhibitory activity with IC 50 values below 8 µM, much higher than acarbose (377 uM). Linoleic acid was the most potent compound (IC 50 = 0.42 µM) followed by afzelin, (+)-catechin and quercitrin.
Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.
Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng
2015-09-01
Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.
Shah, Krupa; Mirza, Sheefa; Desai, Urja; Jain, Nayan; Rawal, Rakesh
2016-01-01
The aim of the study was to find a role of Curcumin from natural source to overcome drug resistance as well as to reduce cytotoxicity profile of the drug in Acute Myeloid Leukemia patients. Primary leukemic cells were obtained from AML patient's bone marrow. These cells were then exposed to different concentration of cytarabine and curcumin to find out IC50 values and also its effect on MDR genes like MDR1, BCRP, LRP and FLT3 by RT-PCR method. Our results suggested that curcumin down regulates MDR genes. Gene expression was decreased by 35.75, 31.30, 27.97 % for MDR1, LRP, BCRP respectively. In FLT3, it was 65.86 % for wild type and 31.79 % for FLT3-ITD. In addition to this, curcumin has also shown anti-proliferative effect as well as synergistic effect in combination with Cytarabine on primary leukemic cells. Thus, we can conclude that curcumin can be used as MDR modulator as well as chemosensitizer in combination with cytarabine, standard chemotherapeutic drug, to reduce the cytotoxicity profile as IC50 value decreases when treated in combination.
Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata.
An, Jin-Pyo; Ha, Thi Kim Quy; Kim, Jinwoong; Cho, Tae Oh; Oh, Won Keun
2016-08-19
PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B inhibitors, one new diterpene glycoside (1) and 13 known compounds (2-14) were isolated from the methanol extract of the stems of Akebia quinata. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR and MS. Compounds 2, 3, 6, 8 and 11 showed significant inhibitory effects on the PTP1B enzyme, with IC50 values ranging from 4.08 ± 1.09 to 21.80 ± 4.74 μM. PTP1B inhibitors also had concentration-dependent cytotoxic effects on breast cancer cell lines, such as MCF7, MDA-MB-231 and tamoxifen-resistant MCF7 (MCF7/TAMR) (IC50 values ranging from 0.84 ± 0.04 to 7.91 ± 0.39 μM). These results indicate that compounds 6 and 8 from Akebia quinata may be lead compounds acting as anti-breast cancer agents.
Ma, Li-Yuan; Zhou, Qi-Le; Yang, Xiu-Wei
2015-11-15
Two new dammarane-type triterpenes, namely ginsenoslaloside-I [3β,12β,24S-trihydroxy-dammara-20(22)E,25-diene-3-O-β-D-glucopyranoside, 1] and 20(S)-ginsenoside-Rh1-6'-acetate (2), together with twelve known compounds (3-14) were isolated from the alkaline hydrolysate of total saponins of the stems-leaves of Panax ginseng C.A. Meyer. Their chemical structures were elucidated by extensive spectroscopic analyses and comparison with the reported data. All 14 compounds were evaluated for their anti-proliferative activities against two human cancer cell lines (HL-60 and Hep-G2) and promotion activities of SIRT1. Compound 6 exhibited significant inhibitory activity in a concentration-dependent manner against HL-60 and Hep-G2 with the IC50 values of 10.32 and 24.33μM, respectively, and had comparable IC50 values with those of vinorelbine, a positive control agent. Meanwhile, compounds 1 and 6 were found to be a potential activator of SIRT1. The preliminary structure-activity relationship was also discussed based on the experimental data obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Zhenjiang; Zhang, Zhen; Zhu, Gangbing; Sun, Jianfan; Zou, Bin; Li, Ming; Wang, Jiagao
2016-05-01
A fast and sensitive polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) was developed for the analysis of flonicamid in environmental and agricultural samples. Two haptens of flonicamid differing in spacer arm length were synthesized and conjugated to proteins to be used as immunogens for the production of polyclonal antibodies. To obtain most sensitive combination of antibody/coating antigen, two antibodies were separately screened by homologous and heterologous assays. After optimization, the flonicamid ELISA showed that the 50% inhibitory concentration (IC50 value) was 3.86mgL(-1), and the limit of detection (IC20 value) was 0.032mgL(-1). There was no cross-reactivity to similar tested compounds. The recoveries obtained after the addition of standard flonicamid to the samples, including water, soil, carrot, apple and tomato, ranged from 79.3% to 116.4%. Moreover, the results of the ELISA for the spiked samples were largely consistent with the gas chromatography (R(2)=0.9891). The data showed that the proposed ELISA is an alternative tool for rapid, sensitive and accurate monitoring of flonicamid in environmental and agricultural samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of in vitro inhibitory effect of enoxacin on Babesia and Theileria parasites.
Omar, Mosaab A; Salama, Akram; Elsify, Ahmed; Rizk, Mohamed Abdo; Al-Aboody, Mohammad Saleh; AbouLaila, Mahmoud; El-Sayed, Shimaa Abd El-Salam; Igarashi, Ikuo
2016-02-01
Enoxacin is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid used mainly in the treatment of urinary tract infections and gonorrhea. Also it has been shown recently that it may have cancer inhibiting effect. The primary antibabesial effect of Enoxacin is due to inhibition of DNA gyrase subunit A, and DNA topoisomerase. In the present study, enoxacin was tested as a potent inhibitor against the in vitro growth of bovine and equine Piroplasms. The in vitro growth of five Babesia species that were tested was significantly inhibited (P < 0.05) by micro molar concentrations of enoxacin (IC50 values = 33.5, 15.2, 7.5 and 23.2 μM for Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi, respectively). Enoxacin IC50 values for Babesia and Theileria parasites were satisfactory as the drug is potent antibacterial drug with minimum side effects. Therefore, enoxacin might be used for treatment of Babesiosis and Theileriosis especially in case of mixed infections with bacterial diseases or incase of animal sensitivity against diminazin toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Loizzo, M R; Tundis, R; Chandrika, U G; Abeysekera, A M; Menichini, F; Frega, N G
2010-06-01
Total water extract, ethyl acetate, and aqueous fractions from the leaves of Artocarpus heterophyllus were evaluated for phenolic content, antioxidant, and antibacterial activities against some foodborne pathogens such as E. coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella enterica, Bacillus cereus, Enterococcus faecalis, and Staphylococcus aureus. The minimum inhibitory concentration (MICs) of extract and fractions determined by the agar dilution method were ranged from 221.9 microg/mL for ethyl acetate fraction to 488.1 microg/mL for total extract. In the agar diffusion method the diameters of inhibition were 12.2 for the total extract, 10.7 and 11.5 for ethyl acetate and aqueous fractions, respectively. A. heterophyllus showed significant antioxidant activity tested in different in vitro systems (DPPH, ABTS, FRAP, and Fe(2+) chelating activity assay). In particular, in DPPH assay A. heterophyllus total extract exhibited a strong antiradical activity with an IC(50) value of 73.5 microg/mL while aqueous fraction exerted the highest activity in FRAP assay (IC(50) value of 72.0 microg/mL). The total phenols content by Folin-Ciocalteau method was determined with the purpose of testing its relationship with the antioxidant and antibacterial activities.
Cytotoxicity evaluation of a new set of 2-aminobenzo[de]iso-quinoline-1,3-diones.
Al-Salahi, Rashad; Alswaidan, Ibrahim; Marzouk, Mohamed
2014-12-04
A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45-0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.
Wang, Jin-Cheng; Kiyosue, Tatsuto; Kiriyama, Kuninori; Arita, Makoto
1999-01-01
We investigated the effects of bepridil on the two components of the delayed rectifier K+ current, i.e., the rapidly activating (IKr) and the slowly activating (IKs) currents using tight-seal whole-cell patch-clamp techniques in guinea-pig ventricular myocytes, under blockade of L-type Ca2+ current with nitrendipine (5 μM) or D600 (1 μM).Bepridil decreased IKs under blockade of IKr with E4031 (5 μM), in a concentration-dependent manner. The concentration-dependent inhibition of IKs by bepridil was fitted by a curve, assuming one-to-one interactions between the channel and the drug molecule. The concentration of half-maximal inhibition (IC50) was found to be 6.2 μM.The effect of bepridil on IKr was assessed using an envelope-of-tails test. In the control condition, a ratio of the tail current to the time-dependent current measured during depolarization was large (>1) at shorter pulses (<200 ms), and it decreased to a steady state value of ∼0.4 with increases in the pulse duration. Bepridil at a concentration of 2 μM did not decrease this ratio at shorter pulses.In a short-pulse (duration=50 ms) experiment that largely activates IKr, the drug was found to block IKr in a cooperative manner (Hill coefficient=3.03) and the IC50 was 13.2 μM.These results suggest that bepridil at a clinical therapeutic concentration (∼2 μM) selectively blocks IKs but does not inhibit IKr. This may relate to the characteristic frequency-dependent effects of bepridil on the action potential duration (APD), e.g., the non-reverse use-dependent prolongation of APD. PMID:10588929
Sewing, K F; Harms, P; Schulz, G; Hannemann, H
1983-01-01
The inhibitory effect of the three benzimidazole derivatives timoprazole, picoprazole, and omeprazole on histamine and dbcAMP stimulated 14C-aminopyrine accumulation (= H+ secretion) has been studied in isolated and enriched guinea-pig parietal cells. All compounds tested inhibited H+ secretion in a concentration dependent manner with IC50 values of 8.5 +/- 1.9 mumol/l for timoprazole, 3.9 +/- 0.7 mumol/l for picoprazole, and 0.13 +/- 0.03 mumol/l for omeprazole. The IC50 of timoprazole, when dbcAMP was used as a stimulus, did not differ significantly from that of histamine stimulation. The type of inhibition was of a non-competitive nature. The full acid response to histamine after temporary exposure of the cells to the benzimidazoles could be restored by washing the cells twice; this suggests that the inhibition is reversible. The data - among others - indicate that the properties of the benzimidazoles described here would allow these compounds to be used as effective antisecretagogues. PMID:6303916
Zidar, Nace; Tomašić, Tihomir; Šink, Roman; Kovač, Andreja; Patin, Delphine; Blanot, Didier; Contreras-Martel, Carlos; Dessen, Andréa; Premru, Manica Müller; Zega, Anamarija; Gobec, Stanislav; Mašič, Lucija Peterlin; Kikelj, Danijel
2011-11-01
Mur ligases (MurC-MurF), a group of bacterial enzymes that catalyze four consecutive steps in the formation of cytoplasmic peptidoglycan precursor, are becoming increasingly adopted as targets in antibacterial drug design. Based on the crystal structure of MurD cocrystallized with thiazolidine-2,4-dione inhibitor I, we have designed, synthesized, and evaluated a series of improved glutamic acid containing 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD with IC(50) values up to 28 μM. Inhibitor 37, with an IC(50) of 34 μM, displays a weak antibacterial activity against S. aureus ATCC 29213 and E. faecalis ATCC 29212 with minimal inhibitory concentrations of 128 μg/mL. High-resolution crystal structures of MurD in complex with two new inhibitors (compounds 23 and 51) reveal details of their binding modes within the active site and provide valuable information for further structure-based optimization. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts
Yin, Jie; Kwon, Gu-Joong
2007-01-01
This study investigated in vitro antioxidant activity of Sonchus oleraceus L. by extraction solvent, which were examined by reducing power, hydroxyl radical-scavenging activity(HRSA) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. 70% MeOH extract had the greatest reducing power while EtOH extract had the greatest HRSA. The antioxidant activity of S. oleraceus extracts was concentration dependent and its IC50 values ranged from 47.1 to 210.5 µg/ml and IC50 of 70% MeOH, boiling water and 70% EtOH extracts were 47.1, 52.7 and 56.5 µg/ml, respectively. 70% MeOH extract of S. oleraceus contained the greatest amount of both phenolic and flavonoid contents. The extracts tested had greater nitrite scavenging effects at lower pH conditions. The cytotoxic activity showed that EtOH extract had the best activity against the growth of stomach cancer cell. These results suggest that S. oleraceus extract could be used as a potential source of natural antioxidants. PMID:20368937
The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts.
Yin, Jie; Kwon, Gu-Joong; Wang, Myeong-Hyeon
2007-01-01
This study investigated in vitro antioxidant activity of Sonchus oleraceus L. by extraction solvent, which were examined by reducing power, hydroxyl radical-scavenging activity(HRSA) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. 70% MeOH extract had the greatest reducing power while EtOH extract had the greatest HRSA. The antioxidant activity of S. oleraceus extracts was concentration dependent and its IC(50) values ranged from 47.1 to 210.5 microg/ml and IC(50) of 70% MeOH, boiling water and 70% EtOH extracts were 47.1, 52.7 and 56.5 microg/ml, respectively. 70% MeOH extract of S. oleraceus contained the greatest amount of both phenolic and flavonoid contents. The extracts tested had greater nitrite scavenging effects at lower pH conditions. The cytotoxic activity showed that EtOH extract had the best activity against the growth of stomach cancer cell. These results suggest that S. oleraceus extract could be used as a potential source of natural antioxidants.
Calogeropoulou, Theodora; Angelou, Panagiotis; Detsi, Anastasia; Fragiadaki, Irene; Scoulica, Effie
2008-02-28
Two series of novel ether phospholipids (EPs) have been synthesized. The first includes cyclodecylidene- or cyclopentadecylidene-substituted EPs carrying N,N,N-trimethylammonium or N-methylpiperidino or N-methylmorpholino head groups. The second series encompasses more rigid head groups in combination with cycloalkylidene moieties in the lipid portion. In addition, hydrogenated derivatives were obtained. All the new analogues, except 33, were 1.5- to 62-fold more potent than miltefosine against the intracellular L. infantum, and the most active ones were also less cytotoxic against the human monocytic cell line THP1 and less hemolytic than miltefosine. The analogues that combine high potency with low cytotoxicity and hemolytic activity were 19, 37, 21 23, 38, 39, and 40. Cyclopentadecylpentylphosphocholine (38) possesses an IC50 of 0.7 microM against L. infantum amastigotes and is the least cytotoxic analogue, since it does not present toxicity against THP1 macrophages, even at a concentration that is 800-fold the antiparasitic IC50 value, and does not present significant hemolytic activity.
Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans
2003-05-01
A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.
Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.
D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J
2004-01-01
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.
Sharma, Vandana; Walia, Suresh; Dhingra, Swaran; Kumar, Jitendra; Parmar, Balraj S
2006-10-01
A 60% azadirachtin-A concentrate has been obtained through repeated precipitation with hexane from a methanolic solution of a 20% concentrate. Azadirachtin-A (90%) has been obtained by medium-pressure liquid chromatography of the 60% concentrate with an RP-18 column and a methanol + water (1 + 1 by volume) solvent system. Catalytic hydrogenation of the 60 and 90% azadirachtin concentrates yielded the corresponding tetrahydroazadirachtin concentrates. Dihydroazadirachtin and tetrahydroazadirachtin formed during the first 5 h of hydrogenation were identified by LC-ESI-MS on the basis of their unique mass fragmentation pattern. The efficacy of tetrahydroazadirachtin concentrates in inhibiting the feeding and growth of Helicoverpa armigera (Hübner) larvae has been compared with that of azadirachtin concentrates. They were in general more active and deterred larvae from feeding at all concentrations. Tetrahydroazadirachtin-A (90%) and azadirachtin-A (90%) with respective IC(50) values of 280 and 390 mg L(-1) were effective as insect growth regulators, while tetrahydroazadirachtin-A (90%) displayed higher antifeedant activity (AI(50) 14 mg L(-1)) against the test insect.
Ismail, Sabariah; Hanapi, Nur Aziah; Ab Halim, Mohd Rohaimi; Uchaipichat, Verawan; Mackenzie, Peter I
2010-05-14
The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.
Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation.
Yit, C C; Das, N P
1994-07-15
Several classes of plant polyphenols namely, flavonoids, chalcones and coumarins exhibited varying degrees of inhibition on the cell proliferation of human colon adenocarcinoma cell line 220.1. At the highest concentration tested (100 microM), many of the chalcones showed > 100% growth inhibition and their order of potency was butein > 2'-hydroxychalcone > 2-hydroxychalcone > 2',6'-dihydroxy-4'-methoxychalcone > 2',4-dihydroxychalcone with IC50 values of 1.75, 6.2, 7.5, 17, 23 microM, respectively. Butein (the most potent chalcone) at 2 microM concentration inhibited the incorporation of 14C-labelled thymidine, uridine and leucine into the colon cancer cells whilst 5-fluorouracil (5-FU, a chemotherapeutic drug) at 50 microM concentration could significantly inhibit only the uridine incorporation. The mode of cytotoxic action of butein was different from 5-FU but may be similar to colchicine, a known HeLa cell inhibitor.
Strub, Andreas; Ulrich, Wolf-Rüdiger; Hesslinger, Christian; Eltze, Manfrid; Fuchss, Thomas; Strassner, Jochen; Strand, Susanne; Lehner, Martin D; Boer, Rainer
2006-01-01
We have identified imidazopyridine derivatives as a novel class of NO synthase inhibitors with high selectivity for the inducible isoform. 2-[2-(4-Methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) showed half-maximal inhibition of crudely purified human inducible (iNOS), neuronal (nNOS), and endothelial (eNOS) NO synthases at 86 nM, 17 microM, and 162 microM, respectively. Inhibition of inducible NO synthase was competitive with l-arginine, pointing to an interaction of BYK191023 with the catalytic center of the enzyme. In radioligand and surface plasmon resonance experiments, BYK191023 exhibited an affinity for iNOS, nNOS, and eNOS of 450 nM, 30 microM, and >500 microM, respectively. Inhibition of cellular nitrate/nitrite synthesis in RAW, rat mesangium, and human embryonic kidney 293 cells after iNOS induction showed 40- to 100-fold higher IC(50) values than at the isolated enzyme, in agreement with the much higher l-arginine concentrations in cell culture media and inside intact cells. BYK191023 did not show any toxicity in various rodent and human cell lines up to high micromolar concentrations. The inhibitory potency of BYK191023 was tested in isolated organ models of iNOS (lipopolysaccharide-treated and phenylephrine-precontracted rat aorta; IC(50) = 7 microM), eNOS (arecaidine propargyl ester-induced relaxation of phenylephrine-precontracted rat aorta; IC(50) > 100 microM), and nNOS (field-stimulated relaxation of phenylephrine-precontracted rabbit corpus cavernosum; IC(50) > 100 microM). These data confirm the high selectivity of BYK191023 for iNOS over eNOS and nNOS found at isolated enzymes. In summary, we have identified a new highly selective iNOS inhibitor structurally unrelated to known compounds and l-arginine. BYK191023 is a valuable tool for the investigation of iNOS-mediated effects in vitro and in vivo.
Three new triterpenoids from Ganoderma theaecolum.
Liu, Li-Ying; Yan, Zheng; Kang, Jie; Chen, Ruo-Yun; Yu, De-Quan
2017-09-01
Three new triterpenoids (1-3), together with four known triterpenoids (4-7), were isolated from the fruiting bodies of Ganoderma theaecolum. Their structures were elucidated on the basis of their spectroscopic data and chemical evidence. Compounds 4 and 6 exhibited antitumor activities against H460 cells with IC 50 values of 22.4 and 43.1 μM, respectively. And the cytotoxic activities of compounds 4 and 5 against MDA-MB-231 cancer cell lines were assayed with IC 50 values of 49.1 and 75.8 μM, respectively.
Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T
2007-09-01
In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed.
Mayer, Alejandro MS; Hall, Mary L; Lynch, Sean M; Gunasekera, Sarath P; Sennett, Susan H; Pomponi, Shirley A
2005-01-01
Background Thromboxane B2 (TXB2) and superoxide anion (O2-) are neuroinflammatory mediators that appear to be involved in the pathogenesis of several neurodegenerative diseases. Because activated-microglia are the main source of TXB2 and O2- in these disorders, modulation of their synthesis has been hypothesized as a potential therapeutic approach for neuroinflammatory disorders. Marine natural products have become a source of novel agents that modulate eicosanoids and O2- generation from activated murine and human leukocytes. With the exception of manzamine C, all other manzamines tested are characterized by a complex pentacyclic diamine linked to C-1 of the β-carboline moiety. These marine-derived alkaloids have been reported to possess a diverse range of bioactivities including anticancer, immunostimulatory, insecticidal, antibacterial, antimalarial and antituberculosis activities. The purpose of this investigation was to conduct a structure-activity relationship study with manzamines (MZ) A, B, C, D, E and F on agonist-stimulated release of TXB2 and O2- from E. coli LPS-activated rat neonatal microglia in vitro. Results The manzamines differentially attenuated PMA (phorbol 12-myristate 13-acetate)-stimulated TXB2 generation in the following order of decreasing potency: MZA (IC50 <0.016 μM) >MZD (IC50 = 0.23 μM) >MZB (IC50 = 1.6 μM) >MZC (IC50 = 2.98 μM) >MZE and F (IC50 >10 μM). In contrast, there was less effect on OPZ (opsonized zymosan)-stimulated TXB2 generation: MZB (IC50 = 1.44 μM) >MZA (IC50 = 3.16 μM) >MZC (IC50 = 3.34 μM) >MZD, MZE and MZF (IC50 >10 μM). Similarly, PMA-stimulated O2- generation was affected differentially as follows: MZD (apparent IC50<0.1 μM) >MZA (IC50 = 0.1 μM) >MZB (IC50 = 3.16 μM) >MZC (IC50 = 3.43 μM) >MZE and MZF (IC50 >10 μM). In contrast, OPZ-stimulated O2- generation was minimally affected: MZB (IC50 = 4.17 μM) >MZC (IC50 = 9.3 μM) >MZA, MZD, MZE and MZF (IC50 > 10 μM). From the structure-activity relationship perspective, contributing factors to the observed differential bioactivity on TXB2 and O2- generation are the solubility or ionic forms of MZA and D as well as changes such as saturation or oxidation of the β carboline or 8-membered amine ring. In contrast, the fused 13-membered macrocyclic and isoquinoline ring system, and any substitutions in these rings would not appear to be factors contributing to bioactivity. Conclusion To our knowledge, this is the first experimental study that demonstrates that MZA, at in vitro concentrations that are non toxic to E. coli LPS-activated rat neonatal microglia, potently modulates PMA-stimulated TXB2 and O2- generation. MZA may thus be a lead candidate for the development of novel therapeutic agents for the modulation of TXB2 and O2- release in neuroinflammatory diseases. Marine natural products provide a novel and rich source of chemical diversity that can contribute to the design and development of new and potentially useful anti-inflammatory agents to treat neurodegenerative diseases. PMID:15762999
The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.
Lochner, Martin; Thompson, Andrew J
2016-09-01
Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wan, Zheng-Yong; Yao, Jin; Tao, Yuan; Mao, Tian-Qi; Wang, Xin-Long; Lu, Yi-Pei; Wang, Hai-Feng; Yin, Hong; Wu, Yan; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-06-05
A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine. The improved potency observed in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits reverse transcriptase, and represents a remarkable step forward in the development of AIDS therapeutics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Khan, Mir Azam; Ahmad, Waqar; Shah, Muhammad Raza; Imran, Muhammad; Ahmad, Sajjad
2015-11-04
Cholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer's disease (AD). Similarly, free radicals are implicated in the progression of various diseases like neurodegenerative disorders. Due to lipid solubility and potential to easily cross blood brain barrier, this study was designed to investigate the anticholinesterase and antioxidant potentials of the standardized essential oils from the leaves and flowers of Polygonum hydropiper. Essential oils from the leaves (Ph.LO) and flowers (Ph.FO) of P. hdropiper were isolated using Clevenger apparatus. Oil samples were analyzed by GC-MS to identify major components and to attribute the antioxidant and anticholinesterase activity to specific components. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potentials of the samples were determined following Ellman's assay. Antioxidant assays were performed using 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) and hydrogen peroxide (H2O2) free radical scavenging assays. In the GC-MS analysis 141 and 122 compounds were indentified in Ph.LO and Ph.FO respectively. Caryophylene oxide (41.42 %) was the major component in Ph.FO while decahydronaphthalene (38.29 %) was prominent in Ph.LO. In AChE inhibition, Ph.LO and Ph.FO exhibited 87.00** and 79.66***% inhibitions at 1000 μg/ml with IC50 of 120 and 220 μg/ml respectively. The IC50 value for galanthamine was 15 μg/ml. In BChE inhibitory assay, Ph.LO and Ph.FO caused 82.66*** (IC50 130 μg/ml) and 77.50***% (IC50 225 μg/ml) inhibitions respectively at 1000 μg/ml concentration. In DPPH free radical scavenging assay, Ph.LO and Ph.FO exhibited IC50 of 20 and 200 μg/ml respectively. The calculated IC50s were 180 & 60 μg/ml for Ph.LO, and 45 & 50 μg/ml for Ph.FO in scavenging of ABTS and H2O2 free radicals respectively. In the current study, essential oils from leaves and flowers of P. hydropiper exhibited dose dependent anticholinesterase and antioxidant activities. Leaves essential oil were more effective and can be subjected to further in-vitro and in-vivo anti-Alzheimer's studies.
Cortijo, J; Naline, E; Ortiz, J L; Berto, L; Girard, V; Malbezin, M; Advenier, C; Morcillo, E J
1998-01-02
We have investigated the role of human bronchial cyclic nucleotide phosphodiesterases in the effects of fenspiride, a drug endowed with bronchodilator and anti-inflammatory properties. Functional studies on human isolated bronchi showed that fenspiride (10(-6)-3 x 10(-3) M, 30 min) induced a shift to the left of the concentration-response curves for isoprenaline and sodium nitroprusside with -logEC50 values of 4.1+/-0.1 (n = 7) and 3.5+/-0.2 (n = 8), respectively. Biochemical studies were carried out on three human bronchi in which separation of cyclic nucleotide phosphodiesterase isoenzymes was performed by ion exchange chromatography followed by determination of phosphodiesterase activity with a radioisotopic method. Phosphodiesterase 4 (cyclic AMP-specific) and phosphodiesterase 5 (cyclic GMP-specific) were the major phosphodiesterase isoforms present in the human bronchial tissue. The presence of phosphodiesterase 1 (Ca2+/calmodulin-stimulated), phosphodiesterase 2 (cyclic GMP-stimulated) and, in two cases, phosphodiesterase 3 (cyclic GMP-inhibited) was also identified. Fenspiride inhibited phosphodiesterase 4 and phosphodiesterase 3 activities with -logIC50 values of 4.16+/-0.09 and 3.44+/-0.12, respectively. Phosphodiesterase 5 activity was also inhibited with a -logIC50 value of approximately 3.8. Fenspiride (< or = 10(-3) M) produced less than 25% inhibition of phosphodiesterase 1 and phosphodiesterase 2 activities. In conclusion, fenspiride is an effective inhibitor of both cyclic AMP and cyclic GMP hydrolytic activity in human bronchial tissues and this action may contribute to its airway effects.
McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.
1996-01-01
Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.
Moaddel, Ruin; Abdrakhmanova, Galia; Kozak, Joanna; Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Rosenberg, Avraham; Tran, Thao; Xiao, Yingxian; Zarate, Carlos A.; Wainer, Irving W.
2012-01-01
The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)- hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC50 = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤1μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [125I]-α-bungarotoxin and [3H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC50 3.1 and 9.1μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC50 >100μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [3H]-MK-801. The calculated Ki values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and > 100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug. PMID:23183107
Adinehbeigi, Keivan; Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh
2017-06-01
With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.
Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh
2017-01-01
With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects. PMID:28385129
Honey shows potent inhibitory activity against the bovine testes hyaluronidase.
Kolayli, Sevgi; Sahin, Huseyin; Can, Zehra; Yildiz, Oktay; Sahin, Kübra
2016-08-01
The purpose of this study was to investigate the anti-hyaluronidase activities of honeys from different botanical origins honeys in order to determine their anti-inflammatory properties. The total phenolic contents, total flavonoids and total tannin levels of six types of honey, chestnut, oak, heather, pine, buckwheat and mixed blossom, were determined. Concentration-related inhibition values were tested turbidimetrically on bovine testis hyaluronidase (BTHase) as IC50 (mg/mL). All honeys exhibited various concentration-dependent degrees of inhibition against BTHase. Inhibition values varied significantly depending on honeys' levels of phenolic contents, flavonoid and tannin. The honeys with the highest anti-hyaluronidase activity were oak, chestnut and heather. In conclusion, polyphenol-rich honeys have high anti-hyaluronidase activity, and these honeys have high protective and complementary potential against hyaluronidase-induced anti-inflammatory failures.
Fu, Fan; Sun, Shengjun; Liu, Liping; Li, Jianying; Su, Yaping; Li, Yingying
2018-04-19
The computed tomography angiography (CTA) spot sign is a validated predictor of haematoma expansion (HE) in spontaneous intracerebral haemorrhage (SICH). We investigated whether defining the iodine concentration (IC) inside the spot sign and the haematoma on Gemstone spectral imaging (GSI) would improve its sensitivity and specificity for predicting HE. From 2014 to 2016, we prospectively enrolled 65 SICH patients who underwent single-phase spectral CTA within 6 h. Logistic regression was performed to assess the risk factors for HE. The predictive performance of individual spot sign characteristics was examined via receiver operating characteristic (ROC) analysis. The spot sign was detected in 46.1% (30/65) of patients. ROC analysis indicated that IC inside the spot sign had the greatest area under the ROC curve for HE (0.858; 95% confidence interval, 0.727-0.989; p = 0.003). Multivariate analysis found that spot sign with higher IC (i.e. IC > 7.82 100 μg/ml) was an independent predictor of HE (odds ratio = 34.27; 95% confidence interval, 5.608-209.41; p < 0.001) with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 0.81, 0.75, 0.90 and 0.60, respectively; while the spot sign showed sensitivity, specificity, PPV and NPV of 0.81, 0.79, 0.73 and 0.86. Logistic regression analysis indicated that the IC in haematomas was independently associated with HE (odds ratio = 1.525; 95% confidence interval, 1.041-2.235; p = 0.030). ICs in haematoma and in spot sign were all independently associated with HE. IC analysis in spectral imaging may help to identify SICH patients for targeted haemostatic therapy. • Iodine concentration in spot sign and haematoma can predict haematoma expansion • Spectral imaging could measure the IC inside the spot sign and haematoma • IC in spot sign improved the positive predictive value (PPV) cf. CTA.
Gaínza, Yousmel Alemán; Fantatto, Rafaela Regina; Chaves, Francisco Celio Maia; Bizzo, Humberto Ribeiro; Esteves, Sérgio Novita; Chagas, Ana Carolina de Souza
2016-01-01
The anthelminthic activity of the essential oil (EO) of Piper aduncum L. was tested in vitro on eggs and larvae of resistant (Embrapa2010) and susceptible (McMaster) isolates of Haemonchus contortus. The EO was obtained by steam distillation and its components identified by chromatography. EO concentrations of 12.5 to 0.02 mg/mL were used in the egg hatch test (EHT) and concentrations of 3.12 to 0.01 mg/mL in the larval development test (LDT). Inhibition concentrations (IC) were determined by the SAS Probit procedure, and significant differences assessed by ANOVA followed by Tukey's test. In the EHT, the IC50 for the susceptible isolate was 5.72 mg/mL. In the LDT, the IC50 and IC90 were, respectively, 0.10 mg/mL and 0.34 mg/mL for the susceptible isolate, and 0.22 mg/mL and 0.51 mg/mL for the resistant isolate. The EO (dillapiole 76.2%) was highly efficacious on phase L1. Due to the higher ICs obtained for the resistant isolate, it was raised the hypothesis that dillapiole may have a mechanism of action that resembles those of other anthelmintic compounds. We further review and discuss studies, especially those conducted in Brazil, that quantified the major constituents of P. aduncum-derived EO.
N-Cinnamoylated Aminoquinolines as Promising Antileishmanial Agents
Vale-Costa, S.; Costa-Gouveia, J.; Pérez, B.; Silva, T.; Teixeira, C.; Gomes, P.
2013-01-01
A series of cinnamic acid conjugates of primaquine and chloroquine were evaluated for their in vitro antileishmanial activities. Although primaquine derivatives had modest activity, chloroquine conjugates exhibited potent activity against both promastigotes (50% inhibitory concentration [IC50] = 2.6 to 21.8 μM) and intramacrophagic amastigotes (IC50 = 1.2 to 9.3 μM) of Leishmania infantum. Both the high activity of these chloroquine analogues and their mild-to-low toxicity toward host cells make them promising leads for the discovery of new antileishmanial agents. PMID:23917315
Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp
2008-01-01
Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-10-03
A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
Pan, Zhi-Zhen; Zhu, Yu-Jing; Yu, Xiao-Jie; Lin, Qi-Fan; Xiao, Rong-Feng; Tang, Jian-Yang; Chen, Qing-Xi; Liu, Bo
2012-10-31
4'-Thiosemicarbazonegriseofulvin, a new thiosemicarbazide derivative of griseofulvin, was synthesized and evaluated for its potential in the control of enzymatic browning and postharvest disease of fruits. Browning on fruits is mainly due to the enzymatic oxidation of phenolic compounds catalyzed by tyrosinase. 4'-Thiosemicarbazonegriseofulvin could effectively inhibit the activity of tyrosinase, and its 50% inhibitory concentration (IC(50)) against tyrosinase was determined to be 37.8 μM. It was a reversible and noncompetitive inhibitor of tyrosinase, and its inhibition constant (K(I)) was determined to be 38.42 μM. The antifungal activity of 4'-thiosemicarbazonegriseofulvin was studied against four fungi (Fusarium oxysporum, Fusarium moniliforme, Fusarium solani, and Colletotrichum truncatum) that often cause postharvest diseases of fruits. The results showed that 4'-thiosemicarbazonegriseofulvin could also strongly inhibit the mycelial growth of the four target fungi; the 50% lethal concentration (LC(50)) values were 5.4, 7.0, 15.3, and 1.5 mM, respectively.
Altıntop, Mehlika D; Gurkan-Alp, A Selen; Ozkay, Yusuf; Kaplancıklı, Zafer A
2013-08-01
In the present paper, a novel series of dithiocarbamates was synthesized via the treatment of 4-(trifluoromethyl)benzyl chloride with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. The chemical structures of the compounds were elucidated by (1) H NMR, mass spectral data, and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman's spectrophotometric method. The most potent AChE inhibitor was found as compound 2g (IC50 = 0.53 ± 0.001 µM) followed by compounds 2f (IC50 = 0.74 ± 0.001 µM) and 2j (IC50 = 0.89 ± 0.002 µM) when compared with donepezil (IC50 = 0.048 ± 0.001 µM). Compounds 2f and 2g were more effective than donepezil (IC50 = 7.88 ± 0.52 µM) on BuChE inhibition. Compounds 2f and 2g exhibited the inhibitory effect on BuChE with IC50 values of 1.39 ± 0.041 and 3.64 ± 0.072 µM, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chandrasekaran, C V; Edwin Jothie, R; Kapoor, Preeti; Gupta, Anumita; Agarwal, Amit
2011-06-01
There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic compounds.
Shukla, Shruti; Mehta, Archana; John, Jinu; Singh, Siddharth; Mehta, Pradeep; Vyas, Suresh Prasad
2009-08-01
The aim of this study was to assess the in vitro potential of ethanolic extract of Caesalpinia bonducella seeds as a natural antioxidant. The DPPH activity of the extract (20, 40, 50, 100 and 200 microg/ml) was increased in a dose dependent manner, which was found in the range of 38.93-74.77% as compared to ascorbic acid (64.26-82.58%). The IC(50) values of ethanolic extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 74.73 and 26.68 microg/ml, respectively. The ethanolic extract was also found to scavenge the superoxide generated by EDTA/NBT system. Measurement of total phenolic content of the ethanolic extract of C. bonducella was achieved using Folin-Ciocalteau reagent containing 62.50mg/g of phenolic content, which was found significantly higher when compared to reference standard gallic acid. The ethanolic extract also inhibited the hydroxyl radical, nitric oxide, superoxide anions with IC(50) values of 109.85, 102.65 and 89.84 microg/ml, respectively. However, the IC(50) values for the standard ascorbic acid were noted to be 70.79, 65.98 and 36.68 microg/ml respectively. The results obtained in this study clearly indicate that C. bonducella has a significant potential to use as a natural antioxidant agent.
Engeli, Roger T.; Rohrer, Simona R.; Vuorinen, Anna; Herdlinger, Sonja; Kaserer, Teresa; Leugger, Susanne; Schuster, Daniela
2017-01-01
Parabens are effective preservatives widely used in cosmetic products and processed food, with high human exposure. Recent evidence suggests that parabens exert estrogenic effects. This work investigated the potential interference of parabens with the estrogen-activating enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) 1 and the estrogen-inactivating 17β-HSD2. A ligand-based 17β-HSD2 pharmacophore model was applied to screen a cosmetic chemicals database, followed by in vitro testing of selected paraben compounds for inhibition of 17β-HSD1 and 17β-HSD2 activities. All tested parabens and paraben-like compounds, except their common metabolite p-hydroxybenzoic acid, inhibited 17β-HSD2. Ethylparaben and ethyl vanillate inhibited 17β-HSD2 with IC50 values of 4.6 ± 0.8 and 1.3 ± 0.3 µM, respectively. Additionally, parabens size-dependently inhibited 17β-HSD1, whereby hexyl- and heptylparaben were most active with IC50 values of 2.6 ± 0.6 and 1.8 ± 0.3 µM. Low micromolar concentrations of hexyl- and heptylparaben decreased 17β-HSD1 activity, and ethylparaben and ethyl vanillate decreased 17β-HSD2 activity. However, regarding the very rapid metabolism of these compounds to the inactive p-hydroxybenzoic acid by esterases, it needs to be determined under which conditions low micromolar concentrations of these parabens or their mixtures can occur in target cells to effectively disturb estrogen effects in vivo. PMID:28925944
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, P.; Siciliano, S.D.; Greer, C.W.
1999-12-01
The response of potential nitrification activity (PNA), nitrogen-fixation activity (NFA), and dehydrogenase activity (DHA) in soil to 2,4,6-trinitrotoluene (TNT) was assessed. Two garden soils of contrasting texture were spiked with TNT. Soil microbial activities and TNT residues were analyzed 1 week later. The estimated IC50 ranged from 39 to 533 mg/kg of the acetonitrile-extractable (AE) TNT, depending on indicators and soils. The lowest LOEC (lowest-observed-effect concentration) was 1 mg AE TNT/kg. Field soil was collected from three known contaminated sites in an abandoned TNT manufacturing facility. Microbial toxicity significantly correlated to TNT levels in these soils. The LOEC and NOECmore » (no-observed-effect concentration) values were site and indicator specific, with the lowest LOEC being 1 mg AE TNT/kg and the lowest NOEC being 0.4 mg AE TNT/kg. The IC50 of the pooled field samples was 51 mg AE TNT/kg for PNA or 157 mg AE TNT/kg for DHA. These results indicate that microbial responses were consistent and comparable between the laboratory and the field and that TNT could significantly inhibit soil microbial activities at very low levels. Both AE TNT and deionized water-extractable (DW) TNT concentrations correlated well with microbial toxicity, but AE TNT provided a better evaluation of TNT bioavailability than did DW TNT.« less
İşeri, Özlem Darcansoy; Yurtcu, Erkan; Sahin, Feride Iffet; Haberal, Mehmet
2013-06-01
Corchorus olitorius L. (Malvaceae) has industrial importance in world jute production and is a widely cultivated and consumed crop in Cyprus and in some Arabic countries. The present study investigated cytotoxic and genotoxic effects of leaf extracts (LE) and seed extracts (SE) of the C. olitorius on the multiple myeloma-derived ARH-77 cells. The extracts were also evaluated for their total phenol content (TPC) and free radical scavenging activity (FRSA). C. olitorius was collected from Nicosia, Cyprus. TPC and FRSA were measured by Folin-Ciocalteu and DPPH free radical methods, respectively. Cytotoxicity was evaluated by the MTT assay (4-2048 µg/mL range), and DNA damage (at IC50 and ½IC50) was measured by the comet assay. The LE had significantly higher total phenol (78 mg GAE/g extract) than the SE (2 mg GAE/g extract) with significantly higher FRSA (IC50 LE: 23 µg/mL and IC50 SE: 10 401 µg/mL). Both LE and SE exerted cytotoxic effects on cells after 48 h. The IC50 of SE (17 µg/mL) was lower than LE (151 µg/mL), which demonstrates its higher cytotoxicity on cells. The extracts were applied at 150 and 75 µg/mL for LE and at 17 and 8.5 µg/mL for SE, and the results of the comet assay revealed that the extracts induced genotoxic damage on ARH-77 cells. In both 48 h leaf and seed extract treatments, genotoxic damage significantly increased with increasing concentrations at relevant cytotoxic concentrations. To our knowledge, this is the first report demonstrating the high cytotoxic potential of C. olitorius SE and the genotoxic potential of LE and SE.
Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami
2016-02-26
Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.
Cytotoxic responses of selected insecticides in chick ganglia cultures.
Sharma, R P; Obersteiner, E J
1981-01-01
Various agricultural chemicals, e.g. pesticides, are known to cause different toxic effects in man and animals. Some of these produce responses involving the nervous tissue. Total of 52 such chemicals, representing organophosphates, carbamates and other miscellaneous insecticides were evaluated to determine their relative cytotoxic effects in avian dorsal root ganglia cultures. Many of these chemicals caused a slight stimulation of cellular growth at very low concentrations. At toxic concentrations, a dose-related but nonspecific inhibition of cell growth occurred. The cytotoxic changes included the decreased migration of cells from the culture implant, varicosities in and shortening of various cells and vacuolization and rounding of neuroglial cells. At high concentrations, pigmentary degeneration and complete abolition of cell growth were observed. The toxic effects were numerically scored in a random blind fashion and the concentrations of individual chemicals to produce a half maximal effect (IC50) in culture were determined from the dose-response curves. The IC50 values for various chemicals ranged from approximately 10(-6) M for compounds like methylparathion, diazinon, paraoxon and Vendex to greater than 10(-2) M for chlorpyriphos and methylchlorpyriphos. No significant correlations of nerve fiber or glial cell cytotoxicity were apparent with other toxic or physico-chemical properties such as lethal dose in animals, cholinesterase inhibition, lipophilicity or water solubility of chemicals. Clinically neurotoxic and nonneurotoxic compounds caused similar cytotoxic effects in ganglia cultures. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7272842
Nonaka, Motohiro; Murata, Yuho; Takano, Ryo; Han, Yongmei; Bin Kabir, Md Hazzaz; Kato, Kentaro
2018-06-25
Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC 50 ) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC 50 < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC 50 < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC 50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs.
Matsui, T; Li, C H; Osajima, Y
1999-07-01
Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I-converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%-8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%-3 h alpha-amylase treatment of defatted WG (IC50; 0.37 mg protein ml(-1)). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml(-1)). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 microM, composed of 2-7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 microM), Ile-Val-Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate.
Enzyme immunoassay for tenuazonic acid in apple and tomato products.
Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald
2011-12-14
The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.
Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K
2016-01-01
Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.
Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem
2018-04-20
Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.
Chougouo, Rosine D K; Nguekeu, Yves M M; Dzoyem, Jean P; Awouafack, Maurice D; Kouamouo, Jonas; Tane, Pierre; McGaw, Lyndy J; Eloff, Jacobus N
2016-01-01
Natural products, including those derived from higher plants have, over the years, contributed greatly to the development of modern therapeutic drugs. Due to the medicinal importance in traditional practice and the diversified biology and chemistry of the constituents from Artemisia spp., the genus has been receiving growing attention. The aim of this study was to investigate the ability of the ethanol extract, four fractions (F1-F4) and five compounds namely artemisinin (1), scopoletin (2), chrysosplenetin (3), eupatin (4) and 3-O-β-d-glucopyranoside of sitosterol (5) isolated from A. annua to modulate the activity of anticholinesterase (AchE) and the production of nitric oxide (NO) in LPS-activated RAW 264.7 macrophages. At the lowest concentration tested (6.25 µg/mL), the crude extract and fraction F2 had the highest NO inhibitory activity (72.39 and 71.00 % inhibition respectively) without significant toxicity on the viability of macrophage cells (93.86 and 79.87 % of cell viability respectively). The crude extract inhibited AchE activity by 71.83 % (at 1 mg/mL) with an IC50 value of 87.43 µg/mL while F2 and F4 were the most active fractions (IC50 values of 36.75 and 28.82 µg/mL). Artemisinin (1) and chrysosplenetin (3) had the highest AChE activity with 71.67 and 80.00 % inhibition (at 0.1 mg/mL) and IC50 values of 29.34 and 27.14 µg/mL, respectively. Our results validate the traditional use of A. annua and could help to support the usefulness of this plant in the treatment of inflammatory and neurological disorders especially where nitric oxide and a cholinesterase are involved.
Singh, Garima; Passsari, Ajit K.; Leo, Vincent V.; Mishra, Vineet K.; Subbarayan, Sarathbabu; Singh, Bhim P.; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K.; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K.
2016-01-01
Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health. PMID:27066046
Ustiloxin G, a New Cyclopeptide Mycotoxin from Rice False Smut Balls.
Wang, Xiaohan; Wang, Jian; Lai, Daowan; Wang, Weixuan; Dai, Jungui; Zhou, Ligang; Liu, Yang
2017-02-10
Ustiloxins were cyclopeptide mycotoxins from rice false smut balls (FSBs) that formed in rice spikelets infected by the fungal pathogen Ustilaginoidea virens . To investigate the chemical diversity of these metabolites and their bioactivities, one new cyclopeptide, ustiloxin G ( 1 ), together with four known congeners-ustiloxins A ( 2 ), B ( 3 ), D ( 4 ), and F ( 5 )-were isolated from water extract of rice FSBs. Their structures were elucidated by analyses of their physical and spectroscopic data, including ultraviolet spectrometry (UV), infrared spectroscopy (IR), 1D and 2D nuclear magnetic resonance (NMR), and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS). All the compounds were evaluated for their cytotoxic as well as radicle and germ elongation inhibitory activities. Ustiloxin B ( 3 ) showed the best activity against the cell line BGC-823 with an IC 50 value of 1.03 µM, while ustiloxin G ( 1 ) showed moderate activity against the cell lines A549 and A375 with IC 50 values of 36.5 µM and 22.5 µM, respectively. Ustiloxins A ( 2 ), B ( 3 ), and G ( 1 ) showed strong inhibition of radicle and germ elongation of rice seeds. When their concentrations were at 200 µg/mL, the inhibitory ratios of radicle and germ elongation were more than 90% and 50%, respectively, the same effect as that of positive control (glyphosate). They also induced abnormal swelling of the roots and germs of rice seedlings.
Potential of synthetic endoperoxides against Trichomonas vaginalis in vitro.
Seo, Min-Young; Ryu, Jae-Sook; Sato, Akira; Kurosaki, Yuji; Chang, Kyung-Soo; Kim, Hye-Sook
2017-10-01
Metronidazole is well known for medicine against Trichomonas vaginalis infection, but it has side effects though it is effective, and especially because reports of metronidazole-tolerant species are increasing, the development of new medicine is being required. Here, we noticed the killing effects of endoperoxide compounds, N-89 and N-251 as new antimalarial drug candidates, on T. vaginalis and searched the possibility of development of new medicine. We added each of metronidazole, artemisinin, and two of new endoperoxides (N-89 and N-251) to metronidazole-resistant and -sensitive species and compared its anti-trichomonal efficacy. For metronidazole, IC 50 value, 50% of killing concentration for T. vaginalis, was very low for metronidazole-sensitive isolates (11.7 to 22.8μM), but was high for metronidazole-resistant ones (182.9 to 730.4μM). The IC 50 values of N-89 and N-251 were 41.0 to 60.0μM, and 82.0 to 300.0μM for metronidazole-sensitive and -resistant isolates, respectively. In conclusion, we found the endoperoxides, N-89 and N-251, have anti-trichomonal effect against metronidazole-resistant T. vaginalis as well as metronidazole-sensitive ones. These results indicate that the anti-trichomonal effects for our endoperoxides are equivalent or better in metronidazole-resistant T. vaginalis in comparison to metronidazole. Copyright © 2017 Elsevier B.V. All rights reserved.
Garg, Munish; Lata, Kusum; Satija, Saurabh
2016-01-01
Objective: To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Materials and Methods: Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Results: Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Conclusion: Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids. PMID:26997725
Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting
2015-12-22
Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.
Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis.
Chen, Ming-Jen; Hung, Chih-Chuan; Chen, Yan-Ru; Lai, Shih-Ting; Chan, Chin-Feng
2016-12-01
In this study, two kojic acid-methimazole (2-mercapto-1-methylimidazole, MMI, 1) derivatives, 5-hydroxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 4) and 5-methoxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 5), were synthesized to examine their inhibitory kinetics on mushroom tyrosinase. Compound 4 exhibited a potent inhibitory effect on monophenolase activity in a dose-dependent manner, with an IC 50 value of 0.03 mM. On diphenolase activity, compound 4 exhibited a less inhibitory effect (IC 50 = 1.29 mM) but was stronger than kojic acid (IC 50 = 1.80 mM). Kinetic analysis indicated that compound 4 was both as a noncompetitive monophenolase and diphenolase inhibitor. By contrast, compound 5 exhibited no inhibitory effects on mushroom tyrosinase activity. The IC 50 value of compound 4 for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was 4.09 mM, being much higher than the IC 50 of compound 4 for inhibiting the tyrosinase activity. The results indicated that the antioxidant activity of compound 4 may be partly related to the potent inhibitory effect on mushroom tyrosinase. Compound 4 also exerted a potent inhibitory effect on intracellular melanin formation in B16/F10 murine melanoma cells, and caused no cytotoxicity. Furthermore, compound 4 induced no adverse effects on the Hen's egg test-chorioallantoic membrane (HET-CAM). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Reiter, Christoph; Fröhlich, Tony; Zeino, Maen; Marschall, Manfred; Bahsi, Hanife; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Hampel, Frank; Efferth, Thomas; Tsogoeva, Svetlana B
2015-06-05
In our ongoing search for highly active hybrid molecules exceeding their parent compounds in anticancer, antimalaria as well as antiviral activity and being an alternative to the standard drugs, we present the synthesis and biological investigations of 2nd generation 1,2,4-trioxane-ferrocene hybrids. In vitro tests against the CCRF-CEM leukemia cell line revealed di-1,2,4-trioxane-ferrocene hybrid 7 as the most active compound (IC50 of 0.01 μM). Regarding the activity against the multidrug resistant subline CEM/ADR5000, 1,2,4-trioxane-ferrocene hybrid 5 showed a remarkable activity (IC50 of 0.53 μM). Contrary to the antimalaria activity of hybrids 4-8 against Plasmodium falciparum 3D7 strain with slightly higher IC50 values (between 7.2 and 30.2 nM) than that of their parent compound DHA, hybrids 5-7 possessed very promising activity (IC50 values lower than 0.5 μM) against human cytomegalovirus (HCMV). The application of 1,2,4-trioxane-ferrocene hybrids against HCMV is unprecedented and demonstrated here for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Hypolipidemic and Antioxidant Properties of Hot Pepper Flower (Capsicum annuum L.).
Marrelli, Mariangela; Menichini, Francesco; Conforti, Filomena
2016-09-01
At present, the various medical treatments of obesity involve side effects. The aim of the research is therefore to find natural compounds that have anti-obesity activity with minimum disadvantages. In this study, the hypolipidemic effect of hydroalcoholic extract of flowers from Capsicum annuum L. was examined through the evaluation of inhibition of pancreatic lipase. Antioxidant activity was assessed using different tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (˙NO) and lipid peroxidation inhibition assays. Phytochemical analysis indicated that total phenolic and flavonoid content in the extract was 128.7 ± 4.5 mg chlorogenic acid equivalent/g of crude extract and 17.66 ± 0.11 mg of quercetin equivalent/g of crude extract, respectively. The extract inhibited pancreatic lipase with IC50 value equal to 3.54 ± 0.18 mg/ml. It also inhibited lipid peroxidation with IC50 value of 27.61 ± 2.25 μg/ml after 30 min of incubation and 41.69 ± 1.13 μg/ml after 60 min of incubation. The IC50 value of radical scavenging activity was 51.90 ± 2.03 μg/ml. The extract was also able to inhibit NO production (IC50 = of 264.3 ± 7.98 μg/ml) without showing any cytotoxic effect.
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.
Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila
2016-02-11
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression
JAFAAR, ZAINAB M.T.; LITCHFIELD, LACEY M.; IVANOVA, MARGARITA M.; RADDE, BRANDIE N.; AL-RAYYAN, NUMAN; KLINGE, CAROLYN M.
2014-01-01
Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation. PMID:24534923
Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids.
Swapnaja, K Jones M; Yennam, Satyanarayana; Chavali, Murthy; Poornachandra, Y; Kumar, C Ganesh; Muthusamy, Krubakaran; Jayaraman, Venkatesh Babu; Arumugam, Premkumar; Balasubramanian, Sridhar; Sriram, Kiran Kumar
2016-07-19
A series of novel diaziridinyl quinone isoxazole hybrids (9a-9j) were synthesized starting from 2, 5-dimethoxy acetophenone 1 via Claisen reaction, cyclisation, alkoxy carbonylation, hydrolysis, oxidation and aziridine insertion. All the compounds were screened for antimicrobial, anti-biofilm and cytotoxic activities. Among the screened compounds, the compound 9h showed good antibacterial and anti-biofilm activities with MIC value of 3.9, 3.9, 3.9 and 7.8 μg/mL, respectively, and IC50 values of 1.9, 2.5, 2.8 and 5.1 μM, respectively, against Staphylococcus aureus MTCC 96, S. aureus MLS-16 MTCC 2940, Bacillus subtilis MTCC 121 and Klebsiella planticola MTCC 530, and also exhibited potent antifungal activity against Candida albicans MTCC 227, C. albicans MTCC 854 and Candida krusei MTCC 3020 equipotent to standard miconazole (MIC value 7.8 μg/mL). All the synthesized compounds exhibited promising cytotoxicity against A549 and PC3 cell lines (IC50 values between 1 and 4 μM). Compounds 9b and 9j exhibited IC50 value of 0.5 μM which was similar to that of Mitomycin C against PC3 cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
In vitro anti-influenza viral activities of constituents from Caesalpinia sappan.
Liu, Ai-Lin; Shu, Shi-Hui; Qin, Hai-Lin; Lee, Simon Ming Yuen; Wang, Yi-Tao; Du, Guan-Hua
2009-03-01
Six constituents with neuraminidase (NA) inhibitory activity, namely brazilein, brazilin, protosappanin A, 3-deoxysappanchalcone, sappanchalcone and rhamnetin, were isolated from the hearthwood of Caesalpinia sappan (Leguminosae). Their in vitro anti-influenza virus activities were evaluated with the cytopathic effect (CPE) reduction method. The results showed that 3-deoxysappanchalcone and sappanchalcone exhibited the highest activity against influenza virus (H3N2) with IC50 values of 1.06 and 2.06 microg/mL, respectively, in comparison to the positive control oseltamivir acid and ribavirin with IC50 values of 0.065 and 9.17 microg/mL, respectively.
Meng, Xiaoyan; Ni, Cheng; Shen, Yaqi; Hu, Xuemei; Chen, Xiao; Li, Zhen; Hu, Daoyu
2017-01-01
To investigate the value of quantitative analysis in dual energy spectral computed tomography (DESCT) for differentiating malignant gastric mucosal lesions from benign gastric mucosal lesions (including gastric inflammation [GI] and normal gastric mucosa [NGM]). This study was approved by the ethics committee, and all patients provided written informed consent. A total of 161 consecutive patients (63 with gastric cancer [GC], 48 with GI, and 50 with NGM) who underwent dual-phase contrast enhanced DESCT scans in the arterial phase (AP) and portal venous phase (PVP) were included in this study. Iodine concentration (IC) in lesions was derived from the iodine-based material-decomposition images and normalized to that in the aorta to obtain normalized IC (nIC). The ratios of IC and nIC between the AP and PVP were calculated. Diagnostic confidence for GC and GI was evaluated with reviewing the features including gastric wall thickness, focal, and eccentric on the conventional polychromatic images. All statistical analyses were performed by using statistical software SPSS 17.0 (SPSS, Chicago, IL). IC and nIC in GC differed significantly from those in GI and NGM, except for nICAP in comparing GC with GI. Mean nIC values of GC (0.18 ± 0.06 in AP and 0.62 ± 0.16 in PVP) were significantly higher than that of NGM (0.12 ± 0.03 in AP and 0.37 ± 0.08 in PVP) (all P < 0.05). There was also significant difference for IC values in GC, GI, and NGM (24.19 ± 8.27, 19.07 ± 5.82, and 13.61 ± 2.52 mg/mL, respectively, in AP and 28.00 ± 7.01, 24.66 ± 6.55, and 16.94 ± 3.06 mg/mL, respectively, in PVP). Based on Receiver Operating Characteristic Curve analysis, nIC and IC in PVP had high sensitivities of 88.89% and 90.48%, respectively, in differentiating GC from NGM, while the sensitivities were 71.43% and 88.89% during AP. Ratios IC and nIC ratios did not provide adequate diagnostic accuracy with their area under curves less than 0.65. With the conventional features, the diagnostic accuracies for GC and GI were 75.0% and 98.0%, respectively. Quantitative analysis of DESCT imaging parameters for gastric mucosa, such as nIC and IC, is useful for differentiating malignant from benign gastric mucosal lesions.
Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents.
Mohammadipanah, Fatemeh; Momenilandi, Mana
2018-12-01
Actinobacteria are a precious source of novel bioactive metabolites with potential pharmaceutical applications. Representatives of 11 genera of rare Actinobacteria were selected for the evaluation of antioxidant activity. Fermentation broths of the Actinobacteria were extracted and dosage of 10 to 2000 µg/mL were applied for in vitro antioxidant-related bioassays. Cytotoxicity was assessed at the concentration of 2.5-20 µg/mL. In the DPPH scavenging activity, 15 out of 52 extracts showed 17.0-26.8% activity in quantitative evaluation. Metabolites of five prominent antioxidant producing strains protected the DNA (pUC19) against UV-induced photolyzed H 2 O 2 -oxidative degradation. The potent antioxidant extracts inhibited two oxidative enzymes of xanthine oxidase in the range of 17.5-45.2% (three extracts had IC 50 less than allopurinol) and lipoxygenase in the range of 36-55% (all five extracts had IC 50 values less than daidzein). All these extracts could also protect eythrocytes from iron-induced hemolysis with ED 50 values in a range of 0.014-1.25 mg/mL. Growth restoration of the yeast cells lacking the sod1 gene was observed by the antioxidant metabolite of Saccharothrix ecbatanensis UTMC 537 at the concentration of 1 mg/mL. The presence of nonidentical metabolites might be responsible for antioxidant and enzyme inhibitory activities of S. ecbatanensis, newly described actinobacterium in family Pseudonocardiaceae. The scavenging of the free electrons, protection of DNA and model yeast cells against oxidative stress, in addition to the inhibition of the oxidating enzymes are the main mechanisms of the antioxidant effect of the introduced resource in this study.
Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.).
Mahmud, Zobaer Al; Bachar, Sitesh C; Hasan, Choudhury Mahmood; Emran, Talha Bin; Qais, Nazmul; Uddin, Mir Muhammad Nasir
2017-07-06
Oleanolic acid (NZ-15), 7 α, 28-olean diol (NZ-38) and Stigmasterol (NZ-14) were isolated from the ethanolic extracts of the roots of Leea macrophylla (Family: Leeaceae) by using chromatographic analysis. This is the first report of isolation of these compounds from this plant. Their structures were constructed by spectroscopic analysis and by comparing the data with the published one. Subsequently the ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property. The ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property by DPPH free radical scavenging assay, superoxide anion radical scavenging assay, nitric oxide radical scavenging assay, and reducing power assay. In the DPPH free radical scavenging assay and superoxide radical scavenging assay, the ethyl acetate soluble fraction of ethanolic extract revealed the highest free radical scavenging activity with IC 50 value of 2.65 and 155.62 μg/ml, respectively as compared to standard ascorbic acid (IC 50 value of 5.8 and 99.66 μg/ml). Ethyl acetate fraction also possessed highest reducing power activity with an EC50 value of 15.27 μg/ml compared to ascorbic acid (EC 50 0.91 μg/ml). On the other hand, the carbon tetrachloride fraction exhibited most significant NO scavenging activity with IC 50 value of 277.8 μg/ml that was even higher than that of standard ascorbic acid (IC 50 value 356.04 μg/ml). In addition, the total phenolic contents of these extract and fractions were evaluated using Folin-Ciocalteu reagent and varied from 7.93 to 50.21 mg/g dry weight expressed as gallic acid equivalents (GAE). This study showed that different extracts of roots of L. macrophylla possess potential DPPH, superoxide, and NO free radical scavenging activities. The antioxidant activities of the plant extracts might be due to the presence of oleanolic acid, oleanolic acid derivative 7 α, 28-olean diol and stigmasterol.
Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu
2016-11-15
A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC 50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC 50 <1.56μM) and 6l (IC 50 =2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC 50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C.; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele
2018-01-01
Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs. PMID:29390009
Sena-Lopes, Ângela; Bezerra, Francisco Silvestre Brilhante; das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele
2018-01-01
Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.
The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells.
Pirpour Tazehkand, Abbas; Akbarzadeh, Maryam; Velaie, Kobra; Sadeghi, Mohammad Reza; Samadi, Nasser
2018-04-20
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as an important strategy to overcome oxaliplatin resistance. Copyright © 2018. Published by Elsevier Masson SAS.
Dugasani, Swarnalatha; Pichika, Mallikarjuna Rao; Nadarajah, Vishna Devi; Balijepalli, Madhu Katyayani; Tandra, Satyanarayana; Korlakunta, Jayaveera Narsimha
2010-02-03
Zingiber officinale Rosc. (Zingiberaceae) has been traditionally used in Ayurvedic, Chinese and Tibb-Unani herbal medicines for the treatment of various illnesses that involve inflammation and which are caused by oxidative stress. Although gingerols and shogaols are the major bioactive compounds present in Zingiber officinale, their molecular mechanisms of actions and the relationship between their structural features and the activity have not been well studied. The aim of the present study was to examine and compare the antioxidant and anti-inflammatory activities of gingerols and their natural analogues to determine their structure-activity relationship and molecular mechanisms. The in vitro activities of the compounds [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol were evaluated for scavenging of 1,1-diphenyl-2-picyrlhydrazyl (DPPH), superoxide and hydroxyl radicals, inhibition of N-formyl-methionyl-leucyl-phenylalanine (f-MLP) induced reactive oxygen species (ROS) production in human polymorphonuclear neutrophils (PMN), inhibition of lipopolysaccharide induced nitrite and prostaglandin E(2) production in RAW 264.7 cells. In the antioxidant activity assay, [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol exhibited substantial scavenging activities with IC(50) values of 26.3, 19.47, 10.47 and 8.05 microM against DPPH radical, IC(50) values of 4.05, 2.5, 1.68 and 0.85 microM against superoxide radical and IC(50) values of 4.62, 1.97, 1.35 and 0.72 microM against hydroxyl radical, respectively. The free radical scavenging activity of these compounds also enhanced with increasing concentration (P<0.05). On the other hand, all the compounds at a concentration of 6 microM have significantly inhibited (P<0.05) f-MLP-stimulated oxidative burst in PMN. In addition, production of inflammatory mediators (NO and PGE(2)) has been inhibited significantly (P<0.05) and dose-dependently. 6-Shogaol has exhibited the most potent antioxidant and anti-inflammatory properties which can be attributed to the presence of alpha,beta-unsaturated ketone moiety. The carbon chain length has also played a significant role in making 10-gingerol as the most potent among all the gingerols. This study justifies the use of dry ginger in traditional systems of medicine. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
New isopimarane diterpenes and nortriterpene with cytotoxic activity from Ephorbia alatavica Boiss.
Rozimamat, Rushangul; Hu, Rui; Aisa, Haji Akber
2018-06-01
Three new isopimarane diterpenes and one new nor-triterpenes, along with five known diterpenes were isolated from the whole areal part of Ephorbia alatavica Boiss. The structures of the new compounds (1-4) were determined based on extensive spectroscopic analysis, including HR-ESIMS, 1D and 2D NMR data. A plausible biosynthetic pathway for new compounds (1-4) were hypothesized. All isolated compounds were screen for cytotoxicity activity against MCF-8, HeLa and A549 cell lines in vitro by MTT assay. New compound 1 and known 9 showed potential cytotoxic activities with IC 50 values of 15.327 μg/mL, 23.066 μg/mL against MCF-8 cell lines, compound1 showed noteworthy cytotoxic activity with IC 50 13.033 μg/mL against A549 cancer cell line. New compounds 2, 4 and 4 showed moderate cytotoxic activities three human cancer lines with IC 50 value around 50 μg/mL, which compared with positive control doxorubicin (DOX). Copyright © 2018 Elsevier B.V. All rights reserved.
El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun
2015-08-13
Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.
Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Murugaiyah, Vikneswaran; Basiri, Alireza; Perumal, Subbu; Wahab, Habibah A; Bing, Choi Sy
2013-04-01
Three-component reaction of a series of 1-acryloyl-3,5-bisbenzylidenepiperidin-4-ones with isatin and L-proline in 1:1:1 and 1:2:2 molar ratios in methanol afforded, respectively the piperidone-grafted novel mono- and bisspiro heterocyclic hybrids comprising functionalized piperidine, pyrrolizine and oxindole ring systems in good yields. The in vitro evaluation of cholinesterase enzymes inhibitory activity of these cycloadducts disclosed that monospiripyrrolizines (8a-k), are more active with IC50 ranging from 3.36 to 20.07 μM than either the dipolarophiles (5a-k) or bisspiropyrrolizines (9a-k). The compounds, 8i and 8e with IC50 values of 3.36 and 3.50 μM, respectively showed the maximum inhibition of acethylcholinesterase (AChE) and butrylylcholinestrase (BuChE). Molecular modeling simulation, disclosed the binding interactions of the most active compounds to the active site residues of their respective enzymes. The docking results were in accordance with the IC50 values obtained from in vitro cholinesterase assay. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of an enzyme-linked immunosorbent assay for the detection of dicamba.
Clegg, B S; Stephenson, G R; Hall, J C
2001-05-01
A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.
Maskell, Jeffrey P.; Sefton, Armine M.; Hall, Lucinda M. C.
2001-01-01
Trimethoprim resistance in Streptococcus pneumoniae can be conferred by a single amino acid substitution (I100-L) in dihydrofolate reductase (DHFR), but resistant clinical isolates usually carry multiple DHFR mutations. DHFR genes from five trimethoprim-resistant isolates from the United Kingdom were compared to susceptible isolates and used to transform a susceptible control strain (CP1015). All trimethoprim-resistant isolates and transformants contained the I100-L mutation. The properties of DHFRs from transformants with different combinations of mutations were compared. In a transformant with only the I100-L mutation (R12/T2) and a D92-A mutation also found in the DHFRs of susceptible isolates, the enzyme was much more resistant to trimethoprim inhibition (50% inhibitory concentration [IC50], 4.2 μM) than was the DHFR from strain CP1015 (IC50, 0.09 μM). However, Km values indicated a lower affinity for the enzyme's natural substrates (Km for dihydrofolate [DHF], 3.1 μM for CP1015 and 27.5 μM for R12/T2) and a twofold decrease in the specificity constant. In transformants with additional mutations in the C-terminal portion of the enzyme, Km values for DHF were reduced (9.2 to 15.2 μM), indicating compensation for the lower affinity generated by I100-L. Additional mutations in the N-terminal portion of the enzyme were associated with up to threefold-increased resistance to trimethoprim (IC50 of up to 13.7 μM). It is postulated that carriage of the mutation M53-I—which, like I100-L, corresponds to a trimethoprim binding site in the Escherichia coli DHFR—is responsible for this increase. This study demonstrates that although the I100-L mutation alone may give rise to trimethoprim resistance, additional mutations serve to enhance resistance and modulate the effects of existing mutations on the affinity of DHFR for its natural substrates. PMID:11257022
[3-bromopyruvate enhances cisplatin sensitivity of hepatocellular carcinoma cells in vitro].
Zhao, Surong; Zhang, Yuanyuan; Wu, Chengzhu; Li, Hongmei; Jiang, Chenchen; Jiang, Zhiwen; Liu, Hao
2014-01-01
To investigate the effect of 3-bromopyruvate (3-BP) in sensitizing hepatocellular carcinoma cells to cisplatin-induced apoptosis and its possible mechanism. The growth inhibition of HepG2 and SMMC7721 cells following exposures to different concentrations of 3-BP and cisplatin was measured by MTT assay. The apoptosis of cells treated with 100 µmol/L 3-BP with or without 8 µmol/L cisplatin was assessed using flow cytometry with PI staining, and the activity of caspase-3 and intracellular ATP level were detected using commercial detection kits; the expression of XIAP and PARP was analyzed using Western blotting. 3-BP produced obvious inhibitory effects on HepG2 and SMMC7721 cells at the concentrations of 50-400 µmol/L with IC50 values of 238.9∓13.9 µmol/L and 278.7∓11.7 µmol/L for a 48-h treatment, respectively. Cisplatin also inhibited the growth of HepG2 and SMMC7721 cells at the concentrations of 2-32 µmol/L, with IC50 values of 16.4∓0.9 µmol/L and 20.9∓1.8 µmol/L after a 48-h treatment, respectively. Treatment with 100 µmol/L 3-BP combined with 8 µmol/L cisplatin for 48 h resulted in a growth inhibition rate of (60.6∓2.2)% in HepG2 cells and (56.8∓2.3)% in SMMC7721 cells, which were significantly higher than those in cells treated with 3-BP or cisplatin alone. The combined treatment for 48 h induced an apoptotic rate of (51.1∓4.3)% in HepG2 cells and (46.5∓3.9)% in SMMC7721 cells, which were also markedly higher than those in cells with 3-BP or cisplatin treatment alone. 3-BP can sensitize HepG2 and SMMC7721 cells to cisplatin-induced apoptosis possibly by causing intracellular ATP deficiency, down-regulating XIAP, and increasing caspase-3 activity.
Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Rožman, Marko; Osmak, Maja; Garaj-Vrhovac, Vera
2014-12-01
In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.
Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren; Yin, Hongwei; Hendricks, William P D; Sereduk, Chris; Kiefer, Jeffrey; Sekulic, Aleksandar; LoRusso, Patricia M; Vuori, Kristiina; Trent, Jeffrey M; Schork, Nicholas J
2018-01-12
Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC 50 ). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC 50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC 50 -based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.
Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria
2018-07-01
Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50 < 10 μg/mL): Juniperus oxycedrus (IC 50 of 0.9 μg/mL), Cymbopogon citratus (IC 50 of 3.2 μg/mL) and Lavandula luisieri (IC 50 of 5.7 μg/mL). These oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors
NASA Astrophysics Data System (ADS)
Khan, Khalid M.; Ambreen, Nida; Taha, Muhammad; Halim, Sobia A.; Zaheer-ul-Haq; Naureen, Shagufta; Rasheed, Saima; Perveen, Shahnaz; Ali, Sajjad; Choudhary, Mohammad Iqbal
2014-05-01
Using structure-based virtual screening approach, a coumarin derivative ( 1) was identified as β-glucuronidase inhibitor. A focused library of coumarin derivatives was synthesized by eco-benign version of chemical reaction, and all synthetic compounds were characterized by using spectroscopy. These compounds were found to be inhibitor of β-glucuronidase with IC50 values in a micromolar range. All synthetic compounds exhibited interesting inhibitory activity against β-glucuronidase, however, their potency varied substantially from IC50 = 9.9-352.6 µM. Of twenty-one compounds, four exhibited a better inhibitory profile than the initial hit 1. Interestingly, compounds 1e, 1k, 1n and 1p exhibited more potency than the standard inhibitor with IC50 values 34.2, 21.4, 11.7, and 9.9 µM, respectively. We further studied their dose responses and also checked our results by using detergent Triton ×-100. We found that our results are true and not affected by detergent.
Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors.
Khan, Khalid M; Ambreen, Nida; Taha, Muhammad; Halim, Sobia A; Zaheer-ul-Haq; Naureen, Shagufta; Rasheed, Saima; Perveen, Shahnaz; Ali, Sajjad; Choudhary, Mohammad Iqbal
2014-05-01
Using structure-based virtual screening approach, a coumarin derivative (1) was identified as β-glucuronidase inhibitor. A focused library of coumarin derivatives was synthesized by eco-benign version of chemical reaction, and all synthetic compounds were characterized by using spectroscopy. These compounds were found to be inhibitor of β-glucuronidase with IC50 values in a micromolar range. All synthetic compounds exhibited interesting inhibitory activity against β-glucuronidase, however, their potency varied substantially from IC50 = 9.9-352.6 µM. Of twenty-one compounds, four exhibited a better inhibitory profile than the initial hit 1. Interestingly, compounds 1e, 1k, 1n and 1p exhibited more potency than the standard inhibitor with IC50 values 34.2, 21.4, 11.7, and 9.9 µM, respectively. We further studied their dose responses and also checked our results by using detergent Triton ×-100. We found that our results are true and not affected by detergent.
Rahim, Fazal; Malik, Fazal; Ullah, Hayat; Wadood, Abdul; Khan, Fahad; Javid, Muhammad Tariq; Taha, Muhammad; Rehman, Wajid; Ur Rehman, Ashfaq; Khan, Khalid Mohammed
2015-06-01
Isatin base Schiff bases (1-20) were synthesized, characterized by (1)H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2±0.25 and 83.5±1.0μM when compared with the standard acarbose (IC50=840±1.73μM). Among the series compound 2 having IC50 value (18.3±0.56μM), 9 (83.5±1.0μM), 11 (3.3±0.25μM), 12 (2.2±0.25μM), 14 (11.8±0.15μM), and 20 (3.0±0.15μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional toxicogenomic assessment of triclosan in human ...
Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes (whose knockout gives potential resistance) at IC50 (50% Inhibition concentration of cell viability) were significantly enriched in adherens junction pathway, MAPK signaling pathway and PPAR signaling pathway, suggesting a potential molecular mechanism in TCS induced cytotoxicity. Evaluation of top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes (whose knockout enhances potential sensitivity) at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with the transcriptomic profiling of TCS at concentrations
Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean
2012-01-01
Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180
In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.
Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo
2014-10-01
Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.
In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus
Carvalho, Otávio V.; Saraiva, Giuliana L.; Ferreira, Caroline G.T.; Felix, Daniele M.; Fietto, Juliana L.R.; Bressan, Gustavo C.; Almeida, Márcia R.; Silva Júnior, Abelardo
2014-01-01
Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection. PMID:25355997
Biological evaluation of some uracil derivatives as potent glutathione reductase inhibitors
NASA Astrophysics Data System (ADS)
Güney, Murat; Ekinci, Deniz; Ćavdar, Huseyin; Şentürk, Murat; Zilbeyaz, Kani
2016-04-01
Discovery of glutathione reductase (GR) inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, GR inhibitory capacities of some uracil derivatives (UDCs) (1-4) were reported. Some commercially available molecules (5-6) were also tested for comparison reasons. The novel UDCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low nanomolar concentrations with IC50 values ranging from 2.68 to 166.6 nM as compared with well-known agents.
RXRα transcriptional inhibitors from the stems of Calophyllum membranaceum.
Ming, Meng; Zhang, Xue; Chen, Hai-Feng; Zhu, Ling-Juan; Zeng, De-Quan; Yang, Jian; Wu, Guang-Xun; Wu, Yu-Zhuo; Yao, Xin-Sheng
2016-01-01
Bioassay-guided fractionation of the 60% ethanol extract of the stems of Calophyllum membranaceum using the RXRα transcription activation assay led to the isolation of two new chromanones, calopolyanic acid methyl ester (1) and isopinetoric acid methyl ester (2), two new xanthones, calophylixanthones A-B (3-4), and one new C-glycoside, calophymembranside C (5), along with 13 known compounds. Their structures were elucidated on the basis of extensive spectroscopic data. Compounds 5, 11 and 18 showed transcriptional inhibitory activity of RXRα with 50% inhibitory concentration (IC50) values of 29.95 ± 1.08, 31.06 ± 9.02, and 25.88 ± 1.62 μM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Jacobs, Leon; de Kock, Carmen; de Villiers, Katherine A; Smith, Peter J; Smith, Vincent J; van Otterlo, Willem A L; Blackie, Margaret A L
2015-12-01
7-Chloroquinoline-based antimalarial drugs are effective in the inhibition of hemozoin formation in the food vacuole of the Plasmodium parasite, the causative agent of malaria. We synthesized five series of ferroquine (FQ) and phenylequine (PQ) derivatives, which display good in vitro efficacy toward both the chloroquine-sensitive (CQS) NF54 (IC50 : 4.2 nm) and chloroquine-resistant (CQR) Dd2 (IC50 : 33.7 nm) strains of P. falciparum. Several compounds were found to have good inhibitory activity against β-hematin formation in an NP-40 detergent assay, with IC50 values ranging between 10.4 and 19.2 μm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antiprotozoal Activity of 1-Phenethyl-4-Aminopiperidine Derivatives ▿
Dardonville, Christophe; Fernández-Fernández, Cristina; Gibbons, Sarah-Louise; Jagerovic, Nadine; Nieto, Lidia; Ryan, Gary; Kaiser, Marcel; Brun, Reto
2009-01-01
A series of 44 4-aminopiperidine derivatives was screened in vitro against four protozoan parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum). This screening identified 29 molecules selectively active against bloodstream-form T. b. rhodesiense trypomastigotes, with 50% inhibitory concentrations (IC50) ranging from 0.12 to 10 μM, and 33 compounds active against the chloroquine- and pyrimethamine-resistant K1 strain of P. falciparum (IC50 range, 0.17 to 5 μM). In addition, seven compounds displayed activity against intracellular T. cruzi amastigotes in the same range as the reference drug benznidazole (IC50, 1.97 μM) but were also cytotoxic to L-6 cells, showing little selectivity for T. cruzi. None of the molecules tested showed interesting antileishmanial activity against axenic amastigotes of L. donovani. To our knowledge, this is the first report of the antitrypanosomal activity of molecules bearing the 4-aminopiperidine skeleton. PMID:19564359
He, Xin; Reeve, Anne McElwee; Desai, Umesh R.; Kellogg, Glen E.; Reynolds, Kevin A.
2004-01-01
The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II dissociated fatty acid synthase. The pivotal role of this essential enzyme, combined with its unique structural features and ubiquitous occurrence in bacteria, has made it an attractive new target for the development of antibacterial and antiparasitic compounds. We have searched the National Cancer Institute database for compounds bearing structural similarities to thiolactomycin, a natural product which exhibits a weak activity against FabH. This search has yielded several substituted 1,2-dithiole-3-ones that are potent inhibitors of FabH from both Escherichia coli (ecFabH) and Staphylococcus aureus (saFabH). The most potent inhibitor was 4,5-dichloro-1,2-dithiole-3-one, which had 50% inhibitory concentration (IC50) values of 2 μM (ecFabH) and 0.16 μM (saFabH). The corresponding 3-thione analog exhibited comparable activities. Analogs in which the 4-chloro substituent was replaced with a phenyl group were also potent inhibitors, albeit somewhat less effectively (IC50 values of 5.7 and 0.98 μM for ecFabH and saFabH, respectively). All of the 5-chlorinated inhibitors were most effective when they were preincubated with FabH in the absence of substrates. The resulting enzyme-inhibitor complex did not readily regain activity after excess inhibitor was removed, suggesting that a slow dissociation occurs. In stark contrast, a series of inhibitors in which the 5-chloro substituent was replaced with the isosteric and isoelectronic trifluoromethyl group were poorer inhibitors (IC50 values typically ranging from 25 to >100 μM for both ecFabH and saFabH), did not require a preincubation period for maximal activity, and generated an enzyme-inhibitor complex which readily dissociated. Possible modes of binding of 5-chloro-1,2-dithiole-3-ones and 5-chloro-1,2-dithiole-3-thiones with FabH which account for the role of the 5-chloro substituent were considered. PMID:15273125
Biological activities and chemical composition of lichens from Serbia
Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko
2014-01-01
The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336
Diab, Kawthar A E; Shafik, Reham Ezzat; Yasuda, Shin
2015-01-01
In the present work, novel orange peel was extracted with 100%EtOH (ethanol) and fractionated into four fractions namely F1, F2, F3, F4 which were eluted from paper chromatographs using 100%EtOH, 80%EtOH, 50%EtOH and pure water respectively. The crude extract and its four fractions were evaluated for their total polyphenol content (TPC), total flavonoid content (TFC) and radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Their cytotoxic activity using WST assay and DNA damage by agarose gel electrophoresis were also evaluated in a human leukemia HL-60 cell line. The findings revealed that F4 had the highest TPC followed by crude extract, F2, F3 and F1. However, the crude extract had the highest TFC followed by F4, F3, F2, and F1. Depending on the values of EC50 and trolox equivalent antioxidant capacity, F4 possessed the strongest antioxidant activity while F1 and F2 displayed weak antioxidant activity. Further, incubation HL-60 cells with extract/fractions for 24h caused an inhibition of cell viability in a concentration- dependent manner. F3 and F4 exhibited a high antiproliferative activity with a narrow range of IC50 values (45.9 - 48.9 μg/ml). Crude extract exhibited the weakest antiproliferative activity with an IC50 value of 314.89 μg/ml. Analysis of DNA fragmentation displayed DNA degradation in the form of a smear-type pattern upon agarose gel after incubation of HL-60 cells with F3 and F4 for 6 h. Overall, F3 and F4 appear to be good sources of phytochemicals with antioxidant and potential anticancer activities.
Quiliano, Miguel; Pabón, Adriana; Ramirez-Calderon, Gustavo; Barea, Carlos; Deharo, Eric; Galiano, Silvia; Aldana, Ignacio
2017-04-15
We report the design (in silico ADMET criteria), synthesis, cytotoxicity studies (HepG-2 cells), and biological evaluation of 15 hydrazine/hydrazide quinoxaline 1,4-di-N-oxide derivatives against the 3D7 chloroquine sensitive strain and FCR-3 multidrug resistant strain of Plasmodium falciparum and Leishmania infantum (axenic amastigotes). Fourteen of derivatives are novel quinoxaline 1,4-di-N-oxide derivatives. Compounds 18 (3D7 IC 50 =1.40μM, FCR-3 IC 50 =2.56μM) and 19 (3D7 IC 50 =0.24μM, FCR-3 IC 50 =2.8μM) were identified as the most active against P. falciparum, and they were the least cytotoxic (CC 50 -values>241μM) and most selective (SI>86). None of the compounds tested against L. infantum were considered to be active. Additionally, the functional role of the hydrazine and hydrazide structures were studied in the quinoxaline 1,4-di-N-oxide system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gopinath, P; Yadav, R K; Shukla, P K; Srivastava, K; Puri, S K; Muraleedharan, K M
2017-03-01
Various mono- and bis-benzisothiazolone derivatives were synthesized and screened against different strains of bacteria and fungi in order to understand the effect of multiple electrophilic sulfur atoms and substitution pattern in the immediate vicinity of reactive sulfur. Staphyllococcus aureus-ATCC 7000699, MRSA and S. aureus-ATCC 29213 (Quality Control strain) were more susceptible to this class of compounds, and the most potent derivative 1.15 had MIC 50 of 0.4μg/mL (cf. Gentamicin=0.78μg/mL). CLogP value, optimally in the range of 2.5-3.5, appeared to contribute more to the activity than the steric and electronic effects of groups attached at nitrogen. By and large, their anti-fungal activities also followed a similar trend with respect to the structure and CLogP values. The best potency of IC 50 =0.1μg/mL was shown by N-benzyl derivative (1.7) against Aspergillus fumigatus; it was also potent against Candida albicans, Cryptococcus neoformans, Sporothrix schenckii, and Candida parapsilosis with IC 50 values ranging from 0.4 to 1.3μg/mL. Preliminary studies also showed that this class of compounds have the ability to target malaria parasite with IC 50 values in low micromolar range, and improvement of selectivity is possible through structure optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Fungicides on Rat's Neurosteroid Synthetic Enzymes
Shen, Xiuwei; Chen, Fan; Chen, Lanlan; Su, Ying; Huang, Ping
2017-01-01
Exposure to environmental endocrine disruptors may interfere with nervous system's activity. Fungicides such as tebuconazole, triadimefon, and vinclozolin have antifungal activities and are used to prevent fungal infections in agricultural plants. In the present study, we studied effects of tebuconazole, triadimefon, and vinclozolin on rat's neurosteroidogenic 5α-reductase 1 (5α-Red1), 3α-hydroxysteroid dehydrogenase (3α-HSD), and retinol dehydrogenase 2 (RDH2). Rat's 5α-Red1, 3α-HSD, and RDH2 were cloned and expressed in COS-1 cells, and effects of these fungicides on them were measured. Tebuconazole and triadimefon competitively inhibited 5α-Red1, with IC50 values of 8.670 ± 0.771 × 10−6 M and 17.390 ± 0.079 × 10−6 M, respectively, while vinclozolin did not inhibit the enzyme at 100 × 10−6 M. Triadimefon competitively inhibited 3α-HSD, with IC50 value of 26.493 ± 0.076 × 10−6 M. Tebuconazole and vinclozolin weakly inhibited 3α-HSD, with IC50 values about 100 × 10−6 M, while vinclozolin did not inhibit the enzyme even at 100 × 10−6 M. Tebuconazole and triadimefon weakly inhibited RDH2 with IC50 values over 100 × 10−6 M and vinclozolin did not inhibit this enzyme at 100 × 10−6 M. Docking study showed that tebuconazole, triadimefon, and vinclozolin bound to the steroid-binding pocket of 3α-HSD. In conclusion, triadimefon potently inhibited rat's neurosteroidogenic enzymes, 5α-Red1 and 3α-HSD. PMID:28812018
Wagmann, Lea; Brandt, Simon D; Kavanagh, Pierce V; Maurer, Hans H; Meyer, Markus R
2017-04-15
Tryptamines have emerged as new psychoactive substances (NPS), which are distributed and consumed recreationally without preclinical studies or safety tests. Within the alpha-methylated tryptamines, some of the psychoactive effects of the prototypical alpha-methyltryptamine (AMT) have been described decades ago and a contributing factor of its acute toxicity appears to involve the inhibition of monoamine oxidase (MAO). However, detailed information about analogs is scarce. Therefore, thirteen AMT analogs were investigated for their potential to inhibit MAO. An in vitro assay analyzed using hydrophilic interaction liquid chromatography-high resolution-tandem mass spectrometry was developed and validated. The AMT analogs were incubated with recombinant human MAO-A or B and kynuramine, a non-selective MAO substrate to determine the IC 50 values. The known MAO-A inhibitors 5-(2-aminopropyl)indole (5-IT), harmine, harmaline, yohimbine, and the MAO-B inhibitor selegiline were tested for comparison. AMT and all analogs showed MAO-A inhibition properties with IC 50 values between 0.049 and 166μM, whereas four analogs inhibited also MAO-B with IC 50 values between 82 and 376μM. 7-Me-AMT provided the lowest IC 50 value against MAO-A comparable to harmine and harmaline and was identified as a competitive MAO-A inhibitor. Furthermore, AMT, 7-Me-AMT, and nine further analogs inhibited MAO activity in human hepatic S9 fraction used as model for the human liver which expresses both isoforms. The obtained results suggested that MAO inhibition induced by alpha-methylated tryptamines might be clinically relevant concerning possible serotonergic and adrenergic effects and interactions with drugs (of abuse) particularly acting as monoamine reuptake inhibitors. However, as in vitro assays have only limited conclusiveness, further studies are needed. Copyright © 2017 Elsevier B.V. All rights reserved.
Och, Marek; Och, Anna; Cieśla, Łukasz; Kubrak, Tomasz; Pecio, Łukasz; Stochmal, Anna; Kocki, Janusz; Bogucka-Kocka, Anna
2015-06-01
The demand for podophyllotoxin and deoxypodophyllotoxin is still increasing and commercially exploitable sources are few and one of them, Podophyllum hexandrum Royle (Berberidaceae), is a "critically endangered" species. The first aim was to quantify the amount of podophyllotoxin and deoxypodophyllotoxin in 61 Juniperus (Cupressaceae) samples. Cytotoxic activity of podophyllotoxin and ethanolic leaf extracts of Juniperus scopulorum Sarg. "Blue Pacific" and Juniperus communis L. "Depressa Aurea" was examined against different leukemia cell lines. Ultra-performance liquid chromatography (UPLC) analysis was performed with the use of a Waters ACQUITY UPLC(TM) system (Waters Corp., Milford, MA). The peaks of podophyllotoxin and deoxypodophyllotoxin were assigned on the basis of their retention data and mass-to-charge ratio (m/z). Trypan blue assay was performed to obtain IC50 cytotoxicity values against selected leukemia cell lines. Juniperus scopulorum was characterized with the highest level of podophyllotoxin (486.7 mg/100 g DW) while Juniperus davurica Pall. contained the highest amount of deoxypodophyllotoxin (726.8 mg/100 g DW). Podophyllotoxin IC50 cytotoxicity values against J45.01 and CEM/C1 leukemia cell lines were 0.0040 and 0.0286 µg/mL, respectively. Juniperus scopulorum extract examined against J45.01 and HL-60/MX2 leukemia cell lines gave the respective IC50 values: 0.369-9.225 µg/mL. Juniperus communis extract was characterized with the following IC50 cytotoxity values against J45.01 and U-266B1 cell lines: 3.310-24.825 µg/mL. Juniperus sp. can be considered as an alternative source of podophyllotoxin and deoxypodophyllotoxin. Cytotoxic activity of podophyllotoxin and selected leaf extracts of Juniperus sp. against a set of leukemia cell lines was demonstrated.
Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile.
Gutiérrez, Margarita; Theoduloz, Cristina; Rodríguez, Jaime; Lolas, Mauricio; Schmeda-Hirschmann, Guillermo
2005-10-05
The phytopathogenic fungus Nectria galligena Bres. is the most common canker disease agent of hardwood trees. The terpenoids colletochlorin B, colletorin B, ilicicolin C, E, and F, as well as the phytotoxin alpha,beta-dehydrocurvularin have been isolated from liquid cultures of N. galligena obtained from the xylem of infected apple trees in central Chile. Ilicicolin C and F and alpha,beta-dehydrocurvularin were active against Pseudomonas syringae with IC50 values of 28.5, 28.5, and 14.2 microg/mL, respectively, in the same range as streptomycin and penicillin G (11 and 15 microg/mL, respectively). All of the compounds showed moderate inhibitory activity toward the enzymes acetylcholinesterase (AChE) and beta-glucuronidase. The most active enzyme inhibitors were colletochlorin B and ilicicolin C and E, with IC50 values of 30-36 microg/mL in the AChE assay and 32-43 microg/mL in the beta-glucuronidase test. All of the chlorinated compounds showed some toxicity toward human lung fibroblasts, with IC50 values in the range of 64-120 microg/mL. alpha,beta-Dehydrocurvularin proved to be the most toxic compound, showing IC50 values less than 12 microg/mL. The effect of the isolated compounds on seed germination and radicle and epicotyl growth was assessed in lettuce and millet seeds. At 100 and 200 microg/disk, alpha,beta-dehydrocurvularin significantly reduced radicle length and epicotyl growth in Lactuca sativa. This is the first report on the occurrence of colletochlorin B, colletorin B, ilicicolin C, E, and F, as well as alpha,beta-dehydrocurvularin associated to N. galligena.
Identification of novel isoform-selective inhibitors within class I histone deacetylases.
Hu, Erding; Dul, Edward; Sung, Chiu-Mei; Chen, Zunxuan; Kirkpatrick, Robert; Zhang, Gui-Feng; Johanson, Kyung; Liu, Ronggang; Lago, Amparo; Hofmann, Glenn; Macarron, Ricardo; de los Frailes, Maite; Perez, Paloma; Krawiec, John; Winkler, James; Jaye, Michael
2003-11-01
Histone deacetylases (HDACs) represent an expanding family of protein modifying-enzymes that play important roles in cell proliferation, chromosome remodeling, and gene transcription. We have previously shown that recombinant human HDAC8 can be expressed in bacteria and retain its catalytic activity. To further explore the catalytic activity of HDACs, we expressed two additional human class I HDACs, HDAC1 and HDAC3, in baculovirus. Recombinant HDAC1 and HDAC3 fusion proteins remained soluble and catalytically active and were purified to near homogeneity. Interestingly, trichostatin (TSA) was found to be a potent inhibitor for all three HDACs (IC50 value of approximately 0.1-0.3 microM), whereas another HDAC inhibitor MS-27-275 (N-(2-aminophenyl)-4-[N-(pyridin-3-methyloxycarbonyl)-aminomethyl]benzamide) preferentially inhibited HDAC1 (IC50 value of approximately 0.3 microM) versus HDAC3 (IC50 value of approximately 8 microM) and had no inhibitory activity toward HDAC8 (IC50 value >100 microM). MS-27-275 as well as TSA increased histone H4 acetylation, induced apoptosis in the human colon cancer cell line SW620, and activated the simian virus 40 early promoter. HDAC1 protein was more abundantly expressed in SW620 cells compared with that of HDAC3 and HDAC8. Using purified recombinant HDAC proteins, we identified several novel HDAC inhibitors that preferentially inhibit HDAC1 or HDAC8. These inhibitors displayed distinct properties in inducing histone acetylation and reporter gene expression. These results suggest selective HDAC inhibitors could be identified using recombinantly expressed HDACs and that HDAC1 may be a promising therapeutic target for designing HDAC inhibitors for proliferative diseases such as cancer.
Lee, Hyun Woo; Ryu, Hyung Won; Kang, Myung-Gyun; Park, Daeui; Oh, Sei-Ryang; Kim, Hoon
2016-10-01
Monoamine oxidase (MAO) catalyzes the oxidation of monoamines and its two isoforms, MAO-A and MAO-B, break down neurotransmitter amines. Of the compounds isolated from the roots of Sophora flavescens, (-)-maackiain (4), a pterocarpan, was found to potently and selectively inhibit human MAO-B, with an IC50 of 0.68μM, and to have a selectivity index of 126.2 for MAO-B. As compared with other herbal natural products, the IC50 value of 4 for MAO-B is one of the lowest reported to date. Genistein (1) highly, effectively and non-selectively inhibited MAO-A and MAO-B with IC50 values of 3.9μM and 4.1μM, respectively. (-)-4-Hydroxy-3-methoxy-8,9-methylenedioxypterocarpan (2) effectively and non-selectively inhibited MAO-A and MAO-B with IC50 values of 20.3μM and 10.3μM, respectively. In addition, compound 4 reversibly and competitively inhibited MAO-B with a Ki value of 0.054μM. Molecular docking simulation revealed that the binding affinity of 4 for MAO-B (-26.6kcal/mol) was greater than its affinity for MAO-A (-8.3kcal/mol), which was in-line with our inhibitory activity findings. Furthermore, Cys172 of MAO-B was found to be a key residue for hydrogen bonding with compound 4. The findings of this study suggest compound 4 be viewed as a new potent, selective, and reversible MAO-B inhibitor, and that compounds 1 and 2 be considered useful lead compounds for the developments of nonselective and reversible MAO inhibitors for the treatment of disorders like Parkinson's disease, Alzheimer disease, and depression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Febuxostat Inhibition of Endothelial-Bound XO: Implications for Targeting Vascular ROS Production
Malik, Umair Z.; Hundley, Nicholas J.; Romero, Guillermo; Radi, Rafael; Freeman, Bruce A.; Tarpey, Margaret M.; Kelley, Eric E.
2011-01-01
Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Binding of XO to vascular endothelial cell glycosaminoglycans (GAGs) results in significant resistance to inhibition by traditional pyrazolopyrimidine-based inhibitors such as allopurinol. Therefore, we compared the extent of XO inhibition (free and GAG-bound) by allopurinol to febuxostat, a newly approved nonpurine XO-specific inhibitor. In solution, febuxostat was 1000 fold more potent than allopurinol inhibition of XO-dependent uric acid formation (IC50 = 1.8 nM vs. 2.9 μM). Association of XO with heparin-Sepharose 6B (HS6B-XO) had minimal effect on inhibition of uric acid formation by febuxostat (IC50 = 4.4 nM) while further limiting the effect of allopurinol (IC50 = 64 μM). Kinetic analysis of febuxostat inhibition revealed Ki values of 0.96 nM (free) and 0.92 nM (HS6B-XO), confirming equivalent inhibition for both free and GAG-immobilized enzyme. When XO was bound to endothelial cell GAGs, complete enzyme inhibition was observed with 25 nM febuxostat, while no more than 80% inhibition was seen with either allopurinol or oxypurinol, even at concentrations above those tolerated clinically. The superior potency for inhibition of endothelium-associated XO is predictive of a significant role for febuxostat in investigating pathological states where XO-derived ROS are contributive and traditional XO inhibitors are only slightly effective. PMID:21554948
Pu, Qiang-Hong; Shi, Liang; Yu, Chao
2015-03-01
1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.
Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate.
Sayyed, Katia; Le Vee, Marc; Abdel-Razzak, Ziad; Fardel, Olivier
2017-10-01
Cigarette smoke condensate (CSC) has previously been shown to impair activity and expression of hepatic drug transporters. In the present study, we provided evidence that CSC also hinders activity of organic anion transporters (OATs), notably expressed at the kidney level. CSC thus cis-inhibited OAT substrate uptake in OAT1- and OAT3-transfected HEK293 cells, in a concentration-dependent manner (IC 50 =72.1μg/mL for OAT1 inhibition and IC 50 =27.3μg/mL for OAT3 inhibition). By contrast, OAT4 as well as the renal organic cation transporter (OCT) 2 were less sensitive to the inhibitory effect of CSC (IC 50 =351.5μg/mL and IC 50 =226.2μg/mL, for inhibition of OAT4 and OCT2, respectively). OAT3 activity was further demonstrated to be blocked by some single chemicals present in cigarette smoke such as the heterocyclic amines AαC (IC 50 =11.3μM) and PhIP (IC 50 =1.9μM), whereas other major cigarette smoke components used at 100μM, like nicotine, the nitrosamine NNK and the polycyclic aromatic hydrocarbons benzo(a)pyrene and phenanthrene, were without effect. AαC and PhIP however failed to trans-stimulate activity of OAT3, suggesting that they were not substrates for this transporter. Taken together, these data establish OAT1 and OAT3 transporters as targets of cigarette smoke chemicals, which may contribute to smoking-associated pharmacokinetics alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial
NASA Astrophysics Data System (ADS)
Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam
2016-01-01
Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.
Madamet, Marylin; Briolant, Sébastien; Amalvict, Rémy; Benoit, Nicolas; Bouchiba, Housem; Cren, Julien; Pradines, Bruno
2016-02-09
The pyronaridine-artesunate combination is one of the most recent oral artemisinin-based therapeutic combinations (ACTs) recommended for the treatment of uncomplicated P. falciparum malaria. The emergence of P. falciparum resistance to artemisinin has recently developed in Southeast Asia. Little data are available on the association between pyronaridine susceptibility and polymorphisms in genes involved in antimalarial drug resistance. The objective of the present study was to investigate the association between ex vivo responses to pyronaridine and the K76T mutation in the pfcrt gene in P. falciparum isolates. The assessment of ex vivo susceptibility to pyronaridine was performed on 296 P. falciparum isolates using a standard 42-h 3H-hypoxanthine uptake inhibition method. The K76T mutation was also investigated. The pyronaridine IC50 (inhibitory concentration 50 %) ranged from 0.55 to 80.0 nM. Ex vivo responses to pyronaridine were significantly associated with the K76T mutation (p-value = 0.020). The reduced susceptibility to pyronaridine, defined as IC50 > 60 nM, was significantly associated with the K76T mutation (p-value = 0.004). Using a Bayesian mixture modelling approach, the pyronaridine IC50 were classified into three components: component A (IC50 median 15.9 nM), component B (IC50 median 34.2 nM) and component C (IC50 median 63.3 nM). The K76T mutation was represented in 46.3% of the isolates in component A, 47.2% of the isolates in component B and 73.3% of the isolates in component C (p-value = 0.021). These results showed the ex vivo reduced susceptibility to pyronaridine, i.e., IC50 > 60 nM, associated with the K76T mutation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael
2012-10-01
Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during radiotherapy. Thus, concomitant Aurora B kinase inhibition and irradiation may be a promising strategy for fast repopulating tumors, which are difficult to cure by dose escalation based on conventional fractionation.« less
Vijayarathna, Soundararajan; Oon, Chern Ein; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-05-01
Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC 50 ) and pro-oxidant (IC 50 and double IC 50 ) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC 50 concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Waltenberger, Birgit; Liu, Rongxia; Atanasov, Atanas G; Schwaiger, Stefan; Heiss, Elke H; Dirsch, Verena M; Stuppner, Hermann
2015-11-13
Aberrant proliferation of vascular smooth muscle cells (VSMC) plays a major role in restenosis, the pathological renarrowing of the blood vessel lumen after surgical treatment of stenosis. Since available anti-proliferative pharmaceuticals produce unfavorable side effects, there is high demand for the identification of novel VSMC proliferation inhibitors. A natural product screening approach using a resazurin conversion assay enabled the identification of gentisin (1) from Gentiana lutea as a novel inhibitor of VSMC proliferation with an IC50 value of 7.84 µM. Aiming to identify further anti-proliferative compounds, 13 additional nonprenylated xanthones, isolated from different plant species, were also tested. While some compounds showed no or moderate activity at 30 µM, 1-hydroxy-2,3,4,5-tetramethoxyxanthone (4), swerchirin (6), and methylswertianin (7) showed IC50 values between 10.2 and 12.5 µM. The anti-proliferative effect of 1, 4, 6, and 7 was confirmed by the quantification of DNA synthesis (BrdU incorporation) in VSMC. Cell death quantification (determined by LDH release in the culture medium) revealed that the compounds are not cytotoxic in the investigated concentration range. In conclusion, nonprenylated xanthones are identified as novel, non-toxic VSMC proliferation inhibitors, which might contribute to the development of new therapeutic applications to combat restenosis.
Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin
2017-06-01
Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.
Charlesworth, P; Pocock, G; Richards, C D
1994-01-01
1. The calcium channel currents of bovine adrenal chromaffin cells were characterized using a variety of voltage pulse protocols and selective channel blockers before examination of their modulation by anaesthetic agents. 2. All the anaesthetics studied (halothane, methoxyflurane, etomidate and methohexitone) inhibited the calcium channel currents in a concentration-dependent manner and increased the rate of current decay. 3. The anaesthetics did not shift the current-voltage relation nor did they change the voltage for half-maximal channel activation derived from analysis of the voltage dependence of the tail currents. None of the anaesthetics appeared to alter the time constant of tail current decay. 4. To complement earlier studies of the inhibitory actions of anaesthetics on K(+)-evoked catecholamine secretion and the associated Ca2+ uptake, the IC50 values for etomidate and methohexitone were determined using a biochemical assay. The IC50 values for anaesthetic inhibition of calcium channel currents corresponded closely with those for inhibition of K(+)-evoked calcium uptake and catecholamine secretion. 5. The inhibitory effect of the volatile anaesthetics and etomidate is best explained by dual action: a reduction in the probability of channel opening coupled with an increase in the rate of channel inactivation. Methohexitone appeared to inhibit the currents by a use-dependent slow block. PMID:7707224
Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress.
Padma, Vishwanadha Vijaya; Kalaiselvi, Palanisamy; Yuvaraj, Rangasamy; Rabeeth, M
2015-06-01
Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. The Inhibitory concentration (IC 50 ) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. Mangiferin induced cell death in RD cells with an IC 50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.
Ikematsu, Hideyuki; Kawai, Naoki; Iwaki, Norio; Kashiwagi, Seizaburo; Ishikawa, Yusuke; Yamaguchi, Hiroki; Shiosakai, Kazuhito
2018-05-11
To assess the extent of susceptibility to the four most commonly used neuraminidase inhibitors (NAIs) in the viruses epidemic in the 2016-17 Japanese influenza season, we measured the 50% inhibitory concentration (IC 50 ) of these NAIs for influenza virus isolates from patients and compared them with the results from the 2010-11 to 2015-16 seasons. Viral isolation was done with specimens obtained prior to treatment, and the type and subtype was determined by RT-PCR using type- and subtype-specific primers. The IC 50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. A total of 276 virus isolates, 6 A (H1N1)pdm09 (2.2%), 249 A (H3N2) (90.2%), and 21 B (7.6%), had the IC 50 measured for the four NAIs. B isolates included 11 (52.4%), 9 (42.9%), and one (4.8%) of the Victoria, Yamagata, and undetermined strains, respectively. No A (H1N1)pdm09 with highly reduced sensitivity for oseltamivir was found in the 2016-17 season. No isolate with highly reduced sensitivity to the four NAIs have been found for A (H3N2) or B from the 2010-11 to 2016-17 seasons. No significant trend of increase or decrease was found in the geometric mean IC 50 s of the four NAIs during the seven studied seasons. These results indicate that the sensitivity to the four commonly used NAIs has been maintained and that any change in the effectiveness of these NAIs would be minute. Common usage of NAIs for patient treatment has not been a driving force in the selection of NAI resistant viruses. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana
2014-06-01
Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents.
Lee, Mi Yeon; Kim, Jin Hee; Choi, Jung Nam; Kim, Jiyoung; Hwang, Geum Sook; Lee, Choonghwan
2010-06-01
The EtOAc fraction of Lespedeza cyrtobotrya showed mushroom tyrosinase inhibitory and radical scavenging activity. Four active compounds were isolated based on LH-20 chromatography and HPLC, and the structures were elucidated on the basis of their LC-MS and NMR spectral data, as 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4), respectively. 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1) showed mushroom tyrosinase inhibitory activity with an IC50 value of 5.2 micronM and acted as a competitive inhibitor. Furthermore, 37.3 micronM of compound 1 reduced 50 % of the melanin content on a human melanoma (MNT-1) cells. The radical scavenging activity of 2-(2,4-dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4) was shown with IC50 values of 11.0, 24.5, 9.0 and 36.5 micronM in an ABTS system and with IC50 values of 42.7, 36.0, 37.7 and 61.7 micronM in a DPPH system, respectively. The mushroom tyrosinase inhibitory activity of EtOAc fraction of Lespedeza cyrtobotrya was contributed by compound 1, 3 and 4, and radical scavenging activity of it was contributed by compound 1-4.