DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2006-10-19
The 1607-F7, 141-M Building Septic Tank waste site was a septic tank and drain field that received sanitary sewage from the former 141-M Building. Remedial action was performed in August and November 2005. The results of verification sampling demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.
ERIC Educational Resources Information Center
Association of Universities and Colleges of Canada, Ottawa (Ontario).
This report briefly reviews the history of federal support of higher education in Canada and then turns, in Part II, to an overview of several factors which contribute to uncertainty over the future of federal support. It concentrates on mechanisms for federal support, and though it does not advocate a single funding option, it proposes several…
7 CFR 2201.11 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of such conditions in the future, including: (i) The adequacy and stability of the business' customer... acquisition cost or cost per gross added, subscriber penetration, geographic concentration of customers, nature of the terms of customer contracts, customer technical support, customer satisfaction and...
7 CFR 2201.11 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of such conditions in the future, including: (i) The adequacy and stability of the business' customer... acquisition cost or cost per gross added, subscriber penetration, geographic concentration of customers, nature of the terms of customer contracts, customer technical support, customer satisfaction and...
7 CFR 2201.11 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of such conditions in the future, including: (i) The adequacy and stability of the business' customer... acquisition cost or cost per gross added, subscriber penetration, geographic concentration of customers, nature of the terms of customer contracts, customer technical support, customer satisfaction and...
7 CFR 2201.11 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of such conditions in the future, including: (i) The adequacy and stability of the business' customer... acquisition cost or cost per gross added, subscriber penetration, geographic concentration of customers, nature of the terms of customer contracts, customer technical support, customer satisfaction and...
NASA Astrophysics Data System (ADS)
Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T.; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, Ian A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zengast, Guang
2016-08-01
Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year-1), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000) deaths year-1 in 2000 to between 1.09 and 2.36 million deaths year-1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths year-1 for the four RCPs. The global mortality burden of PM2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths year-1 in 2000 to between 0.95 and 1.55 million deaths year-1 in 2100 for the four RCPs due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
Silva, Raquel A; West, J Jason; Lamarque, Jean-François; Shindell, Drew T; Collins, William J; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M; Eyring, Veronika; Josse, Beatrice; MacKenzie, I A; Plummer, David; Righi, Mattia; Stevenson, David S; Strode, Sarah; Szopa, Sophie; Zeng, Guang
2016-01-01
Ambient air pollution from ground-level ozone and fine particulate matter (PM 2.5 ) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM 2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM 2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM 2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM 2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths/year for the four RCPs. The global mortality burden of PM 2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths/year in 2000 to between 0.95 and 1.55 million deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM 2.5 concentrations and changes in population and baseline mortality rates. Trends in future air pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
GEOGRAPHIC TARGETING OF INCREASES IN NUTRIENT EXPORT DUE TO FUTURE URBANIZATION
Urbanization replaces the extant natural resource base (e.g., forests, wet- lands) with an infrastructure that is capable of supporting humans. One ecological consequence of urbanization is higher concentrations of nitrogen (N) and phosphorous (P) in streams, lakes, and estuaries...
NASA Technical Reports Server (NTRS)
Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya;
2016-01-01
Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between 2.39 and 1.31 million deaths per year for the four RCPs. The global mortality burden of PM(sub 2.5) is estimated to decrease from 1.70 (1.30 to 2.10) million deaths per year in 2000 to between 0.95 and 1.55 million deaths per year in 2100 for the four RCPs due to the combined effect of decreases in PM(sub 2.5) concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
Effect of increasing CO2 on the terrestrial carbon cycle
Schimel, David; Fisher, Joshua B.
2015-01-01
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156
Supporting Scotland's STEM Education and Culture
ERIC Educational Resources Information Center
Farmer, Stuart
2013-01-01
The evolution of the education system in Scotland is explained as the starting point for future developments, particularly in science and related subjects. The Curriculum for Excellence (CfE) provided the backbone of current reforms in which the emphasis on skills is seen as more important and potentially more lasting than concentrating on…
Parametric Analysis of Life Support Systems for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.
2011-01-01
The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.
SCOSII: ESA's new generation of mission control systems: The user's perspective
NASA Technical Reports Server (NTRS)
Kaufeler, P.; Pecchioli, M.; Shurmer, I.
1994-01-01
In 1974 ESOC decided to develop a reusable Mission Control System infrastructure for ESA's missions operated under its responsibility. This triggered a long and successful product development line, which started with the Multi Mission Support System (MSSS) which entered in service in 1977 and is still being used today by the MARECS and ECS missions; it was followed in 1989 by a second generation of systems known as SCOS-I, which was/is used by the Hipparcos, ERS-1 and EURECA missions and will continue to support all future ESCO controlled missions until approximately 1995. In the meantime the increasing complexity of future missions together with the emergence of new hardware and software technologies have led ESOC to go for the development of a third generation of control systems, SCOSII, which will support their future missions up to at least the middle of the next decade. The objective of the paper is to present the characteristics of the SCOSII system from the perspective of the mission control team; i.e. it will concentrate on the improvements and advances in the performance, functionality and work efficiency of the system.
Shaping the Future through Character Education. Colorado State Conference on Character Education.
ERIC Educational Resources Information Center
Colorado State Dept. of Education, Denver.
With the decline in morality and values, character education is gaining considerable momentum. Public opinion polls show growing support for teaching it in schools. Evidence indicates that character education programs change the school culture for the better, allowing students to feel safe to concentrate on learning. In Colorado, character…
Water-quality monitoring of Sweetwater Reservoir
Majewski, Michael
2001-01-01
Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.
Lin, Kai-Yin
2015-03-01
In this technology era, information literacy is a global imperative. This is true for nursing students as well because they will have to help patients through operating computerized equipment. The key foundation of learning is concentration. The primary objectiveof this research was to explore the effect of clickers on nursing college students' concentration. The research involved 51 student volunteers and was quasi-experimental, with both a pretest and a posttest design. Student concentration was measured by using Student Concentration Scale in a Classroom-Learning Environment. The results showed that students' learning concentration improved, an outcome that could support integrating clickers into classroom teaching activities, and students' concentration level was better after clickers were used in the teaching process as a whole. Items under the "Concentration Capacity and Concentration Consciousness" category reached a significant level. Based on the analysis of the results, suggestions have been made for teaching and future research.
Mapping eutrophication risk from climate change: Future phosphorus concentrations in English rivers.
Charlton, Matthew B; Bowes, Michael J; Hutchins, Michael G; Orr, Harriet G; Soley, Rob; Davison, Paul
2018-02-01
Climate change is expected to increase eutrophication risk in rivers yet few studies identify the timescale or spatial extent of such impacts. Phosphorus concentration, considered the primary driver of eutrophication risk in English rivers, may increase through reduced dilution particularly if river flows are lower in summer. Detailed models can indicate change in catchment phosphorus concentrations but targeted support for mitigation measures requires a national scale evaluation of risk. In this study, a load apportionment model is used to describe the current relationship between flow and total reactive phosphorus (TRP) at 115 river sites across England. These relationships are used to estimate TRP concentrations for the 2050s under 11 climate change driven scenarios of future river flows and under scenarios of both current and higher levels of sewage treatment. National maps of change indicate a small but inconsistent increase in annual average TRP concentrations with a greater change in summer. Reducing the TRP concentration of final sewage effluent to 0.5mg/L P for all upstream sewage treatment works was inadequate to meet existing P standards required through the EU Water Framework Directive, indicating that more needs to be done, including efforts to reduce diffuse pollution. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Programs in Space Photovoltaics
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1992-01-01
Highlighted here are some of the current programs in advanced space solar cell and array development conducted by NASA in support of its future mission requirements. Recent developments are presented for a variety of solar cell types, including both single crystal and thin film cells. A brief description of an advanced concentrator array capable of AM0 efficiencies approaching 25 percent is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptualmore » model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2006-09-27
The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestrictedmore » future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.« less
EuroGeoMars Field Campaign: habitability studies in preparation for future Mars missions
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, B. H.; Stoker, C.; Zhavaleta, J.; Orzechowska, G.; Kotler, M.; Martins, Z.; Sephton, M.; Becker, L.; Quinn, R.; van Sluis, C.; Boche-Sauvan, L.; Gross, C.; Thiel, C.; Wendt, L.; Sarrazin, P.; Mahapatra, P.; Direito, S.; Roling, W.
The goal of the EuroGeoMars field campaign sponsored by ESA, NASA and the international lunar exploration working group (ILEWG) was to demonstrate instrument capabilities in sup-port of current and future planetary missions, to validate a procedure for Martian surface in-situ and return science, and to study human performance aspects. The Mars Desert Re-search Station (MDRS) represents an ideal basis to simulate aspects of robotic and human exploration in support of future missions to planetary bodies. During the campaign, MDRS Crew 77 tested X-ray diffraction and Raman instruments, and assessed habitat and operations. Special emphasis was given to sample collection in the geologically rich vicinity of MDRS and subsequent analysis of organic molecules in the soil to simulate the search for bio-signatures with field instrumentation. We describe the results of in-situ and posterior analysis of the physical and chemical properties including elemental composition, salt concentrations as well as carbon and amino acid abundances. The analyses of organics and minerals show that the subsurface mineral matrix represents a key to our understanding of the survival of organics on Mars.
Planetary Protection Considerations for Life Support and Habitation Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Hogan, John A.
2010-01-01
Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.
NASA Technical Reports Server (NTRS)
Jaworski, Allan; Lavallee, David; Zoch, David
1987-01-01
The prototype demonstrates the feasibility of using Ada for expert systems and the implementation of an expert-friendly interface which supports knowledge entry. In the Ford LISP-Ada Connection (FLAC) system LISP and Ada are used in ways which complement their respective capabilities. Future investigation will concentrate on the enhancement of the expert knowledge entry/debugging interface and on the issues associated with multitasking and real-time expert systems implementation in Ada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2007-12-03
The 100-F-26:10 waste site includes sanitary sewer lines that serviced the former 182-F, 183-F, and 151-F Buildings. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-03-18
The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Astronomical Distance Determination in the Space Age. Secondary Distance Indicators
NASA Astrophysics Data System (ADS)
Czerny, Bożena; Beaton, Rachael; Bejger, Michał; Cackett, Edward; Dall'Ora, Massimo; Holanda, R. F. L.; Jensen, Joseph B.; Jha, Saurabh W.; Lusso, Elisabeta; Minezaki, Takeo; Risaliti, Guido; Salaris, Maurizio; Toonen, Silvia; Yoshii, Yuzuru
2018-02-01
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations.
Expert systems for MSFC power systems
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Future space vehicles and platforms including Space Station will possess complex power systems. These systems will require a high level of autonomous operation to allow the crew to concentrate on mission activities and to limit the number of ground support personnel to a reasonable number. The Electrical Power Branch at NASA-Marshall is developing advanced automation approaches which will enable the necessary levels of autonomy. These approaches include the utilization of knowledge based or expert systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerome, K.M.
1999-06-08
In February, 1999, we conducted a small-scale characterization effort to support future remediation decisions for the Southern Sector of the upper Three Runs watershed. The study concentrated on groundwater adjacent to the seepline at Tim's Branch above and below Steed's Pond. the primary compounds of interest were the volatile organic contaminants (VOCs), trichlorethylene (TCE) and tetrachloroethylene (PCE). Due to the site topography and hydrogeology, samples collected north of Steed's Pond were from the M-Area (water table) aquifer; while those locations south of Steed's Pond provided samples from the Lost Lake aquifer. Results of the study suggest that the leading edgemore » of the A/M Area plume in the Lost Lake aquifer may be approaching the seepline at Tim's Branch below Steed's Pond, south of Road 2. Neither TCE nor PCE were detected int he samples targeting the seepline of the water table aquifer. The concentrations found for both TCE and PCE associated with the Lost Lake aquifer outcrop region were slightly above the detection limit of the analytical instrument used. The findings of this study are consistent with the conceptual model for the organic contaminant plume in the A/M Area of the Savannah River Site (SRS) -- the plume in the Southern Sector is known to be depth discrete and primarily in the Lost lake Aquifer. The sites with detected VOCs are in the most upstream accessible reaches of Tim's Branch where water from the Lost Lake Aquifer crops out. Additional characterization efforts should be directed near this region to confirm the results and to support future planning for the dilute-distal portions of the A/M Area plume. These data, combined with existing groundwater plume data and future characterization results will provide key information to estimate potential contaminant flux to the seepline and to assess the effectiveness of potential clean-up activities such as phytoremediation.« less
Kinetic Study of Methyl Acetate Oxidation in a Pt/Al2O3 Fixed-Bed Reactor
NASA Technical Reports Server (NTRS)
Hoy, Michael; Li, K. Y.; Li, Jeffrey S.; Chen, S. M.; Yaws, C. L.; Chu, H. W.; Simon, W. E.
1994-01-01
To support technology development for future long-term missions, a metabolic simulator will be used in a closed chamber to test the functions of a Controlled Ecological Life Support System (CELSS). Methyl acetate (MA) was selected as the fuel because its metabolic respiratory quotient is near that of humans. A kinetic study of the catalytic oxidation of MA over Pt/Al203 was then conducted to support the design and operation of the simulator. Kinetic data were obtained as a conversion percentage of MA versus retention time. The reaction was studied at one atmosphere and temperatures from 220 to 340 deg. C. The inlet MA concentration was varied from 100 to 2000 ppm with retention times from 0.01 to 10 sec. A first-order rate law and a Langmuir-Hinshelwood rate equation were tested by nonlinear regression of the kinetic data to estimate rate constants in the rate law. Regression results of the L-H equation explain the kinetic data better than the results of the first-order rate law. A Taguchi experimental design was used to study the effects of temperature, retention time, and concentrations of MA, CO2, and O2 on the conversion of MA. Results indicate that temperature has greatest effect, followed by retention time, and finally MA concentration. It was further determined that the effects of CO2 and O2 concentrations, and the cross effects, are negligible.
Radionuclide removal by apatite
Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.
2016-12-01
In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less
High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.
2005-01-01
Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.
Madelain, Vincent; Guedj, Jérémie; Mentré, France; Nguyen, Thi Huyen Tram; Jacquot, Frédéric; Oestereich, Lisa; Kadota, Takumi; Yamada, Koichi; Taburet, Anne-Marie; de Lamballerie, Xavier; Raoul, Hervé
2017-01-01
Favipiravir is an RNA polymerase inhibitor that showed strong antiviral efficacy in vitro and in small-animal models of several viruses responsible for hemorrhagic fever (HF), including Ebola virus. The aim of this work was to characterize the complex pharmacokinetics of favipiravir in nonhuman primates (NHPs) in order to guide future efficacy studies of favipiravir in large-animal models. Four different studies were conducted in 30 uninfected cynomolgus macaques of Chinese (n = 17) or Mauritian (n = 13) origin treated with intravenous favipiravir for 7 to 14 days with maintenance doses of 60 to 180 mg/kg of body weight twice a day (BID). A pharmacokinetic model was developed to predict the plasma concentrations obtained with different dosing regimens, and the model predictions were compared to the 50% effective concentration (EC 50 ) of favipiravir against several viruses. Favipiravir pharmacokinetics were described by a model accounting for concentration-dependent aldehyde oxidase inhibition. The enzyme-dependent elimination rate increased over time and was higher in NHPs of Mauritian origin than in those of Chinese origin. Maintenance doses of 100 and 120 mg/kg BID in Chinese and Mauritian NHPs, respectively, are predicted to achieve median trough plasma free concentrations above the EC 50 for Lassa and Marburg viruses until day 7. For Ebola virus, higher doses are required. After day 7, a 20% dose increase is needed to compensate for the increase in drug clearance over time. These results will help rationalize the choice of dosing regimens in future studies evaluating the antiviral effect of favipiravir in NHPs and support its development against a variety of HF viruses. Copyright © 2016 American Society for Microbiology.
JPRS Report, Soviet Union, Foreign Military Review, No. 10, October 1987
1988-05-09
for Air -to- Air Guided Missiles [V. Sapkov; pp 40-45] 26 Operational Use of Optical Electronics in Air Platforms [V. Sofronov; pp 45-46] 30 Naval... phase (24 hours and longer). In a role of mutual support with the air defense forces they will repulse the enemy air attack. Concentrating their...linkage or fiber optics . In the future, air -to- air missiles will be outfitted with onboard digital computers with built-in test system, Identification
Changes in metal mobility associated with bark beetle-induced tree mortality.
Mikkelson, Kristin M; Bearup, Lindsay A; Navarre-Sitchler, Alexis K; McCray, John E; Sharp, Jonathan O
2014-05-01
Recent large-scale beetle infestations have caused extensive mortality to conifer forests resulting in alterations to dissolved organic carbon (DOC) cycling, which in turn can impact metal mobility through complexation. This study analyzed soil-water samples beneath impacted trees in concert with laboratory flow-through soil column experiments to explore possible impacts of the bark beetle infestation on metal release and transport. The columns mimicked field conditions by introducing pine needle leachate and artificial rainwater through duplicate homogenized soil columns and measuring effluent metal (focusing on Al, Cu, and Zn) and DOC concentrations. All three metals were consistently found in higher concentrations in the effluent of columns receiving pine needle leachate. In both the field and laboratory, aluminum mobility was largely correlated with the hydrophobic fraction of the DOC, while copper had the largest correlation with total DOC concentrations. Geochemical speciation modeling supported the presence of DOC-metal complexes in column experiments. Copper soil water concentrations in field samples supported laboratory column results, as they were almost twice as high under grey phase trees than under red phase trees further signifying the importance of needle drop. Pine needle leachate contained high concentrations of Zn (0.1 mg l(-1)), which led to high effluent zinc concentrations and sorption of zinc to the soil matrix representing a future potential source for release. In support, field soil-water samples underneath beetle-impacted trees where the needles had recently fallen contained approximately 50% more zinc as samples from under beetle-impacted trees that still held their needles. The high concentrations of carbon in the pine needle leachate also led to increased sorption in the soil matrix creating the potential for subsequent carbon release. While unclear if manifested in adjacent surface waters, these results demonstrate an increased potential for Zn, Cu, and Al mobility, along with increased deposition of metals and carbon beneath beetle-impacted trees.
Sensitivity of climate mitigation strategies to natural disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.
2013-02-19
The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less
Assessment of the Air Quality Improvement Potentials for Seoul Metropolitan Area using GAINS-Korea
NASA Astrophysics Data System (ADS)
Kim, Y.; Woo, J. H.; Ahn, Y. H.; Kim, J.; Bu, C.; Lee, Y.; Choi, K. C.; Amann, M.; Kim, S. K.
2016-12-01
Urban areas are very important places for climate change and air pollution because they have been emitting a significant amount of Green House Gases (GHGs) and air pollutants. Cause they have massive pollutant emissions and high population density with amount of vehicles. Korea's government has set the 2nd phase capital air quality improvement program called Seoul metropolitan area Air Quality Management Plan(SAQMP), targeting the year 2024. The air quality improvement targets are to achieve annual mean PM10 and pm2.5concentration for SMA Area 30 ug/m3 and 20 ug/m3, respectively. To achieve this target, emissions of PM10, PM2.5 are required to be decreased up to 35%, 45%, respectively, from their future baseline level. In this study, we found the emission level of some pollutants for the year 2030 will be decreased compare with the baseline level but the concentration cannot meet their target even with more stringent control measures. The more in-depth analysis of future PM concentration, estimated from Source-Receptor(S-R) relationship, were conducted for more accurate air quality improvement assessment. As the result, we found that secondary and transboundary pollution have been plying significant role in Seoul Metro air quality. Not only direct/in-region measures, therefore, but indirect measures/international cooperation have to be conducted to achieve target air quality. ** This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea.
Sangster, A M; Zheng, L; Bentley, R T; Shi, R; Packer, R A
2017-01-01
The aim of this study was to investigate urinary 3-hydroxypropyl mercapturic acid (3-HPMA), a metabolite of acrolein, as a novel biomarker in acute spinal cord injury (ASCI) due to intervertebral disc herniation in dogs. Urine from 10 client-owned dogs with ASCI collected at presentation and 10 control dogs was analyzed for 3-HPMA. The median urinary 3-HPMA concentration in ASCI dogs was significantly higher than in control dogs, but was not correlated with the severity of ASCI. The median urinary 3-HPMA concentration in intact dogs was higher than in neutered dogs. Higher urinary 3-HPMA concentrations in dogs after ASCI support a role for acrolein, a cytotoxic by-product of lipid peroxidation, in canine ASCI. Urinary 3-HPMA could be used as a biomarker in future clinical trials to measure the effect of therapeutic intervention of reducing acrolein after ASCI. Copyright © 2016. Published by Elsevier Ltd.
Advanced Extravehicular Protective System (AEPS) study
NASA Technical Reports Server (NTRS)
Williams, J. L.; Webbon, B. W.; Copeland, R. J.
1972-01-01
A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.
A Proteomic Characterization of Factors Enriched at Nascent DNA Molecules
Lopez-Contreras, Andres J.; Ruppen, Isabel; Nieto-Soler, Maria; Murga, Matilde; Rodriguez-Acebes, Sara; Remeseiro, Silvia; Rodrigo-Perez, Sara; Rojas, Ana M.; Mendez, Juan; Muñoz, Javier; Fernandez-Capetillo, Oscar
2013-01-01
SUMMARY DNA replication is facilitated by multiple factors that concentrate in the vicinity of replication forks. Here, we developed an approach that combines the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. In addition to known replisome components, we provide a broad list of proteins that reside in the vicinity of the replisome, some of which were not previously associated with replication. For instance, our data support a link between DNA replication and the Williams-Beuren syndrome and identify ZNF24 as a replication factor. In addition, we reveal that SUMOylation is wide-spread for factors that concentrate near replisomes, which contrasts with lower UQylation levels at these sites. This resource provides a panoramic view of the proteins that concentrate in the surroundings of the replisome, which should facilitate future investigations on DNA replication and genome maintenance. PMID:23545495
Rasmussen, Patrick P.; Christensen, Victoria G.
2005-01-01
Four hypothetical simulations of varied effluent discharges from existing WWTFs and addition of a proposed WWTF near DeSoto were simulated to better understand future water-quality conditions in the Kansas River. Results indicated that ammonia and dissolved-oxygen concentrations in the Kansas River will decrease from the conditions observed during synoptic surveys II (February 25 through March 1, 2002) and III (July 22 through August 8, 2002) except near the proposed WWTF where concentrations of ammonia would be near or exceed criteria for waterborne species. Effects of the proposed WWTF on dissolved oxygen would result in concentrations less than the State of Kansas aquatic-life-support use criteria of 5.0 milligrams per liter for 1 to 2 miles downstream from either of the proposed sites.
Li, Tuoyu; Ma, Zongwen; Xu, Xuegong
2017-01-01
The article examines the detailed spatial and temporal distributions of coastal reclamation in the northwest coast of Bohai Bay experiencing rapid coastal reclamation in China from 1974 to 2010 in annual intervals. Moreover, soil elements properties and spatial distribution in reclaimed area and inform the future coastal ecosystems management was also analyzed. The results shows that 910.7 km2 of coastal wetlands have been reclaimed and conversed to industrial land during the past 36 years. It covers intertidal beach, shallow sea and island with a percentage of 76.0%, 23.5% and 0.5%, respectively. The average concentration of Mn is 686.91mg/kg and the order of concentration of heavy metal are Cr>Zn>As>Ni>Cu>Pb>Cd>Hg. We used the "space for time substitution" method to test the soil properties changes after reclamation. The potential ecological risk of heavy metal is in low level and the risk of Cd and As is relatively higher. The ecosystem-based coastal protection and management are urgent to support sustainable coastal ecosystems in Bohai bay in the future. PMID:28422982
Zhu, Gaoru; Xie, Zhenglei; Li, Tuoyu; Ma, Zongwen; Xu, Xuegong
2017-01-01
The article examines the detailed spatial and temporal distributions of coastal reclamation in the northwest coast of Bohai Bay experiencing rapid coastal reclamation in China from 1974 to 2010 in annual intervals. Moreover, soil elements properties and spatial distribution in reclaimed area and inform the future coastal ecosystems management was also analyzed. The results shows that 910.7 km2 of coastal wetlands have been reclaimed and conversed to industrial land during the past 36 years. It covers intertidal beach, shallow sea and island with a percentage of 76.0%, 23.5% and 0.5%, respectively. The average concentration of Mn is 686.91mg/kg and the order of concentration of heavy metal are Cr>Zn>As>Ni>Cu>Pb>Cd>Hg. We used the "space for time substitution" method to test the soil properties changes after reclamation. The potential ecological risk of heavy metal is in low level and the risk of Cd and As is relatively higher. The ecosystem-based coastal protection and management are urgent to support sustainable coastal ecosystems in Bohai bay in the future.
Refractive Secondary Concentrators for Solar Thermal Applications
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Macosko, Robert P.
1999-01-01
The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.
The effect of future outdoor air pollution on human health and the contribution of climate change
NASA Astrophysics Data System (ADS)
Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.
2013-12-01
At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.
Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea
NASA Astrophysics Data System (ADS)
Shim, C.; Hong, J.
2014-12-01
Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.
ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.
Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won
2016-07-01
In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.
Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida
2014-09-01
DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The development status of candidate life support technology for a space station
NASA Technical Reports Server (NTRS)
Samonski, F. H., Jr.
1984-01-01
The establishment of a permanently-manned Space Station has recently been selected as the next major step in the U.S. space program. The requirements of a manned operations base in space appear to be best satisfied by on-board Environmental Control/Life Support Systems (ECLSS) which are free from, or have minimum dependence on, use of expendables and the frequent earth resupply missions which are part of systems using expendables. The present investigation is concerned with the range of regenerative life support system options which NASA is developing to be available for the Space Station designer. An air revitalization system is discussed, taking into account devices concerned with the carbon dioxide concentration, approaches of CO2 reduction, oxygen generation, trace contaminant control, and atmospheric quality monitoring. Attention is also given to an independent air revitalization system, nitrogen generation, a water reclamation system, a waste management system, applications of the technology, and future development requirements.
Plant communication: mediated by individual or blended VOCs?
Ueda, Hirokazu; Kikuta, Yukio; Matsuda, Kazuhiko
2012-02-01
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-04-29
The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence
1990-01-01
In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.
1995-10-01
BTEX on the shallow groundwater system at the site. Site history and the results of soil and groundwater investigations conducted previously are also...or predicted future, concentrations and distribution. Whether in conjunction with the interim 1 remedial action system already in place or not...L:\\45007\\st4 I rept\\st41 finl.doc D 0 • 0 • 0 0 0 0 • 6 FINAL 4 22 years, depending upon the effectiveness of the interim remedial action (IRA) system
Winslow, Luke A.; Hansen, Gretchen J. A.; Read, Jordan S.; Notaro, Michael
2017-01-01
Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979–2015) and future (2020–2040 and 2080–2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.
Winslow, Luke A.; Hansen, Gretchen J.A.; Read, Jordan S; Notaro, Michael
2017-01-01
Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979–2015) and future (2020–2040 and 2080–2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes. PMID:28440790
NASA Astrophysics Data System (ADS)
Winslow, Luke A.; Hansen, Gretchen J. A.; Read, Jordan S.; Notaro, Michael
2017-04-01
Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.
Rudolph, Marc D; Graham, Alice M; Feczko, Eric; Miranda-Dominguez, Oscar; Rasmussen, Jerod M; Nardos, Rahel; Entringer, Sonja; Wadhwa, Pathik D; Buss, Claudia; Fair, Damien A
2018-05-01
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function.
Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.
Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A
2010-12-08
Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship exists between the two parameters, this relationship does not hold for all wine styles.
REG1B as a predictor of childhood stunting in Bangladesh and Peru123
Peterson, Kristine M; Buss, Janice; Easley, Rebecca; Yang, Zhengyu; Korpe, Poonum S; Niu, Feiyang; Ma, Jennie Z; Olortegui, Maribel Paredes; Haque, Rashidul; Kosek, Margaret N; Petri, William A
2013-01-01
Background: Undernutrition remains a significant problem worldwide, with environmental enteropathy implicated as a contributing factor. An understanding of the pathogenesis and identification of children at risk are critical to the design of more-effective interventions. Objective: The stool regenerating gene 1β (REG1B) protein, which is a putative measure of intestinal injury and repair, was tested as a noninvasive biomarker of future childhood stunting. Design: A total of 222 children from Bangladesh and 97 children from Peru, who were from impoverished communities, were followed from birth through 24 mo of age with anthropometric measures obtained every 3 mo. Stool REG1B protein concentrations were obtained by using an REG1B polyclonal-polyclonal ELISA at 3 mo of age. We tested for the ability of REG1B to forecast future anthropometric shortfalls, independent of known predictors of undernutrition of family income and baseline height and weight. Results: In the Bangladesh cohort of 222 children, higher REG1B concentrations at month 3 were significantly and independently associated with a growth shortfall in a linear regression analysis at months 9, 12, 18, 21, and 24 and, in the Peru cohort, at months 12, 15, 18, 21, and 24. With the use of a mixed model for repeated measurements, higher stool REG1B concentrations at 3 mo were also independently predictive of a lower future length-for-age z score through 24 mo of age (Bangladesh P = 0.006; Peru P = 0.058). Conclusion: The ability of fecal REG1B to predict growth shortfall in independent cohorts of impoverished children from the developing world offers promise as a malnutrition biomarker and supports a role for environmental enteropathy in the pathogenesis of growth shortfall. PMID:23553156
Psychosocial Working Conditions and Cognitive Complaints among Swedish Employees
Stenfors, Cecilia U. D.; Magnusson Hanson, Linda; Oxenstierna, Gabriel; Theorell, Töres; Nilsson, Lars-Göran
2013-01-01
Background Cognitive complaints involving problems with concentration, memory, decision-making and thinking are relatively common in the work force. The sensitivity of both subjective and objective cognitive functioning to common psychiatric conditions, stress levels and to cognitive load makes it plausible that psychosocial working conditions play a role in cognitive complaints. Thus, this study aimed to test the associations between psychosocial work factors and cognitive complaints in nationally representative samples of the Swedish work force. Cross-sectional (n = 9751) and prospective (n = 3644; two time points two years apart) sequential multiple regression analyses were run, adjusting for general confounders, depressive- and sleeping problems. Additional prospective analyses were run adjusting for baseline cognitive complaints. Cross-sectional results High quantitative demands, information and communication technology (ICT) demands, underqualification and conflicts were positively associated with cognitive complaints, while social support, good resources at work and overqualification were negatively associated with cognitive complaints in all models. Skill discretion and decision authority were weakly associated with cognitive complaints. Conflicts were more strongly associated with cognitive complaints in women than in men, after adjustment for general confounders. Prospective results Quantitative job demands, ICT demands and underqualification were positively associated with future cognitive complaints in all models, including when adjusted for baseline cognitive complaints. Decision authority was weakly positively associated with future cognitive complaints, only after adjustment for depressive- and sleeping problems respectively. Social support was negatively associated with future cognitive complaints after adjustment for general confounders and baseline cognitive complaints. Skill discretion and resources were negatively associated with future cognitive complaints after adjustment for general confounders. The associations between quantitative demands and future cognitive complaints were stronger in women. Discussion/Conclusions The findings indicate that psychosocial working conditions should be taken into account when considering cognitive complaints among employees. PMID:23560101
Future changes in atmospheric condition for the baiu under RCP scenarios
NASA Astrophysics Data System (ADS)
Okada, Y.; Takemi, T.; Ishikawa, H.
2015-12-01
This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).
Flood Risk in the Danube basin under climate change
NASA Astrophysics Data System (ADS)
Schröter, Kai; Wortmann, Michel; del Rocio Rivas Lopez, Maria; Liersch, Stefan; Viet Nguyen, Dung; Hardwick, Stephen; Hattermann, Fred
2017-04-01
The projected increase in temperature is expected to intensify the hydrological cycle, and thus more intense precipitation is likely to increase hydro-meteorological extremes and flood hazard. However to assess the future dynamics of hazard and impact induced by these changes it is necessary to consider extreme events and to take a spatially differentiated perspective. The Future Danube Model is a multi-hazard and risk model suite for the Danube region which has been developed in the OASIS project. The model comprises modules for estimating potential perils from heavy precipitation, heat-waves, floods, droughts, and damage risk considering hydro-climatic extremes under current and climate change conditions. Web-based open Geographic Information Systems (GIS) technology allows customers to graphically analyze and overlay perils and other spatial information such as population density or assets exposed. The Future Danube Model combines modules for weather generation, hydrological and hydrodynamic processes, and supports risk assessment and adaptation planning support. This contribution analyses changes in flood hazard in the Danube basin and in flood risk for the German part of the Danube basin. As climate change input, different regionalized climate ensemble runs of the newest IPCC generation are used, the so-called Representative Concentration Pathways (RCPs). They are delivered by the CORDEX initiative (Coordinated Downscaling Experiments). The CORDEX data sample is extended using the statistical weather generator (IMAGE) in order to also consider extreme events. Two time slices are considered: near future 2020-2049 and far future 2050-2079. This data provides the input for the hydrological, hydraulic and flood loss model chain. Results for RCP4.5 and RCP8.5 indicate an increase in intensity and frequency of peak discharges and thus in flood hazard for many parts of the Danube basin.
Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R
2017-05-09
Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, S.; Mendelssohn, I.A.; Hao, Chen; Orem, W.H.
2009-01-01
1. The expansion of Typha domingensis into areas once dominated by Cladium jamaicense in the Florida Everglades has been attributed to altered hydrology and phosphorus enrichment, although increased concentrations of sulphate and phosphorus often coincide. The potential importance of hydrogen sulphide produced from sulphate in the expansion of Typha has received little attention. The present study aimed to quantify the comparative growth and photosynthetic responses of Cladium and Typha to sulphate/sulphide. 2. Laboratory experiments showed that Cladium is less tolerant of sulphide than Typha. Cladium was adversely affected at sulphide concentrations of approximately 0.22 mm, while Typha continued to grow well and appeared healthy up to 0.69 mm sulphide. 3. Experiments in field mesocosms provided strong support for species-specific differences in physiology and growth. Regardless of interstitial sulphide concentrations attained, Typha grew faster and had a higher photosynthetic capacity than Cladium. However, sulphide concentrations in the mesocosms reached only 0.18 mm which, based on the hydroponic study, was insufficient to affect the growth or photosynthetic responses of either species. Nevertheless, the upper range of sulphide (0.25-0.375 mm) in Everglades' soil is high enough, based on our results, to impact Cladium but not Typha. 4. This research supports the hypothesis that sulphide accumulation could affect plant species differentially and modify species composition. Consequently, the role of sulphate loading should be considered, in conjunction with hydroperiod, phosphorus availability and disturbances, in developing future management plans for the Everglades. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Lasa, Ane; Safi, Elnaz; Nordlund, Kai
2015-11-01
Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.
Dry Particulate Nitrate Deposition in China.
Liu, Lei; Zhang, Xiuying; Zhang, Yan; Xu, Wen; Liu, Xuejun; Zhang, Xiaomin; Feng, Junlan; Chen, Xinrui; Zhang, Yuehan; Lu, Xuehe; Wang, Shanqian; Zhang, Wuting; Zhao, Limin
2017-05-16
A limited number of ground measurements of dry particulate nitrate deposition (NO 3 - ) makes it difficult and challenging to fully know the status of the spatial and temporal variations of dry NO 3 - depositions over China. This study tries to expand the ground measurements of NO 3 - concentrations at monitoring sites to a national scale, based on the Ozone Monitoring Instrument (OMI) NO 2 columns, NO 2 profiles from an atmospheric chemistry transport model (Model for Ozone and Related chemical Tracers, version 4, MOZART-4) and monitor-based sources, and then estimates the NO 3 - depositions on a regional scale based on an inferred model. The ground NO 2 concentrations were first derived from NO 2 columns and the NO 2 profiles, and then the ground NO 3 - concentrations were derived from the ground NO 2 concentrations and the relationship between NO 2 and NO 3 - based on Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN). This estimated dry NO 3 - depositions over China will be helpful in determining the magnitude and pollution status in regions without ground measurements, supporting the construction plan of environmental monitoring in future.
Future aerosol concentrations in Europe: Effects of changing meteorology and emissions
NASA Astrophysics Data System (ADS)
Coleman, Liz; Martin, Damien; Radalescu, Razvan; O'Dowd, Colin
2013-05-01
The ambient particulate matter concentrations are assessed using annual simulations for model validation period 2006, and for future time-slice years 2030, 2050 and 2100 under RCP scenario 6.0. Meteorological initial and boundary conditions are procured from ECHAM5-HAMMOC global simulations. The contribution of natural and anthropogenic processes to aerosol concentrations are assessed with particular emphasis on accumulation mode sea salt, organic enrichment thereof and future levels of secondary organic aerosol from isoprene.
NASA Astrophysics Data System (ADS)
Wilson, K. J.; de Abreu, R.; Falkingham, J.
2006-12-01
The Canadian Ice Service (CIS) is responsible for monitoring and reporting sea ice conditions to support marine shipping and other maritime activities in Canada's Arctic. The location, concentration and movement of perennial (old) ice is the primary control on the level and type of shipping allowable and feasible in Canadian waters. As such, the likelihood and timing of a transition from a perennial ice regime to a seasonal one is of high interest to CIS marine clients. This presentation will review the kinds of questions we are being asked about future sea ice conditions, how we are responding to them given our current understanding, and what we base these responses on. This presentation will highlight the importance of climate change science, as well as present the type of science still needed.
Duester, Lars; Fabricius, Anne-Lena; Jakobtorweihen, Sven; Philippe, Allan; Weigl, Florian; Wimmer, Andreas; Schuster, Michael; Nazar, Muhammad Faizan
2016-11-01
Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang
2017-10-24
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Alagha, Jawad S; Said, Md Azlin Md; Mogheir, Yunes
2014-01-01
Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-01-31
The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M
2009-01-01
This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.
Impacts of fine particulate matter on premature mortality under future climate change
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.; Lim, C. H.
2016-12-01
Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.
Endemism hotspots are linked to stable climatic refugia
Noss, Reed
2017-01-01
Background Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. Key Questions The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism–stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism–stability linkage for conservation? Conclusions Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large. PMID:28064195
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
Modeling and simulation: A key to future defense technology
NASA Technical Reports Server (NTRS)
Muccio, Anthony B.
1993-01-01
The purpose of this paper is to express the rationale for continued technological and scientific development of the modeling and simulation process for the defense industry. The defense industry, along with a variety of other industries, is currently being forced into making sacrifices in response to the current economic hardships. These sacrifices, which may not compromise the safety of our nation, nor jeopardize our current standing as the world peace officer, must be concentrated in areas which will withstand the needs of the changing world. Therefore, the need for cost effective alternatives of defense issues must be examined. This paper provides support that the modeling and simulation process is an economically feasible process which will ensure our nation's safety as well as provide and keep up with the future technological developments and demands required by the defense industry. The outline of this paper is as follows: introduction, which defines and describes the modeling and simulation process; discussion, which details the purpose and benefits of modeling and simulation and provides specific examples of how the process has been successful; and conclusion, which summarizes the specifics of modeling and simulation of defense issues and lends the support for its continued use in the defense arena.
NASA Technical Reports Server (NTRS)
Neilan, R.; Reigber, C.; Springer, T.; Beutler, G.; Kouba, J.
1999-01-01
In December 1998, the IGS Governing Board officially changed the name of this IAG service from 'International GPS Service for Geodynamics to simply the 'International GPS Service'. This change of name reflects the fact that today the IGS supports numerous scientific projects outside the traditional geodetic and geodynamic disciplines. A number of IGS projects and working groups have been established, each concentrating on a particular science application, such as the ionosphere, atmosphere, reference frame, precise time transfer, etc. These activities are enabled and simulated by the IGS and directly contribute to the continuing development of the service. The IGS is currently poised to respond to evolving user requirements that focus on timeliness and reliability of data and products, particularly in support of a slate of Low Earth Orbiter missions over the next decade. Perspectives on the future of the IGS will be developed based on current directions as well as anticipated external influences, such as GPS satellite modernization, GLONASS, availability of global communications, and plans for the European GALILEO (Global Navigation Satellite System - GNSS). We will address development of user friendly interfaces and IGS product tutorials.
NASA Astrophysics Data System (ADS)
Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang
2017-03-01
Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.
Future Student Support Programs: Distinction or Extinction?
ERIC Educational Resources Information Center
Johnson, Sharon K.; Johnson, C. D.
This chapter reviews changes for the future of student support programs identified and addressed by other contributing authors. It is proposed that without a blueprint of how the fields of school counseling, psychology, nursing, social work, and other student support programs will change to address the future, extinction is guaranteed. Changes…
Impact of European Union Legislation On The Wash Catchment, U.k.
NASA Astrophysics Data System (ADS)
Daldorph, P.; Wheater, H.; Saunders, A.
A case study is presented which shows the impact of existing European Legislation (Urban Waste Water Directive, Nitrate Directive, Bathing Waters Directive, Habitats Directive) on aquatic nutrient concentrations in the 16112 km2 catchment area of The Wash in eastern England , including both the inland and coastal zones. Information is provided on the implementation process (administrative and economic) and the observed impacts of measures to reduce environmental nutrient levels. Impacts are compared with simulations of nutrients in the inland and coastal zones, and the modeling tools are further used to predict impacts of future management change, e.g. to meet possible requirements of the Water Framework Directive. The issues in setting future environmental targets and research needs to underpin this process are discussed in the context of developing river basin management plans to support the Common Implementation Strategy for the Water Framework Directive.
Liu, Bin; Schaffner, Donald W
2007-02-01
Raw seed sprouts have been implicated in several food poisoning outbreaks in the last 10 years. Few studies have included investigations of factors influencing the effectiveness of testing spent irrigation water, and in no studies to date has a nonpathogenic surrogate been identified as suitable for large-scale irrigation water testing trials. Alfalfa seeds were inoculated with Salmonella Stanley or its presumptive surrogate (nalidixic acid-resistant Enterobacter aerogenes) at three concentrations (-3, -30, and -300 CFU/g) and were then transferred into either flasks or a bench top-scale sprouting chamber. Microbial concentrations were determined in seeds, sprouts, and irrigation water at various times during a 4-day sprouting process. Data were fit to logistic regression models, and growth rates and maximum concentrations were compared using the generalized linear model procedure of SAS. No significant differences in growth rates were observed among samples taken from flasks or the chamber. Microbial concentrations in irrigation water were not significantly different from concentrations in sprout samples obtaihed at the same time. E. aerogenes concentrations were similar to those of Salmonella Stanley at corresponding time points for all three inoculum concentrations. Growth rates were also constant regardless of inoculum concentration or strain, except that lower inoculum concentrations resulted in lower final concentrations proportional to their initial concentrations. This research demonstrated that a nonpathogenic easy-to-isolate surrogate (nalidixic acid-resistant E. aerogenes) provides results similar to those obtained with Salmonella Stanley, supporting the use of this surrogate in future large-scale experiments.
Parenting of divorced fathers and the association with children's self-esteem.
Bastaits, Kim; Ponnet, Koen; Mortelmans, Dimitri
2012-12-01
Research suggests that high parental support and control improves children's well-being. However, a large part of these studies have focused on the parenting of married parents. Research on parenting after a divorce, mainly has focused on parenting of divorced mothers, with few exceptions concentrating primarily on non-residential fathers. Therefore, we compared both parenting dimensions support and control of fathers in different family structures (non-residential fathers, fathers in joint custody and married fathers). We also investigated the association between fathers' parenting dimensions and children's self-esteem, controlled for the parenting dimensions of the mother. Data from 587 children (50 % girls) between 10 and 18 years old and their parents were examined. Results revealed that non-residential fathers (n = 225) were less supportive and controlling than fathers in joint custody (n = 138) and married fathers (n = 224). Nevertheless, having a supportive father was beneficial to children's self-esteem in each family structure. We conclude that, even after a divorce, fathers have the capacity to enhance children's self-esteem and we suggest that future research should investigate this capacity.
Spacesuit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.
2008-01-01
For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.
Dimitrov, Dimitar; Nogués-Bravo, David; Scharff, Nikolaj
2012-01-01
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change. PMID:23185283
Reappraisal of hydrocarbon biomarkers in Archean rocks
French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.
2015-01-01
Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387
Breivik, Knut; Fuskevåg, Ole-Martin; Nieboer, Evert; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2013-01-01
Background: Longitudinal monitoring studies of persistent organic pollutants (POPs) in human populations are important to better understand changes with time and age, and for future predictions. Objectives: We sought to describe serum POP time trends on an individual level, investigate age–period–cohort effects, and compare predicted polychlorinated biphenyl (PCB) concentrations to measured values. Methods: Serum was sampled in 1979, 1986, 1994, 2001, and 2007 from a cohort of 53 men in Northern Norway and analyzed for 41 POPs. Time period, age, and birth cohort effects were assessed by graphical analyses and mixed-effect models. We derived the predicted concentrations of four PCBs for each sampling year using the CoZMoMAN model. Results: The median decreases in summed serum POP concentrations (lipid-adjusted) in 1986, 1994, 2001, and 2007 relative to 1979 were –22%, –52%, –54%, and –68%, respectively. We observed substantial declines in all POP groups with the exception of chlordanes. Time period (reflected by sampling year) was the strongest descriptor of changes in PCB-153 concentrations. Predicted PCB-153 concentrations were consistent with measured concentrations in the study population. Conclusions: Our results suggest substantial intraindividual declines in serum concentrations of legacy POPs from 1979 to 2007 in men from Northern Norway. These changes are consistent with reduced environmental exposure during these 30 years and highlight the relation between historic emissions and POP concentrations measured in humans. Observed data and interpretations are supported by estimates from the CoZMoMAN emission-based model. A longitudinal decrease in concentrations with age was evident for all birth cohorts. Overall, our findings support the relevance of age–period–cohort effects to human biomonitoring of environmental contaminants. Citation: Nøst TH, Breivik K, Fuskevåg OM, Nieboer E, Odland JØ, Sandanger TM. 2013. Persistent organic pollutants in Norwegian men from 1979 to 2007: intraindividual changes, age–period–cohort effects, and model predictions. Environ Health Perspect 121:1292–1298; http://dx.doi.org/10.1289/ehp.1206317 PMID:24007675
Reddan, Jeffery M.; White, David J.; Macpherson, Helen; Scholey, Andrew; Pipingas, Andrew
2018-01-01
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults. PMID:29563868
Advanced integrated life support system update
NASA Technical Reports Server (NTRS)
Whitley, Phillip E.
1994-01-01
The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.
Public Support for Public Schools: The Past, the Future, and the Federal Role.
ERIC Educational Resources Information Center
Piele, Philip K.
1983-01-01
Various indices of public support for the schools--school finance voting patterns, public opinion polls, and court litigation--are analyzed to document current trends. Two possible scenarios are forecast for the future, based on socioeconomic and demographic patterns. The need for future government support is stressed. (PP)
NASA Technical Reports Server (NTRS)
Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.;
2014-01-01
Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
2014-01-01
Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426
NIH-Supported Technologies of the Future
... Technologies of the Future Follow us NIH-Supported Technologies of the Future Silk Screws Silk has been ... a cut. In a procedure that uses this technology, multiple beams of ultrasound focus on a target ...
Future changes in precipitation of the baiu season under RCP scenarios
NASA Astrophysics Data System (ADS)
Okada, Y.; Takemi, T.; Ishikawa, H.
2014-12-01
Recently, the relationship between global warming and rainfall during the rainy season, which called the baiu in Japan, has been attracting attention in association with heavy rainfall in this period. In the Innovative Program of Climate Change Projection for the 21st Century, many studies show a delay in the northward march of the baiu front, and significant increase of daily precipitation amounts around western Japan during the late baiu season (e.g., Kusunoki et al. 2011, Kanada et al. 2012). The future climate experiment in these studies was performed under the IPCC SRES A1B scenarios for global warming conditions. In this study, we discuss the future changes in precipitation using calculated 60km-mesh model (MRI-AGCM3.2H) under Representative Concentration Pathways (RCP) scenarios. Support of this dataset is provided by the Meteorological Research Institute (MRI). These dataset are calculated by setting the Yoshimura (YS) scheme mainly.Seasonal progression of future precipitation generally indicates the northward in RCP2.6 and 4.5 scenarios, around western Japan. In RCP6.0 scenario, precipitation intensity is weak compared to the other scenarios. RCP8.5 scenario is calculated by setting three different cumulus schemes (YS, Arakawa-Schubert (AS), and Kain-Fritsch (KF) schemes). RCP8.5 configured in YS scheme showed that the rainband associated with the baiu front is not clear. Moreover, peak is remarkable during late June. In AS scheme, the precipitation area stagnates around 30 N until August. And it in KF scheme shows gradual northward migration.This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-03-03
The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed thatmore » residual contaminant concentrations are protective of groundwater and the Columbia River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-04-17
The 100-F-54 waste site, part of the 100-FR-2 Operable Unit, is the soil associated with the former pastures for holding domestic farm animals used in experimental toxicology studies. Evaluation of historical information resulted in identification of the experimental animal farm pastures as having potential residual soil contamination due to excrement from experimental animals. The 100-F-54 animal farm pastures confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminantmore » concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
Development of a three-man preprototype CO2 collection subsystem for spacecraft application
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.
1977-01-01
Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-08-08
The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do notmore » preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
How will SOA change in the future?: SOA IN THE FUTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng
2016-02-17
Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass ismore » increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.« less
Henning-Smith, Carrie; Shippee, Tetyana
2014-01-01
Most Americans know little about options for long-term services and supports and underestimate their likely future needs for such assistance. Using data from the 2012 National Health Interview Survey, we examined expectations about future use of long-term services and supports among adults ages 40–65 and how these expectations varied by current living arrangement. We found differences by living arrangement in expectations about both future need for long-term services and supports and who would provide such care if needed. Respondents living with minor children were the least likely to expect to need long-term services and supports and to require paid care if the need arose. In contrast, respondents living alone were the most likely to expect that it was “very likely” that they would need long-term services and supports and to rely on paid care. Overall, we found a disconnect between expectations of use and likely future reality: 60 percent of respondents believed that they were unlikely to need long-term services and supports in the future, whereas the evidence suggests that nearly 70 percent of older adults will need them at some point. These findings both underscore the need for programs that encourage people to plan for long-term services and supports and indicate that information about living arrangements can be useful in developing and targeting such programs. PMID:25561642
ERIC Educational Resources Information Center
Paynter, Mark; Bruce, Neville
2014-01-01
The soon to be implemented Australian Curriculum aims to integrate a futures orientation across subject areas. Guidelines and support for this specific initiative are being finalized. Only a little is known about the current teaching of a futures orientation or of secondary teacher interest, understanding and support for this important but…
Neff, Jerry M; Page, David S; Landrum, Peter F; Chapman, Peter M
2013-02-15
This paper reanalyzes data from an earlier study that used effluents from oiled-gravel columns to assess the toxicity of aqueous fractions of weathered crude oil to Pacific herring embryos and larvae. This reanalysis has implications for future similar investigations, including the observance of two distinct dose-response curves for lethal and sublethal endpoints for different exposures in the same experiment, and the need to consider both potency and slope of dose-response curves for components of a toxicant mixture that shows potentially different toxicity mechanisms/causation. Contrary to conclusions of the original study, the aqueous concentration data cannot support the hypothesis that polycyclic aromatic hydrocarbons (PAHs) were the sole cause of toxicity and that oil toxicity increased with weathering. Confounding issues associated with the oiled gravel columns include changes in the concentration and composition of chemicals in exposure water, which interfere with the production of reliable and reproducible results relevant to the field. Copyright © 2012 Elsevier Ltd. All rights reserved.
Endemism hotspots are linked to stable climatic refugia.
Harrison, Susan; Noss, Reed
2017-01-01
Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism-stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism-stability linkage for conservation? Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jung, H. C.; Moon, B. K.; Wie, J.
2017-12-01
Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.
SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Edwards, T.
2012-05-08
This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a sulfur salt layer is not formed on top of the melt pool while allowing higher sulfur based feeds to be processed through DWPF.« less
Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development
NASA Technical Reports Server (NTRS)
O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.
1998-01-01
A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.
Behavioural prevention of ischemic heart disease.
Hartman, L. M.
1978-01-01
Heart disease continues to be a major cause of disablement and death in Canada. Elevated serum cholesterol concentrations, hypertension and cigarette smoking are among the standard risk factors associated with ischemic heart disease. Research attention has also been directed at the role of behavioural factors in the development of atherosclerosis and myocardial infarction. Experimental findings support a conceptual approach to the interplay of psychologic stress, the type A "coronary"-prone behaviour pattern and pathophysiologic mechanisms that have been implicated in the development of coronary artery disease. It is concluded that type A behaviour and stress contribute substantially to the pathogenesis of cardiovascular disease. However, assessment of the manner in which these two variables influence the pathophysiology of ischemic heart disease requires further research, with systematic examination of physiologic and biochemical processes. Potential strategies for modifying type A behaviour are reviewed. However, unequivocal support for the preventive efficacy of behavioural approaches must await future research. PMID:361191
#2) EPA Perspective - Exposure and Effects Prediction and ...
Outline •Biomarkers as a risk assessment tool–exposure assessment & risk characterization•CDC’s NHANES as a source of biomarker data–history, goals & available data•Review of NHANES publications (1999-2013)–chemicals, uses, trends & challenges•NHANES biomarker case study–recommendations for future research The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
Relationship Between Consumer Acceptability and Pungency-Related Flavor Compounds of Vidalia Onions.
Kim, Ha-Yeon; Jackson, Daniel; Adhikari, Koushik; Riner, Cliff; Sanchez-Brambila, Gabriela
2017-10-01
A consumer study was conducted to evaluate preferences in Vidalia onions, and define consumer acceptability thresholds for commonly analyzed flavor compounds associated with pungency. Two varieties of Vidalia onions (Plethora and Sapelo Sweet) were grown at 3 fertilizer application rates (37.5 and 0; 134.5 and 59.4; and 190 and 118.8 kg/ha of nitrogen and sulfur, respectively), creating 6 treatments with various flavor attributes to use in the study. Bulb soluble solids, sugars, pyruvic acid, lachrymatory factor (LF; propanethial S-oxide), and methyl thiosulfinate (MT) content were determined and compared to sensory responses for overall liking, intensity of the sharp/pungent/burning sensation (SPB), and intent to buy provided by 142 consumers. Onion pyruvate, LF, MT, and sugar content increased as fertilization rate increased, regardless of onion variety. Consumer responses showed participants preferred onions with low SPB, which correlated positively to lower pyruvate, LF and MT concentrations, but showed no relationship to total sugars in the onion bulb. Regression analyses revealed that the majority of consumers (≥55%) found the flavor of Vidalia onions acceptable when the concentrations of LF, pyruvic acid, and MT within the bulbs were below 2.21, 4.83, and 0.43 nmol/mL, respectively. These values will support future studies aimed at identifying the optimal cultivation practices for production of sweet Vidalia onions, and can serve as an industry benchmark for quality control, thus ensuring the flavor of Vidalia onions will be acceptable to the majority of consumers. This study identified the relationship between consumer preferences and commonly analyzed flavor compounds in Vidalia onions, and established thresholds for these compounds at concentrations which the majority of consumers will find desirable. These relationships and thresholds will support future research investigating how cultural practices impact onion quality, and can be used to assist growers in variety selection decisions. In addition, this information will provide a benchmark to Vidalia onion producers for quality control of the sweet onions produced, ensuring that the onions are consistently of a desired quality, thereby increasing consumer's reliability in the Vidalia onion brand. © 2017 Institute of Food Technologists®.
Castel, Alan D.; McGillivray, Shannon; Worden, Kendell M.
2014-01-01
Older adults typically display various associative memory deficits, but these deficits can be reduced when conditions allow for the use of prior knowledge or schematic support. To determine how era-specific schematic support and future simulation might influence associative memory, we examined how younger and older adults remember prices from the past as well as the future. Younger and older adults were asked to imagine the past or future, and then studied items and prices from approximately 40 years ago (market value prices from the 1970s) or 40 years in the future. In Experiment 1, all items were common items (e.g., movie ticket, coffee) and the associated prices reflected the era in question, whereas in Experiment 2, some item-price pairs were specific to the time period (e.g., typewriter, robot maid), to test different degrees of schematic support. After studying the pairs, participants were shown each item and asked to recall the associated price. In both experiments, older adults showed similar performance as younger adults in the past condition for the common items, whereas age-related differences were greater in the future condition and for the era-specific items. The findings suggest that in order for schematic support to be effective, recent (and not simply remote) experience is needed in order to enhance memory. Thus, whereas older adults can benefit from “turning back the clock,” younger adults better remember future-oriented information compared with older adults, outlining age-related similarities and differences in associative memory and the efficient use of past and future-based schematic support. PMID:24128073
Castel, Alan D; McGillivray, Shannon; Worden, Kendell M
2013-12-01
Older adults typically display various associative memory deficits, but these deficits can be reduced when conditions allow for the use of prior knowledge or schematic support. To determine how era-specific schematic support and future simulation might influence associative memory, we examined how younger and older adults remember prices from the past as well as the future. Younger and older adults were asked to imagine the past or future, and then studied items and prices from approximately 40 years ago (market value prices from the 1970s) or 40 years in the future. In Experiment 1, all items were common items (e.g., movie ticket, coffee) and the associated prices reflected the era in question, whereas in Experiment 2, some item-price pairs were specific to the time period (e.g., typewriter, robot maid), to test different degrees of schematic support. After studying the pairs, participants were shown each item and asked to recall the associated price. In both experiments, older adults showed similar performance as younger adults in the past condition for the common items, whereas age-related differences were greater in the future condition and for the era-specific items. The findings suggest that in order for schematic support to be effective, recent (and not simply remote) experience is needed in order to enhance memory. Thus, whereas older adults can benefit from "turning back the clock," younger adults better remember future-oriented information compared with older adults, outlining age-related similarities and differences in associative memory and the efficient use of past and future-based schematic support. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Herrema, Renske; Garland, Deborah; Osborne, Malcolm; Freeston, Mark; Honey, Emma; Rodgers, Jacqui
2017-01-01
Very little is known about autism and adulthood. Family members are often the primary support for autistic adults and frequently express concerns about what the future will hold and what support will be available for their relative. 120 family members of autistic adults completed an online survey exploring concerns about the future for their…
Current and future levels of mercury atmospheric pollution on a global scale
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin
2016-10-01
An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source-receptor techniques for mercury emission apportionment on a global scale.
Is premium support the right medicine for Medicare?
Oberlander, J
2000-01-01
This paper assesses the desirability of transforming Medicare into a premium-support system. I focus on three areas crucial to the future of Medicare: cost savings, beneficiary choice, and the stability of traditional Medicare. Based on my analysis of the Bipartisan Commission on the Future of Medicare plan, I find substantial problems with adopting premium support for Medicare. In particular, projections of premium-support savings are based on questionable assumptions that the slowdown in health spending during 1993-1997 can be sustained and extrapolated to future Medicare performance. Consequently, premium support may inadvertently destabilize public Medicare and erode beneficiary choice without achieving substantial savings.
The human parental brain: In vivo neuroimaging
Swain, James E.
2015-01-01
Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilliestam, Johan; Barradi, Touria; Caldes, Natalia
Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less
Lilliestam, Johan; Barradi, Touria; Caldes, Natalia; ...
2018-02-16
Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less
Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke
2015-01-01
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well-characterized MTL damage and healthy controls constructed narratives about (a) future events, (b) past events, and (c) visually-presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking. PMID:21753003
Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke
2011-07-13
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well characterized MTL damage and healthy controls constructed narratives about (1) future events, (2) past events, and (3) visually presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking.
Recent and possible future variations in the North American Monsoon
Hoell, Andrew; Funk, Chris; Barlow, Mathew; Shukla, Shraddhanand
2016-01-01
The dynamics and recent and possible future changes of the June–September rainfall associated with the North American Monsoon (NAM) are reviewed in this chapter. Our analysis as well as previous analyses of the trend in June–September precipitation from 1948 until 2010 indicate significant precipitation increases over New Mexico and the core NAM region, and significant precipitation decreases over southwest Mexico. The trends in June–September precipitation have been forced by anomalous cyclonic circulation centered at 15°N latitude over the eastern Pacific Ocean. The anomalous cyclonic circulation is responsible for changes in the flux of moisture and the divergence of moisture flux within the core NAM region. Future climate projections using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, as part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), support the observed analyses of a later shift in the monsoon season in the presence of increased greenhouse gas concentrations in the atmosphere under the RCP8.5 scenario. The CMIP5 models under the RCP8.5 scenario predict significant NAM-related rainfall decreases during June and July and predict significant NAM-related rainfall increases during September and October.
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Pignon, C.
2017-12-01
C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their stomatal behavior and leaf nitrogen distribution and by decreasing stomatal conductance and redistributing nitrogen away from carbon concentrating mechanism and towards carboxylation machinery, we can significantly decrease transpiration and increase carbon assimilation thereby increasing water use efficiency.
Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight
NASA Technical Reports Server (NTRS)
Owens, Andrew C.; de Weck, Olivier L.; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce
2017-01-01
Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight.
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie L; McGregor, Glenn
2008-11-01
Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.
Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator
NASA Technical Reports Server (NTRS)
Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.
2000-01-01
NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.
Vagiri, Michael; Jensen, Martin
2017-02-15
Aronia melanocarpa berries are a rich source of anthocyanins and its pomace, a by-product of juice processing, could be efficiently used for extraction of natural colours for the food industry. This study evaluated the influence blanching, freezing, maceration temperatures (2°C, 50°C) and enzyme treatments before juice pressing on the yield and anthocyanin composition of both juice and pomace. Total anthocyanin levels in pomace were affected mostly by enzyme treatment followed by maceration temperature. The pre-heating of the mash prior to processing increased juice yield and retention of anthocyanins in the pomace. Cold maceration of frozen berries without enzyme addition gave the highest concentrations of anthocyanins in the pomace, and both cold and hot maceration of fresh unblanched berries with enzyme the lowest. The results support future exploitation of natural colours from pomace side streams of Aronia, thus increasing competitiveness of Aronia berry production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of fast earth-return trajectories from a lunar base
NASA Astrophysics Data System (ADS)
Anhorn, Walter
1991-09-01
The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.
COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS
Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends
A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...
Impact of climate change on runoff pollution in urban environments
NASA Astrophysics Data System (ADS)
Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.
2012-12-01
Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between ±40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions. Consequently, the choice of a proper buildup/washoff model, with calibrated site-specific coefficients, is a major factor in modeling future runoff concentrations from contaminated urban surfaces.
Griffith, Gemma M; Totsika, Vasiliki; Nash, Susie; Hastings, Richard P
2012-09-01
The experiences of individuals in middle adulthood with Asperger syndrome have been the subject of little previous research, especially in terms of their experience of support services. In the present research, 11 adults with Asperger syndrome were interviewed. Interpretative phenomenological analysis (IPA) was used to interpret the interviews. Four themes emerged from the analysis: living with Asperger syndrome; employment issues; experiences with mainstream support; and future steps towards supporting adults with Asperger syndrome. The findings highlighted the anxiety, depression, and communication difficulties that people with Asperger syndrome may experience. Much of the available support is perceived as unsuitable for individuals with Asperger syndrome. All participants wanted to remain as independent as possible, and believed an individualized approach to support would be greatly beneficial. Recommendations are made for future practice to help support adults with Asperger syndrome.
Bach, P M; McCarthy, D T; Deletic, A
2010-01-01
The management of stormwater pollution has placed particular emphasis on the first flush phenomenon. However, definition and current methods of analyses of the phenomena contain serious limitations, the most important being their inability to capture a possible impact of the event size (total event volume) on the first flush. This paper presents the development of a novel approach in defining and assessing the first flush that should overcome these problems. The phenomenon is present in a catchment if the decrease in pollution concentration with the absolute cumulative volume of runoff from the catchment is statistically significant. Using data from seven diverse catchments around Melbourne, Australia, changes in pollutant concentrations for Total Suspended Solids (TSS) and Total Nitrogen (TN) were calculated over the absolute cumulative runoff and aggregated from a collection of different storm events. Due to the discrete nature of the water quality data, each concentration was calculated as a flow-weighted average at 2 mm runoff volume increments. The aggregated concentrations recorded in each increment (termed as a 'slice' of runoff) were statistically compared to each other across the absolute cumulative runoff volume. A first flush is then defined as the volume at which concentrations reach the 'background concentration' (i.e. the statistically significant minimum). Initial results clearly highlight first flush and background concentrations in all but one catchment supporting the validity of this new approach. Future work will need to address factors, which will help assess the first flush's magnitude and volume. Sensitivity testing and correlation with catchment characteristics should also be undertaken.
ERIC Educational Resources Information Center
Meadows, Sarah O.
2009-01-01
Little is known about the effect of incongruity between perception of, or belief in, the availability of support and actual receipt of support during a time of need. This article examines associations between belief in the future availability of instrumental support (e.g., child care, temporary housing, and financial assistance), subsequent…
Impacts of climate variability and future climate change on harmful algal blooms and human health
Stephanie K. Moore; Vera L. Trainer; Nathan J. Mantua; Micaela S. Parker; Edward A. Laws; Lorraine C. Backer; Lora E. Fleming
2008-01-01
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes...
Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think
NASA Astrophysics Data System (ADS)
Torn, M. S.; Harte, J.
2006-12-01
Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.
Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.
Distributed Generation: Challenges and Opportunities, 7. edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-10-15
The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysismore » of DG interconnection and net metering rules.« less
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
Three Studies in Industrial Economics: Competition and Industry Structure
NASA Astrophysics Data System (ADS)
Keil, Jan
Chapter 1 reviews alternative theories of competition - the standard Neoclassical view, the contribution of the Chicago School as well as the two dynamic lines of thought which are part of Austrian economics and Classical Political Economy. The latter is presented as a consistent alternative to the other existing theories. Of special interest is the question if and how industry structure matters in these approaches, how profitability differentials are explained and what role market share concentration and mobility barriers play. Their predictions and implications for empirical research are compared. Ways to test and evaluate these different approaches are described. Chapter 2 investigates econometrically how industry and micro level variables determine persistent differentials in the rate of return on assets in the U.S. The analysis is the first to use business segment data to explain long term profitability differentials. It presents new market concentration indicators that are superior to concentration ratios and allow to analyze an unpreceded amount of concentration and other data back to 1977. Critical concentration levels, non-linearities, interaction effects and previously ignored important control variables like industrial unionization are being considered. Concentration is found to have significant negative effects on profitability differentials. Barrier indicators are insignificant while market shares are positively correlated with long-run profitability. Concentration thus increases, not diminishes the degree of industrial competition. This is interpreted as evidence in support of Classical Political Economic competition theory. Chapter 3 presents a costs of production based industry analytical study that aims at consistency with Classical Political Economic thought. It investigates how growth of renewable electricity in Germany forces conventional power plants to shift towards more flexible operating regimes. The simulation of individual power plant load uses different current and future as well as alternative price and energy policy scenarios, four years of 15-minute interval data on system and renewable load as well as an unpreceded degree of detail on plant cost structures and technical characteristics. I find that the costs of electricity generation of cleaner, flexible thermal plants are positively effected by the transition. The competitiveness of inflexible baseload plants falls as they become more expensive than renewables. Lignite and nuclear power turns out to be unsuited to supplement renewable energy: a future exit reduces the average costs of electricity generation from conventional plants.
Statistical field theory of futures commodity prices
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Yu, Miao
2018-02-01
The statistical theory of commodity prices has been formulated by Baaquie (2013). Further empirical studies of single (Baaquie et al., 2015) and multiple commodity prices (Baaquie et al., 2016) have provided strong evidence in support the primary assumptions of the statistical formulation. In this paper, the model for spot prices (Baaquie, 2013) is extended to model futures commodity prices using a statistical field theory of futures commodity prices. The futures prices are modeled as a two dimensional statistical field and a nonlinear Lagrangian is postulated. Empirical studies provide clear evidence in support of the model, with many nontrivial features of the model finding unexpected support from market data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-05-30
The 100-F-44:2 waste site is a steel pipeline that was discovered in a junction box during confirmatory sampling of the 100-F-26:4 pipeline from December 2004 through January 2005. The 100-F-44:2 pipeline feeds into the 100-F-26:4 subsite vitrified clay pipe (VCP) process sewer pipeline from the 108-F Biology Laboratory at the junction box. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminantmore » concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2007-08-30
The 1607-B1 Septic System includes a septic tank, drain field, and associated connecting pipelines and influent sanitary sewer lines. This septic system serviced the former 1701-B Badgehouse, 1720-B Patrol Building/Change Room, and the 1709-B Fire Headquarters. The 1607-B1 waste site received unknown amounts of nonhazardous, nonradioactive sanitary sewage from these facilities during its operational history from 1944 to approximately 1970. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. Themore » results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
Vizcaíno, P; Pistocchi, A
2010-10-01
The MAPPE GIS based multimedia model is used to produce a quantitative description of the behaviour of gamma-hexachlorocyclohexane (gamma-HCH) in Europe, with emphasis on continental surface waters. The model is found to reasonably reproduce gamma-HCH distributions and variations along the years in atmosphere and soil; for continental surface waters, concentrations were reasonably well predicted for year 1995, when lindane was still used in agriculture, while for 2005, assuming severe restrictions in use, yields to substantial underestimation. Much better results were yielded when same mode of release as in 1995 was considered, supporting the conjecture that for gamma-HCH, emission data rather that model structure and parameterization can be responsible for wrong estimation of concentrations. Future research should be directed to improve the quality of emission data. Joint interpretation of monitoring and modelling results, highlights that lindane emissions in Europe, despite the marked decreasing trend, persist beyond the provisions of existing legislation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Modeling water quality, temperature, and flow in Link River, south-central Oregon
Sullivan, Annett B.; Rounds, Stewart A.
2016-09-09
The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.
Wang, Yi; Hess, Tamara Noelle; Jones, Victoria; Zhou, Joe Zhongxiang; McNeil, Michael R.; McCammon, J. Andrew
2011-01-01
The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 μM, and whole-cell minimum inhibitory concentrations of 20-200 μg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts. PMID:22014548
Spatial And Temporal Trends Of Organic Pollutants In Vegetation From Remote And Rural Areas
NASA Astrophysics Data System (ADS)
Bartrons, Mireia; Catalan, Jordi; Penuelas, Josep
2016-05-01
Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) used in agricultural, industrial, and domestic applications are widely distributed and bioaccumulate in food webs, causing adverse effects to the biosphere. A review of published data for 1977-2015 for a wide range of vegetation around the globe indicates an extensive load of pollutants in vegetation. On a global perspective, the accumulation of POPs and PAHs in vegetation depends on the industrialization history across continents and distance to emission sources, beyond organism type and climatic variables. International regulations initially reduced the concentrations of POPs in vegetation in rural areas, but concentrations of HCB, HCHs, and DDTs at remote sites did not decrease or even increased over time, pointing to a remobilization of POPs from source areas to remote sites. The concentrations of compounds currently in use, PBDEs and PAHs, are still increasing in vegetation. Differential congener specific accumulation is mostly determined by continent—in accordance to the different regulations of HCHs, PCBs and PBDEs in different countries—and by plant type (PAHs). These results support a concerning general accumulation of toxic pollutants in most ecosystems of the globe that for some compounds is still far from being mitigated in the near future.
NASA Astrophysics Data System (ADS)
Loescher, Carolin; Fischer, Martin; Neulinger, Sven; Fiedler, Björn; Philippi, Miriam; Schütte, Florian; Singh, Arvind; Hauss, Helena; Karstensen, Johannes; Körtzinger, Arne; Schmitz, Ruth
2016-04-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (<1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed layer base. The O2-depleted core waters eddy promoted transcription of the key gene for denitrification, nirS. This process is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.
2015-12-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open-ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (< 1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed-layer base. The transcription of the key functional marker gene for dentrification, nirS, further indicated a potential for nitrogen loss processes in O2-depleted core waters of the eddy. Dentrification is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts
Ebi, Kristie L.; McGregor, Glenn
2008-01-01
Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695
Roh, Sungjong; Schuldt, Jonathon P
2014-12-01
Amid concern about high rates of obesity and related diseases, the marketing of nutritionally poor foods to young people by the food industry has come under heavy criticism by public health advocates, who cite decades of youth-targeted marketing in arguing for reforms. In light of recent evidence that the same event evokes stronger emotional reactions when it occurs in the future versus the past, highlighting youth-targeted marketing that has yet to occur may evoke stronger reactions to such practices, and perhaps, greater support for related health policy initiatives. In a between-subjects experiment, Web participants (N = 285) read that a major soda company had already launched (past condition) or was planning to launch (future condition) an advertising campaign targeting children. Measures included support for a soda tax and affective responses to the company's actions. Greater support for the soda tax was observed in the future condition than in the past condition. Moreover, participants in the future condition reported heightened negative emotions about the company's actions, which mediated the observed effect on soda tax support. The same action undertaken by the food industry (here, marketing soda to children) may evoke stronger negative emotions and greater support for a health policy initiative when it is framed prospectively rather than retrospectively.
Episodic Future Thinking: Mechanisms and Functions.
Schacter, Daniel L; Benoit, Roland G; Szpunar, Karl K
2017-10-01
Episodic future thinking refers to the capacity to imagine or simulate experiences that might occur in one's personal future. Cognitive, neuropsychological, and neuroimaging research concerning episodic future thinking has accelerated during recent years. This article discusses research that has delineated cognitive and neural mechanisms that support episodic future thinking as well as the functions that episodic future thinking serves. Studies focused on mechanisms have identified a core brain network that underlies episodic future thinking and have begun to tease apart the relative contributions of particular regions in this network, and the specific cognitive processes that they support. Studies concerned with functions have identified several domains in which episodic future thinking produces performance benefits, including decision making, emotion regulation, prospective memory, and spatial navigation.
Different Futures of Adaptive Collaborative Learning Support
ERIC Educational Resources Information Center
Rummel, Nikol; Walker, Erin; Aleven, Vincent
2016-01-01
In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…
The ice-core record - Climate sensitivity and future greenhouse warming
NASA Technical Reports Server (NTRS)
Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.
1990-01-01
The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.
Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century
NASA Technical Reports Server (NTRS)
Charlton-Perez, A. J.; Hawkins, E.; Eyring, V.; Cionni, I.; Bodeker, G. E.; Kinnison, D. E.; Akiyoshi, H.; Frith, S. M.; Garcia, R.; Gettelman, A.;
2010-01-01
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
Pannullo, Francesca; Lee, Duncan; Neal, Lucy; Dalvi, Mohit; Agnew, Paul; O'Connor, Fiona M; Mukhopadhyay, Sabyasachi; Sahu, Sujit; Sarran, Christophe
2017-03-27
Estimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future. We conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO 2 ); ozone (O 3 ); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM 2.5 ), and less than 10 micrometers (PM 10 ); and sulphur dioxide (SO 2 ). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP). NO 2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO 2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO 2 emissions and concentrations. NO 2 concentrations exhibit consistent substantial present-day health effects regardless of how a representative concentration is constructed in space and time. Thus as concentrations are predicted to remain above limits set by European Union Legislation until the 2030s in parts of urban England, it will remain a substantial health risk for some time.
The evolution of Orbiter depot support, with applications to future space vehicles
NASA Technical Reports Server (NTRS)
Mcclain, Michael L.
1990-01-01
The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.
Sun, Jian; Fu, Joshua S; Huang, Kan; Gao, Yang
2015-05-01
This paper evaluates the PM2.5- and ozone-related mortality at present (2000s) and in the future (2050s) over the continental United States by using the Environmental Benefits Mapping and Analysis Program (BenMAP-CE). Atmospheric chemical fields are simulated by WRF/CMAQ (horizontal resolution: 12×12 km), applying the dynamical downscaling technique from global climate-chemistry model under the Representative Concentration Pathways scenario (RCP 8.5). Future air quality results predict that the annual mean PM2.5 concentration in continental U.S. decreases nationwide, especially in the Eastern U.S. and west coast. However, the ozone concentration is projected to decrease in the Eastern U.S. but increase in the Western U.S. Future mortality is evaluated under two scenarios (1) holding future population and baseline incidence rate at the present level and (2) using the projected baseline incidence rate and population in 2050. For PM2.5, the entire continental U.S. presents a decreasing trend of PM2.5-related mortality by the 2050s in Scenario (1), primarily resulting from the emissions reduction. While in Scenario (2), almost half of the continental states show a rising tendency of PM2.5-related mortality, due to the dominant influence of population growth. In particular, the highest PM2.5-related deaths and the biggest discrepancy between present and future PM2.5-related deaths both occur in California in 2050s. For the ozone-related premature mortality, the simulation shows nation-wide rising tendency in 2050s under both scenarios, mainly due to the increase of ozone concentration and population in the future. Furthermore, the uncertainty analysis shows that the confidence interval of all causes mortality is much larger than that for specific causes, probably due to the accumulated uncertainty of generating datasets and sample size. The confidence interval of ozone-related all cause premature mortality is narrower than the PM2.5-related all cause mortality, due to its smaller standard deviation of the concentration-mortality response factor. The health impact of PM2.5 is more linearly proportional to the emission reductions than ozone. The reduction of anthropogenic PM2.5 precursor emissions is likely to lead to the decrease of PM2.5 concentrations and PM2.5 related mortality. However, the future ozone concentrations could increase due to increase of the greenhouse gas emissions of methane. Thus, to reduce the impact of ozone related mortality, anthropogenic emissions including criteria pollutant and greenhouse gas (i.e. methane) need to be controlled.
Fink, K; Schmid, B; Busch, H-J
2016-11-01
The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.
Support apparatus for semiconductor wafer processing
Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.
2003-06-10
A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.
Tiwari, Ruchi; Tsapepas, Demetra S; Powell, Jaclyn T; Martin, Spencer T
2013-01-01
Healthcare organizations continue to adopt information technologies with clinical decision support (CDS) to prevent potential medication-related adverse drug events. End-users who are unfamiliar with certain high-risk patient populations are at an increased risk of unknowingly causing medication errors. The following case describes a heart transplant recipient exposed to supra-therapeutic concentrations of tacrolimus during co-administration of ritonavir as a result of vendor supplied CDS tools that omitted an interaction alert. After review of 4692 potential tacrolimus-based DDIs between 329 different drug pairs supplied by vendor CDS, the severity of 20 DDIs were downgraded and the severity of 62 were upgraded. The need for institution-specific customization of vendor-provided CDS is paramount to ensure avoidance of medication errors. Individualized care will become more important as patient populations and institutions become more specialized. In the future, vendors providing integrated CDS tools must be proactive in developing institution-specific and easily customizable CDS tools.
Tiwari, Ruchi; Tsapepas, Demetra S; Powell, Jaclyn T
2013-01-01
Healthcare organizations continue to adopt information technologies with clinical decision support (CDS) to prevent potential medication-related adverse drug events. End-users who are unfamiliar with certain high-risk patient populations are at an increased risk of unknowingly causing medication errors. The following case describes a heart transplant recipient exposed to supra-therapeutic concentrations of tacrolimus during co-administration of ritonavir as a result of vendor supplied CDS tools that omitted an interaction alert. After review of 4692 potential tacrolimus-based DDIs between 329 different drug pairs supplied by vendor CDS, the severity of 20 DDIs were downgraded and the severity of 62 were upgraded. The need for institution-specific customization of vendor-provided CDS is paramount to ensure avoidance of medication errors. Individualized care will become more important as patient populations and institutions become more specialized. In the future, vendors providing integrated CDS tools must be proactive in developing institution-specific and easily customizable CDS tools. PMID:22813760
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
Lunar bases and space activities of the 21st century
NASA Technical Reports Server (NTRS)
Mendell, W. W. (Editor)
1985-01-01
The present conference gives attention to such major aspects of lunar colonization as lunar base concepts, lunar transportation, lunar science research activities, moon-based astronomical researches, lunar architectural construction, lunar materials and processes, lunar oxygen production, life support and health maintenance in lunar bases, societal aspects of lunar colonization, and the prospects for Mars colonization. Specific discussions are presented concerning the role of nuclear energy in lunar development, achromatic trajectories and the industrial scale transport of lunar resources, advanced geologic exploration from a lunar base, geophysical investigations of the moon, moon-based astronomical interferometry, the irradiation of the moon by particles, cement-based composites for lunar base construction, electrostatic concentration of lunar soil minerals, microwave processing of lunar materials, a parametric analysis of lunar oxygen production, hydrogen from lunar regolith fines, metabolic support for a lunar base, past and future Soviet lunar exploration, and the use of the moons of Mars as sources of water for lunar bases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ver, L.M.B.; Mackenzie, F.T.; Lerman, A.
In the past three centuries, human perturbations of the environment have affected the biogeochemical behavior of the global carbon cycle and that of the other three nutrient elements closely coupled to carbon: nitrogen, phosphorus, and sulfur. The partitioning of anthropogenic CO{sub 2} among its various sinks in the past, for the present, and for projections into the near future is controlled by the interactions of these four elemental cycles within the major environmental domains of the land, atmosphere, coastal oceanic zone, and open ocean. The authors analyze the past, present, and future behavior of the global carbon cycle using themore » Terrestrial-Ocean-aTmosphere Ecosystem Model (TOTEM), a unique process-based model of the four global coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. They find that during the past 300 yrs, anthropogenic CO{sub 2} was mainly stored in the atmosphere and in the open ocean. Human activities on land caused an enhanced loss of mass from the terrestrial organic matter reservoirs (phytomass and humus) mainly through deforestation and consequently increased humus remineralization, erosion, and transport to the coastal margins by rivers and runoff. Photosynthetic uptake by the terrestrial phytomass was enhanced owing to fertilization by increasing atmospheric CO{sub 2} concentrations and supported by nutrients remineralized from organic matter. TOTEM results indicate that through most of the past 300 yrs, the loss of C from deforestation and other land-use activities was greater than the gain from the enhanced photosynthetic uptake. Since pre-industrial time (since 1700), the net flux of CO{sub 2} from the coastal waters has decreased by 40%, from 0.20 Gt C/yr to 0.12 Gt C/yr. TOTEM analyses of atmospheric CO{sub 2} concentrations for the 21st century were based on the fossil-fuel emission projections of IPCC (business as usual scenario) and of the more restrictive UN 1997 Kyoto Protocol. By the mid-21st century, the projected atmospheric CO{sub 2} concentrations range from about 550 ppmv (TOTEM, based on IPCC projected emissions) to 510 ppmv (IPCC projection) and to 460 ppmv (TOTEM, based on the Kyoto Protocol reduced emissions).« less
Capillary Structures for Exploration Life Support (Capillary Structures)
2017-07-10
iss052e013081 (7/10/2017) --- The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.
Assessment of Emerging Networks to Support Future NASA Space Operations
NASA Technical Reports Server (NTRS)
Younes, Badri; Chang, Susan; Berman, Ted; Burns, Mark; LaFontaine, Richard; Lease, Robert
1998-01-01
Various issues associated with assessing emerging networks to support future NASA space operations are presented in viewgraph form. Specific topics include: 1) Emerging commercial satellite systems; 2) NASA LEO satellite support through commercial systems; 3) Communications coverage, user terminal assessment and regulatory assessment; 4) NASA LEO missions overview; and 5) Simulation assumptions and results.
Keller, Marla J; Mesquita, Pedro M; Marzinke, Mark A; Teller, Ryan; Espinoza, Lilia; Atrio, Jessica M; Lo, Yungtai; Frank, Bruce; Srinivasan, Sujatha; Fredricks, David N; Rabe, Lorna; Anderson, Peter L; Hendrix, Craig W; Kiser, Patrick F; Herold, Betsy C
2016-03-13
Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir (TFV), may be ideal for topical HIV preexposure prophylaxis because it has higher tissue and cell permeability than TFV; is not adversely impacted by seminal proteins; and its active metabolite, TFV-diphosphate (TFV-DP), has a long intracellular half-life. We engineered a TDF eluting polyurethane reservoir intravaginal ring (IVR) to provide near constant mucosal antiretroviral concentrations. A first-in-human randomized placebo-controlled trial was conducted to assess the safety and pharmacokinetics of the TDF IVR in healthy, sexually abstinent women (15 TDF and 15 placebo). Drug concentrations were measured in cervicovaginal fluid (CVF) obtained by swab, cervical tissue, plasma, and dried blood spots (DBS) over 14 days of continuous ring use. There were 43 total, 23 reproductive tract, and eight product-related grade 1 adverse events. Steady-state CVF TFV concentrations were achieved proximal (vagina, ectocervix) and distal (introitus) to the TDF IVR 1 day after ring insertion. Median tissue TFV-DP concentrations 14 days after TDF IVR placement were 120 fmol/mg (interquartile range 90, 550). CVF collected from the cervix 1 week and 2 weeks after TDF IVR insertion provided significant protection against ex-vivo HIV challenge. Eleven of 14 (78%) participants had detectable TFV-DP DBS concentrations 14 days after TDF IVR placement, suggesting that DBS may provide a surrogate marker of adherence in future clinical trials. A TDF IVR is safe, well tolerated, and results in mucosal TFV concentrations that exceed those associated with HIV protection. The findings support further clinical evaluation of this TDF IVR.
Winslow, Stephen D; Pepich, Barry V; Martin, John J; Hallberg, George R; Munch, David J; Frebis, Christopher P; Hedrick, Elizabeth J; Krop, Richard A
2006-01-01
The United States Environmental Protection Agency's Office of Ground Water and Drinking Water has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which future recovery is predicted to fall, with high confidence (99%), between 50% and 150%. The procedure takes into account precision and accuracy. Multiple concentration replicates are processed through the entire analytical method and the data are plotted as measured sample concentration (y-axis) versus true concentration (x-axis). If the data support an assumption of constant variance over the concentration range, an ordinary least-squares regression line is drawn; otherwise, a variance-weighted least-squares regression is used. Prediction interval lines of 99% confidence are drawn about the regression. At the points where the prediction interval lines intersect with data quality objective lines of 50% and 150% recovery, lines are dropped to the x-axis. The higher of the two values is the LCMRL. The LCMRL procedure is flexible because the data quality objectives (50-150%) and the prediction interval confidence (99%) can be varied to suit program needs. The LCMRL determination is performed during method development only. A simpler procedure for verification of data quality objectives at a given minimum reporting level (MRL) is also presented. The verification procedure requires a single set of seven samples taken through the entire method procedure. If the calculated prediction interval is contained within data quality recovery limits (50-150%), the laboratory performance at the MRL is verified.
NASA Technical Reports Server (NTRS)
Hanner, Martha S.
1988-01-01
An assessment is made of what was learned from Halley and recommendations are made for future directions for infrared studies of comets and supporting lab investigations. The following issues are addressed: (1) What steps can be taken to achieve consistent interpretation of Halley infrared data; (2) How successful has the Halley Watch been for infrared studies; (3) What supporting lab research is needed; (4) What are the key infrared observations needed for future comets; and (5) How do current and future NASA programs relate to comet studies.
Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.
2017-12-01
Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Future Secretariat: an innovation research coordination and governance structure
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Johan, R.; Cramer, W.; Fukushi, K.; Allard, S.
2014-12-01
Future Earth, an emerging global sustainability research program, will be managed by a novel, internationally distributed secretariat spanning the globe and providing a platform for co-design, co-production, and co-delivery of knowledge to support research on the earth system, global development and transformation toward sustainability. The Future Earth secretariat has an innovative structure consisting of five global hubs functioning as a single entity; these hubs are located in Canada, Japan, France, Sweden, and the United States. The secretariat's reach is extended through a set of regional hubs covering Latin America, the Middle East, Africa, Europe, and Asia, with the potential to expand to additional areas. This secretariat will operate under the auspices of the Future Earth Governing Council The Future Earth Secretariat will support and enable the implementation of knowledge-sharing between research and stakeholder communities to enable society to cope with and to alter global environmental trends, and to transition society toward sustainability. The secretariat will provide coordination support to over 25 global environmental core projects and committees; coordinate scientific work across the whole Future Earth agenda; develop and implement innovative mechanisms for bottom-up inputs, synthesis and integration. Future Earth, as a research program, aims to support global transformations toward sustainability through partnerships among scientific and stakeholder communities worldwide. It brings together existing international environmental research core projects associated with DIVERSITAS, the International Geosphere-Biosphere Programme, the International Human Dimensions Programme, and the World Climate Research Programme—to support coordinated, interdisciplinary research that can be used by decision makers seeking to reduce their impact and provide more sustainable products and services. USGCRP partners with Future Earth through scientific participation in and annual funding for its constituent programs.
Visual Simulation of Microalgae Growth in Bioregenerative Life Support System
NASA Astrophysics Data System (ADS)
Zhao, Ming
Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.
NASA Astrophysics Data System (ADS)
Mikolajczyk, U.; Suppan, P.; Williams, M.
2015-12-01
Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.
NASA Astrophysics Data System (ADS)
Carpentier, Marion; Sigmarsson, Olgeir; Larsen, Gudrun
2014-05-01
The nature of future eruptions of active volcanoes is hard to predict. Improved understanding of the past volcanic activity is probably the best way to infer future eruptive scenarios. The most active volcano in Iceland, Grímsvötn, last erupted in 2011 with consequences for habitants living close to the volcano and aviation in the North-Atlantic. In an effort to better understand the magmatic system of the volcano, we have investigated the compositions of 23 selected tephra layers representing the last 8 centuries of volcanic activity at Grímsvötn. The tephra was collected in the ablation area of outlet glaciers from Vatnajökull ice cap. The ice-conserved tephra are less prone to alteration than those exposed in soil sections. Major element analyses are indistinguishable and of quartz-normative tholeiite composition, and Sr and Nd isotope ratios are constant. In contrast, both trace element concentrations (Th range from 0.875 ppm to 1.37 ppm and Ni from 28.5 ppm to 56.6 ppm) in the basalts and Pb isotopes show small but significant variations. The high-precision analyses of Pb isotope ratios allow the identification of tephra samples (3 in total) with more radiogenic ratios than the bulk of the samples. The tephra of constant isotope ratios show linear increase in incompatible element concentrations with time. The rate of increasing concentrations permits exploring possible future scenarios assuming that the magmatic system beneath the volcano follows the established historical evolution. Assuming similar future behaviour of the magma system beneath Grímsvötn volcano, the linear increase in e.g. Th concentration suggests that the volcano is likely to principally produce basalts for the next 500-1000 years. Evolution of water concentration will most likely follow those of incompatible elements with consequent increases in explosiveness of future Grímsvötn eruptions.
Harnett, Nathaniel G; Wood, Kimberly H; Ference, Edward W; Reid, Meredith A; Lahti, Adrienne C; Knight, Amy J; Knight, David C
2017-08-01
Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction. The cognitive and affective functions disrupted by stress disorder are mediated, in part, by glutamatergic neural systems. However, it remains unclear whether neural glutamate concentrations, measured acutely following trauma, vary with ASD symptoms and/or future PTSD symptom expression. Therefore, the current study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to investigate glutamate/glutamine (Glx) concentrations within the dorsal anterior cingulate cortex (ACC) of recently (i.e., within one month) traumatized individuals and non-traumatized controls. Although Glx concentrations within dorsal ACC did not differ between recently traumatized and non-traumatized control groups, a positive linear relationship was observed between Glx concentrations and current stress disorder symptoms in traumatized individuals. Further, Glx concentrations showed a positive linear relationship with future stress disorder symptoms (i.e., assessed 3 months post-trauma). The present results suggest glutamate concentrations may play a role in both acute and future post-traumatic stress symptoms following a traumatic experience. The current results expand our understanding of the neurobiology of stress disorder and suggest glutamate within the dorsal ACC plays an important role in cognitive-affective dysfunction following a traumatic experience. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh; ...
2018-05-23
Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh
Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less
Succar, Peter; Medynskyj, Michael; Breen, Edmond J.; Batterham, Tony; Molloy, Mark P.; Herbert, Benjamin R.
2016-01-01
Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA. PMID:26981136
Linder, Camilla; Wide, Katarina; Walander, Malin; Beck, Olof; Gustafsson, Lars L; Pohanka, Anton
2017-05-01
To investigate if dried blood spots could be used for therapeutic drug monitoring of the antiepileptic drugs, carbamazepine, lamotrigine and valproic acid in children with epilepsy. Fingerprick blood samples from 46 children at a neuropediatric outpatient clinic was collected on filterpaper at the same time as capillary plasma sampling. A validated dried blood spot liquid chromatography tandem mass spectrometry method for carbamazepine, lamotrigine and valproic acid was compared with the routine plasma laboratory methods. Method agreement was evaluated and plasma concentrations were estimated by different conversion approaches. Strong correlation was shown between dried blood spot and plasma concentrations for all three drugs, with R2 values>0.89. Regression analysis showed a proportional bias with 35% lower dried blood spot concentrations for valproic acid (n=33) and concentrations were 18% higher for carbamazepine (n=17). A ratio approach was used to make a conversion from dried blood spots to estimated plasma for these two drugs. Dried blood spot concentrations were directly comparable with plasma for lamotrigine (n=20). This study supports that dried blood spot concentrations can be used as an alternative to plasma in a children population for three commonly used antiepileptic drugs with the possibility to expand by adding other antiepileptic drugs. Clinical decisions can be made based on converted (carbamazepine, valproic acid) or unconverted (lamotrigine) dried blood spot concentrations. Dried blood spot sampling, in the future taken at home, will simplify an effective therapeutic drug monitoring for this group of patients who often have concomitant disorders and also reduce costs for society. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Chen, Fa-Ming; Shelton, Richard M; Jin, Yan; Chapple, Iain L C
2009-05-01
Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.
McCormack, S E; Shaham, O; McCarthy, M A; Deik, A A; Wang, T J; Gerszten, R E; Clish, C B; Mootha, V K; Grinspoon, S K; Fleischman, A
2013-02-01
What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly associated with obesity in children and adolescents, and may independently predict future insulin resistance. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.
Stockman, Jonathan; Weber, Ernest Scott P; Kass, Philip H; Pascoe, Peter J; Paul-Murphy, Joanne
2013-01-01
To evaluate the physiological effect and response to noxious stimulation at five concentrations of MS-222 in koi (Cyprinus carpio). Prospective experimental study. Twenty-one healthy adult unknown sex koi fish weighing mean 450±SD 120 g. Each fish was exposed to five different concentrations of MS-222 (50, 70, 110, 150 and 190 mg L(-1) ) in a random sequence during the same anaesthetic event. For each concentration of MS-222, vital functions such as heart rate (HR) (via Doppler) and opercular rate (OpR) were recorded after a standardized induction period. Response to two noxious stimuli in the form of haemostat clamp pressure applied on the tail and the lip was evaluated, and blood was drawn to measure biochemical and blood gas values. Decrease in response to noxious stimulation with an increase of MS-222 concentration both for the lip (p=0.0027) and the tail (p<0.0001) stimulus was observed. Biochemical values were unaffected by the concentration of MS-222 with the exception of lactate concentration which was weakly correlated with the duration of anaesthesia (r=0.31, p<0.001) and the number of times the fish was clamped or bled prior to sampling (r=0.23, p<0.001). Opercular rate decreased with the increase in anaesthetic concentration, and HR was not affected. Our results indicated a decrease in response to stimulus and a decrease in OpR that were associated with increased concentrations of MS-222. This may assist in establishing anaesthetic protocols using MS-222 in fish and supports the use of supramaximal pressure stimuli to teleost fish under variable MS-222 concentrations as a model for future studies. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Dunlop, Colin; Lemke, Ulrike; Murray, Graham
2013-12-01
The performance of highly multiplexed spectrographs is limited by focal ratio degradation (FRD) in the optical fibres. It has already been shown that this is caused mainly by processes concentrated around the mounting points at the ends of the fibres. We use the thickness of rings produced in the far-field when a fibre is illuminated by a collimated beam, to estimate the size of the region where the FRD is generated. This requires the development of a new model, using features of existing ray-tracing and wave-based models, which fits existing data very well. The results suggest that the amount of FRD is primarily determined by the length of fibre bonded into the supporting ferrule. We point out the implications for the production of future fibre systems.
Family Obligation Across Contexts: Hispanic Youth in North Carolina and Southern California
Yahirun, Jenjira J.; Perreira, Krista M.; Fuligni, Andrew J.
2013-01-01
Over the past decade, the Hispanic population has grown in areas with little to no history of recent immigration. Prior research comparing Hispanics in new and established destinations has chiefly focused on differences in socioeconomic indicators of assimilation. Our paper departs from this work by shifting the focus to sociocultural outcomes. Specifically, we use data from Los Angeles and North Carolina to examine differences in the strength of family obligation (N=552). We find that demographic characteristics explain all of the geographic difference in family obligation between these locations. However, we also find that co-ethnic concentration is positively correlated with adolescents’ endorsement of future family support, once ethnic identity is included in the analysis. PMID:26146429
NASA Astrophysics Data System (ADS)
Shahiri, Amirah Mohamed; Husain, Wahidah; Rashid, Nur'Aini Abd
2017-10-01
Huge amounts of data in educational datasets may cause the problem in producing quality data. Recently, data mining approach are increasingly used by educational data mining researchers for analyzing the data patterns. However, many research studies have concentrated on selecting suitable learning algorithms instead of performing feature selection process. As a result, these data has problem with computational complexity and spend longer computational time for classification. The main objective of this research is to provide an overview of feature selection techniques that have been used to analyze the most significant features. Then, this research will propose a framework to improve the quality of students' dataset. The proposed framework uses filter and wrapper based technique to support prediction process in future study.
Future heat waves and surface ozone
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica
2018-06-01
A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).
Technology Needs to Support Future Mars Exploration
NASA Technical Reports Server (NTRS)
Nilsen, Erik N.; Baker, John; Lillard, Randolph P.
2013-01-01
The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.
NASA Astrophysics Data System (ADS)
Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.
2012-12-01
Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately. These results will strengthen our understanding of the impacts of climate change today, and in future years considering different plausible scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian; Fu, Joshua S.; Huang, Kan
This paper evaluates the PM2.5- and ozone-related mortality at present (2000s) and in the future (2050s) over the continental United States by using the Environmental Benefits Mapping and Analysis Program (BenMAP-CE). Atmospheric chemical fields are simulated by WRF/CMAQ (horizontal resolution: 12 × 12km), applying the dynamical downscaling technique from global climate-chemistry models under the Representative Concentration Pathways scenario (RCP 8.5). Future air quality results predict that the annual mean PM2.5 concentrations in continental US will decrease nationwide, especially in the eastern US and west coast. However, the ozone concentration is projected to decrease in the Eastern US but increase inmore » the Western US. Future mortality is evaluated under two scenarios (1) holding future population and baseline incidence rate at the present level and (2) decreasing the future baseline incidence rate but increasing the future population. For PM2.5, the entire continental US presents a decreasing trend of PM2.5-related mortality by the 2050s in Scenario (1), primarily resulting from the emissions reduction. While in Scenario (2), almost half of the continental states show a rising tendency of PM2.5-related mortality, due to the dominant influence of population growth. In particular, the highest PM2.5-related deaths and the biggest discrepancy between present and future PM2.5-related deaths will both occur in California in 2050s. For the ozone-related premature mortality, the simulation shows nation-wide rising tendency in 2050s under both two scenarios, mainly due to the increase of ozone concentration and population in the future. Furthermore, the uncertainty analysis shows that the effect of the all causes mortality is much larger than for specific causes. This assessment is the result of the accumulated uncertainty of generating datasets. The uncertainty range of ozone-related all cause premature mortality is narrower than the PM2.5-related all cause mortality, due to its smaller standard deviation of beta parameter.« less
Head Start Staff Reactions to a Novel Tobacco Intervention: A Qualitative Analysis.
Keske, Robyn R; Barker, Kathryn M; Geller, Alan C; Hamasaka, Laura; Sparks, Michael; Moody-Thomas, Sarah; Jolicoeur, Denise; Rees, Vaughan W
2016-11-01
As tobacco use becomes increasingly concentrated in communities of low socio-economic position (SEP), scalable cessation interventions are needed. Head Start programs offer one setting in which a family-focused intervention can be implemented in low SEP communities. We assessed the experiences of Head Start (HS) staff who received training in a pilot motivational interviewing (MI) tobacco intervention, to improve future feasibility. Focus group interviews were conducted with HS staff to assess their reactions to MI training and their use of MI in their work with families. Transcripts were analyzed using thematic analysis and a 4-step approach informed by grounded theory. HS staff reported advantages of MI beyond its use as a tobacco intervention, despite systematic barriers to broad implementation. Facilitators of MI use included enhanced engagement with families, and opportunities for professional development. Barriers to MI use included limited institutional support and low priority for a tobacco intervention among families with pressing social and financial concerns. HS Staff voiced support for broader training in MI interventions in HS programs. System-wide standards to ensure adequate training and support for an MI tobacco intervention were identified as priorities.
#2) Sensor Technology-State of the Science | Science ...
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.
Capillary Structures for Exploration Life Support (Capillary Structures)
2017-07-10
iss052e013146 (July 10, 2017) --- Astronaut Jack Fischer is photographed during setup of hardware for the Capillary Structures for Exploration Life Support (Capillary Structures) two sorbent demonstrations. The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.
A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts
NASA Technical Reports Server (NTRS)
Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.
2002-01-01
This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.
Restoration of contaminated ecosystems: adaptive management in a changing climate
Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.
2017-01-01
Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.
Environmental legislation and aquatic ecotoxicology in Mexico: past, present and future scenarios.
Mendoza-Cantú, Ania; Ramírez-Romero, Patricia; Pica-Granados, Yolanda
2007-08-01
The consolidation of environmental legislation is fundamental for governments that wish to support and promote different actions focused on reducing pollution and protecting natural water resources in order to maintain the present and future benefits that water provides for human beings and wild life. Environmental laws are essential for sustaining human activities and health, preserving biodiversity and promoting sustainable development. In this context, it is important that environmental regulations concentrate on preventing or reducing the harmful impact of pollutants on organisms and ecosystems. The introduction of toxicity bioassays in environmental regulations is a positive step toward achieving this goal. In Mexico, the development of environmental legislation and the introduction of bioassays in water regulation are part of a very recent and complex journey. This article describes how aquatic ecotoxicology tools, particularly bioassays, have influenced water pollution policies in Mexico. Three scenarios are reviewed: the background of Mexican legislation on water protection and Mexico's participation in the Watertox project; the actual efforts of SEMARNAT to develop bioassay batteries for this country; and, the challenges and perspectives of ecotoxicological bioassays as regulatory instruments.
Preliminary analysis of long-range aircraft designs for future heavy airlift missions
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Murphy, R.; Barlow, A.
1976-01-01
A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.
Futuring for Future Ready Librarians
ERIC Educational Resources Information Center
Figueroa, Miguel A.
2018-01-01
Futurists and foresight professionals offer several guiding principles for thinking about the future. These principles can help people to think about the future and become more powerful players in shaping the preferred futures they want for themselves and their communities. The principles also fit in well as strategies to support the Future Ready…
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
2016-08-01
estimate should have a standardized structure that breaks costs into discrete elements with sufficient detail to ensure that cost elements are...FORCE STRUCTURE Better Information Needed to Support Air Force A-10 and Other Future Divestment Decisions Report...Accountability Office Highlights of GAO-16-816, a report to congressional committees August 2016 FORCE STRUCTURE Better Information Needed to Support
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie; McGregor, Glenn
2009-01-01
We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... intention of providing additional support at a future date. This type of research project grant is approved..., de novo peer review and staff evaluation, new recommendation and approval, and a new award instrument... additional support at a future date, provided that performance has been satisfactory, appropriations are...
Study of Tungsten effect on CFETR performance
NASA Astrophysics Data System (ADS)
Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration
2017-10-01
An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.
2016-10-01
The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Jones, Therésa M.; Durrant, Joanna; Michaelides, Ellie B.; Green, Mark P.
2015-01-01
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN. PMID:25780235
77 FR 74421 - Approval and Promulgation of Air Quality Implementation Plans for PM2.5
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... calculation of future year PM 2.5 design values using the SMAT assumptions contained in the modeled guidance\\4... components. Future PM 2.5 design values at specified monitoring sites were estimated by adding the future... nonattainment area, all future site-specific PM 2.5 design values were below the concentration specified in the...
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Rhodes, Marvin D.
1994-01-01
Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
Ghosh, Jayati; Heintz, James; Pollin, Robert
2012-01-01
In December 2010, the United Nations Food and Agriculture Organization's Food Price Index surpassed its previous peak of June 2008, and prices remained at this level through September 2011. This pattern is creating justified fears of a renewal or intensification of the global food crisis. This paper reviews arguments and evidence to inform debates on how to regulate commodity futures markets in the face of such price volatility and sustained high prices. We focus on the relationship between market liquidity and price patterns in asset markets in general and in commodities futures markets in particular, as well as the relationship between spot and futures market prices for food. We find strong evidence supporting the need to limit huge increases in trading volume on futures markets through regulations. We find that arguments opposing regulation are not supported. We find no support for the claim that liquidity in futures markets stabilizes prices at "fundamental" values or that spot market prices are free of any significant influence from futures markets. Given these results, the most appropriate position for regulators is precautionary: they should enact and enforce policies capable of effectively dampening excessive speculative trading on the commodities markets for food.
McCormack, Shana E.; Shaham, Oded; McCarthy, Meaghan A.; Deik, Amy A.; Wang, Thomas J.; Gerszten, Robert E.; Clish, Clary B.; Mootha, Vamsi K.; Grinspoon, Steven K.; Fleischman, Amy
2012-01-01
Background Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. Objective To determine whether pediatric obesity is associated with elevations in fasting circulating concentrations of branched-chain amino acids (isoleucine, leucine, and valine), and whether these elevations predict future insulin resistance. Research Design and Methods Sixty-nine healthy subjects, ages 8 to18 years, were enrolled as a cross-sectional cohort. A subset who were pre- or early-pubertal, ages 8 to 13 years, were enrolled in a prospective longitudinal cohort for 18 months (n=17 with complete data). Results Elevations in the concentrations of BCAA’s were significantly associated with BMI Z-score (Spearman’s Rho 0.27, p=0.03) in the cross-sectional cohort. In the subset of subjects followed longitudinally, baseline BCAA concentrations were positively associated with HOMA-IR measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex, and pubertal stage (p=0.046). Conclusions Elevations in the concentrations of circulating branched-chain amino acids are significantly associated with obesity in children and adolescents, and may independently predict future insulin resistance. PMID:22961720
Coordinated Development and Deployment of Scenarios for Sustained Assessment
NASA Astrophysics Data System (ADS)
Lipschultz, F.; Weaver, C. P.; Leidner, A. K.; Delgado, A.; Grambsch, A.
2017-12-01
There has been a clear need for a more coordinated Federal government approach for authoritative, climate-relevant scenarios to support growing demands by decision-makers, to meet stakeholder needs for consistent approaches and guidance, and to better address the needs of the impacts, adaptation and vulnerability community. To begin to satisfy these decision-support needs, in early 2015 the U.S. Global Change Research Program (USGCRP) began coordinated production of scenario information for use across a suite of USGCRP activities. These have been implemented in the 4th National Climate Assessment (NCA4), the Climate Science Special Report and the Climate Resilience Toolkit (CRT), all of which are intended to help better organize, summarize, and communicate science to decision-makers as they think about our future. First, USGCRP introduced and implemented an explicit risk-framing approach across the entire scenario enterprise to encourage exploration of tail risks. A suite of scenario products was developed framed around three simplified storylines: `Lower', `Higher', and `Upper Bound' departures from current baselines. Second, USGCRP developed future climate information for the U.S. using Representative Concentration Pathway (RCP) 8.5 and RCP 4.5, including a weighted mean of Global Climate Models and adoption of an improved statistical downscaling approach across USGCRP products. Additional variables were derived from the downscaled parameters for use across USGCRP reports and in the CRT's Climate Explorer tool. Third, and given the need to address other tightly-coupled global changes in a more integrated way, a set of population, housing density, and impervious surface projections were developed based on global scenarios. In addition, USGCRP and the National Ocean Council developed scenarios of future sea-level rise and coastal-flood hazard for the U.S. and integrated them into existing Federal capabilities to support preparedness planning. To better convey these scenario components, next steps include capability for dynamic interaction between NCA4 products and CRT to permit users to explore and customize relevant information for their decision at spatial scales that matter to them, as well as links to more in-depth CRT content.
Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y
2015-01-01
UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.
Åhlfeldt, Rose-Mharie; Persson, Anne; Rexhepi, Hanife; Wåhlander, Kalle
2016-12-01
This article presents and illustrates the main features of a proposed process-oriented approach for patient information distribution in future health care information systems, by using a prototype of a process support system. The development of the prototype was based on the Visuera method, which includes five defined steps. The results indicate that a visualized prototype is a suitable tool for illustrating both the opportunities and constraints of future ideas and solutions in e-Health. The main challenges for developing and implementing a fully functional process support system concern both technical and organizational/management aspects. © The Author(s) 2015.
2010-08-20
CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett
2010-08-20
CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett
Sung, K T
2001-01-01
This article discusses major issues and concerns regarding family support for parents and elderly people in industrialized and urbanized Korea. It summarizes new trends in family support for elderly members, continuing influences of the traditional value of family support (filial piety), growing needs for public services for elderly people and their families, urgent calls for the state to assume greater responsibilities for providing social security and services for the elderly, needs for cross-cultural studies of family support, and certain cultural similarities and differences to be considered. The article concludes with some suggestions for future research.
Environmental contamination due to shale gas development.
Annevelink, M P J A; Meesters, J A J; Hendriks, A J
2016-04-15
Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model
NASA Technical Reports Server (NTRS)
Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.
2016-01-01
Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50% over the eastern United States for several variables), although the modeled PM2.5 is less sensitive to precipitation than in the observations due to weaker convective scavenging. We conclude that the hypothesized "climate penalty" of future increases in PM2.5 is relatively minor on a global scale compared to the influence of emissions on PM2.5 concentrations.
Does Problem Behavior Elicit Poor Parenting?: A Prospective Study of Adolescent Girls
Huh, David; Tristan, Jennifer; Wade, Emily; Stice, Eric
2006-01-01
This study tested the hypothesis that perceived parenting would show reciprocal relations with adolescents' problem behavior using longitudinal data from 496 adolescent girls. Results provided support for the assertion that female problem behavior has an adverse effect on parenting; elevated externalizing symptoms and substance abuse symptoms predicted future decreases in perceived parental support and control. There was less support for the assertion that parenting deficits foster adolescent problem behaviors; initially low parental control predicted future increases in substance abuse, but not externalizing symptoms, and low parental support did not predict future increases in externalizing or substance abuse symptoms. Results suggest that problem behavior is a more consistent predictor of parenting than parenting is of problem behavior, at least for girls during middle adolescence. PMID:16528407
Nyantika, A N; Tuomainen, T-P; Kauhanen, J; Voutilainen, S; Virtanen, J K
2015-05-01
To investigate the associations of serum long-chain omega-3 polyunsaturated fatty acids (PUFA) and hair mercury with future blood pressure in an ageing population. Prospective study with baseline measurements in 1998-2001 and follow-up measurements in 2005-2008. The linear relationships (β) of baseline serum fatty acids and hair mercury with future systolic and diastolic blood pressure and pulse pressure were analyzed with multiple linear regression models, using log-transformed values. 181 men and 200 women aged 53-73 y from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) population in Eastern Finland, who were free of cardiovascular disease, diabetes or hypertension at baseline. Total serum esterified and nonesterified fatty acids and pubic hair mercury were used as markers for exposure. Anthropometric and other lifestyle and health-related data were collected. The mean serum concentrations were 1.67% (SD 0.92) for eicosapentaenoic acid (EPA), 0.79% (SD 0.16) for docosapentaenoic acid (DPA) and 2.78 (SD 0.92) for docosahexaenoic acid (DHA), of all serum fatty acids. The mean hair mercury concentration was 1.5 µg/g (SD 1.6). We did not find statistically significant associations between the baseline serum long-chain omega-3 PUFA concentrations or hair mercury content and future blood pressure. Hair mercury did not modify the associations with the long-chain omega-3 PUFAs, either. Higher serum long-chain omega-3 PUFA concentration, a biomarker of fish or fish oil consumption, may not have an impact on future blood pressure in an ageing population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-04-15
The 100-F-50 waste site, part of the 100-FR-2 Operable Unit, is a steel stormwater runoff culvert that runs between two railroad grades in the south-central portion of the 100-F Area. The culvert exiting the west side of the railroad grade is mostly encased in concrete and surrounded by a concrete stormwater collection depression partially filled with soil and vegetation. The drain pipe exiting the east side of the railroad grade embankment is partially filled with soil and rocks. The 100-F-50 stormwater diversion culvert confirmatory sampling results support a reclassification of this site to no action. The current site conditions achievemore » the remedial action objectives and corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna
Dalu, Tatenda; Wasserman, Ryan J.; Jordaan, Martine; Froneman, William P.; Weyl, Olaf L. F.
2015-01-01
Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms. PMID:26540301
Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans.
Spungin, Dina; Berman-Frank, Ilana; Levitan, Orly
2014-06-01
Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO(2), forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition,glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N(2) fixation rates detected in Trichodesmium cultured under high pCO(2). This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates,enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO(2) could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
Uncertainty, ensembles and air quality dispersion modeling: applications and challenges
NASA Astrophysics Data System (ADS)
Dabberdt, Walter F.; Miller, Erik
The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.
Frog skin cultures secrete anti-yellow fever compounds.
Muñoz-Camargo, Carolina; Méndez, Margarita Correa; Salazar, Vivian; Moscoso, Johanna; Narváez, Diana; Torres, Maria Mercedes; Florez, Franz Kaston; Groot, Helena; Mitrani, Eduardo
2016-11-01
There is an urgent need to develop novel antimicrobial substances. Antimicrobial peptides (AMPs) are considered as promising candidates for future therapeutic use. Because of the re-emergence of the Flavivirus infection, and particularly the yellow fever virus (YFV), we have compared the antiviral activities from skin secretions of seven different frog species against YFV (strain 17D). Secretions from Sphaenorhynchus lacteus, Cryptobatrachus boulongeri and Leptodactylus fuscus displayed the more powerful activities. S. lacteus was found to inhibit viral lysis of Vero E6 cells even at the highest viral concentration evaluated of 10 LD 50 . We also report the identification of a novel frenatin-related peptide from S. lacteus and found that this peptide-on its own-can lead to 35% protection against YVF, while displaying no cytotoxicity against somatic cells even at fivefold higher concentrations. These results are attractive and support the need for continued exploration of new sources of AMPs from frog skin secretions such as those described here in the development of new compounds for the treatment of infectious diseases in general and specific viral infections in particular.
Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick
2007-01-01
The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.
Valuing Precaution in Climate Change Policy Analysis (Invited)
NASA Astrophysics Data System (ADS)
Howarth, R. B.
2010-12-01
The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.
Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008
Rogers, Mark W.; Bunnell, David B.; Madenjian, Charles P.; Warner, David M.
2014-01-01
Ecosystems undergo dynamic changes owing to species invasions, fisheries management decisions, landscape modifications, and nutrient inputs. At Lake Michigan, new invaders (e.g., dreissenid mussels (Dreissena spp.), spiny water flea (Bythotrephes longimanus), round goby (Neogobius melanostomus)) have proliferated and altered energy transfer pathways, while nutrient concentrations and stocking rates to support fisheries have changed. We developed an ecosystem model to describe food web structure in 1987 and ran simulations through 2008 to evaluate changes in biomass of functional groups, predator consumption, and effects of recently invading species. Keystone functional groups from 1987 were identified as Mysis, burbot (Lota lota), phytoplankton, alewife (Alosa pseudoharengus), nonpredatory cladocerans, and Chinook salmon (Oncorhynchus tshawytscha). Simulations predicted biomass reductions across all trophic levels and predicted biomasses fit observed trends for most functional groups. The effects of invasive species (e.g., dreissenid grazing) increased across simulation years, but were difficult to disentangle from other changes (e.g., declining offshore nutrient concentrations). In total, our model effectively represented recent changes to the Lake Michigan ecosystem and provides an ecosystem-based tool for exploring future resource management scenarios.
Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.
2014-01-01
Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.
Rui, Jia-bai; Zheng, Chuan-xian; Zeng, Qing-tang
2002-12-01
Objective. To test and demonstrate embryonic form of our future space station ECLSS, which will also form an advanced research and test ground facility. Method. The following functions of the system were tested and demonstrated: integrated solid amine CO2 collection and concentration, Sabatier CO2 reduction, urine processing thermoelectric integrated membrane evaporation, solid polymer water electrolysis O2 generation, concentrated ventilation, temperature and humidity control, the measurement and control system, and other non-regenerative techniques. All of these were demonstrated in a sealed adiabatic module, and passed the proof-tests. Result. The principal technical requirements of the system and each regenerative subsystem were met. The integration of system general and each subsystem was successful, and the partial closed loop of the system's integration has been realized basically. Conclusion. The reasonableness of the project design was verified, and the major system technical requirements were satisfied. The suitability and harmonization among system general and each subsystem were good, the system operated normally, and the parameters measured were correct.
Code of Federal Regulations, 2011 CFR
2011-01-01
... project period without the announced intention of providing additional support at a future date. This type... renewal shall be based upon new application, de novo peer review and staff evaluation, new recommendation... statement of intention to provide additional support at a future date, provided that performance has been...
Excipients and their role in approved injectable products: current usage and future directions.
Nema, Sandeep; Brendel, Ronald J
2011-01-01
This review article is a current survey of excipients used in approved injectable products. Information provided includes concentration ranges, function, frequency of use, and role in dosage form. This article is an update of a paper published more than a decade ago (reference 11). Since then many new products have been approved. Safety concerning excipients has evolved as the scientific community continues to learn about their usage. New excipients are being used in early phases of clinical trials to support novel therapeutic entities like RNAi, aptamers, anti-sense, fusion proteins, monoclonal antibodies, and variant scaffolds. Because these excipients are not inert, various pharmacopoeias are responding with monographs or informational chapters addressing excipient functionality. The final sections of this article discuss new excipients, serving specific needs that traditional excipients are unable to provide and for which safety studies are necessary to support a novel excipient for marketing applications. Excipients are added to parenteral dosage forms to serve a variety of functions including stabilization and as vehicles. This review article is a survey of excipients used in approved injectable products. Information provided includes excipient concentrations, functional roles, and frequency of use. This article is an update of an article originally published over a decade ago. Since then new products have been approved and safety concerns have evolved as the scientific community has learned about the usage of excipients. In addition, new excipients are being used in early phases of clinical trials to support novel therapeutic entities such as RNAi, aptamers, anti-sense, fusion proteins, monoclonal antibodies, and variant scaffolds. Because these excipients are not inert, various pharmacopoeias are responding with monographs or informational chapters addressing excipient functionality. The final sections of this article discuss new excipients, serving specific needs that traditional excipients are unable to provide and for which safety studies are necessary to support a novel excipient for marketing applications.
NASA Astrophysics Data System (ADS)
Dong, Chen; Chu, Zhengpei; Wang, Minjuan; Qin, Youcai; Yi, Zhihao; Liu, Hong; Fu, Yuming
2018-03-01
Minimizing nitrogen (N) consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. Plants cultivated in the controlled environments are sensitive to the low recyclable N (such as from the urine). The purpose of this study is to investigate the effects of nitrogen fertilizer (NH4+-N and NO3--N) disturbance on growth, photosynthetic efficiency, antioxidant defence systems and biomass yield and quality of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 4 controlled groups,Ⅰ: NO3--N: NH4+-N = 7:1 mmol L-1; Ⅱ: NO3--N: NH4+-N = 14:0.5 mmol L-1; Ⅲ: NO3--N: NH4+-N = 7:0.5 mmol L-1 and CK: NO3--N: NH4+-N = 14:1 mmol L-1, and other salt concentrations were the same. The results showed that heading and flowering stages in spring wheat are sensitive to low N concentration, especially NO3--N in group Ⅰ and Ⅲ. NO3- is better to root growth than to shoot growth. The plants were spindling and the output was lower 21.3% when spring wheat was in low N concentration solution. Meanwhile, photosynthetic rate of low N concentrations is worse than that of CK. The soluble sugar content of the edible part of wheat plants is influenced with NO3-: NH4+ ratio. In addition, when N concentration was lowest in group Ⅲ, the lignin content decreased to 2.58%, which was more beneficial to recycle substances in the processes of the environment regeneration.
van den Bogaard, Simon J A; Dumas, Eve M; Teeuwisse, Wouter M; Kan, Hermien E; Webb, Andrew; Roos, Raymund A C; van der Grond, Jeroen
2011-12-01
Huntington's disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.
Computerised decision support in physical activity interventions: A systematic literature review.
Triantafyllidis, Andreas; Filos, Dimitris; Claes, Jomme; Buys, Roselien; Cornelissen, Véronique; Kouidi, Evangelia; Chouvarda, Ioanna; Maglaveras, Nicos
2018-03-01
The benefits of regular physical activity for health and quality of life are unarguable. New information, sensing and communication technologies have the potential to play a critical role in computerised decision support and coaching for physical activity. We provide a literature review of recent research in the development of physical activity interventions employing computerised decision support, their feasibility and effectiveness in healthy and diseased individuals, and map out challenges and future research directions. We searched the bibliographic databases of PubMed and Scopus to identify physical activity interventions with computerised decision support utilised in a real-life context. Studies were synthesized according to the target user group, the technological format (e.g., web-based or mobile-based) and decision-support features of the intervention, the theoretical model for decision support in health behaviour change, the study design, the primary outcome, the number of participants and their engagement with the intervention, as well as the total follow-up duration. From the 24 studies included in the review, the highest percentage (n = 7, 29%) targeted sedentary healthy individuals followed by patients with prediabetes/diabetes (n = 4, 17%) or overweight individuals (n = 4, 17%). Most randomized controlled trials reported significantly positive effects of the interventions, i.e., increase in physical activity (n = 7, 100%) for 7 studies assessing physical activity measures, weight loss (n = 3, 75%) for 4 studies assessing diet, and reductions in glycosylated hemoglobin (n = 2, 66%) for 3 studies assessing glycose concentration. Accelerometers/pedometers were used in almost half of the studies (n = 11, 46%). Most adopted decision support features included personalised goal-setting (n = 16, 67%) and motivational feedback sent to the users (n = 15, 63%). Fewer adopted features were integration with electronic health records (n = 3, 13%) and alerts sent to caregivers (n = 4, 17%). Theoretical models of decision support in health behaviour to drive the development of the intervention were not reported in most studies (n = 14, 58%). Interventions employing computerised decision support have the potential to promote physical activity and result in health benefits for both diseased and healthy individuals, and help healthcare providers to monitor patients more closely. Objectively measured activity through sensing devices, integration with clinical systems used by healthcare providers and theoretical frameworks for health behaviour change need to be employed in a larger scale in future studies in order to realise the development of evidence-based computerised systems for physical activity monitoring and coaching. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Spracklen, D. V.; Logan, J. A.; Mickley, L. J.; Park, R. J.; Flannigan, M. D.; Westerling, A. L.
2006-12-01
Increased forest fire activity in the Western United States appears to be driven by increasing spring and summer temperatures. Here we make a first estimate of how climate-driven changes in fire activity will influence summertime organic carbon (OC) concentrations in the Western US. We use output from a general circulation model (GCM) combined with area burned regressions to predict how area burned will change between present day and 2050. Calculated area burned is used to create future emission estimates for the Western U.S. and we use a global chemical transport model (CTM) to predict future changes in OC concentrations. Stepwise linear regression is used to determine the best relationships between observed area burned for 1980- 2004 and variables chosen from temperature, relative humidity, wind speed, rainfall and drought indices from the Candaian Fire Weather Index Model. Best predictors are ecosytem dependent but typically include mean summer temperature and mean drought code. In forest ecosystems of the Western U.S. our regressions explain 50-60% of the variance in annual area burned. Between 2000 and 2050 increases in temperature and reductions in precipitation, as predicted by the GISS GCM, cause mean area burned in the western U.S. to increase by 30-55%. We use the GEOS-Chem CTM to show that these increased emissions result in an increase in summertime western U.S. OC concentrations by 55% over current concentrations. Our results show that the predicted increase in future wild fires will have important consequences for western US air quality and visibility.
Support means for a particle beam position monitor
VanZwienen, W.H.
1991-01-29
A support means is disclosed for a plurality of thermally deformable component parts that are concentrically mounted within a thermally expandable housing. The support means includes a plurality of pins that are mounted in relatively fixed or sliding relationship to either one of the concentrically positioned components or to the housing, and the pins are positioned to extend through aligned apertures in the remaining components or the housing in a manner such that the pins are free to slide in a snug relationship relative to the sides of the holes through those components or the housing. The support means enables the concentrically mounted components and the housing to undergo expansion and contraction movement, radially and longitudinally relative to one another, while maintaining concentricity of the components and the housing relative to one another. 3 figures.
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The Department of Energy's (DOE) Office of Science is among the world's premier supporters of basic research. The Office of Science enables the U.S. to maintain its competitive edge by funding science that can transform its energy future, supports its national security and seeks to understand the fundamentals of matter and energy itself. To do…
Emerging adults and the future of wild nature
Harry C. Zinn; Alan R. Graefe
2007-01-01
Many resource managers and wilderness advocates see links between appreciating wild nature, participating in traditional outdoor activities, and support for protecting wild areas. Some of these individuals express concern that the values and recreation behavior of today's young people may suggest less support for protecting wilderness in the future. Although...
Fermilab Friends for Science Education | Support Us
economy are driven by scientific and technological innovations. We want a strong future and must support our future scientists and their teachers now. We need a scientifically literate and aware society create new, innovative science education programs and make the best use of unique Fermilab resources
27 CFR 24.158 - Extent of relief.
Code of Federal Regulations, 2012 CFR
2012-04-01
... will be relieved of future liability with respect to wine, spirits, volatile fruit-flavor concentrate... relief, the surety will remain liable for the tax on all wine or volatile fruit-flavor concentrate produced at, and for wine, spirits, and volatile fruit-flavor concentrate consigned to, the bonded wine...
27 CFR 24.158 - Extent of relief.
Code of Federal Regulations, 2014 CFR
2014-04-01
... will be relieved of future liability with respect to wine, spirits, volatile fruit-flavor concentrate... relief, the surety will remain liable for the tax on all wine or volatile fruit-flavor concentrate produced at, and for wine, spirits, and volatile fruit-flavor concentrate consigned to, the bonded wine...
27 CFR 24.158 - Extent of relief.
Code of Federal Regulations, 2013 CFR
2013-04-01
... will be relieved of future liability with respect to wine, spirits, volatile fruit-flavor concentrate... relief, the surety will remain liable for the tax on all wine or volatile fruit-flavor concentrate produced at, and for wine, spirits, and volatile fruit-flavor concentrate consigned to, the bonded wine...
27 CFR 24.158 - Extent of relief.
Code of Federal Regulations, 2011 CFR
2011-04-01
... will be relieved of future liability with respect to wine, spirits, volatile fruit-flavor concentrate... relief, the surety will remain liable for the tax on all wine or volatile fruit-flavor concentrate produced at, and for wine, spirits, and volatile fruit-flavor concentrate consigned to, the bonded wine...
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
On-Site Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Good, James E.
2008-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. So what do we do when we get to the moon for sustainable exploration. On-site fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The on-site fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR element has worked closely with the ISRU element in the past year to assess the ability of using lunar regolith as a viable feedstock for fabrication material. Preliminary work has shown promise and the ISFR Element will continue to concentrate on this activity. Fabrication capabilities have been furthered with the process certification effort that, when completed, will allow for space-qualified hardware to be manufactured. Materials being investigated include titanium and aluminum alloys as well as lunar regolith simulants with binders. This paper addresses the latest advancements made in the fabrication of infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; infrastructures that allow sustained, affordable and highly effective operations on the Moon and beyond.
Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L.
2011-01-01
The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water-quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water-quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow-weighted concentration, or load of constituents in water under various land-use condition, change, or resource management scenarios. A web-based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Berntssen, Marc H G; Sanden, Monica; Hove, Helge; Lie, Øyvind
2016-11-01
The salmon feed composition has changed the last decade with a replacement of traditionally use of fish oil and fishmeal diets with vegetable ingredients and the use decontaminated fish oils, causing reduced concentrations of dioxins and dioxin-like PCBs in farmed Norwegian Atlantic salmon. The development of novel salmon feeds has prompted the need for prediction on dioxins and dl-PCB concentrations in future farmed salmon. Prediction on fillet dioxins and dl-PCB concentrations from different feed composition scenarios are made using a simple one-compartmental transfer model based on earlier established dioxin and dl-PCB congener specific uptake and elimination kinetics rates. The model is validated with two independent feeding trials, with a significant linear correlation (r(2) = 0.96, y = 1.0x, p < 0.0001, n = 116) between observed and predicted values. Model fillet predictions are made for the following four scenarios; (1) general feed composition of 1999, (2) feed composition of 2013, (3) future feed composition with high fish oil and meal replacement, (4) future feed composition with high fish oil and meal replacement and decontaminated fish oil. Model predictions of fillet dioxin and dl-PCB concentrations from 1999 (1.05 ng WHO2005-TEQs kg(-1)ww) and 2013 (0.57 ng WHO2005-TEQs kg(-1)ww) are in line with the data observed in national surveillance programs of those years (1.1 and 0.52 ng WHO2005-TEQs kg(-1)ww, respectively). Future use of high replacement and decontaminated oils feeds gave predicted fillet concentrations of 0.27 ng WHO2005-TEQs kg(-1)ww, which is near the limit of quantification. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernardes, S.
2016-12-01
Global coupled carbon-climate simulations show considerable variability in outputs for atmospheric and land fields over the 21st century. This variability includes changes in temperature and in the quantity and spatiotemporal distribution of precipitation for large regions on the planet. Studies have considered that reductions in water availability due to decreased precipitation and increased water demand by the atmosphere may negatively affect plant metabolism and reduce carbon uptake. Future increases in carbon dioxide concentrations are expected to affect those interactions and potentially offset reductions in productivity. It is uncertain how plants will adjust their water use efficiency (WUE, plant production per water loss by evapotranspiration) in response to changing environmental conditions. This work investigates predicted changes in WUE in the 21st century by analyzing an ensemble of Earth System Models from the Coupled Model Intercomparison Project 5 (CMIP5), together with flux tower data and products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Two representative concentration pathways were selected to describe possible climate futures (RCP4.5 and RCP8.5). Periods of analysis included 2006-2099 (predicted) and 1850-2005 (reference). Comparisons between modeled, flux and satellite data for IPCC SREX regions were used to address the significant intermodel variability observed for the CMIP5 ensemble (larger variability for RCP8.5, higher intermodel agreement in Southeast Asia, lower intermodel agreement in arid areas). Model skill was evaluated in support of model selection and the spatiotemporal analysis of changes in WUE. Global, regional and latitudinal distributions of departures of projected conditions in relation to historical values are presented for both concentration pathways. Results showed high model sensitivity to different concentration pathways and increase in GPP and WUE for most of the planet (increases consistently higher for RCP8.5). Higher increases in GPP and WUE are predicted to occur over higher latitudes in the northern hemisphere (boreal region), with WUE usually following GPP in changes. Decreases in productivity and WUE occur mostly in the tropics, affecting tropical forests in Central America and in the Amazon.
Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration
Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.
2009-01-01
Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity. PMID:19759821
CAM/LIFTER forces and friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
Problem-based learning: a review of the educational and psychological theory.
Onyon, Clare
2012-02-01
Problem-based learning (PBL) is a teaching method where the use of clinical problems is the starting point for learning, and it is through the process of working through these problems that students acquire the knowledge and skills required to be a doctor. Many advantages of PBL over traditional curricula have been proposed. On reviewing the evidence on the results of PBL curricula for producing better doctors, students tend to perform either a little better or a little worse in examinations. In this article the educational and psychological theories supporting PBL are described. There is a wealth of theory underpinning the use of PBL to teach clinical medicine, despite disappointing results. Future research should concentrate on the reasons behind this uncoupling of theory and outcomes. © Blackwell Publishing Ltd 2012.
Centralized vs decentralized options for an European Data Relay Satellite system
NASA Astrophysics Data System (ADS)
Saint Aubert, S.; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
1985-10-01
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the relay system as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programs foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment, and user ground segment for different options of data dissemination.
Centralized vs decentralized options for a european data relay satellite system
NASA Astrophysics Data System (ADS)
Aubert, Ph. Saint; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the Relay System as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programmes foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment and user ground segment for different options of data dissemination.
NASA's commercial space program - Initiatives for the future
NASA Technical Reports Server (NTRS)
Rose, James T.; Stone, Barbara A.
1990-01-01
NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.
Workplace Measurements of Ultrafine Particles-A Literature Review.
Viitanen, Anna-Kaisa; Uuksulainen, Sanni; Koivisto, Antti J; Hämeri, Kaarle; Kauppinen, Timo
2017-08-01
Workers are exposed to ultrafine particles (UFP) in a number of occupations. In order to summarize the current knowledge regarding occupational exposure to UFP (excluding engineered nanoparticles), we gathered information on UFP concentrations from published research articles. The aim of our study was to create a basis for future epidemiological studies that treat UFP as an exposure factor. The literature search found 72 publications regarding UFP measurements in work environments. These articles covered 314 measurement results and tabled concentrations. Mean concentrations were compared to typical urban UFP concentration level, which was considered non-occupational background concentration. Mean concentrations higher than the typical urban UFP concentration were reported in 240 workplace measurements. The results showed that workers' exposure to UFP may be significantly higher than their non-occupational exposure to background concentration alone. Mean concentrations of over 100 times the typical urban UFP concentration were reported in welding and metal industry. However, according to the results of the review, measurements of the UFP in work environments are, to date, too limited and reported too heterogeneous to allow us to draw general conclusions about workers' exposure. Harmonization of measurement strategies is essential if we are to generate more reliable and comparable data in the future. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Temperature sensitivity of a numerical pollen forecast model
NASA Astrophysics Data System (ADS)
Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone
2016-04-01
Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.
Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R
2016-03-01
A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. Copyright © 2015 Elsevier Inc. All rights reserved.
Experiences in evaluating regional air quality models
NASA Astrophysics Data System (ADS)
Liu, Mei-Kao; Greenfield, Stanley M.
Any area of the world concerned with the health and welfare of its people and the viability of its ecological system must eventually address the question of the control of air pollution. This is true in developed countries as well as countries that are undergoing a considerable degree of industrialization. The control or limitation of the emissions of a pollutant can be very costly. To avoid ineffective or unnecessary control, the nature of the problem must be fully understood and the relationship between source emissions and ambient concentrations must be established. Mathematical models, while admittedly containing large uncertainties, can be used to examine alternatives of emission restrictions for achieving safe ambient concentrations. The focus of this paper is to summarize our experiences with modeling regional air quality in the United States and Western Europe. The following modeling experiences have been used: future SO 2 and sulfate distributions and projected acidic deposition as related to coal development in the northern Great Plains in the U.S.; analysis of regional ozone and sulfate episodes in the northeastern U.S.; analysis of the regional ozone problem in western Europe in support of alternative emission control strategies; analysis of distributions of toxic chemicals in the Southeast Ohio River Valley in support of the design of a monitoring network human exposure. Collectively, these prior modeling analyses can be invaluable in examining a similar problem in other parts of the world as well, such as the Pacific rim in Asia.
Cyclone: A close air support aircraft for tomorrow
NASA Technical Reports Server (NTRS)
Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric
1991-01-01
To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.
Ben-Zur, Hasida; Khoury, Siwar Makhoul
2017-01-01
The study aimed to explore the adjustment of Jewish and Arab mothers of children diagnosed with cancer. Ninety-seven Jewish and 100 Arab mothers completed questionnaires assessing mastery, social support, and adjustment (psychological distress, quality of life, and future fears and hopes). Arab mothers were higher than Jewish mothers on distress and lower on social support and future hopes). Mastery and social support contributed independently to adjustment indices. Ethnicity moderated the effects of mastery and social support on adjustment. Ethnicity, mastery, and social support are important factors in mothers' adjustment to their child's cancer.
Current and future climate- and air pollution-mediated impacts on human health.
Doherty, Ruth M; Heal, Mathew R; Wilkinson, Paul; Pattenden, Sam; Vieno, Massimo; Armstrong, Ben; Atkinson, Richard; Chalabi, Zaid; Kovats, Sari; Milojevic, Ai; Stevenson, David S
2009-12-21
We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios. Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens. During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality legislation is fully implemented, to a more optimistic case with maximum feasible reductions, through to a more pessimistic case with continued strong economic growth and minimal implementation of air quality legislation. Elevated surface ozone concentrations during the 2003 heatwave period led to exceedences of the current UK air quality objective standards. A coupled climate-chemistry model is able to reproduce these temperature and ozone extremes. By combining model simulations of surface temperature and ozone with ozone-heat-mortality relationships derived from an epidemiological regression model, we estimate present-day and future health burdens across the UK. Future air quality legislation may need to consider the risk of increases in future heatwaves.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Wan, Xia; Wang, You-Kai
2018-05-01
A top quark mass measurement scheme near the {{t}}\\bar{{{t}}} production threshold in future {{{e}}}+{{{e}}}- colliders, e.g. the Circular Electron Positron Collider (CEPC), is simulated. A {χ }2 fitting method is adopted to determine the number of energy points to be taken and their locations. Our results show that the optimal energy point is located near the largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb‑1 total effective integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the electroweak vacuum at the Planck scale. Supported by National Science Foundation of China (11405102) and the Fundamental Research Funds for the Central Universities of China (GK201603027, GK201803019)
Air leak after lung resection: pathophysiology and patients' implications.
Pompili, Cecilia; Miserocchi, Giuseppe
2016-02-01
Protocols for the management of air leaks are critical aspects in the postoperative course of patients following lung resections. Many investigations in the last decade are focusing on the chest tube modalities or preventative measures, however, little is known about the pathophysiology of air leak and the patient perception of this common complication. This review concentrates on understanding the reasons why a pulmonary parenchyma may start to leak or an air leak may be longer than others. Experimental works support the notion that lung overdistension may favor air leak. These studies may represent the basis of future investigations. Furthermore, the standardization of nomenclature in the field of pleural space management and the creation of novel air leak scoring systems have contributed to improve the knowledge among thoracic surgeons and facilitate the organization of trials on this matter. We tried to summarize available evidences about the patient perception of a prolonged air leak and about what would be useful for them in order to prevent worsening of their quality of life. Future investigations are warranted to better understand the pathophysiologic mechanisms responsible of prolonged air leak in order to define tailored treatments and protocols. Improving the care at home with web-based telemonitoring or real time connected chest drainage may in a future improve the quality of life of the patients experience this complication and also enhance hospital finances.
Air leak after lung resection: pathophysiology and patients’ implications
Miserocchi, Giuseppe
2016-01-01
Protocols for the management of air leaks are critical aspects in the postoperative course of patients following lung resections. Many investigations in the last decade are focusing on the chest tube modalities or preventative measures, however, little is known about the pathophysiology of air leak and the patient perception of this common complication. This review concentrates on understanding the reasons why a pulmonary parenchyma may start to leak or an air leak may be longer than others. Experimental works support the notion that lung overdistension may favor air leak. These studies may represent the basis of future investigations. Furthermore, the standardization of nomenclature in the field of pleural space management and the creation of novel air leak scoring systems have contributed to improve the knowledge among thoracic surgeons and facilitate the organization of trials on this matter. We tried to summarize available evidences about the patient perception of a prolonged air leak and about what would be useful for them in order to prevent worsening of their quality of life. Future investigations are warranted to better understand the pathophysiologic mechanisms responsible of prolonged air leak in order to define tailored treatments and protocols. Improving the care at home with web-based telemonitoring or real time connected chest drainage may in a future improve the quality of life of the patients experience this complication and also enhance hospital finances. PMID:26941970
Taggart, Laurence; Truesdale-Kennedy, Maria; Ryan, Assumpta; McConkey, Roy
2012-09-01
Planning for the future care of adults with an intellectual disability after the main family carer ceases their care, continues to be a sensitive and difficult time posing challenges for service providers internationally. Limited research has been undertaken on this topic because until recently, people with intellectual disability usually pre-deceased their parents. This study examined ageing carers' preferences for future care and the support systems required to make such future plans. The study was conducted in one region of the United Kingdom with a high proportion of family carers. A mixed methods design was employed. In Stage 1, a structured questionnaire was used to collate information on the health, caregiving demands and future planning preferences of 112 parent and sibling carers; aged 60-94 years. In Stage 2, 19 in-depth semistructured interviews were undertaken with a sample of carers to explore a range of issues around future planning. Over half of the carers were lone carers, mainly female, with many reporting a wide range of health problems. A third of these carers reported that their caregiving resulted in high levels of anxiety. The main preference of the carers was for the person to remain in the family home, with either the family and/or paid staff to support them. A minority of parent carers preferred the person to move into the home of a sibling, although some favoured the person moving to a residential facility with other people with intellectual disabilities. The majority of carers did not want their relative to move into an older people's residential/nursing facility. In the qualitative data, four main themes were identified around future planning: unremitting apprehension, the extent of planning, obstacles encountered and solutions for future planning. Avoidance, lack of guidance and a lack of appropriate residential provision were cited as obstacles to making future plans compounded by the emotional upset experienced by carers in thinking about the future. Findings of this study clearly identify the emotional, informational and practical supports required by these ageing family carers. These findings have national and international relevance in influencing how governments and service providers support parent and sibling carers to proactively plan for the future, and in the development of both in-home and out-of-home options when a family carer can no longer provide care. This is more urgent than ever given the growing numbers of older persons with intellectual disabilities in future decades.
Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo
2002-09-20
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.
Wycisk, Peter; Stollberg, Reiner; Neumann, Christian; Gossel, Wolfgang; Weiss, Holger; Weber, Roland
2013-04-01
A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.
The Future of Memory: Remembering, Imagining, and the Brain
Schacter, Daniel L.; Addis, Donna Rose; Hassabis, Demis; Martin, Victoria C.; Spreng, R. Nathan; Szpunar, Karl K.
2013-01-01
During the past few years, there has been a dramatic increase in research examining the role of memory in imagination and future thinking. This work has revealed striking similarities between remembering the past and imagining or simulating the future, including the finding that a common brain network underlies both memory and imagination. Here we discuss a number of key points that have emerged during recent years, focusing in particular on the importance of distinguishing between temporal and non-temporal factors in analyses of memory and imagination, the nature of differences between remembering the past and imagining the future, the identification of component processes that comprise the default network supporting memory-based simulations, and the finding that this network can couple flexibly with other networks to support complex goal-directed simulations. This growing area of research has broadened our conception of memory by highlighting the many ways in which memory supports adaptive functioning. PMID:23177955
The SEA of the Future: Leveraging Performance Management to Support School Improvement. Volume 1
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2013-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This inaugural edition of…
Using New Technologies in Support of Future Space Missions
NASA Technical Reports Server (NTRS)
Hooke, Adrian J.; Welch, David C.
1997-01-01
This paper forms a perspective of how new technologies such as onboard autonomy and internet-like protocols will change the look and feel of operations. It analyzes the concept of a lights-out mission operations control center and it's role in future mission support and it describes likely scenarios for evolving from current concepts.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.
2017-01-01
In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K
2016-11-01
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
[Issues of biomedical support of explorations missions].
Potapov, A N; Sinyak, Yu E; Petrov, V M
2013-01-01
Sine qua non for piloted exploration missions is a system of biomedical support. The future system will be considerably different from the analogous systems applied in current orbital missions. The reason is the challenging conditions in expeditions to remote space. In a mission to Mars, specifically, these are high levels of radiation, hypomagnetic environment, alternation of micro- and hypogravity, very long mission duration and autonomy. The paper scrutinizes the major issues of medical support to future explorers of space.
NASA Astrophysics Data System (ADS)
Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves
2017-06-01
As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future hyperspectral sensors.
Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.
2015-12-01
India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5 in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in India.
Yu, Haofei; Stuart, Amy L
2017-01-15
'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption of electric vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbon nanotubes for stabilization of nanostructured lipid particles
NASA Astrophysics Data System (ADS)
Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.
2014-12-01
Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs. Electronic supplementary information (ESI) available: Concentration series studies with Raman spectroscopy and small angle X-ray diffraction pattern for dry lipid and dehydrated CNT-lipid particles support the article. See DOI: 10.1039/c4nr05593d
Reducing Future International Chemical and Biological Dangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie
The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less
1991 NASA Life Support Systems Analysis workshop
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.
1992-01-01
The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.
Dependence of future mortality changes on global CO2 concentrations: A review.
Lee, Jae Young; Choi, Hayoung; Kim, Ho
2018-05-01
The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lau, Ying; Htun, Tha Pyai; Wong, Suei Nee; Tam, Wai San Wilson; Klainin-Yobas, Piyanee
2017-04-28
A growing number of meta-analyses have supported the application of therapist-supported Internet-based cognitive behavior therapy (iCBT) for psychological disorders across different populations, but relatively few meta-analyses have concentrated on postpartum women. This meta-analysis evaluated the efficacy of therapist-supported iCBT in improving stress, anxiety, and depressive symptoms among postpartum women. A total of 10 electronic databases were used to search for published and unpublished trials. Cochrane Collaboration tool for assessing risk of bias was utilized to measure methodological quality. Meta-analysis was performed using the RevMan software (Review Manager version 5.3 for Windows from the Nordic Cochrane Centre, the Cochrane Collaboration, 2014). Among the 789 studies identified, 8 randomized controlled trials were selected, involving 1523 participants across 6 countries. More than half (65%) of the eligible studies had a low risk of bias with no heterogeneity. Results revealed that therapist-supported iCBT significantly improved stress (d=0.84, n=5), anxiety (d=0.36, n=6), and depressive symptoms (d=0.63, n=8) of the intervention group compared with those of the control group at post-intervention. This review revealed that therapist-supported iCBT significantly improves stress, anxiety, and depressive symptoms among postpartum women with small to large effects. Future effectiveness studies should establish the essential components, format, and approach of iCBT with optimal levels of human support to maximize a long-term effect. ©Ying Lau, Tha Pyai Htun, Suei Nee Wong, Wai San Wilson Tam, Piyanee Klainin-Yobas. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2017.
A survey of life support system automation and control
NASA Technical Reports Server (NTRS)
Finn, Cory K.
1993-01-01
The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.
Regional air quality impacts of future fire emissions in Sumatra and Kalimantan
NASA Astrophysics Data System (ADS)
Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.
2015-05-01
Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and subsequent health effects.
Projecting future summer mortality due to ambient ozone concentration and temperature changes
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho
2017-05-01
Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.
Advanced Space Suit Portable Life Support Subsystem Packaging Design
NASA Technical Reports Server (NTRS)
Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack
2006-01-01
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.
A simplified method for active-site titration of lipases immobilised on hydrophobic supports.
Nalder, Tim D; Kurtovic, Ivan; Barrow, Colin J; Marshall, Susan N
2018-06-01
The aim of this work was to develop a simple and accurate protocol to measure the functional active site concentration of lipases immobilised on highly hydrophobic supports. We used the potent lipase inhibitor methyl 4-methylumbelliferyl hexylphosphonate to titrate the active sites of Candida rugosa lipase (CrL) bound to three highly hydrophobic supports: octadecyl methacrylate (C18), divinylbenzene crosslinked methacrylate (DVB) and styrene. The method uses correction curves to take into account the binding of the fluorophore (4-methylumbelliferone, 4-MU) by the support materials. We showed that the uptake of the detection agent by the three supports is not linear relative to the weight of the resin, and that the uptake occurs in an equilibrium that is independent of the total fluorophore concentration. Furthermore, the percentage of bound fluorophore varied among the supports, with 50 mg of C18 and styrene resins binding approximately 64 and 94%, respectively. When the uptake of 4-MU was calculated and corrected for, the total 4-MU released via inhibition (i.e. the concentration of functional lipase active sites) could be determined via a linear relationship between immobilised lipase weight and total inhibition. It was found that the functional active site concentration of immobilised CrL varied greatly among different hydrophobic supports, with 56% for C18, compared with 14% for DVB. The described method is a simple and robust approach to measuring functional active site concentration in immobilised lipase samples. Copyright © 2018 Elsevier Inc. All rights reserved.
Alternative Futures: United States Air Force Security Police in the Twenty-First Century
1988-04-01
34What policies should today’s Air Force leadership be pursuing to prepare for tomorrow’s combat support and security police roles?’ The monograph...Further, it addresses the capability of the Air Force to respond to its future combat support and security police missions and their integration into the...security police organizations. His most recent assignments were as the deputy commander of a combat support group and the commander of a security police
Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark
2015-01-01
NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.
Can state-supported interprofessional coalitions cure preceptor shortages?
Woodall, Lesli; Smith, Gigi; Garr, David; Hopla, Deborah; Kern, Donna
2018-06-01
The shortage of clinical preceptors compromises the current and future supply of healthcare providers and patient access to primary care. This article describes how an interprofessional coalition in South Carolina formed and sought government support to address the preceptor shortage. Some states have legislated preceptor tax credits and/or deductions to support the clinical education of future primary care healthcare providers. As a result of the coalition's work, a bill to establish similar incentives is pending in the South Carolina legislature.
NASA Astrophysics Data System (ADS)
De Sales, F.; Rother, D.
2017-12-01
Current climate change assessments project an increase in temperature throughout the western U.S. over the next century, while precipitation is projected to decrease in the Southwest. These assessments are based mainly on coarse spatial resolution general circulation model (GCM) simulations, which do not include groundwater (soil and aquifer) storage projections. However, water availability is a regionally variable resource and climate change impacts on groundwater distribution will probably differ regionally across the southwestern U.S. We have implemented a coupled atmosphere-biosphere-aquifer regional modelling system (WRF/SSiB2/SIMGM) to generate recent (2005-2017) and near-future (2018-2030) high-resolution groundwater projections for Southern California. These projections are obtained by dynamic downscaling data from the Global Operation Analysis (recent) and the NCAR Community Earth System Model CMIP5 global projections (near future), which supported the Intergovernmental Panel on Climate Change 5th Assessment Report. Near-future simulations include three representative concentration pathway (RCP) scenarios namely, RCP4.5, RCP6, and RCP8.5. The model can reasonably simulate the recent changes in Southern California's groundwater as indicated by a comparison to terrestrial water storage obtained from the Gravity Recovery and Climate Experiment dataset. In particular, the 2011-2017 drought is simulated well with total groundwater storages declining throughout the period, especially along the western portion of the domain, which includes the high-populated areas of western Los Angeles, San Diego, Ventura and Orange counties. In general, the near-future simulations show a decline in groundwater storage for the region. The largest changes are observed with the RCP8.5 emission pathway, towards to southeastern tier of the study area. In addition to groundwater, this downscaling experiment also generates high-resolution precipitation and temperature estimates, which can help policy makers in the development of strategies to alleviate potential water resource deficiencies in California in the near future.
ERIC Educational Resources Information Center
Kerpelman, Jennifer L.; Eryigit, Suna; Stephens, Carolyn J.
2008-01-01
The current study, using data from 374 African American students (59.4% female) in grades 7-12 attending a rural, southern county public school, addressed associations of self-efficacy, ethnic identity and parental support with "future education orientation." Both gender and current level of achievement distinguished adolescents with…
Will I Get There? Effects of Parental Support on Children's Possible Selves
ERIC Educational Resources Information Center
Zhu, Shimin; Tse, Samson; Cheung, Sing-Hang; Oyserman, Daphna
2014-01-01
Background: Imagining one's future self is a hallmark of adolescence. But imagining is not enough; adolescents must feel that this future is plausibly likely and take action, which may require pragmatic support from parents. Prior research has examined the effect of parental aspirations and expectations on children's possible self, not the effect…
Communications and Tracking Distributed Systems Evolution Study
NASA Technical Reports Server (NTRS)
Culpepper, William
1990-01-01
The Communications and Tracking (C & T) techniques and equipment to support evolutionary space station concepts are being analyzed. Evolutionary space station configurations and operational concepts are used to derive the results to date. A description of the C & T system based on future capability needs is presented. Included are the hooks and scars currently identified to support future growth.
Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China
NASA Astrophysics Data System (ADS)
Li, Ke; Liao, Hong; Zhu, Jia; Moch, Jonathan M.
2016-11-01
Severe PM2.5 air pollution in China and the First Grand National Standard (FGNS), implemented in 2016 (annual PM2.5 concentration target of less than 35 µg m-3), necessitate urgent reduction strategies. This study applied the nested-grid version of the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to quantify 2000-2050 changes in PM2.5 air quality and related direct radiative forcing (DRF) in China, based on future emission changes under the representative concentration pathway (RCP) scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In the near term (2000-2030), a projected maximum increase in PM2.5 concentrations of 10-15 µg m-3 is found over east China under RCP6.0 and RCP8.5 and less than 5 µg m-3 under RCP2.6 and RCP4.5. In the long term (2000-2050), PM2.5 pollution clearly improves, and the largest decrease in PM2.5 concentrations of 15-30 µg m-3 is over east China under all RCPs except RCP6.0. Focusing particularly on highly polluted regions, we find that Beijing-Tianjin-Hebei (BTH) wintertime PM2.5 concentrations meeting the FGNS occur after 2040 under RCP2.6, RCP4.5, and RCP8.5, and summertime PM2.5 concentrations reach this goal by 2030 under RCP2.6 and RCP4.5. In Sichuan Basin (SCB), wintertime PM2.5 concentrations below the FGNS occur only in 2050 under RCP2.6 and RCP4.5, although future summertime PM2.5 will be well controlled. The difficulty in controlling future PM2.5 concentrations relates to unmitigated high levels of nitrate, although NOx and SO2 emissions show substantial reductions during 2020-2040. The changes in aerosol concentrations lead to positive aerosol DRF over east China (20°-45°N, 100°-125°E) by 1.22, 1.88, and 0.66 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, and RCP8.5, respectively. When considering both health and climate effects of PM2.5 over China, for example, PM2.5 concentrations averaged over east China under RCP4.5 (RCP2.6) decrease by 54% (43%) in 2050 relative to 2000, but at the cost of warming with DRF of 1.88 (1.22) W m-2. Our results indicate that it will be possible to mitigate future PM2.5 pollution in China, but it will likely take two decades for polluted regions such as BTH and SCB to meet the FGNS, based on all RCP scenarios. At the same time, the consequent warming effects from reduced aerosols are also significant and inevitable.
Tourism's impact on future transportation needs
DOT National Transportation Integrated Search
2002-02-01
This report focuses on the changes evolving in the tourist industry and their impact on future transportation needs. First, the report concentrates on the changing of the demographic guard--from Baby Boomers to Generation Xers, and finally, to the en...
McKay, Michael T; Morgan, Grant B; van Exel, N Job; Worrell, Frank C
2015-01-01
Despite its widespread use, disagreement remains regarding the structure of the Consideration of Future Consequences Scale (CFCS). In particular there is disagreement regarding whether the scale assesses future orientation as a unidimensional or multidimensional (immediate and future) construct. Using 2 samples of high school students in the United Kingdom, 4 models were tested. The totality of results including item loadings, goodness-of-fit indexes, and reliability estimates all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as grouping or method factors rather than as representative of latent constructs. Accordingly this study supports the unidimensionality of the CFCS and the scoring of all 12 items to produce a global future orientation score. Researchers intending to use the CFCS, and those with existing data, are encouraged to examine a bifactor solution for the scale.
Evolution of Requirements and Assumptions for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Sargusingh, Miriam; Perry, Jay
2017-01-01
NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.
Impacts of Future Climate and Emission Changes on U.S. Air Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penrod, Ashley; Zhang, Yang; Wang, K.
2014-06-01
Changes in climate and emissions will affect future air quality. In this work, simulations of present (2001-2005) and future (2026-2030) regional air quality are conducted with the newly released CMAQ version 5.0 to examine the individual and combined impacts of simulated future climate and anthropogenic emission projections on air quality over the U.S. Current (2001-2005) meteorological and chemical predictions are evaluated against observational data to assess the model’s capability in reproducing the seasonal differences. Overall, WRF and CMAQ perform reasonably well. Increased temperatures (up to 3.18 °C) and decreased ventilation (up to 157 m in planetary boundary layer height) aremore » found in both future winter and summer, with more prominent changes in winter. Increases in future temperatures result in increased isoprene and terpene emissions in winter and summer, driving the increase in maximum 8-h average O3 (up to 5.0 ppb) over the eastern U.S. in winter while decreases in NOx emissions drive the decrease in O3 over most of the U.S. in summer. Future concentrations of PM2.5 in winter and summer and many of its components including organic matter in winter, ammonium and nitrate in summer, and sulfate in winter and summer, decrease due to decreases in primary anthropogenic emissions and the concentrations of secondary anthropogenic pollutants and increased precipitation in winter. Future winter and summer dry and wet deposition fluxes are spatially variable and increase with increasing surface resistance and precipitation (e.g., NH4+ and NO3- dry and wet deposition fluxes increase in winter over much of the U.S.), respectively, and decrease with a decrease in ambient particulate concentrations (e.g., SO42- dry and wet deposition fluxes decrease over the eastern U.S. in summer and winter). Sensitivity simulations show that anthropogenic emission projections dominate over changes in climate in their impacts on the U.S. air quality in the near future. Changes in some regions/species, however, are dominated by climate and/or both climate and anthropogenic emissions, especially in future years that are marked by meteorological conditions conducive to poor air quality.« less
RISK MANAGEMENT EVALUATION FOR CONCENTRATED ANIMAL FEEDING OPERATIONS
The National Risk Management Research Laboratory (NRMRL) developed a Risk Management Evaluation (RME) to provide information needed to help plan future research in the Laboratory dealing with the environmental impact of concentrated animal feeding operations (CAFOs). Agriculture...
Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs)
NASA Astrophysics Data System (ADS)
Kawase, Hiroaki; Nagashima, Tatsuya; Sudo, Kengo; Nozawa, Toru
2011-03-01
We consider future changes in tropospheric ozone based on the Representative Concentration Pathways (RCPs), which are new emission and concentration scenarios for the 5th coupled model intercomparison project. In contrast to the SRES scenarios, all the RCP scenarios assume an emission reduction of NOx by the late 21st Century that has the potential to achieve tropospheric ozone reduction. However, increasing radiative forcing (RF) due to greenhouse gases and changes in CH4 concentration also contribute to differences in the tropospheric ozone distribution among RCP scenarios. In the RCP4.5 and RCP6.0, assuming the stabilization of RF, the increase in tropospheric ozone due to enhanced residual circulation is cancelled out by the ozone reduction due to ozone precursor reductions. In contrast, in the RCP8.5, assuming increasing RF even after 2100, further enhanced residual circulation and significant increase in CH4 cause a dramatic increase in tropospheric ozone.
Performance modelling of miniaturized flash-imaging lidars for future mars exploration missions
NASA Astrophysics Data System (ADS)
Mitev, V.; Pollini, A.; Haesler, J.; Pereira do Carmo, João.
2017-11-01
Future planetary exploration missions require the support of 3D vision in the GN&C during key spacecraft's proximity phases, namely: i) spacecraft precision and soft Landing on the planet's surface; ii) Rendezvous and Docking (RVD) between a Sample Canister (SC) and an orbiter spacecraft; iii) Rover Navigation (RN) on planetary surface. The imaging LiDARs are among the best candidate for such tasks [1-3]. The combination of measurement requirements and environmental conditions seems to find its optimum in the flash 3D LiDAR architecture. Here we present key steps is the evaluation of novelty light detectors and MOEMS (Micro-Opto- Electro-Mechanical Systems) technologies with respect to LiDAR system performance and miniaturization. The objectives of the project MILS (Miniaturized Imaging LiDAR System, Phase 1) concentrated on the evaluation of novel detection and scanning technologies for the miniaturization of 3D LiDARs intended for planetary mission. Preliminary designs for an elegant breadboard (EBB) for the three tasks stated above (Landing, RVD and RN) were proposed, based on results obtained with a numerical model developed in the project and providing the performances evaluation of imaging LiDARs.
NASA Technical Reports Server (NTRS)
Carle, G. C.
1985-01-01
Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.
Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations
Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M
2014-01-01
Aims Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Methods Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Results Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10−9) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10−16), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. Conclusions In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. PMID:24528284
Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.
Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M
2014-08-01
Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.
Wang, Jun; Hallinger, Daniel R; Murr, Ashley S; Buckalew, Angela R; Simmons, Steven O; Laws, Susan C; Stoker, Tammy E
2018-05-01
Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).
Osborne, Nicholas J; Alcock, Ian; Wheeler, Benedict W; Hajat, Shakoor; Sarran, Christophe; Clewlow, Yolanda; McInnes, Rachel N; Hemming, Deborah; White, Mathew; Vardoulakis, Sotiris; Fleming, Lora E
2017-10-01
Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission. Models were adjusted for temperature, precipitation, humidity, day of week, and air pollutants. Analyses revealed an association between daily counts (continuous) of grass pollen and adult hospital admissions for asthma in London, with a 4-5-day lag. When grass pollen concentrations were categorized into Met Office pollen 'alert' levels, 'very high' days (vs. 'low') were associated with increased admissions 2-5 days later, peaking at an incidence rate ratio of 1.46 (95%, CI 1.20-1.78) at 3 days. Increased admissions were also associated with 'high' versus 'low' pollen days at a 3-day lag. Results from tree pollen models were inconclusive and likely to have been affected by the shorter pollen seasons and consequent limited number of observation days with higher tree pollen concentrations. Future reductions in asthma hospitalizations may be achieved by better understanding of environmental risks, informing improved alert systems and supporting patients to take preventive measures.
NASA Astrophysics Data System (ADS)
Osborne, Nicholas J.; Alcock, Ian; Wheeler, Benedict W.; Hajat, Shakoor; Sarran, Christophe; Clewlow, Yolanda; McInnes, Rachel N.; Hemming, Deborah; White, Mathew; Vardoulakis, Sotiris; Fleming, Lora E.
2017-10-01
Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission. Models were adjusted for temperature, precipitation, humidity, day of week, and air pollutants. Analyses revealed an association between daily counts (continuous) of grass pollen and adult hospital admissions for asthma in London, with a 4-5-day lag. When grass pollen concentrations were categorized into Met Office pollen `alert' levels, `very high' days (vs. `low') were associated with increased admissions 2-5 days later, peaking at an incidence rate ratio of 1.46 (95%, CI 1.20-1.78) at 3 days. Increased admissions were also associated with `high' versus `low' pollen days at a 3-day lag. Results from tree pollen models were inconclusive and likely to have been affected by the shorter pollen seasons and consequent limited number of observation days with higher tree pollen concentrations. Future reductions in asthma hospitalizations may be achieved by better understanding of environmental risks, informing improved alert systems and supporting patients to take preventive measures.
Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C
2008-11-01
Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.
[Effects of Trace Environmental Chemicals on Child Health-Lead as an Example].
Matsukawa, Takehisa; Yokoyama, Kazuhito; Vigeh, Mohsen; Nishioka, Emiko
2018-01-01
The low birthrate and aging population of Japan are entering a serious phase. As measures against the declining birthrate, improvement of the environment is promoted to support childbirth and child-rearing, but even if the birthrate increases in the future, it will take time before the effect is observed as an increase in the population. As the number of children and young people is decreasing, in order to maintain a wealthy and sustainable society, we should create an environment wherein each child can grow healthily and demonstrate sufficient abilities in participating in society. The authors have been studying the influence of exposure to environmental chemical substances on the development of children. Lead is especially considered to impair neurological development even at low concentrations of exposure. In this paper, using lead as an example, we discuss risk assessment and countermeasures for the health effects of trace chemical substances on a society with a declining birthrate. Substances that show neurotoxicity increase social costs even at low concentrations of exposure. To preserve and promote social vitality in Japan despite the declining birthrate and aging population, it is essential that measures are taken on the basis of scientifically reasonable cost/benefit assessment. For this purpose, we think that it is necessary to analyze costs and benefits in addition to the risk assessment of low concentrations of chemical substances.
Bacterial communities in Arctic first-year drift ice during the winter/spring transition.
Eronen-Rasimus, Eeva; Piiparinen, Jonna; Karkman, Antti; Lyra, Christina; Gerland, Sebastian; Kaartokallio, Hermanni
2016-08-01
Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Miller, Christopher B.; Kyle, Simon D.; Gordon, Christopher J.; Espie, Colin A.; Grunstein, Ronald R.; Mullins, Anna E.; Postnova, Svetlana; Bartlett, Delwyn J.
2015-01-01
Objectives The aim of this preliminary study was to evaluate if Sleep Restriction Therapy for insomnia is associated with modifications to physiological arousal, indexed through overnight measures of plasma cortisol concentrations and core body temperature. Methods In a pre-to-post open label study design, eleven patients with chronic and severe Psychophysiological Insomnia underwent 5 weeks of Sleep Restriction Therapy. Results Eight (73%) patients out of 11 consented completed therapy and showed a decrease in insomnia severity pre-to-post treatment (mean (SD): 18.1 (2.8) versus 8.4 (4.8); p = .001). Six patients were analyzed with pre-to-post overnight measures of temperature and cortisol. Contrary to our hypothesis, significantly higher levels of plasma cortisol concentrations were found during the early morning at post-treatment compared to baseline (p < .01), while no change was observed in the pre-sleep phase or early part of the night. Core body temperature during sleep was however reduced significantly (overall mean [95% CI]: 36.54 (°C) [36.3, 36.8] versus 36.45 [36.2, 36.7]; p < .05). Conclusions Sleep Restriction Therapy therefore was associated with increased early morning cortisol concentrations and decreased core body temperature, supporting the premise of physiological changes in functioning after effective therapy. Future work should evaluate change in physiological variables associated with clinical treatment response. Trial Registration Australian New Zealand Clinical Trials Registry ANZCTR 12612000049875 PMID:26683607
Intervention among Suicidal Men: Future Directions for Telephone Crisis Support Research.
Hunt, Tara; Wilson, Coralie J; Woodward, Alan; Caputi, Peter; Wilson, Ian
2018-01-01
Telephone crisis support is a confidential, accessible, and immediate service that is uniquely set up to reduce male suicide deaths through crisis intervention. However, research focusing on telephone crisis support with suicidal men is currently limited. To highlight the need to address service delivery for men experiencing suicidal crisis, this perspective article identifies key challenges facing current telephone crisis support research and proposes that understanding of the role of telephone crisis helplines in supporting suicidal men may be strengthened by careful examination of the context of telephone crisis support, together with the impact this has on help-provision for male suicidal callers. In particular, the impact of the time- and information-poor context of telephone crisis support on crisis-line staff's identification of, and response to, male callers with thoughts of suicide is examined. Future directions for research in the provision of telephone crisis support for suicidal men are discussed.
Intervention among Suicidal Men: Future Directions for Telephone Crisis Support Research
Hunt, Tara; Wilson, Coralie J.; Woodward, Alan; Caputi, Peter; Wilson, Ian
2018-01-01
Telephone crisis support is a confidential, accessible, and immediate service that is uniquely set up to reduce male suicide deaths through crisis intervention. However, research focusing on telephone crisis support with suicidal men is currently limited. To highlight the need to address service delivery for men experiencing suicidal crisis, this perspective article identifies key challenges facing current telephone crisis support research and proposes that understanding of the role of telephone crisis helplines in supporting suicidal men may be strengthened by careful examination of the context of telephone crisis support, together with the impact this has on help-provision for male suicidal callers. In particular, the impact of the time- and information-poor context of telephone crisis support on crisis-line staff’s identification of, and response to, male callers with thoughts of suicide is examined. Future directions for research in the provision of telephone crisis support for suicidal men are discussed. PMID:29404319
Comber, Sean D W; Smith, Russell; Daldorph, Peter; Gardner, Michael J; Constantino, Carlos; Ellor, Brian
2018-05-01
Increasing pressures on natural resources has led to the adoption of water quality standards to protect ecological and human health. Lakes and reservoirs are particularly vulnerable to pressure on water quality owing to long residence times compared with rivers. This has raised the question of how to determine and to quantify the sources of priority chemicals (e.g. nutrients, persistent organic pollutants and metals) so that suitable measures can be taken to address failures to comply with regulatory standards. Contaminants enter lakes waters from a range of diffuse and point sources. Decision support tools and models are essential to assess the relative magnitudes of these sources and to estimate the impacts of any programmes of measures. This paper describes the development and testing of the Source Apportionment Geographical Information System (SAGIS) for future management of 763 lakes in England and Wales. The model uses readily available national data sets to estimate contributions of a number of key chemicals including nutrients (nitrogen and phosphorus), metals (copper, zinc, cadmium, lead, mercury and nickel) and organic chemicals (Polynuclear Aromatic Hydrocarbons) from multiple sector sources. Lake-specific sources are included (groundbait from angling and bird faeces) and hydrology associated with pumped inputs and abstraction. Validation data confirms the efficacy of the model to successfully predicted seasonal patterns of all types of contaminant concentrations under a number of hydrological scenarios. Such a tool has not been available on a national scale previously for such a wide range of chemicals and is currently being used to assist with future river basin planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
ERIC Educational Resources Information Center
Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.
2011-01-01
The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…
Heiden, Jasmin P; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett
2018-05-23
Impacts of rising atmospheric CO 2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO 2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO 2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO 2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (F v /F m ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO 2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO 2 sequestration potential of diatom communities in the future coastal Southern Ocean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004
Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.
2010-01-01
National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public-supply wells. Are levels of nutrients in water increasing or decreasing? A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation's most pristine streams warrants consideration. The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult. Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.
The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004
Dubrovsky, Neil M.; Burow, Karen R.; Clark, Gregory M.; Gronberg, JoAnn M.; Hamilton, Pixie A.; Hitt, Kerie J.; Mueller, David K.; Munn, Mark D.; Nolan, Bernard T.; Puckett, Larry J.; Rupert, Michael G.; Short, Terry M.; Spahr, Norman E.; Sprague, Lori A.; Wilber, William G.
2010-01-01
National Findings and Their ImplicationsAlthough the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins.Do NAWQA findings substantiate national concerns for aquatic and human health?National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or “background” levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development.Nitrate concentrations above the Federal drinking-water standard—or Maximum Contaminant Level (MCL)—of 10 milligrams per liter (mg/L, as nitrogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public‑supply wells.Are levels of nutrients in water increasing or decreasing?A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation’s most pristine streams warrants consideration.The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult.Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.
ASHA-Life Intervention Perspectives Voiced by Rural Indian Women Living With AIDS.
Nyamathi, Adeline; Ekstrand, Maria; Srivastava, Neha; Carpenter, Catherine L; Salem, Benissa E; Al-Harrasi, Shawana; Ramakrishnan, Padma; Sinha, Sanjeev
2016-01-01
In this focus group study, we explored the experiences of 16 rural women living with AIDS (WLA) who participated in the Asha-Life (AL) intervention to gain an understanding of the environmental, psychosocial, and cultural impact of the AL on their lives. Four themes emerged among AL participants: (a) the importance of tangible support, (b) need for social support, (c) ongoing challenges to accessing antiretroviral therapy (ART), and (d) perspectives on future programs. Our research findings support the development of future programs targeting mother-child dyads which emphasize nutritional knowledge, while reducing barriers to receiving ART, and physical, emotional, and financial support.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
NASA Technical Reports Server (NTRS)
Gilkey, Kelly M.; Olson, Sandra L.
2015-01-01
An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the spacecraft to an ill crewmember. The user interface needs to be designed for ease of use by the local care provider and with consideration to the limited amount of training available to the astronaut corps for medical equipment and procedures.
Uchino, Bert N.; Bowen, Kimberly; Carlisle, McKenzie; Birmingham, Wendy
2012-01-01
Contemporary models postulate the importance of psychological mechanisms linking perceived and received social support to physical health outcomes. In this review, we examine studies that directly tested the potential psychological mechanisms responsible for links between social support and health-relevant physiological processes (1980s to 2010). Inconsistent with existing theoretical models, no evidence was found that psychological mechanisms such as depression, perceived stress, and other affective processes are directly responsible for links between support and health. We discuss the importance of considering statistical/design issues, emerging conceptual perspectives, and limitations of our existing models for future research aimed at elucidating the psychological mechanisms responsible for links between social support and physical health outcomes. PMID:22326104
Introduction to Life Support Systems
NASA Technical Reports Server (NTRS)
Perry, Jay
2017-01-01
This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.
Beukelman, David R; Hux, Karen; Dietz, Aimee; McKelvey, Miechelle; Weissling, Kristy
2015-01-01
Research about the effectiveness of communicative supports and advances in photographic technology has prompted changes in the way speech-language pathologists design and implement interventions for people with aphasia. The purpose of this paper is to describe the use of photographic images as a basis for developing communication supports for people with chronic aphasia secondary to sudden-onset events due to cerebrovascular accidents (strokes). Topics include the evolution of AAC-based supports as they relate to people with aphasia, the development and key features of visual scene displays (VSDs), and future directions concerning the incorporation of photographs into communication supports for people with chronic and severe aphasia.
Enting, I. G.; Wigley, M. L.; Heimann, M.
1995-01-01
This database contains the results of various projections of the relation between future CO2 concentrations and future industrial emissions. These projections were contributed by groups from a number of countries as part of the scientific assessment for the report, "Radiative Forcing of Climate Change" (1994), issued by Working Group 1 of the Intergovernmental Panel on Climate Change. There were three types of calculations: (1) forward projections, calculating the atmospheric CO2 concentrations resulting from specified emissions scenarios; (2) inverse calculations, determining the emission rates that would be required to achieve stabilization of CO2 concentrations via specified pathways; (3) impulse response function calculations, required for determining Global Warming Potentials. The projections were extrapolations of global carbon cycle models from pre-industrial times (starting at 1765) to 2100 or 2200 A.D. There were two aspects to the exercise: (1) an assessment of the uncertainty due to uncertainties regarding the current carbon budget, and (2) an assessment of the uncertainties arising from differences between models. To separate these effects, a set of standard conditions was used to explore inter-model differences and then a series of sensitivity studies was used to explore the consequences of current uncertainties in the carbon cycle.
NASA advanced space photovoltaic technology-status, potential and future mission applications
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.
1989-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
NASA Astrophysics Data System (ADS)
Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.
2015-12-01
Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.
Major depression, C-reactive protein, and incident ischemic heart disease in healthy men and women.
Surtees, Paul G; Wainwright, Nicholas W J; Boekholdt, S Matthijs; Luben, Robert N; Wareham, Nicholas J; Khaw, Kay-Tee
2008-10-01
To investigate how C-reactive protein (CRP) and major depressive disorder (MDD) relate to each other and to incident ischemic heart disease (IHD). Studies have shown that both depression and raised CRP concentration predict IHD and that elevated CRP is linked with increased risk of depression. A prospective case-control study of healthy men and women, aged 45 to 79 years, was undertaken within the United Kingdom European Prospective Investigation into Cancer (EPIC)-Norfolk study. CRP concentration was measured for 726 (fatal or nonfatal) IHD cases and 1688 matched controls who completed a baseline MDD self-assessment, defined by restricted Diagnostic and Statistical Manual of Mental Disorders, 4th Edition diagnostic criteria. Past-year MDD was associated with increased CRP concentration levels (4.31 mg/L for participants who reported episodes of MDD in the past year versus 3.65 mg/L for those who did not; p = .003), and the odds ratio for incident IHD associated with higher CRP concentration was 2.02 (comparing the top versus bottom quartile of CRP; 95% Confidence Interval (CI) = 1.52-2.68), adjusted for cigarette smoking, diabetes, systolic blood pressure, body mass index, and cholesterol. The association between past-year MDD and IHD was independent of CRP (odds ratio = 1.55; 95% CI = 1.01-2.37, with adjustments as above, and additionally for CRP). Evidence from this study is supportive of an association between MDD and CRP although it suggests that CRP does not account for the association between MDD and future IHD.
Frequency of bullying at work, physiological response, and mental health.
Hansen, Åse Marie; Hogh, Annie; Persson, Roger
2011-01-01
The present study aimed to elucidate the relationship between bullying at work and cortisol secretion. Of particular interest was to examine whether frequently and occasionally bullied persons differed from nonbullied persons. The study included 1944 employees (1413 women and 531 men) from 55 workplaces in Denmark (16 private and 39 public workplaces). During a work day three saliva samples were collected at awakening, +30 min later, and at 20:00 hours, and analyzed for cortisol concentrations. Mental health was assessed using items on somatic, cognitive, stress, and depressive mood. Of the 1944 employees, 1.1% was frequently bullied and 7.2% occasionally bullied. Frequently bullied persons reported poorer mental health and had a 24.8% lower salivary cortisol concentration compared with the nonbullied reference group. Occasionally bullied persons had a poorer self-reported mental health, but their cortisol concentrations did not deviate from the group of nonbullied persons. The associations remained significant even after controlling for age, gender, exact time of sampling, mental health, and duration of bullying. Bullying occurred at 78% of the workplaces (43 workplaces); frequent bullying occurred at 21% of the workplaces (40%). Frequent bullying was associated with lower salivary cortisol concentrations. No such association was observed for occasional bullying. Whether the generally lower secretion of cortisol among the frequently bullied persons indicate an altered physiological status remains to be evaluated in future studies. Yet, the physiological response seems to underscore the possibility that bullying indeed may have measurable physiological consequences. Hence, the physiological response supports the mental symptoms found among the frequently bullied. Copyright © 2011 Elsevier Inc. All rights reserved.
Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa
2018-01-01
Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating. PMID:29634756
Antifungal activity of Gallesia integrifolia fruit essential oil.
Raimundo, Keila Fernanda; Bortolucci, Wanessa de Campos; Glamočlija, Jasmina; Soković, Marina; Gonçalves, José Eduardo; Linde, Giani Andrea; Colauto, Nelson Barros; Gazim, Zilda Cristiani
2018-04-12
Gallesia integrifolia (Phytolaccaceae) is native to Brazil and has a strong alliaceous odor. The objective of this study was to identify the chemical composition of G. integrifolia fruit essential oil and evaluate fungicidal activity against the main food-borne diseases and food spoilage fungi. The essential oil was extracted by hydrodistillation and identified by GC-MS. From 35 identified compounds, 68% belonged to the organosulfur class. The major compounds were dimethyl trisulfide (15.49%), 2,8-dithianonane (52.63%) and lenthionine (14.69%). The utilized fungi were Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus, Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. cyclopium, and Trichoderma viride. Minimal fungicidal concentration for the essential oil varied from 0.02 to 0.18mg/mL and bifonazole and ketoconazole controls ranged from 0.20 to 3.50mg/mL. The lower concentration of the essential oil was able to control P. ochrochloron, A. fumigatus, A. versicolor, A. ochraceus and T. viride. This study shows a high fungicidal activity of G. integrifolia fruit essential oil and can support future applications by reducing the use of synthetic fungicides. Copyright © 2018. Published by Elsevier Editora Ltda.
NASA Technical Reports Server (NTRS)
Krumins, Valdis; Hummerick, Mary; Levine, Lanfang; Strayer, Richard; Adams, Jennifer L.; Bauer, Jan
2002-01-01
A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO2) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production.
Electronic cigarettes and nicotine clinical pharmacology.
Schroeder, Megan J; Hoffman, Allison C
2014-05-01
To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products' ability to support and maintain nicotine dependence. Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products' impact on public health.
Strategy for distribution of influenza vaccine to high-risk groups and children.
Longini, Ira M; Halloran, M Elizabeth
2005-02-15
Despite evidence that vaccinating schoolchildren against influenza is effective in limiting community-level transmission, the United States has had a long-standing government strategy of recommending that vaccine be concentrated primarily in high-risk groups and distributed to those people who keep the health system and social infrastructure operating. Because of this year's influenza vaccine shortage, a plan was enacted to distribute the limited vaccine stock to these groups first. This vaccination strategy, based on direct protection of those most at risk, has not been very effective in reducing influenza morbidity and mortality. Although it is too late to make changes this year, the current influenza vaccine crisis affords the opportunity to examine an alternative for future years. The alternative plan, supported by mathematical models and influenza field studies, would be to concentrate vaccine in schoolchildren, the population group most responsible for transmission, while also covering the reachable high-risk groups, who would also receive considerable indirect protection. In conjunction with a plan to ensure an adequate vaccine supply, this alternative influenza vaccination strategy would help control interpandemic influenza and be instrumental in preparing for pandemic influenza. The effectiveness of the alternative plan could be assessed through nationwide community studies.
Cross support overview and operations concept for future space missions
NASA Technical Reports Server (NTRS)
Stallings, William; Kaufeler, Jean-Francois
1994-01-01
Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.
1988-04-14
McDonalds or Burger King for snack shops, Marriott for messing/billeting facilities, etc.? RECOMMENDED ELEMENTS OF ANALYSIS/TOPICAL AREAS: DATE RESULTS ITEM...e.g., a Burger King on post) now brings in about SI million per month to the family support coffers. It began in 1984 and has returned $21 million...Army, private sector franchises and family support. - The first or leading question is whether the family affects retention and, if so, what the Army
Future possible crop yield scenarios under multiple SSP and RCP scenarios.
NASA Astrophysics Data System (ADS)
Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.
2016-12-01
Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.
R. Scott Anderson; Susan J. Smith; Ann M. Lynch; Brian W. Geils
2010-01-01
The frequency and intensity of ecosystem disturbance, including outbreaks of forest insects and forest fires, is expected to increase in the future as a result of higher temperatures and prolonged drought. While many studies have concentrated on the future climatic impacts on fire, little is known about the impact of future climate on insect infestation....
Evaluation of artillery equipment maintenance support capability based on grey clustering
NASA Astrophysics Data System (ADS)
Zhai, Mei-jie; Gao, Peng
2017-12-01
This paper, the theory and method of evaluating the capability of equipment maintenance support in China and abroad are studied, from the point of view of the combat task of artillery troops and the strategic attachment in the future military struggle. This paper establishes the framework of the evaluation Index system of the equipment maintenance support capability of the artillery units, and applies the grey clustering method to the evaluation of the equipment maintenance support capability of the artillery units, and finally evaluates the equipment maintenance and support capability of the artillery brigade as an example, and analyzes the evaluation results. This paper finds out the outstanding problems existing in the maintenance and support of military equipment, and puts forward some constructive suggestions, in order to improve the status of military equipment maintenance and support and improve the level of future equipment maintenance.
Evaluation of Vitamin C for Adjuvant Sepsis Therapy
2013-01-01
Abstract Significance: Evidence is emerging that parenteral administration of high-dose vitamin C may warrant development as an adjuvant therapy for patients with sepsis. Recent Advances: Sepsis increases risk of death and disability, but its treatment consists only of supportive therapies because no specific therapy is available. The characteristics of severe sepsis include ascorbate (reduced vitamin C) depletion, excessive protein nitration in microvascular endothelial cells, and microvascular dysfunction composed of refractive vasodilation, endothelial barrier dysfunction, and disseminated intravascular coagulation. Parenteral administration of ascorbate prevents or even reverses these pathological changes and thereby decreases hypotension, edema, multiorgan failure, and death in animal models of sepsis. Critical Issues: Dehydroascorbic acid appears to be as effective as ascorbate for protection against microvascular dysfunction, organ failure, and death when injected in sepsis models, but information about pharmacodynamics and safety in human subjects is only available for ascorbate. Although the plasma ascorbate concentration in critically ill and septic patients is normalized by repletion protocols that use high doses of parenteral ascorbate, and such doses are tolerated well by most healthy subjects, whether such large amounts of the vitamin trigger adverse effects in patients is uncertain. Future Directions: Further study of sepsis models may determine if high concentrations of ascorbate in interstitial fluid have pro-oxidant and bacteriostatic actions that also modify disease progression. However, the ascorbate depletion observed in septic patients receiving standard care and the therapeutic mechanisms established in models are sufficient evidence to support clinical trials of parenteral ascorbate as an adjuvant therapy for sepsis. Antioxid. Redox Signal. 19, 2129–2140. PMID:23682970
Concentrating Solar Power and Water Issues in the U.S. Southwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, Nathan; Macknick, Jordan; Tovar-Hastings, Angelica
2015-03-01
Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate withmore » staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.« less
NASA Astrophysics Data System (ADS)
Najman, Joanna; Śliwka, Ireneusz
2014-05-01
In this work we present a chromatographic method for simultaneous analysis of helium, neon and argon in groundwater from one water sample. The concentration of helium in groundwater may be a good environmental tracer for groundwater dating. Proper use of environmental tracers in hydrogeology for dating purpose, requires the knowledge of recharge temperature of the system and the so-called "Excess air". "Excess air" allows for the necessary correction of measured concentration of helium in water. Both parameters can be determined by measuring the concentration of argon and neon in groundwater. In the Department of Physicochemistry of Ecosystems from the Institute of Nuclear Physics Polish Academy of Sciences the chromatographic method for the simultaneous analysis of He, Ar and Ne from one groundwater sample for dating purposes was developed. Water samples are taken to the stainless steel vessels with a capacity of 2900 cc. Gases are extracted from water by headspace method (HS). Helium, neon and argon are analyzed on two gas chromatographs equipped with capillary and packed columns and three thermo-conductive detectors (TCD). The chromatographic method was applied to groundwater dating from areas of Podhalańska Basin, Kraków and Żarnowiec. The levels of detection LOD for each measurement systems for the tested compounds are: 1,9•10-8 cm3STP/cm3 for Ne, 3,1•10-6 cm3STP/cm3 for Ar and 1,2•10-8 cm3STP/cm3 for He. Work performed within the strategic research project "Technologies supporting the development of safe nuclear power" financed by the National Centre for Research and Development (NCBiR). Research Task "Development of methods to assure nuclear safety and radiation protection for current and future needs of nuclear power plants", contract No. SP/J/6/143339/11. This work was also supported by grant No. N N525 3488 38 from the Polish National Science Centre.
Adolescents' thoughts about parents' jobs and their importance for adolescents' future orientation.
Neblett, Nicole Gardner; Cortina, Kai Schnabel
2006-10-01
The current study examined the relation between adolescents' perceptions of their parents' jobs and their future orientation, and tested the role of parental support. Four hundred and fifteen ninth through twelfth graders were surveyed about their parents' job rewards, self-direction, and stressors, as well as their expectations for employment and education prospects. Results indicate that perceptions of parents' rewards, self-direction, and stress predict how positively or negatively adolescents perceive the future to be. Results also suggest that higher levels of parental support may weaken the association between perceptions and future orientation when adolescents perceive their parents experience unfavorable conditions at work. These results suggest that adolescents' perceptions of parents' jobs have implications for their preparation for adulthood.
Minding the Factors of Public Support: How Lessons From Panama Could Prevent Future Iraqs
2017-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. MINDING THE FACTORS...OF PUBLIC SUPPORT: HOW LESSONS FROM PANAMA COULD PREVENT FUTURE IRAQS by Michael S. Handlan Michael D. Salazar June 2017 Thesis... Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
Free-space optical communications in support of future manned space flight
NASA Technical Reports Server (NTRS)
Stephens, Elaine M.
1990-01-01
Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.
David N. Wear
2011-01-01
Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...
Su, Shaobing; Li, Xiaoming; Lin, Danhua; Zhu, Maoling
2017-01-01
Existing research has found that parental migration may negatively impact the psychological adjustment of left-behind children. However, limited longitudinal research has examined if and how future orientation (individual protective factor) and social support (contextual protective factor) are associated with the indicators of psychological adjustment (i.e., life satisfaction, school satisfaction, happiness, and loneliness) of left-behind children. In the current longitudinal study, we examined the differences in psychological adjustment between left-behind children and non-left behind children (comparison children) in rural areas, and explored the protective roles of future orientation and social support on the immediate (cross-sectional effects) and subsequent (lagged effects) status of psychological adjustment for both groups of children, respectively. The sample included 897 rural children ( M age = 14.09, SD = 1.40) who participated in two waves of surveys across six months. Among the participants, 227 were left-behind children with two parents migrating, 176 were with one parent migrating, and 485 were comparison children. Results showed that, (1) left-behind children reported lower levels of life satisfaction, school satisfaction, and happiness, as well as a higher level of loneliness in both waves; (2) After controlling for several demographics and characteristics of parental migration among left-behind children, future orientation significantly predicted life satisfaction, school satisfaction, and happiness in both cross-sectional and longitudinal regression models, as well as loneliness in the longitudinal regression analysis. Social support predicted immediate life satisfaction, school satisfaction, and happiness, as well as subsequent school satisfaction. Similar to left-behind children, comparison children who reported higher scores in future orientation, especially future expectation, were likely to have higher scores in most indicators of psychological adjustment measured at the same time and subsequently. However, social support seemed not exhibit as important in the immediate status of psychological adjustment of comparison children as that of left-behind children. Findings, implications, and limitations of the present study were discussed.
Late Pleistocene temperature, hydrology, and glaciation in equatorial East Africa
NASA Astrophysics Data System (ADS)
Russell, J. M.; Verschuren, D.; Kelly, M. A.; Loomis, S. E.; Jackson, M. S.; Morrill, C.; S Sinninghe Damsté, J.; Doughty, A. M.; De Cort, G.; Olago, D.; Street-Perrott, F. A.
2016-12-01
In the coming century the world's high tropical mountains are predicted to experience a magnitude of climate change second only to the Arctic due to amplification of warming with elevation in the tropics. Proxy data suggest that substantial changes in tropical temperature and hydroclimate also occurred during the last deglaciation, the most recent time period when rising atmospheric CO2 concentrations caused large changes in global climate. Determining whether the rate of temperature change with elevation (the lapse rate) was different from today during the Last Glacial Maximum (LGM) is therefore critical to understanding the future of tropical mountain environments and resources. Here we present a new 25,000-year temperature reconstruction based upon organic geochemical analyses of sediment cores from Lake Rutundu (3,078 m asl), Mount Kenya, East Africa. Through comparison with regional reconstructions of lower elevation temperature, we show that LGM cooling was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our lapse rate reconstructions with equilibrium line altitude reconstructions from glacial moraines indicates that temperature, rather than precipitation, was the dominant control on tropical alpine glacier fluctuations at this time scale. Nevertheless, our results have important implications for the tropical hydrological cycle, as changes in the lapse rate are intimately linked with changes in atmospheric water vapour concentrations. Indeed, we attribute the steeper lapse rate to drying of the tropical ice-age atmosphere, a hypothesis supported by palaeoclimate models. However, comparison of our data to these simulations indicates that state-of-the-art models significantly underestimate tropical temperature changes at high elevation and therefore the lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than currently predicted.
Platelet-rich plasma therapy - future or trend?
2012-01-01
Chronic complex musculoskeletal injuries that are slow to heal pose challenges to physicians and researchers alike. Orthobiologics is a relatively newer science that involves application of naturally found materials from biological sources (for example, cell-based therapies), and offers exciting new possibilities to promote and accelerate bone and soft tissue healing. Platelet-rich plasma (PRP) is an orthobiologic that has recently gained popularity as an adjuvant treatment for musculoskeletal injuries. It is a volume of fractionated plasma from the patient's own blood that contains platelet concentrate. The platelets contain alpha granules that are rich in several growth factors, such as platelet-derived growth factor, transforming growth factor-β, insulin-like growth factor, vascular endothelial growth factor and epidermal growth factor, which play key roles in tissue repair mechanisms. PRP has found application in diverse surgical fields to enhance bone and soft-tissue healing by placing supra-physiological concentrations of autologous platelets at the site of tissue damage. The relative ease of preparation, applicability in the clinical setting, favorable safety profile and possible beneficial outcome make PRP a promising therapeutic approach for future regenerative treatments. However, there is a large knowledge gap in our understanding of PRPs mechanism of action, which has raised skepticism regarding its potential efficacy and use. Thus, the aim of this review is to describe the various factors proposed to contribute to the biological activity of PRP, and the published pre-clinical and clinical evidence to support it. Additionally, we describe the current techniques and technology for PRP preparation, and review the present shortcomings of this therapy that will need to be overcome if it is to gain broad acceptance. PMID:22894643
Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Adam, Niklas M.; Roberts, Michael S.; Garland, Jay L.; Sager, John C.; Pickering, Karen D.
2007-01-01
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels. Preliminary data on silver biocide depletion rates in heritage spacecraft potable water system wetted-materials of construction has been gathered as part of a multi-phase test project aimed at the characterization of silver based biocide technology through: development of preferred materials lists, investigation of silver biocide forms and delivery methods, down-selection of silver biocide technologies, and integrated testing. A 10% - 20% loss in silver ion concentration per day was observed for acid passivated Nitronic 40 tubing with surface area to volume (S/V) ratios of approximately 4.59 cm-1. The Nitronic 40 tubes were tested both with and without biocide pretreatment. Silver biocide depletion was also observed at approximately 0.1% per day for the first 35 days of exposure to acid passivated Inconel 718 coupon, S/V of approximately 0.14 cm-1. Surface analysis by scanning election microscopy (SEM) suggested deposition of silver metal on both test materials. SEM analysis also provided evidence of potential variability in the passivation process for tube configuration of the Nitronic 40 test apparatus. These preliminary results are presented and discussed herein, along with the current project status.
Sleep Hygiene and Recovery Strategies in Elite Soccer Players.
Nédélec, Mathieu; Halson, Shona; Delecroix, Barthélémy; Abaidia, Abd-Elbasset; Ahmaidi, Said; Dupont, Gregory
2015-11-01
In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep (e.g., playing night matches interspersed with 3 days; performing activities demanding high levels of concentration close to bedtime; use of products containing caffeine or alcohol in the period preceding bedtime; regular daytime napping throughout the week; variable wake-up times or bedtime), potentially leading to sleep deprivation. We outline simple, practical, and pharmaceutical-free sleep strategies that are coordinated to the constraints of elite soccer in order to promote sleep. Sleep deprivation is best alleviated by sleep extension; however, sleep hygiene strategies (i.e., consistent sleep pattern, appropriate napping, and active daytime behaviors) can be utilized to promote restorative sleep. Light has a profound impact on sleep, and sleep hygiene strategies that support the natural environmental light-dark cycle (i.e., red-light treatment prior to sleep, dawn-simulation therapy prior to waking) and prevent cycle disruption (i.e., filtering short wavelengths prior to sleep) may be beneficial to elite soccer players. Under conditions of inordinate stress, techniques such as brainwave entrainment and meditation are promising sleep-promoting strategies, but future studies are required to ascertain the applicability of these techniques to elite soccer players. Consuming high-electrolyte fluids such as milk, high-glycemic index carbohydrates, some forms of protein immediately prior to sleep, as well as tart cherry juice concentrate and tryptophan may promote rehydration, substrate stores replenishment, muscle-damage repair and/or restorative sleep. The influence of cold water immersion performed close to bedtime on subsequent sleep is still debated. Conversely, the potential detrimental effects of sleeping medication must be recognized. Sleep initiation is influenced by numerous factors, reinforcing the need for future research to identify such factors. Efficient and individualized sleep hygiene strategies may consequently be proposed.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris
2016-04-01
Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.
Wolfson, Rachel K; Alberson, Kurt; McGinty, Michael; Schwanz, Korry; Dickins, Kirsten; Arora, Vineet M
2017-08-01
Concerns remain regarding the future of the physician-scientist workforce. One goal of scholarly concentration (SC) programs is to give students skills and motivation to pursue research careers. The authors describe SC and student variables that affect students' career plans. Medical students graduating from the University of Chicago SC program in 2014 and 2015 were studied. The authors measured change in interest in career-long research from matriculation to graduation, and used ordinal logistic regression to determine whether program satisfaction, dissemination of scholarship, publication, and gender were associated with increased interest in a research career. Among students with low baseline interest in career-long research, a one-point-higher program satisfaction was associated with 2.49 (95% CI 1.36-4.57, P = .003) odds of a one-point-increased interest in a research career from matriculation to graduation. Among students with high baseline interest in career-long research, both publication (OR 5.46, 95% CI 1.40-21.32, P = .02) and female gender (OR 4.83, 95% CI 1.11-21.04, P = .04) were associated with increased odds of a one-point-increased interest in career-long research. The impact of an SC program on change in career plans during medical school was analyzed. Program satisfaction, publication, and female gender were associated with increased intent to participate in career-long research depending on baseline interest in career-long research. Two ways to bolster the physician-scientist workforce are to improve satisfaction with existing SC programs and to formally support student publication. Future work to track outcomes of SC program graduates is warranted.
Julin, Jan; Murphy, Benjamin N; Patoulias, David; Fountoukis, Christos; Olenius, Tinja; Pandis, Spyros N; Riipinen, Ilona
2018-01-16
Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.
Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.
2000-01-01
Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-01-01
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-08-15
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.
IMPROVE AND APPLY CHEMICAL MECHANISMS FOR DEVELOPING OZONE CONTROL STRATEGIES
Air quality models that realistically describe the formation of ozone, air toxics, and other pollutants are needed by EPA and state agencies to predict current and future concentrations of these pollutants and develop ways to decrease their concentrations below harmful levels. ...
NASA Astrophysics Data System (ADS)
Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph
2010-05-01
First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a ‘non-climate change' (NCC) simulation, in which greenhouse gases have been kept fixed at their 1960 concentrations.
NASA Technical Reports Server (NTRS)
Simpson, J. G. (Inventor)
1979-01-01
An improved solar concentrator is characterized by a number of elongated supporting members arranged in substantial horizontal parallelism with the axis and intersecting a common curve. A tensioned sheet of flexible reflective material is disposed in engaging relation with the supporting members in order to impart to the tensioned sheet a catenary configuration.
Woods, Robert A; Artz, Jennifer D; Carrière, Benoit; Field, Simon; Huffman, James; Dong, Sandy L; Bhanji, Farhan; Yiu, Stella; Smith, Sheila; Mengual, Rose; Hicks, Chris; Frank, Jason
2017-05-01
To develop consensus recommendations for training future clinician educators (CEs) in emergency medicine (EM). A panel of EM education leaders was assembled from across Canada and met regularly by teleconference over the course of 1 year. Recommendations for CE training were drafted based on the panel's experience, a literature review, and a survey of current and past EM education leaders in Canada. Feedback was sought from attendees at the Canadian Association of Emergency Physicians (CAEP) annual academic symposium. Recommendations were distributed to the society's Academic Section for further feedback and updated by a consensus of the expert panel. Recommendations were categorized for one of three audiences: 1) Future CEs; 2) Academic departments and divisions (AD&D) that support training to fulfill their education leadership goals; and 3) The CAEP Academic Section. Advanced medical education training is recommended for any emergency physician or resident who pursues an education leadership role. Individuals should seek out mentorship in making decisions about career opportunities and training options. AD&D should regularly perform a needs assessment of their future CE needs and identify and encourage potential individuals who fulfill education leadership roles. AD&D should develop training opportunities at their institution, provide support to complete this training, and advocate for the recognition of education scholarship in their institutional promotions process. The CAEP Academic Section should support mentorship of future CEs on a national scale. These recommendations serve as a framework for training and supporting the next generation of Canadian EM medical educators.
Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.
2014-01-01
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170
Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L
2014-11-18
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.
2010-08-12
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Program Manager Dale Thomas talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2010-08-12
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Senior Project Manager Larry Schultz talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
Maile, Michael D; Standiford, Theodore J; Engoren, Milo C; Stringer, Kathleen A; Jewell, Elizabeth S; Rajendiran, Thekkelnaycke M; Soni, Tanu; Burant, Charles F
2018-04-10
It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.
Porewater chemistry in a treatment wetland: links to metal retention and release
NASA Astrophysics Data System (ADS)
Vadas, T. M.; Zhang, J.
2011-12-01
Constructed wetlands are gaining increased support for treatment of nonpoint source pollutants. A subsurface flow wetland treating runoff from an agricultural milkhouse floor and roof drainage has been monitored for metal removal. Influent dissolved concentrations from 5 to 30 ppb Cu and 60 to 800 ppb Zn were observed. Effluent concentrations of Zn were always lower from about 3 to 60 ppb Zn, however, Cu was typically around 10 ppb, and much larger at certain points in time, up to 95 ppb Cu. The results were similar in vegetated and non-vegetated wetlands, suggesting abiotic chemistry or microbial activity is controlling metal mobility. Porewater samples were taken using soil moisture lysimeters during both non-storm and storm events to examine metal and related chemistry with depth and distance in the wetland. Under non storm conditions, Cu and Zn average porewater concentrations were 64 and 250 ppb, respectively and did not vary much along the length of the wetland. During a storm event, Zn concentrations in the porewater initially increased near the inlet shortly after a storm, but typically decreased along the length and depth of the wetland to less than 60 ppb. Observed porewater Cu concentrations also increased near the inlet in some cases up to 700 ppb, but dropped rapidly with distance to less than 30 ppb near the middle of the wetland and increased again near the outlet. The dissolved Fe and Mn concentrations follow nearly opposite trends as Cu, increasing and then decreasing along the length of the wetland, suggesting possibly different roles in controlling Cu retention in each stage of the wetland, either co-precipitation with Cu initially, or reductive dissolution and release of Cu in later stages. An understanding of what controls metal retention and release is relevant to optimizing future design parameters of these wetlands.
Borell, Esther M; Steinke, Michael; Horwitz, Rael; Fine, Maoz
2014-01-01
Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans. PMID:24634728
Borell, Esther M; Steinke, Michael; Horwitz, Rael; Fine, Maoz
2014-02-01
Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell(-1)) and V2 (34.78 ± 8.69 fmol cell(-1)) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell(-1)). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg(-1) protein) and zooxanthellae (2.84 ± 0.41 U·mg(-1) protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg(-1) protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.
Future mobility demand in megaregions : a national study with a focus on the Gulf Coast.
DOT National Transportation Integrated Search
2013-09-01
About three fourth of national population and wealth are concentered in the 11 megaregional areas that occupy one fourth of the land areas in the US. NHTS reveal that megaregions also concentrate current and future mobility demand. This report presen...
Providing Real-time Sea Ice Modeling Support to the U.S. Coast Guard
NASA Astrophysics Data System (ADS)
Allard, Richard; Dykes, James; Hebert, David; Posey, Pamela; Rogers, Erick; Wallcraft, Alan; Phelps, Michael; Smedstad, Ole Martin; Wang, Shouping; Geiszler, Dan
2016-04-01
The Naval Research Laboratory (NRL) supported the U.S. Coast Guard Research Development Center (RDC) through a demonstration project during the summer and autumn of 2015. Specifically, a modeling system composed of a mesoscale atmospheric model, regional sea ice model, and regional wave model were loosely coupled to provide real-time 72-hr forecasts of environmental conditions for the Beaufort/Chukchi Seas. The system components included a 2-km regional Community Ice CodE (CICE) sea ice model, 15-km Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model, and a 5-km regional WAVEWATCH III wave model. The wave model utilized modeled sea ice concentration fields to incorporate the effects of sea ice on waves. The other modeling components assimilated atmosphere, ocean, and ice observations available from satellite and in situ sources. The modeling system generated daily 72-hr forecasts of synoptic weather (including visibility), ice drift, ice thickness, ice concentration and ice strength for missions within the economic exclusion zone off the coast of Alaska and a transit to the North Pole in support of the National Science Foundation GEOTRACES cruise. Model forecasts graphics were shared on a common web page with selected graphical products made available via ftp for bandwidth limited users. Model ice thickness and ice drift show very good agreement compared with Cold Regions Research and Engineering Laboratory (CRREL) Ice Mass Balance buoys. This demonstration served as a precursor to a fully coupled atmosphere-ocean-wave-ice modeling system under development. National Ice Center (NIC) analysts used these model data products (CICE and COAMPS) along with other existing model and satellite data to produce the predicted 48-hr position of the ice edge. The NIC served as a liaison with the RDC and NRL to provide feedback on the model predictions. This evaluation provides a baseline analysis of the current models for future comparison studies with the fully coupled modeling system.
Caironi, Pietro; Latini, Roberto; Struck, Joachim; Hartmann, Oliver; Bergmann, Andreas; Maggio, Giuseppe; Cavana, Marco; Tognoni, Gianni; Pesenti, Antonio; Gattinoni, Luciano; Masson, Serge
2017-08-01
The biological role of adrenomedullin (ADM), a hormone involved in hemodynamic homeostasis, is controversial in sepsis because administration of either the peptide or an antibody against it may be beneficial. Plasma biologically active ADM (bio-ADM) was assessed on days 1, 2, and 7 after randomization of 956 patients with sepsis or septic shock to albumin or crystalloids for fluid resuscitation in the multicenter Albumin Italian Outcome Sepsis trial. We tested the association of bio-ADM and its time-dependent variation with fluid therapy, vasopressor administration, organ failures, and mortality. Plasma bio-ADM on day 1 (median [Q1-Q3], 110 [59-198] pg/mL) was higher in patients with septic shock, associated with 90-day mortality, multiple organ failures and the average extent of hemodynamic support therapy (fluids and vasopressors), and serum lactate time course over the first week. Moreover, it predicted incident cardiovascular dysfunction in patients without shock at enrollment (OR [95% CI], 1.9 [1.4-2.5]; P < .0001, for an increase of 1 interquartile range of bio-ADM concentration). bio-ADM trajectory during the first week of treatment clearly predicted 90-day mortality after adjustment for clinically relevant covariates (hazard ratio [95% CI], 1.3 [1.2-1.4]; P < .0001), and its reduction below 110 pg/mL at day 7 was associated with a marked reduction in 90-day mortality. Changes over the first 7 days of bio-ADM concentrations were not dependent on albumin treatment. In patients with sepsis, the circulating, biologically active form of ADM may help individualizing hemodynamic support therapy, while avoiding harmful effects. Its possible pathophysiologic role makes bio-ADM a potential candidate for future targeted therapies. ClinicalTrials.gov; No.: NCT00707122. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Performance Support in Internet Time: The State of the Practice.
ERIC Educational Resources Information Center
Gery, Gloria; Malcolm, Stan; Cichelli, Janet; Christensen, Hal; Raybould, Barry; Rosenberg, Marc J.
2000-01-01
Relates a discussion held via teleconference that addressed trends relating to performance support. Topics include computer-based training versus performance support; knowledge management; Internet and Web-based applications; dynamics and human activities; enterprise application integration; intrinsic performance support; and future possibilities.…
Providing Services to Virtual Patrons.
ERIC Educational Resources Information Center
Hulshof, Robert
1999-01-01
Discusses the types of services libraries need to support patrons who access the library via the Internet or e-mail. Highlights include issues in technical support; establishing policies and procedures; tools for technical support, including hardware and software; impacts of technical support on staff; and future possibilities. (LRW)
Boekholdt, S Matthijs; Meuwese, Marijn C; Day, Nicholas E; Luben, Robert; Welch, Ailsa; Wareham, Nicholas J; Khaw, Kay-Tee
2006-09-01
High plasma concentrations of ascorbic acid, a marker of fruit and vegetable intake, are associated with low risk of coronary artery disease. Whether this relationship is explained by a reduction in systemic inflammation is unclear. We investigated the relationship between ascorbic acid plasma concentration and coronary artery disease risk, and in addition whether this relationship depended on classical risk factors and C-reactive protein (CRP) concentration. We used a prospective nested case-control design. The study consisted of 979 cases and 1794 controls (1767 men and 1006 women). Increasing ascorbic acid quartiles were associated with lower age, BMI, systolic and diastolic blood pressure, and CRP concentration, but with higher HDL-cholesterol concentration. No associations existed between ascorbic acid concentration and total cholesterol concentration or LDL-cholesterol concentration. When data from men and women were pooled, the risk estimates decreased with increasing ascorbic acid quartiles such that people in the highest ascorbic acid quartile had an odds ratio for future coronary artery disease of 0.67 (95 % CI 0.52, 0.87) compared with those in the lowest quartile (P for linearity=0.001). This relationship was independent of sex, age, diabetes, smoking, BMI, LDL-cholesterol, HDL-cholesterol, systolic blood pressure and CRP level. These data suggest that the risk reduction associated with higher ascorbic acid plasma concentrations, a marker of fruit and vegetable intake, is independent of classical risk factors and also independent of CRP concentration.
Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.
Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N
2016-01-01
To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Framing the Future. Re-framing the Future: A Report on the Long-Term Impacts of Framing the Future.
ERIC Educational Resources Information Center
Mitchell, John
Australia's Framing the Future (FTF) project was designed to develop a model of staff development to support implementation of the National Training Framework (NTF). A survey of FTF project managers found these long-term impacts: implementation of training packages and other aspects of NTF, new forms of collaboration between industry and training…
Power Subsystem for Extravehicular Activities for Exploration Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle
2005-01-01
The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.
Carbon dioxide removal and the futures market
NASA Astrophysics Data System (ADS)
Coffman, D.'Maris; Lockley, Andrew
2017-01-01
Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.
Portouli, Evangelia; Nathanael, Dimitris; Marmaras, Nicolas
2014-01-01
Social interactions with other road users are an essential component of the driving activity and may prove critical in view of future automation systems; still up to now they have received only limited attention in the scientific literature. In this paper, it is argued that drivers base their anticipations about the traffic scene to a large extent on observations of social behaviour of other 'animate human-vehicles'. It is further argued that in cases of uncertainty, drivers seek to establish a mutual situational awareness through deliberate communicative interactions. A linguistic model is proposed for modelling these communicative interactions. Empirical evidence from on-road observations and analysis of concurrent running commentary by 25 experienced drivers support the proposed model. It is suggested that the integration of a social interactions layer based on illocutionary acts in future driving support and automation systems will improve their performance towards matching human driver's expectations. Practitioner Summary: Interactions between drivers on the road may play a significant role in traffic coordination. On-road observations and running commentaries are presented as empirical evidence to support a model of such interactions; incorporation of drivers' interactions in future driving support and automation systems may improve their performance towards matching driver's expectations.
Rogers, Wendy A; Mitzner, Tracy L
2017-03-01
Envisioning the future of older adults of 2050 is a challenging task given the heterogeneity of the older adult population. We consider primarily the domains of home, health, and social participation for individuals over age 65 and the potential role of information, communication, and robotic technology for enhanced independence, maintenance of autonomy, and enriched quality of life. We develop several scenarios to illustrate the diversity of circumstances, health, and living situations for older adults in the future. We discuss possible negative outcomes resulting from the proliferation of technology, including increased social isolation and a widening digital divide. However, we focus primarily on envisioning desired situations wherein older adults have autonomy and independence; are easily able to manage their health and wellness needs; have rich and rewarding opportunities for social connectedness, personal growth, continued life purpose, and overall high quality of life. To attain this future, we must be acting now: designing the technology with involvement by today's older adults who represent the needs and capabilities of tomorrow's older adults; developing the necessary infrastructure to support widespread availability and deployment of these technologies; and supporting the integration of technology into people's lives at younger ages with adaptive functionality to support changing needs and preferences.
Considerations on Caring for Caregivers in an Aging Society.
Sinha, Dr Samir K
2015-01-01
While it is anticipated that healthcare systems around the world will continue to rely heavily on family members and friends to provide unpaid care especially to meet the needs of our aging population, current assumptions and issues around caregivers need to be challenged and addressed if we are to expect their future support. This paper builds on Williams et al's assertion that many current assumptions and issues around caregivers need to be challenged and addressed if we are to expect their future support. Indeed, with the pool of available caregivers expected to actually shrink in the future, this paper therefore examines four key policy issues in greater depth that we can address to enable individuals to age in place and others to maintain and take on caregiving roles. Through the establishment of policies that support robust and longterm capacity planning; make clear what care recipients and caregivers can expect to receive in the form of government supports; appreciate the increasing diversity that is occurring among those taking on caregiving roles and those requiring care; and recognize the need to invest in strategies that combat social isolation, we may not only improve our future health and well-being but ensure we are also enabled to care for ourselves as we age.
Neural Substrates of Semantic Prospection – Evidence from the Dementias
Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier
2016-01-01
The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts. PMID:27252632
Building Bridges to Family-Supporting Jobs.
ERIC Educational Resources Information Center
Pennington, Hilary; Seltzer, Marlene
2001-01-01
Jobs for the Future (JFF) has identified the following best practice programs that support what is known to work best in moving women into family-supporting employment: (1) Cessna Aircraft Company in Wichita, Kansas, trains welfare recipients to work as sheet metal assemblers while providing a support services counselor and support for child care…
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
NASA Astrophysics Data System (ADS)
Pasten Zapata, Ernesto; Moggridge, Helen; Jones, Julie; Widmann, Martin
2017-04-01
Run-of-the-River (ROR) hydropower schemes are expected to be importantly affected by climate change as they rely in the availability of river flow to generate energy. As temperature and precipitation are expected to vary in the future, the hydrological cycle will also undergo changes. Therefore, climate models based on complex physical atmospheric interactions have been developed to simulate future climate scenarios considering the atmosphere's greenhouse gas concentrations. These scenarios are classified according to the Representative Concentration Pathways (RCP) that are generated according to the concentration of greenhouse gases. This study evaluates possible scenarios for selected ROR hydropower schemes within the UK, considering three different RCPs: 2.6, 4.5 and 8.5 W/m2 for 2100 relative to pre-industrial values. The study sites cover different climate, land cover, topographic and hydropower scheme characteristics representative of the UK's heterogeneity. Precipitation and temperature outputs from state-of-the-art Regional Climate Models (RCMs) from the Euro-CORDEX project are used as input for a HEC-HMS hydrological model to simulate the future river flow available. Both uncorrected and bias-corrected RCM simulations are analyzed. The results of this project provide an insight of the possible effects of climate change towards the generation of power from the ROR hydropower schemes according to the different RCP scenarios and contrasts the results obtained from uncorrected and bias-corrected RCMs. This analysis can aid on the adaptation to climate change as well as the planning of future ROR schemes in the region.
Quantifying the effects of ozone on plant reproductive growth and development
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone is a harmful air pollutant that can negatively impact plant growth and development. Current ozone concentrations negatively impact forest productivity and crop yields, and future ozone concentrations will increase if current emission rates continue. However, the specific effects o...
Thakur, Sveta; Singh, Lakhveer; Wahid, Zularisam Ab; Siddiqui, Muhammad Faisal; Atnaw, Samson Mekbib; Din, Mohd Fadhil Md
2016-04-01
Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.
Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R
2011-06-01
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. Published by Elsevier Ltd.
Toxicology of a Peruvian botanical remedy to support healthy liver function.
Semple, Hugh A; Sloley, B Duff; Cabanillas, José; Chiu, Andrea; Aung, Steven K H; Green, Francis H Y
2016-06-01
The purpose of these studies was to determine the safety of a botanical treatment for supporting healthy liver function developed in Peru. The formulation, A4+, contains extracts of Curcuma longa L. rhizome (A4R), Cordia lutea Lam. flower (A4F) and Annona muricata L. leaf (A4L). The tests were used to support an application for a non-traditional Natural Health Product Licence from the Natural Health Product Directorate of Health Canada and future clinical trials. Besides reviewing the scientific and clinical information from Peru on the ingredients and conducting an initial Ames test for mutagenicity, we analysed A4+ for its chemical profile and tested genotoxicity (micronucleus test) and general toxicity (28-day repeated dose). A4+ and extracts from the three plants provided distinctive chemical fingerprints. A4L contained acetogenins, requiring a second chromatographic method to produce a specific fingerprint. The Ames test proved positive at the highest concentration (5,000 μg/mL) but A4+ showed no evidence of genotoxicity in the more specific mouse micronucleus test. The 28-day repeated dose (general toxicity) study in rats showed no toxicity at 2,000 mg/kg. We conclude that under the conditions of these studies, A4+ shows no evidence of toxicity at the levels indicated. A no observed adverse effect level (NOAEL) of 2,000 mg/kg was assigned.
Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications
NASA Technical Reports Server (NTRS)
Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.
1990-01-01
The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.
In vitro influence of light radiation on hair steroid concentrations.
Grass, Juliane; Miller, Robert; Carlitz, Esther H D; Patrovsky, Fabian; Gao, Wei; Kirschbaum, Clemens; Stalder, Tobias
2016-11-01
Hair cortisol concentrations (hairF) are considered to be relatively robust to various confounding influences. However, a potentially important covariate factor that has received little attention in this context is hair exposure to ultraviolet/sunlight radiation. We conducted a detailed experimental investigation to examine the effects of light exposure on hair cortisol. In study I, a hydrocortisone-containing solution was subjected to short-term artificial light irradiation for 1, 3, 5, 10, 15, or 30min to evaluate the stability of cortisol molecules due to radiant energy. In study II, hair samples (N=12) were subjected to single short-term artificial light irradiation for 0, 1, or 5h to examine light-induced effects in the hair matrix. In study III, hair samples (N=25) were subjected to long-term naturalistic sunlight radiation over a period of two months (during summer) with daily exposure times of 0, 1, 3, or 6h, respectively. Besides cortisol, studies II & III also examined concentrations of cortisone (hairE), dehydroepiandrosterone (hairDHEA) and progesterone (hairP) in hair, quantified using LC-MS/MS technology. Results across the three studies consistently revealed effects of light irradiation on hair steroid concentrations: Longer light exposure resulted in a decrease of dissolved hydrocortisone (study I) as well as of hairF and hairE (studies II and III). Conversely, hairDHEA and hairP increased with longer natural sunlight exposure times (study III), while this effect was not observed for short-term artificial light irradiation (study II). Combined, our findings imply sunlight exposure as a potential confound in hair steroid research. Given the experimental character of this investigation, the magnitude of this effect under real-life testing conditions is difficult to estimate. To support future investigation into this, we designed a 'sunlight-exposure' questionnaire to share with the research community. The assessment and statistical accounting for sunlight exposure-related effects in future hair steroid research (using this or a similar questionnaire) may help to reduce the potential influence of this unwanted error source and could thus lead to more valid and reliable results. In addition, our data strongly suggest that hair samples for steroid analyses need to be stored in a dark environment. Copyright © 2016. Published by Elsevier Ltd.
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Schaap, Bryan D.
1999-01-01
Nitrogen fertilizer sales in Iowa have been higher in recent years than during the mid- 1970’s. This suggests that nitrate concentrations in water from well 9 may persist at present levels or could increase in future years if fertilizer use increases and if higher nitrate concentrations are directly related to higher nitrogen fertilizer use.
Ramku, Emina; Ramku, Refik; Spanca, Dugagjin; Zhjeqi, Valbona
2017-04-15
As previously various studies have suggested application of brain-derived neurotrophic factor (BDNF) may be considered as a promising future therapy for hearing deficits, in particular for the improvement of cochlear neurone loss during cochlear implantation. The present study's aim was to establish the upper threshold of the concentration of BDNF in Naval Medical Research Institute (NMRI) mice spiral ganglion outgrowth. Spiral ganglion explants were prepared from post-natal day 4 (p4) (NMRI) mice of both sexes under the approval and guidelines of the regional council of Hearing Research Institute Tubingen. Spiral ganglion explants were cultured at postnatal days 4 in the presence of different concentrations of BDNF as described under methods. We chose an age of postnatal day (P4) and concentrations of BDNF 0; 6; 12.5; 25 and 50 ƞg/ml. Averaged neurite outgrowth is measured in 4 different cultures that were treated with different concentrations. Results show that with increasing concentrations of BDNF, the neurite density increases. The present finding show evidence that BDNF has a clear incremental effect on the number of neurites of spiral ganglia in the prehearing organ, but less on the neurite length. The upper threshold of exogenous BNDF concentration on spiral ganglion explant is 25 ƞg/ml. This means that concentration beyond this level has no further incremental impact. Therefore our suggestion for hydrogel concentration in NMRA mice in future research should be 25 ƞg/ml.
Status of the Geostationary Spectrograph (GeoSpec) for Earth and Atmospheric Science Applications
NASA Technical Reports Server (NTRS)
Janz, Scott; Hilsenrath, Ernest; Mount, G.; Brune, W.; Heath, D.
2004-01-01
GeoSpec will support future satellite mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by providing time-resolved measurements of both chemically linked atmospheric trace gas concentrations of important molecules such as O3, NO2, CH2O and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept in development is a dual spectrograph covering the WMS wavelength region of 310-500 nm and the VIS/NIR wavelength region of 480-900 nm coupled to all reflective telescope and high sensitivity PIN/CMOS area detector. The goal of the project is to demonstrate a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.6 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time-varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Other spatial resolutions can be supported by varying the focal length of the input telescope. Scientific rationale and instrument design and status will be presented.
NASA Astrophysics Data System (ADS)
Shao, Lingzhi; Liu, Hong; Wang, Minjuan; Fu, Yuming; Dong, Chen; Liu, Guanghui
To establish bioregenerative life support system (BLSS) on lunar or Mars bases in the future, it is necessary to firstly conduct manned simulation experiments on the ground. For this purpose, Lunar palace 1 as an integrative experimental facility for permanent astrobase life support artificial closed ecosystem was set up, and 90-day experiment was carried out in this system. Vegtables as one of the important plant units, provide various nutrient content for crews in the system, such as vitamin, antioxidants and so on. However, it is not clear yet that how the CO _{2} change during 90-day experiment to affect on growth characteristics and photosynthetic activity in vegtables grown in the system. In this study, red lettuce, red rape, romaine lettuce, and bibb lettuce grown in the system were chosen as the subject investigated. Growth, expressed as dry weight, length of shoot and root, leaf area, was mearsured, and photosynthesis,expressed as net photosynthetic rate, intercellular CO _{2} concentration, chlorophyll contents and fluorescence was analyzed to detemind influence of CO _{2} change during 90-day experiment on growth in vegtables grown in the system.
The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives.
Humaidan, Peter; Papanikolaou, E G; Kyrou, D; Alsbjerg, B; Polyzos, N P; Devroey, P; Fatemi, Human M
2012-02-01
In stimulated IVF/intracytoplasmic sperm injection cycles, the luteal phase is disrupted, necessitating luteal-phase supplementation. The most plausible reason behind this is the ovarian multifollicular development obtained after ovarian stimulation, resulting in supraphysiological steroid concentrations and consecutive inhibition of LH secretion by the pituitary via negative feedback at the level of the hypothalamic-pituitary axis. With the introduction of the gonadotrophin-releasing hormone-(GnRH) antagonist, an alternative to human chorionic gonadotrophin triggering of final oocyte maturation is the use of GnRH agonist (GnRHa) which reduces or even prevents ovarian hyperstimulation syndrome (OHSS). Interestingly, the current regimens of luteal support after HCG triggering are not sufficient to secure the early implanting embryo after GnRHa triggering. This review discusses the luteal-phase insufficiency seen after GnRHa triggering and the various trials that have been performed to assess the most optimal luteal support in relation to GnRHa triggering. Although more research is needed, GnRHa triggering is now an alternative to HCG triggering, combining a significant reduction in OHSS with high ongoing pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
Heisler, Michele
2010-06-01
Much of diabetes care needs to be carried out by patients between office visits with their health care providers. Yet, many patients face difficulties carrying out these tasks. In addition, many adults with diabetes cannot count on effective support from their families and friends to help them with their self-management. Peer support programmes are a promising approach to enhance social and emotional support, assist patients in daily management and living with diabetes and promote linkages to clinical care. This background paper provides a brief overview of different approaches to mobilize peer support for diabetes self-management support, discusses evidence to date on the effectiveness of each of these models, highlights logistical and evaluation issues for each model and concludes with a discussion of directions for future research in this area.
2010-01-01
Much of diabetes care needs to be carried out by patients between office visits with their health care providers. Yet, many patients face difficulties carrying out these tasks. In addition, many adults with diabetes cannot count on effective support from their families and friends to help them with their self-management. Peer support programmes are a promising approach to enhance social and emotional support, assist patients in daily management and living with diabetes and promote linkages to clinical care. This background paper provides a brief overview of different approaches to mobilize peer support for diabetes self-management support, discusses evidence to date on the effectiveness of each of these models, highlights logistical and evaluation issues for each model and concludes with a discussion of directions for future research in this area. PMID:19293400
Downing, Gregory J; Boyle, Scott N; Brinner, Kristin M; Osheroff, Jerome A
2009-10-08
Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized decision-making, a comparison of current and future applications of clinical decision support to enable individualized medical treatment plans is presented. If clinical decision support tools are to impact outcomes in a clear and positive manner, their development and deployment must therefore consider the needs of the providers, including specific practice needs, information workflow, and practice environment.
2009-01-01
Background Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Discussion Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. Summary This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized decision-making, a comparison of current and future applications of clinical decision support to enable individualized medical treatment plans is presented. If clinical decision support tools are to impact outcomes in a clear and positive manner, their development and deployment must therefore consider the needs of the providers, including specific practice needs, information workflow, and practice environment. PMID:19814826
Hen, Meirav
2018-01-01
Academic procrastination is a prevalent behavior that negatively influences students' performance and well-being. The growing number of students with learning disabilities (LD) in higher education communities leads to the need to study and address academic procrastination in this unique population of students and to develop ways to prevent and intervene. The present study examined the difference in academic procrastination between LD, non-LD, and supported LD college students in Israel. Findings indicated a significant difference between the three groups, both in academic procrastination and in the desire to change this behavior. Interestingly, supported LD students were similar to non-LD students in all parameters of academic procrastination; however, they expressed less desire to change this behavior than unsupported LD students. These findings highlight the effect of general academic support on academic procrastination in LD students. Future studies will need to further explore the specific elements of support that most contribute to the reduction of academic procrastination in LD students. Specific support programs for academic procrastination in LD students who take into account the findings of these future studies can then be developed and studied.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.
2012-12-01
Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.
Outsourcing: A Flexible Option for the Future? IES Report 320.
ERIC Educational Resources Information Center
Reilly, Peter; Tamkin, Penny
The nature, extent, and likely future of outsourcing in the United Kingdom was examined through an extensive literature review and interviews with small numbers of local authorities, companies, and contractors. Despite the limited data available, it appeared that outsourcing is concentrated in ancillary activities and is relatively marginal, both…
Code of Federal Regulations, 2012 CFR
2012-04-01
... concentrated orange juice, and all other goods and articles, except onions as provided in Pub. L. 85-839, and... futures commission merchant to margin, guarantee, or secure open foreign futures contracts plus or minus... or received, plus any other funds required to guarantee or secure open transactions plus or minus any...
NASA Astrophysics Data System (ADS)
Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Beltran, Angelica Mendoza; van Vliet, Jasper
2013-11-01
The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m-2 and 6.0 W m-2. Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m-2 in the 6.0 W m-2 scenario and -0.16 W m-2 in the 2.6 W m-2 scenario.
New Futures School: An Overview.
ERIC Educational Resources Information Center
Gaston, Caroline
New Futures School (NFS), located in Albuquerque, New Mexico, is a comprehensive program for adolescent parents. NFS is an alternative school of the Albuquerque Public Schools and is supported by a non-profit, community-based organization, New Futures, Inc. There are two departments of the NFS in-school program: the Perinatal Program, serving the…
The 2012 School Psychology Futures Conference: Accomplishments and next Steps
ERIC Educational Resources Information Center
Jamruz-Smith, Susan; Harrison, Patti L.; Cummings, Jack A.
2013-01-01
The major national and international school psychology organizations hosted the 2012 School Psychology Futures Conference during the fall of 2012. The conference was designed to provide an opportunity for school psychologists to plan their future roles in better supporting children, families, and schools. The 2012 conference, titled "School…
Management of Forested Landscapes: Simulations of three alternatives
Stephen G. Boyce; W. Henry McNab
1994-01-01
Forested landscapes can be managed to support variouscombinations of timber, biological diversity,esthetic values, and habitats. However, all such management decisions arechoices basedon opinions about future events. Opinions underlie managementdecisionsbecause thereis no way to jump into the future, verify a future event, jump back to the present, and make a...
He, Yuanyuan; Yang, Jun
2015-01-01
To study the apoptosis/proliferation of Kölliker organ supporting cells and to understand the prompting apoptosis factors in vivo in the supporting cells in the Kölliker organ by changing the environment of the cultured supporting cells in the Kliker organ in vitro, via the separation, culture and purification of the supporting cells in the K6lliker organ. A combinatorial approach of enzymatic digestion and mechanical separation was employed to isolate and culture in vitro pure Kölliker organ supporting cells. The purity was tested by flow cytometry assay. And K6lliker organ supporting cells were harvested to detect the rate and cycle of apoptosis by flow cytometry after Annexin V/PI staining, to test the cell growth curve by MTT assay, and to observe the differential expressions of the Bcl-2, Caspase-3, Caspase-8 and Caspase-9 through the Realtime PCR and Western blot. The calcium, potassium and glutamate concentrations in the culture medium of these cells in vitro were changed to detect the survival rate of cells by MTT assay. The purity of K6lliker organ supporting cells by flow cytometry assay was 96. 56%. And these cells showed no significant difference in apoptosis, but an evident linear growth. The results of Realtime PCR and Western blot showed that the expression of Bcl-2, Caspase-3, Caspase-8 and Caspase-9 mRNA and protein in all different time points kept stable. Furthermore, the elevation of extracellular Ca2+ might contribute to decrease the cell viability of supporting cells. And K+ participated regulation of cell viability in a concentration-depending way. However, glutamate appeared to be a protective factor in high concentration. There is no significant apoptosis in vitro of the supporting cells in the Kölliker organ of rats, showing a linear growth. The Ca2+ in high concentration might contribute to the apoptosis factor of these cells. However, the K+ and glutamate appear to be protective factors in high concentration.
Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin
2001-01-01
According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.
Building the future of mankind in the classroom
NASA Astrophysics Data System (ADS)
Doran, R.
2013-09-01
Rethinking education and how we engage future generations in the pursue of science literacy is much more than creating the future generation of planetary scientists or space exploration engineers, it is the guarantee of the survival of our specie. Training teachers to the use of cutting edge science tools and resources in class room is a very important task and is being embraced by one of the largest astronomy education efforts worldwide, the Galileo Teacher Training Program. GTTP is partnering with several important research projects in education by providing support in the construction of a strong support network for educators willing to introduce the scientific method in classroom.
Ortiz, Roderick F.
2004-01-01
Effective management of existing water-storage capacity in the Arkansas River Basin is anticipated to help satisfy the need for water in southeastern Colorado. A strategy to meet these needs has been developed, but implementation could affect the water quality of the Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Because no known methods are available to determine what effects future changes in operations will have on water quality, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Activity Enterprise, began a study in 2002 to develop methods that could identify if future water-quality conditions have changed significantly from background (preexisting) water-quality conditions. A method was developed to identify when significant departures from background (preexisting) water-quality conditions occur in the lower Arkansas River and Fountain Creek in the vicinity of Pueblo, Colorado. Additionally, the methods described in this report provide information that can be used by various water-resource agencies for an internet-based decision-support tool. Estimated dissolved-solids concentrations at five sites in the study area were evaluated to designate historical background conditions and to calculate tolerance limits used to identify statistical departures from background conditions. This method provided a tool that could be applied with defined statistical probabilities associated with specific tolerance limits. Drought data from 2002 were used to test the method. Dissolved-solids concentrations exceeded the tolerance limits at all four sites on the Arkansas River at some point during 2002. The number of exceedances was particularly evident when streamflow from Pueblo Reservoir was reduced, and return flows and ground-water influences to the river were more prevalent. No exceedances were observed at the site on Fountain Creek. These comparisons illustrated the need to adjust the concentration data to account for varying streamflow. As such, similar comparisons between flow-adjusted data were done. At the site Arkansas River near Avondale, nearly all the 2002 flow-adjusted concentration data were less than the flow-adjusted tolerance limit which illustrated the effects of using flow-adjusted concentrations. Numerous exceedances of the flow-adjusted tolerance limits, however, were observed at the sites Arkansas River above Pueblo and Arkansas River at Pueblo. These results indicated that the method was able to identify a change in the ratio of source waters under drought conditions. Additionally, tolerance limits were calculated for daily dissolved-solids load and evaluated in a similar manner. Several other mass-load approaches were presented to help identify long-term changes in water quality. These included comparisons of cumulative mass load at selected sites and comparisons of mass load contributed at the Arkansas River near Avondale site by measured and unmeasured sources.
Chu, X; Korzekwa, K; Elsby, R; Fenner, K; Galetin, A; Lai, Y; Matsson, P; Moss, A; Nagar, S; Rosania, GR; Bai, JPF; Polli, JW; Sugiyama, Y; Brouwer, KLR
2013-01-01
Intracellular concentrations of drugs and metabolites are often important determinants of efficacy, toxicity, and drug interactions. Hepatic drug distribution can be affected by many factors, including physicochemical properties, uptake/efflux transporters, protein binding, organelle sequestration, and metabolism. This white paper highlights determinants of hepatocyte drug/metabolite concentrations and provides an update on model systems, methods, and modeling/simulation approaches used to quantitatively assess hepatocellular concentrations of molecules. The critical scientific gaps and future research directions in this field are discussed. PMID:23588320
Immunopathogenesis of rheumatoid arthritis
Firestein, Gary; McInnes, Iain B
2017-01-01
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy. The majority of evidence, derived from genetics, tissue analyses, models and clinical studies, points to an immune mediated etiology associated with stromal tissue dysregulation that together propogate chronic inflammation and articular destruction. A pre-RA phase lasting months to years, may be characterized by the presence of circulating autoantibodies, increasing concentration and range of inflammatory cytokines and chemokines and altered metabolism. Clinical disease onset comprises synovitis and systemic comorbidities affecting the vasculature, metabolism and bone. Targeted immune therapeutics, and aggressive treatment strategies have substantially improved clinical outcomes, and informed pathogenetic understanding, but no cure as yet exists. Herein we review recent data that support intriguing models of disease pathogenesis. They allude to the possibility of restoration of immunologic homeostasis and thus a state of tolerance associated with drug free remission. This target represents a bold vision for the future of RA therapeutics. PMID:28228278
Characterizing a sustainability transition: Goals, targets, trends, and driving forces
Parris, Thomas M.; Kates, Robert W.
2003-01-01
Sustainable development exhibits broad political appeal but has proven difficult to define in precise terms. Recent scholarship has focused on the nature of a sustainability transition, described by the National Research Council as meeting the needs of a stabilizing future world population while reducing hunger and poverty and maintaining the planet's life-support systems. We identify a small set of goals, quantitative targets, and associated indicators that further characterize a sustainability transition by drawing on the consensus embodied in internationally negotiated agreements and plans of action. To illustrate opportunities for accelerating progress, we then examine current scholarship on the processes that influence attainment of four such goals: reducing hunger, promoting literacy, stabilizing greenhouse-gas concentrations, and maintaining fresh-water availability. We find that such analysis can often reveal “levers of change,” forces that both control the rate of positive change and are subject to policy intervention. PMID:12819346
Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.
Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M
2016-01-01
Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.
Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures.
O'Brien, Katie M; Upson, Kristen; Buckley, Jessie P
2017-03-01
Urine- and serum-based biomarkers are useful for assessing individuals' exposure to environmental factors. However, variations in urinary creatinine (a measure of dilution) or serum lipid levels, if not adequately corrected for, can directly impact biomarker concentrations and bias exposure-disease association measures. Recent methodological literature has considered the complex relationships between creatinine or serum lipid levels, exposure biomarkers, outcomes, and other potentially relevant factors using directed acyclic graphs and simulation studies. The optimal measures of urinary dilution and serum lipids have also been investigated. Existing evidence supports the use of covariate-adjusted standardization plus creatinine adjustment for urinary biomarkers and standardization plus serum lipid adjustment for lipophilic, serum-based biomarkers. It is unclear which urinary dilution measure is best, but all serum lipid measures performed similarly. Future research should assess methods for pooled biomarkers and for studying diseases and exposures that affect creatinine or serum lipids directly.
Object-oriented programming for the biosciences.
Wiechert, W; Joksch, B; Wittig, R; Hartbrich, A; Höner, T; Möllney, M
1995-10-01
The development of software systems for the biosciences is always closely connected to experimental practice. Programs must be able to handle the inherent complexity and heterogeneous structure of biological systems in combination with the measuring equipment. Moreover, a high degree of flexibility is required to treat rapidly changing experimental conditions. Object-oriented methodology seems to be well suited for this purpose. It enables an evolutionary approach to software development that still maintains a high degree of modularity. This paper presents experience with object-oriented technology gathered during several years of programming in the fields of bioprocess development and metabolic engineering. It concentrates on the aspects of experimental support, data analysis, interaction and visualization. Several examples are presented and discussed in the general context of the experimental cycle of knowledge acquisition, thus pointing out the benefits and problems of object-oriented technology in the specific application field of the biosciences. Finally, some strategies for future development are described.
Barnes, A P
2006-09-01
Recent policy changes within the Common Agricultural Policy have led to a shift from a solely production-led agriculture towards the promotion of multi-functionality. Conversely, the removal of production-led supports would indicate that an increased concentration on production efficiencies would seem a critical strategy for a country's future competitiveness. This paper explores the relationship between the 'multi-functional' farming attitude desired by policy makers and its effect on technical efficiency within Scottish dairy farming. Technical efficiency scores are calculated by applying the non-parametric data envelopment analysis technique and then measured against causes of inefficiency. Amongst these explanatory factors is a constructed score of multi-functionality. This research finds that, amongst other factors, a multi-functional attitude has a significant positive effect on technical efficiency. Consequently, this seems to validate the promotion of a multi-functional approach to farming currently being championed by policy-makers.
Experiences with ATM in a multivendor pilot system at Forschungszentrum Julich
NASA Astrophysics Data System (ADS)
Kleines, H.; Ziemons, K.; Zwoll, K.
1998-08-01
The ATM technology for high speed serial transmission provides a new quality of communication by introducing novel features in a LAN environment, especially support of real time communication, of both LAN and WAN communication and of multimedia streams. In order to evaluate ATM for future DAQ systems and remote control systems as well as for a high speed picture archiving and communications system for medical images, Forschungszentrum Julich has build up a pilot system for the evaluation of ATM and standard low cost multimedia systems. It is a heterogeneous multivendor system containing a variety of switches and desktop solutions, employing different protocol options of ATM. The tests conducted in the pilot system revealed major difficulties regarding stability, interoperability and performance. The paper presents motivations, layout and results of the pilot system. Discussion of results concentrates on performance issues relevant for realistic applications, e.g., connection to a RAID system via NFS over ATM.
Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures
O’Brien, Katie M.; Upson, Kristen; Buckley, Jessie P.
2017-01-01
Purpose of review Urine- and serum-based biomarkers are useful for assessing individuals’ exposure to environmental factors. However, variations in urinary creatinine (a measure of dilution) or serum lipid levels, if not adequately corrected for, can directly impact biomarker concentrations and bias exposure-disease association measures. Recent findings Recent methodological literature has considered the complex relationships between creatinine or serum lipid levels, exposure biomarkers, outcomes, and other potentially relevant factors using directed acyclic graphs and simulation studies. The optimal measures of urinary dilution and serum lipids have also been investigated. Summary Existing evidence supports the use of covariate-adjusted standardization plus creatinine adjustment for urinary biomarkers and standardization plus serum lipid adjustment for lipophilic, serum-based biomarkers. It is unclear which urinary dilution measure is best, but all serum lipid measures performed similarly. Future research should assess methods for pooled biomarkers and for studying diseases and exposures that affect creatinine or serum lipids directly. PMID:28097619
Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui
2012-08-01
Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.
NASA Technical Reports Server (NTRS)
Thorpe, Douglas G.
1991-01-01
An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.
SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAY TH; GEHNER PD; STEGEN GARY
2009-12-28
This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in additionmore » to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.« less
Low temperature thermoelectric properties of Bi2-xSbxTeSe2 crystals near the n-p crossover
NASA Astrophysics Data System (ADS)
Fuccillo, M. K.; Charles, M. E.; Hor, Y. S.; Jia, Shuang; Cava, R. J.
2012-07-01
Seebeck coefficients, electrical resistivities, thermal conductivities and figure of merit ZT of Bi2-xSbxTeSe2 crystals (x=0.8, 0.9, 1.0, 1.1, and 1.2) measured along the hexagonal basal plane are presented. The crystals gradually change from n- to p-type with increasing Sb content, with the crossover lying in the region between x=1.0 and 1.1. The crossover is accounted for by a simple (p-n) electron-hole compensation model, as supported by carrier concentrations determined from Hall measurements. ZT was found to be maximized near the crossover on the p-type side, with the high electrical resistance of the Se-rich crystals apparently the limiting factor in the performance. These materials may serve as a basis for future nanostructuring or doping studies.
Understanding the health of veterans who are homeless: A review of the literature.
Weber, Jillian; Lee, Rebecca C; Martsolf, Donna
2017-09-01
The United States Department of Housing and Urban Development estimates that almost 50,000 veterans are homeless on any given night. Homeless veterans are at greater risk of health disparities than their housed counterparts due to the multifactorial nature of their health and social needs. The Department of Veterans Affairs, in collaboration with more than a dozen other federal agencies, has concentrated efforts to improve the health of this vulnerable population while enacting a plan to eliminate veteran homelessness within the near future. Understanding the unique health needs of veterans who are homeless allows the profession of nursing to better support these efforts. The purpose of this literature review was to provide comprehensive knowledge to nurses about the health of homeless veterans for their use in clinical practice, research, and in contributing to the positive health outcomes for this vulnerable population. © 2017 Wiley Periodicals, Inc.
Recent Translational Findings on Impulsivity in Relation to Drug Abuse
Weafer, Jessica; Mitchell, Suzanne H.
2015-01-01
Impulsive behavior is strongly implicated in drug abuse, as both a cause and a consequence of drug use. To understand how impulsive behaviors lead to and result from drug use, translational evidence from both human and non-human animal studies is needed. Here, we review recent (2009 or later) studies that have investigated two major components of impulsive behavior, inhibitory control and impulsive choice, across preclinical and clinical studies. We concentrate on the stop-signal task as the measure of inhibitory control and delay discounting as the measure of impulsive choice. Consistent with previous reports, recent studies show greater impulsive behavior in drug users compared with non-users. Additionally, new evidence supports the prospective role of impulsive behavior in drug abuse, and has begun to identify the neurobiological mechanisms underlying impulsive behavior. We focus on the commonalities and differences in findings between preclinical and clinical studies, and suggest future directions for translational research. PMID:25678985
Commercial premixed parenteral nutrition: Is it right for your institution?
Miller, Sarah J
2009-01-01
Two-compartment premixed parenteral nutrition (PN) products are heavily promoted in the United States. These products may present safety advantages over PN solutions mixed by a local pharmacy, although clinical data to support this assertion are scarce. Multicompartment products can be labor-saving for pharmacy and therefore may be cost-effective for some institutions. Before adopting such products for use, an institution must determine that standardized PN solutions are acceptable for many or most of their patients compared with customized PN compounded specifically for individual patients. A larger selection of premixed products is available in Europe and some other parts of the world compared with the United States. Availability of a broader selection of products in the United States, including 3-compartment bags and a wider range of macronutrient concentrations and volumes, may make the use of such products more desirable in the future.
NASA Astrophysics Data System (ADS)
Williams, J. E.; van der Swaluw, E.; de Vries, W. J.; Sauter, F. J.; van Pul, W. A. J.; Hoogerbrugge, R.
2015-08-01
We present a parameterization developed to simulate Ammonium particle (NH4+) concentrations in the Operational Priority Substances (OPS) source-receptor model, without the necessity of using a detailed chemical scheme. By using the ratios of the main pre-cursor gases SO2, NO2 and NH3, and utilising calculations performed using a chemical box-model, we show that the parameterization can simulate annual mean NH4+ concentration fields to within ∼15% of measured values at locations throughout the Netherlands. Performing simulations for different decades, we find a strong correlation of simulated NH4+ distributions for both past (1993-1995) and present (2009-2012) time periods. Although the total concentration of NH4+ has decreased over the period, we find that the fraction of NH4+ transported into the Netherlands has increased from around 40% in the past to 50% for present-day. This is due to the variable efficiency of mitigation practises across economic sectors. Performing simulations for the year 2020 using associated emission estimates, we show that there are generally decreases of ∼8-25% compared to present day concentrations. By altering the meteorological fields applied in the future simulations, we show that a significant uncertainty of between ∼50 and 100% exists on this estimated NH4+ distribution as a result of variability in the temperature dependent emission terms and relative humidity. Therefore, any projections of future NH4+ distributions should be performed using well chosen meteorological fields representing recent meteorological situations.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, M.; Peña-Haro, S.; Garcia-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.
2014-09-01
Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate and land uses will alter the hydrologic cycles and subsequently impact the quantity and quality of regional water systems. Predicting the behavior of recharge and discharge conditions under future climatic and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system in Spain, in the last decades the transformation from dry to irrigated lands has led to a significant drop of the groundwater table in one of the largest groundwater bodies in Spain, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Streamflow depletion is compromising the related ecosystems and the supply to the downstream demands, provoking a complex management issue. The intense use of fertilizer in agriculture is also leading to locally high groundwater nitrate concentrations. Understanding the spatial and temporal distribution of water availability and water quality is essential for a proper management of the system. In this paper we analyze the potential impact of climate and land use change in the system by using an integrated modelling framework consisting of the sequentially coupling of a watershed agriculturally-based hydrological model (SWAT) with the ground-water model MODFLOW and mass-transport model MT3D. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing ET and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream-aquifer interaction. SWAT and MODFLOW outputs (nitrate loads from SWAT, groundwater velocity field from MODFLOW) are used as MT3D inputs for assessing the fate and transport of nitrate leached from the topsoil. Results on river discharge, crop yields, groundwater levels and groundwater nitrate concentrations obtained from simulation fit well to the observed values. Three climate change scenarios have been considered, corresponding to 3 different GCMs for emission scenario A1B, covering the control period, and short, medium and long-term future periods. A multi-temporal analysis of LULC change was carried out, helped by the study of historical trends by remote sensing images and key driving forces to explain LULC transitions. Markov chains and European scenarios and projections have been used to quantify trends in the future. The cellular automata technique was applied for stochastic modeling future LULC maps. The results show the sensitivity of groundwater quantity and quality (nitrate pollution) to climate and land use changes, and the need to implement adaptation measures in order to prevent further groundwater level declines and increasing nitrate concentrations. The sequential modelling chain has been proved to be a valuable assessment and management tool for supporting the development of sustainable management strategies.
NASA Astrophysics Data System (ADS)
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.
No way out? The double-bind in seeking global prosperity alongside mitigated climate change
NASA Astrophysics Data System (ADS)
Garrett, T. J.
2012-01-01
In a prior study (Garrett, 2011), I introduced a simple economic growth model designed to be consistent with general thermodynamic laws. Unlike traditional economic models, civilization is viewed only as a well-mixed global whole with no distinction made between individual nations, economic sectors, labor, or capital investments. At the model core is a hypothesis that the global economy's current rate of primary energy consumption is tied through a constant to a very general representation of its historically accumulated wealth. Observations support this hypothesis, and indicate that the constant's value is λ = 9.7 ± 0.3 milliwatts per 1990 US dollar. It is this link that allows for treatment of seemingly complex economic systems as simple physical systems. Here, this growth model is coupled to a linear formulation for the evolution of globally well-mixed atmospheric CO2 concentrations. While very simple, the coupled model provides faithful multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2. Extending the model to the future, the model suggests that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. For one, global CO2 emission rates cannot be decoupled from wealth through efficiency gains. For another, like a long-term natural disaster, future greenhouse warming can be expected to act as an inflationary drag on the real growth of global wealth. For atmospheric CO2 concentrations to remain below a "dangerous" level of 450 ppmv (Hansen et al., 2007), model forecasts suggest that there will have to be some combination of an unrealistically rapid rate of energy decarbonization and nearly immediate reductions in global civilization wealth. Effectively, it appears that civilization may be in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the risk is that civilization will gradually tend towards collapse.
Developing a Carbon Observing System
NASA Astrophysics Data System (ADS)
Moore, B., III
2015-12-01
There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community workshop in March 2015 addressed issues and prioritzed a set of research and observational needs in the study of the Carbon-Climate System. This paper will refect upon the past 30 plus years of carbon research supported by NASA and Dr. Wickland's role, and it will conclude with the findings of the March 2015 Workshop.
NASA Astrophysics Data System (ADS)
Jones, D. K.
2016-12-01
Human and biotic communities are becoming increasingly vulnerable to sea-level rise and severe storms due to climate change. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms, which could adversely impact the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey (USGS) has developed spatial screening methods to identify and map contaminant sources and potential exposure pathways for human and ecological receptors. These methods have been applied within the northeastern U.S. to document contaminants of emerging concern, highlight vulnerable communities, and prioritize locations for future sampling campaigns. Integration of this information provides a means to better assess the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and sea-level rise (incremental) disturbances. This presentation will provide an overview of a decision support tool developed by the USGS to document contaminants in the environment relative to key receptor populations and historic storm vulnerabilities. The support tool is designed to accommodate a broad array of geologic, land-use, and climatic variables and utilizes public, nationally available data sources to define contaminant sources and storm vulnerabilities. By employing a flexible and adaptable strategy built upon publicly available data, the method can readily be applied to other site selection or landscape evaluation efforts. Examples will be presented including the Sediment-bound Contaminant Resiliency and Response pilot study (see http://toxics.usgs.gov/scorr/), and investigations of endocrine disruption in the Chesapeake Bay. Key limitations and future applications will be discussed in addition to ongoing method developments to accommodate non-coastal disaster scenarios and more refined contaminant definitions.
Design of components for the NASA OCEAN project
NASA Technical Reports Server (NTRS)
Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark
1993-01-01
The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.
National Institute for Rocket Propulsion Systems (NIRPS): Solutions Facilitator
NASA Technical Reports Server (NTRS)
Brown, Tom
2011-01-01
National Institute for Rocket Propulsion Systems (NIRPS) "Solutions" plans to enable our nation's future in rocket propulsion systems by leveraging existing skills and capabilities to support industry's future needs
An Open Avionics and Software Architecture to Support Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2017-01-01
The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.
ERIC Educational Resources Information Center
Bergo, Rolv Alexander
2013-01-01
Technology development is moving rapidly and our dependence on information services is growing. Building a broadband infrastructure that can support future demand and change is therefore critical to social, political, economic and technological developments. It is often up to local policy makers to find the best solutions to support this demand…
The Impact of Nature Experience on Willingness to Support Conservation
Zaradic, Patricia A.; Pergams, Oliver R. W.; Kareiva, Peter
2009-01-01
We hypothesized that willingness to financially support conservation depends on one's experience with nature. In order to test this hypothesis, we used a novel time-lagged correlation analysis to look at times series data concerning nature participation, and evaluate its relationship with future conservation support (measured as contributions to conservation NGOs). Our results suggest that the type and timing of nature experience may determine future conservation investment. Time spent hiking or backpacking is correlated with increased conservation contributions 11–12 years later. On the other hand, contributions are negatively correlated with past time spent on activities such as public lands visitation or fishing. Our results suggest that each hiker or backpacker translates to $200–$300 annually in future NGO contributions. We project that the recent decline in popularity of hiking and backpacking will negatively impact conservation NGO contributions from approximately 2010–2011 through at least 2018. PMID:19809511
Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis
2017-10-01
Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.
Ang, S B L; Hing, W C; Tung, S Y; Park, T
2014-07-01
The Codonics Safe Labeling System(™) (http://www.codonics.com/Products/SLS/flash/) is a piece of equipment that is able to barcode scan medications, read aloud the medication and the concentration and print a label of the appropriate concentration in the appropriate colour code. We decided to test this system in our facility to identify risks, benefits and usability. Our project comprised a baseline survey (25 anaesthesia cases during which 212 syringes were prepared from 223 drugs), an observational study (47 cases with 330 syringes prepared) and a user acceptability survey. The baseline compliance with all labelling requirements was 58%. In the observational study the compliance using the Codonics system was 98.6% versus 63.8% with conventional labelling. In the user acceptability survey the majority agreed the Codonics machine was easy to use, more legible and adhered with better security than the conventional preprinted label. However, most were neutral when asked about the likelihood of flexibility and customisation and were dissatisfied with the increased workload. Our findings suggest that the Codonics labelling machine is user-friendly and it improved syringe labelling compliance in our study. However, staff need to be willing to follow proper labelling workflow rather than batch label during preparation. Future syringe labelling equipment developers need to concentrate on user interface issues to reduce human factor and workflow problems. Support logistics are also an important consideration prior to implementation of any new labelling system.
NASA Astrophysics Data System (ADS)
Deng, Xuchu; Hu, Mary; Wei, Xiaoliang; Wang, Wei; Mueller, Karl T.; Chen, Zhong; Hu, Jian Zhi
2016-03-01
Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and for understanding the detailed solvation structures. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. At dilute solute concentrations, most Fc1N112+ and TFSI- are fully disassociated with their own solvation shells formed by solvent molecules. At saturated concentration, Fc1N112+-TFSI- contact ion pairs are formed and the solvent molecules are preferentially interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI.
NASA Technical Reports Server (NTRS)
Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia
1997-01-01
This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook
NASA Technical Reports Server (NTRS)
Boyland, R. E.; Sherman, S. W.; Morfin, H. W.
1979-01-01
The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gulyás, Krisztina; Berki, Imre; Veperdi, Gábor
2017-04-01
As a result of regional climate change, most European countries are experiencing an increase in mean annual temperature and CO2 concentration and a decrease in mean annual precipitation. In low-elevation areas in Southeast Europe, where precipitation is a limiting factor, the projected climate change threatens the health, production, and potential distribution of forest ecosystems. The intensive summer droughts and commonly occurring extreme weather events create negative influences that cause health declines, changes in yield potential, and tree mortality. Due to the observed damages, attention has been focused on these problems. The impacts of climatic extremes cause difficulties in forest management; these difficulties occur more frequently in Hungary, which is a region that is the most sensitive to climatic extremes. Regional climate model simulations project that the frequency of extremely high temperatures and long-term dry periods will increase; both of these factors have negative effects on future tree species distribution and production. Thus, the aim of our study is to utilize the sessile oak (Quercus petraea) as a climate indicator tree species to investigate potential future distribution and estimate changes in growth trends. For future spatial distribution, we used the Fuzzy membership distribution model in a new Decision Support System (DSS) which was developed for the Hungarian forestry and agricultural sectors. Through study techniques we can employ DSS, which contains various environmental layers (topography, vegetation, past and projected future climate, soils, and hydrology), to create probability distribution maps. The results, based on 12 regional climate model simulations (www.ensembles-eu.org), show that the area of sessile oak forests is shrinking continuously and will continue to do so to the end of the 21st century. For future production estimations, we analysed intensive long-term growth monitoring network plots that were established in 1993. We calculated production capacity on the basis of age and height; we then compared these to past climate conditions to discover connections between climate, site conditions, and production. We estimated future growth tendencies for three different time periods (2011-2040; 2041-2070; 2071-2100). Results show that the most vulnerable region is the south-western part of Hungary where the projected production capacity may decrease by 26% for the time period 2071-2100. The impacts of climate change may be milder in the north-eastern part of Hungary where a 19% decrease in the production capacity of sessile oak forests is estimated. These investigations and results are important for sustainable forest management and help define climate change adaptation strategies in forestry. Keywords: climate change impacts, distribution modelling, production capacity Acknowledgements: Research is supported by the ÚNKP-16-3-3 New National Excellence Program of the Ministry of Human Capacities and the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.
The Language of Social Support in Social Media and its Effect on Suicidal Ideation Risk
De Choudhury, Munmun; Kıcıman, Emre
2017-01-01
Online social support is known to play a significant role in mental well-being. However, current research is limited in its ability to quantify this link. Challenges exist due to the paucity of longitudinal, pre- and post mental illness risk data, and reliable methods that can examine causality between past availability of support and future risk. In this paper, we propose a method to measure how the language of comments in Reddit mental health communities influences risk to suicidal ideation in the future. Incorporating human assessments in a stratified propensity score analysis based framework, we identify comparable subpopulations of individuals and measure the effect of online social support language. We interpret these linguistic cues with an established theoretical model of social support, and find that esteem and network support play a more prominent role in reducing forthcoming risk. We discuss the implications of our work for designing tools that can improve support provisions in online communities. PMID:28840079
The Language of Social Support in Social Media and its Effect on Suicidal Ideation Risk.
De Choudhury, Munmun; Kıcıman, Emre
2017-05-01
Online social support is known to play a significant role in mental well-being. However, current research is limited in its ability to quantify this link. Challenges exist due to the paucity of longitudinal, pre- and post mental illness risk data, and reliable methods that can examine causality between past availability of support and future risk. In this paper, we propose a method to measure how the language of comments in Reddit mental health communities influences risk to suicidal ideation in the future. Incorporating human assessments in a stratified propensity score analysis based framework, we identify comparable subpopulations of individuals and measure the effect of online social support language. We interpret these linguistic cues with an established theoretical model of social support, and find that esteem and network support play a more prominent role in reducing forthcoming risk. We discuss the implications of our work for designing tools that can improve support provisions in online communities.
Neural mechanisms of the link between giving social support and health.
Inagaki, Tristen K
2018-05-11
Giving social support to others has emerged as an additional route by which social ties influence health. Thus, giving support to others not only influences the health of the individual receiving support, but also the health of the individual giving the support. However, the neural mechanisms by which giving support leads to health are only beginning to be explored. In hopes of consolidating and guiding future research on giving support and health, the current review considers why, how, and when giving support is health promoting. Special emphasis is placed on neural regions known to contribute to parental care in animals that both reinforce giving support behavior (ventral striatum and septal area) and reduce stress-related responding (e.g., amygdala) to facilitate care. Hypothesized links between neural regions involved in giving support and peripheral physiology (sympathetic nervous system, hypothalamic-pituitary-adrenal axis, and related inflammatory responding) are considered as well as the conditions under which giving support should be most beneficial for health. Finally, the implications of the current perspective for understanding how social relationships, more broadly, contribute to health and suggestions for future directions are offered. © 2018 New York Academy of Sciences.
NASA Technical Reports Server (NTRS)
Watson, Kevin J.; Robbins, William W.
2004-01-01
The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.
Herrero, Albert; Gutiérrez-Cánovas, Cayetano; Vigiak, Olga; Lutz, Stefanie; Kumar, Rohini; Gampe, David; Huber-García, Verena; Ludwig, Ralf; Batalla, Ramon; Sabater, Sergi
2018-07-15
Multiple abiotic stressors affect the ecological status of water bodies. The status of waterbodies in the Ebro catchment (NE Spain) is evaluated using the biological quality elements (BQEs) of diatoms, invertebrates and macrophytes. The multi-stressor influence on the three BQEs was evaluated using the monitoring dataset available from the catchment water authority. Nutrient concentrations, especially total phosphorus (TP), affected most of the analyzed BQEs, while changes in mean discharge, water temperature, or river morphology did not show significant influences. Linear statistical models were used to evaluate the change of water bodies' ecological status under different combinations of future socioeconomic and climate scenarios. Changes in land use, rainfall, water temperature, mean discharge, TP and nitrate concentrations were modeled according to the future scenarios. These revealed an evolution of the abiotic stressors that could lead to a general decrease in the ecosystem quality of water bodies within the Ebro catchment. This deterioration was especially evidenced on the diatoms and invertebrate biological indices, mainly because of the foreseen increase in TP concentrations. Water bodies located in the headwaters were seen as the most sensitive to future changes. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Wu, Xiaolin; Davie-Martin, Cleo L; Steinlin, Christine; Hageman, Kimberly J; Cullen, Nicolas J; Bogdal, Christian
2017-10-17
Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified rel...
Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth
USDA-ARS?s Scientific Manuscript database
In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...
Sugianto, Tiffanie Daisy; Chan, Hak-Kim
2016-01-01
Non-cystic fibrosis bronchiectasis (NCFB) is a chronic, progressive, suppurative lung disease characterized by permanent dilatation of bronchial subdivisions, which further causes accumulation of sputum and bacterial infections. The advent of inhaled antibiotics over the past two decades has been expected to effectively attenuate the problem of chronic bacterial infections in CF and NCFB subjects with higher, local drug concentrations and minimal systemic side effects. This review summarizes and evaluates current clinical evidence of efficacy and adverse effects of inhaled antibiotics in NCFB, as well as ongoing preclinical and clinical studies, followed by a discussion of issues and challenges in clinical practice and drug delivery strategies, together with future research directions. The evidence base of the clinical efficacy of inhaled antibiotics in NCFB is limited and the degrees of reported clinical benefits have been modest and conflicting. Challenges surrounding inhaled antibiotics application and development include the lack of knowledge of disease factors and optimum management strategies, unreceptive lung pathophysiology and the lack of factors that support compliance and tolerability. Nonetheless, research continues to give birth to new clinical findings and novel formulations such as combination antibiotics and sustained-release formulations, which add great value to the development of efficacious, safe and convenient inhalable antibiotics of the future.
A review and assessment of hydrodynamic cavitation as a technology for the future.
Gogate, Parag R; Pandit, Aniruddha B
2005-01-01
In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.
Seki, Jack T; Wang, Tian Q; Yip, Paul M; Mazzulli, Tony; Minden, Mark D
2018-04-01
Background Dysfunctional central venous catheter prohibits the administration of potential life-saving chemotherapy and the delivery of essential supportive care needs to patients. Sodium bicarbonate injection has been shown to impede against fibrin clot formation and prolong prothrombin time and thrombin clotting time. Sodium bicarbonate injection has been tried as a second-line agent with good results in a small number of patients (internal data not published) when alteplase failed. We assessed whether the pre-filled sodium bicarbonate injection in 5 mL syringes would not only preserve sterility and retain its pH and concentration but also amount to the potential cost savings for future use when stored in a refrigerated environment. Methodology Twelve pre-filled 5 mL syringes were prepared aseptically, of which four each were tested for pH, sodium bicarbonate injection concentration and sterility when stored in refrigerated temperature over a six-week period. A standard pH meter, enzymatic carbon dioxide analyzer, and a 14-day incubation for microbial detection were employed for this study. Results Sodium bicarbonate concentration measured in the form of carbon dioxide ranged from 923 mmol/L or (1846 mosol/L) to 1006 mmol/L or (2012 mosmol/L), and pH ranged from (7.88 to 8.05) were reported over the duration of the study period. The 14-day incubation period resulted in no microbial growth. Conclusion Our study results have indicated that the pH and sodium bicarbonate injection concentration values were stable and within range, comparable to those reported by the manufacturer within the study period. The contents of the subdivided sodium bicarbonate injection 5 mL syringes retained sterility over a 14-day incubation period.
NASA Astrophysics Data System (ADS)
Valin, L. C.; Fiore, A. M.; Chance, K.; Nowlan, C. R.; Gonzalez Abad, G.; Browne, E. C.
2014-12-01
Reactions of OH with volatile organic compounds (VOC) such as CH4 and isoprene produce formaldehyde (CH2O). The concentration of OH and the chemistry of peroxy radicals, a reactive intermediate of VOC + OH reactions, depend strongly on the concentration of NOx. Here, we investigate the influence of NOx on the formation of CH2O in an isoprene-rich atmosphere (Martin Lake Power Plant, NE Texas) and in a "background" atmosphere (Navajo Power Plant, N Arizona) using conceptual models and the WRF-Chem regional chemistry-transport model alongside satellite-based (Aura-OMI) and flight-based (ARCTAS) measurements. In the conceptual model, the enhancement of CH2O in an NO2 plume is large and depends on the magnitude of the OH enhancement, the lifetime of the parent VOC, the concentration of intermediate oxidation products, and the impact of NOx on the branching ratios of peroxy radicals. Preliminary analysis of WRF-Chem results supports these findings. For a large point source of NOx in a low NOx-background, the enhancement of the CH2O concentration in the NOx plume is more than two times that of the surrounding region in both the isoprene-rich and the "background" WRF-Chem simulations. Furthermore, the spatial correlation of OH and CH2O in these simulated plumes suggests that simultaneous measurement of CH2O and NO2 offers the potential to better constrain the processes affecting the reaction of VOC with OH, and thus the factors controlling O3 production and the NOx lifetime. The precision of UV/Visible spectrometers planned for future geostationary missions, such as TEMPO, suggest that the routine measurement of these relationships will be possible.
NASA Astrophysics Data System (ADS)
Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.
2018-04-01
Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.
Landys, Meta M; Ramenofsky, Marilyn; Wingfield, John C
2006-09-01
For decades, demands associated with the predictable life-history cycle have been considered stressful and have not been distinguished from stress that occurs in association with unpredictable and life-threatening perturbations in the environment. The recent emergence of the concept of allostasis distinguishes behavioral and physiological responses to predictable routines as opposed to unpredictable perturbations, and allows for their comparison within one theoretical framework. Glucocorticosteroids (GCs) have been proposed as important mediators of allostasis, as they allow for rapid readjustment and support of behavior and physiology in response to predictable and unpredictable demands (allostatic load). Much work has already been done in defining GC action at the high concentrations that accompany life-threatening perturbations. However, less is known about the role of GCs in relation to daily and seasonal life processes. In this review, we summarize the known behavioral and physiological effects of GCs relating to the predictable life-history cycle, paying particular attention to feeding behavior, locomotor activity and energy metabolism. Although we utilize a comparative approach, emphasis is placed on birds. In addition, we briefly review effects of GCs at stress-related concentrations to test the hypothesis that different levels of GCs play specific and distinct roles in the regulation of life processes and, thus, participate in the promotion of different physiological states. We also examine the receptor types through which GC action may be mediated and suggest mechanisms whereby different GC concentrations may exert their actions. In conclusion, we argue that biological actions of GCs at "non-stress" seasonal concentrations play a critical role in the adjustment of responses that accompany predictable variability in the environment and demand more careful consideration in future studies.
Armitage, James M; McLachlan, Michael S; Wiberg, Karin; Jonsson, Per
2009-06-01
The contamination of the Baltic Sea with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has resulted in restrictions on the marketing and consumption of Baltic Sea fish, making this a priority environmental issue in the European Union. To date there is no consensus on the relative importance of different sources of PCDD/Fs to the Baltic Sea, and hence no consensus on how to address this issue. In this work we synthesized the available information to create a PCDD/F budget for the Baltic Sea, focusing on the two largest basins, the Bothnian Sea and the Baltic Proper. The non-steady state multimedia fate and transport model POPCYCLING-Baltic was employed, using recent data for PCDD/F concentrations in air and sediment as boundary conditions. The PCDD/F concentrations in water predicted by the model were in good agreement with recent measurements. The budget demonstrated that atmospheric deposition was the dominant source of PCDD/Fs to the basins as a whole. This conclusion was supported by a statistical comparison of the PCDD/F congener patterns in surface sediments from accumulation bottoms with the patterns in ambient air, bulk atmospheric deposition, and a range of potential industrial sources. Prospective model simulations indicated that the PCDD/F concentrations in the water column will continue to decrease in the coming years due to the slow response of the Baltic Sea system to falling PCDD/F inputs in the last decades, but that the decrease would be more pronounced if ambient air concentrations were to drop further in the future, for instance as a result of reduced emissions. The study illustrates the usefulness of using monitoring data and multimedia models in an integrated fashion to address complex organic contaminant issues.
Coating of gold nanoparticles for medical application: UV-VIS
NASA Astrophysics Data System (ADS)
Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira
2014-11-01
The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.
Chin, K B; Chi, I; Pasalic, J; Huang, C-K; Barge, Laura M
2018-04-01
Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.
Li, R C
1996-01-01
Antibiotic-bacterium interactions are complex in nature. In many cases, bacterial killing does not commence immediately after the addition of an antibiotic, and a lag period is observed. Antibiotic permeation and/or the intermediate steps that exist between antibiotic-receptor binding and expression of cell death are two major possible causes for such lag period. This study was primarily designed to determine the relationship, if any, between antibiotic concentrations and the lag periods by a modeling approach. Short-term time-kill studies were conducted for amoxicillin, ampicillin, penicillin-G, oxacillin, and dicloxacillin against Escherichia coli. In conjunction with the use of a saturable rate model to describe the concentration-dependent killing process, a first-order induction (initiation) rate constant was used to characterize the delay in bacterial killing during the lag period. For all of the beta-lactams tested, parameters describing the bactericidal effect suggest that amoxicillin and ampicillin were much more potent than oxacillin and dicloxacillin. The induction rate constant estimates for both ampicillin and amoxicillin were found to relate linearly to concentrations. Nevertheless, these induction rate constant estimates were lower for penicillin-G, oxacillin, and dicloxacillin and increased nonlinearly with concentrations until an apparent plateau was observed. These findings support the hypothesis that the permeation process is potentially a rate-limiting step for the rapid bactericidal beta-lactams such as ampicillin and amoxicillin. However, as suggested by previous observations of the various morphological changes induced by beta-lactams, the contribution of the steps following antibiotic-receptor complex formation to the lag period might be significant for the less bactericidal antibiotics such as oxacillin and dicloxacillin. Findings from the present modeling approach can potentially be used to guide future bench experimentation. PMID:8891135
ERIC Educational Resources Information Center
Gary, Juneau M.; Remolino, Linda
Online support groups provide an alternative vehicle of support for people in distress by linking people who have similar problems. They have the potential to improve the access and delivery of support to a wide range of people, including some who would not seek face-to-face support at all. Online support groups reduce the sense of isolation…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
...-208; Report No. 2945] Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support et al... applicability. Subject: Connect America Fund: A National Broadband Plan for Our Future; Establishing Just and...
Why Do We Need Future Ready Librarians? That Kid.
ERIC Educational Resources Information Center
Ray, Mark
2018-01-01
In this article, the author examines the need of the Future Ready Librarians (FRL) initiative. The FRL Framework helps define how librarians might lead, teach, and support schools based on the core research-based components defined by Future Ready. The framework and initiative are intended to be ways to change the conversation about school…
Yu, Li; Kong, Fanxiang; Zhang, Min; Yang, Zhen; Shi, Xiaoli; Du, Mingyong
2014-01-01
Lake Chaohu, which is a large, shallow, hypertrophic freshwater lake in southeastern China, has been experiencing lake-wide toxic Microcystis blooms in recent decades. To illuminate the relationships between microcystin (MC) production, the genotypic composition of the Microcystis community and environmental factors, water samples and associated environmental data were collected from June to October 2012 within Lake Chaohu. The Microcystis genotypes and MC concentrations were quantified using quantitative real-time PCR (qPCR) and HPLC, respectively. The results showed that the abundances of Microcystis genotypes and MC concentrations varied on spatial and temporal scales. Microcystis exists as a mixed population of toxic and non-toxic genotypes, and the proportion of toxic Microcystis genotypes ranged from 9.43% to 87.98%. Both Pearson correlation and stepwise multiple regressions demonstrated that throughout the entire lake, the abundances of total and toxic Microcystis and MC concentrations showed significant positive correlation with the total phosphorus and water temperature, suggesting that increases in temperature together with the phosphorus concentrations may promote more frequent toxic Microcystis blooms and higher concentrations of MC. Whereas, dissolved inorganic carbon (DIC) was negatively correlated with the abundances of total and toxic Microcystis and MC concentrations, indicating that rising DIC concentrations may suppress toxic Microcystis abundance and reduce the MC concentrations in the future. Therefore, our results highlight the fact that future eutrophication and global climate change can affect the dynamics of toxic Microcystis blooms and hence change the MC levels in freshwater. PMID:25474494
Hopper, Heather; Skirton, Heather
2016-01-01
the objectives of this study were to explore breast feeding peer supporters' motivation to volunteer within a hospital environment, to describe their experiences of volunteering within a hospital environment, to examine the relationships between peer supporters and ward staff, and to identify factors contributing to the future sustainability of the service. a qualitative study; peer supporters and clinical ward staff were interviewed using a semi-structured schedule and data were analysed using Thematic Analysis with an inductive approach. six peer supporters and ten ward staff, whose role included giving breast feeding support, working on a maternity ward in one consultant-led unit in England that had been hosting breast feeding peer support volunteers for the previous three years. three main themes were identified: 1. What peer supporters brought to the maternity ward; this included providing breast-feeding mothers with confidence, reassurance and empowerment, and spending 'unhurried time' with mothers; 2. What motivated the peer supporters; this included an interest in midwifery as a future career and a desire to help people; 3. Factors contributing to the sustainability of the service; these included an existing rolling training programme, however recruitment processes were causing long delays and some aspects of operational management needed improvement. individuals with a passion for breast feeding were willing to volunteer as peer supporters and their experience of the activity was positive. Organisational processes did not always provide peer supporters with a positive experience of the organisation and these needed to be improved as they contributed to the future sustainability of the service. the study indicates that a sustainable hospital-based volunteer service for breast feeding peer support requires a rolling training programme for peer supporters, efficient recruitment processes and effective operational management. Copyright © 2015 Elsevier Ltd. All rights reserved.
ICT and the future of health care: aspects of doctor-patient communication.
Haluza, Daniela; Jungwirth, David
2014-07-01
The current digital revolution is particularly relevant for interactions of healthcare providers with patients and the community as a whole. The growing public acceptance and distribution of new communication tools such as smart mobile phones provide the prerequisite for information and communication technology (ICT) -assisted healthcare applications. The present study aimed at identifying specifications and perceptions of different interest groups regarding future demands of ICT-supported doctor-patient communication in Austria. German-speaking Austrian healthcare experts (n = 73; 74 percent males; mean age, 43.9 years; SD 9.4) representing medical professionals, patient advocates, and administrative personnel participated in a 2-round online Delphi process. Participants evaluated scenario-based benefits and obstacles for possible prospect introduction as well as degree of innovation, desirability, and estimated implementation dates of two medical care-related future set ups. Panelists expected the future ICT-supported doctor-patient dialogue to especially improve the three factors doctors-patient relationship, patients' knowledge, and quality of social health care. However, lack of acceptance by doctors, data security, and monetary aspects were considered as the three most relevant barriers for ICT implementation. Furthermore, inter-group comparison regarding desirability of future scenarios showed that medical professionals tended to be more skeptical about health-related technological innovations (p < .001). The findings of this survey revealed different expectations among interest groups. Thus, we suggest building taskforces and using workshops for establishing a dialogue between stakeholders to positively shape the future of ICT-supported collaboration and communication between doctors and patients.
Hostetler, S.W.; Alder, J.R.; Allan, A.M.
2011-01-01
We have completed an array of high-resolution simulations of present and future climate over Western North America (WNA) and Eastern North America (ENA) by dynamically downscaling global climate simulations using a regional climate model, RegCM3. The simulations are intended to provide long time series of internally consistent surface and atmospheric variables for use in climate-related research. In addition to providing high-resolution weather and climate data for the past, present, and future, we have developed an integrated data flow and methodology for processing, summarizing, viewing, and delivering the climate datasets to a wide range of potential users. Our simulations were run over 50- and 15-kilometer model grids in an attempt to capture more of the climatic detail associated with processes such as topographic forcing than can be captured by general circulation models (GCMs). The simulations were run using output from four GCMs. All simulations span the present (for example, 1968-1999), common periods of the future (2040-2069), and two simulations continuously cover 2010-2099. The trace gas concentrations in our simulations were the same as those of the GCMs: the IPCC 20th century time series for 1968-1999 and the A2 time series for simulations of the future. We demonstrate that RegCM3 is capable of producing present day annual and seasonal climatologies of air temperature and precipitation that are in good agreement with observations. Important features of the high-resolution climatology of temperature, precipitation, snow water equivalent (SWE), and soil moisture are consistently reproduced in all model runs over WNA and ENA. The simulations provide a potential range of future climate change for selected decades and display common patterns of the direction and magnitude of changes. As expected, there are some model to model differences that limit interpretability and give rise to uncertainties. Here, we provide background information about the GCMs and the RegCM3, a basic evaluation of the model output and examples of simulated future climate. We also provide information needed to access the web applications for visualizing and downloading the data, and give complete metadata that describe the variables in the datasets.
Regional-scale air quality models are being used to demonstrate attainment of the ozone air quality standard. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological ...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2014-07-01 2013-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2012-07-01 2011-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2013-07-01 2013-07-01 false Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... announcement of the Transaction. IFUS trades its products exclusively on an electronic trading platform and no... products listed for trading by the IFUS, including futures and options on futures on cotton, frozen concentrated orange juice, coffee, sugar, cocoa, energy, foreign currencies, and certain Russell Indices.\\6...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Restricting future of artillery and other ranges. 644.523 Section 644.523 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Restricting future of artillery and other ranges. 644.523 Section 644.523 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
Carbon Dioxide Removal and the futures market
NASA Astrophysics Data System (ADS)
Lockley, A.; Coffman, D.
2016-12-01
Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for performance on a contract at some later date. Forward contracts also entail future settlement, but they are traded over-the-counter between two independent parties. Both futures and forward contracts are commonly used in commodities trading, as producers seek financial security when planning production. We discuss the use of potential use of exchange-traded futures contracts in Carbon Dioxide Removal (CDR) markets. We conclude that they have one principal advantage (in that they give near-term price security to current polluters), and one principal disadvantage (in that a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge great caution in the use of this approach. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. Whilst regulation offers generally increased assurances, we identify major insufficiencies with this approach - finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.
Preliminary Work Domain Analysis for Human Extravehicular Activity
NASA Technical Reports Server (NTRS)
McGuire, Kerry; Miller, Matthew; Feigh, Karen
2015-01-01
A work domain analysis (WDA) of human extravehicular activity (EVA) is presented in this study. A formative methodology such as Cognitive Work Analysis (CWA) offers a new perspective to the knowledge gained from the past 50 years of living and working in space for the development of future EVA support systems. EVA is a vital component of human spaceflight and provides a case study example of applying a work domain analysis (WDA) to a complex sociotechnical system. The WDA presented here illustrates how the physical characteristics of the environment, hardware, and life support systems of the domain guide the potential avenues and functional needs of future EVA decision support system development.
Griffith, Gemma M; Totsika, Vasiliki; Nash, Susie; Jones, Robert S P; Hastings, Richard P
2012-09-01
The experiences of older parents of adults with Asperger syndrome have not been explored in the research literature. Four families who had middle-aged offspring with Asperger syndrome were interviewed (3 mothers and 1 couple), and the interviews were analysed using interpretative phenomenological analysis (IPA). Six themes emerged from the analysis: (a) providers of "hidden" support, (b) role of advocate, (c) social isolation, (d) intrafamilial relationships, (e) support for parents, and (f) future concerns. The findings of this study offer insight into the experience of parents of adult sons with Asperger syndrome. Implications for future support interventions and research are suggested.
Pathways between self-esteem and depression in couples.
Johnson, Matthew D; Galambos, Nancy L; Finn, Christine; Neyer, Franz J; Horne, Rebecca M
2017-04-01
Guided by concepts from a relational developmental perspective, this study examined intra- and interpersonal associations between self-esteem and depressive symptoms in a sample of 1,407 couples surveyed annually across 6 years in the Panel Analysis of Intimate Relations and Family Dynamics (pairfam) study. Autoregressive cross-lagged model results demonstrated that self-esteem predicted future depressive symptoms for male partners at all times, replicating the vulnerability model for men (low self-esteem is a risk factor for future depression). Additionally, a cross-partner association emerged between symptoms of depression: Higher depressive symptoms in one partner were associated with higher levels of depression in the other partner one year later. Finally, supportive dyadic coping, the support that partners reported providing to one another in times of stress, was tested as a potential interpersonal mediator of pathways between self-esteem and depression. Female partners' higher initial levels of self-esteem predicted male partners' subsequent reports of increased supportive dyadic coping, which, in turn, predicted higher self-esteem and fewer symptoms of depression among female partners in the future. Male partners' initially higher symptoms of depression predicted less frequent supportive dyadic coping subsequently reported by female partners, which was associated with increased feelings of depression in the future. Couple relations represent an important contextual factor that may be implicated in the developmental pathways connecting self-esteem and symptoms of depression. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Future-Based Risk Assessment for the Survivability of Long Range Strike Systems
2007-03-01
Aeronautics and Space Administration ( NASA ) investigated alternative futures to help generate a viable science strategy to address the future aerospace...World American World View ΔTeK World Power Grid Name 1 Global Exponential Dispersed DIGITAL CACOPHONY 2 Global Exponential Concentrated STAR TREK ...The United States has become the “United Kingdom of the Twenty-first Century.” 2.2.3. NASA Study (1997) In the NASA study, the National Research
Potential Futures for Information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, Mark R.
Information is one of the most powerful tools available today. All advances in technology may be used, as David Sarnoff said, for the benefit or harm of society. Information can be used to shape the future by free people, or used to control people by less than benevolent governments, as has been demonstrated since the mid - 1930s, and with growing frequency over the past 50 years. What promised to once set people free and fuel an industrial revolution that might improve the standard of living over most of the world, has also been used to manipulate and enslave entiremore » populations. The future of information is tied to the future of technologies that support the collection of data, processing those data into information and knowledge, and distribution. Technologies supporting the future of information must include technologies that help protect the integrity of data and information, and help to guarantee its discoverability and appropriate availability -- often to the whole of society. This Page Intentionally Left Blank« less
Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun
2015-01-01
Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (p<0.05). Obese children showed significantly higher levels of branched-chain amino acids (BCAAs) and several acylcarnitines and lower levels of acyl-alkyl phosphatidylcholines. Also, baseline BCAAs were significantly positively correlated with both homeostasis model assessment for insulin resistance (HOMA-IR) and continuous metabolic risk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Modelling the impacts of global change on concentrations of Escherichia coli in an urban river
NASA Astrophysics Data System (ADS)
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2017-10-01
Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.
Ozkaynak, H; Xue, J; Spengler, J; Wallace, L; Pellizzari, E; Jenkins, P
1996-01-01
The PTEAM Study was the first large-scale probability-based study of personal exposure to particles. Sponsored by the U.S. Environmental Protection Agency (EPA) and the Air Resources Board of California, it was carried out by the Research Triangle Institute (RTI) and the Harvard University School of Public Health (HSPH). HSPH designed and constructed a 4-lpm, battery-operated personal monitor for inhalable particles (PM10) that could be worn comfortably for up to 14 hours by persons from 10 to 70 years old. The monitor was worn for two consecutive 12-hour periods (day and night) during the fall of 1990 by 178 participants representing 139,000 nonsmoking residents of Riverside, California. Nearly identical monitors were employed to collect concurrent indoor and outdoor samples. The monitors were equipped with a different sampling nozzle to collect fine particles (PM2.5). Population-weighted daytime personal PM10 exposures averaged 150 +/- 9 (SE) micrograms/m3, compared to concurrent indoor and outdoor concentrations of 95 +/- 6 micrograms/m3. This suggested the existence of excess mass near the person, a "personal cloud" that appeared related to personal activities. Fourteen of 15 prevalent elements also were evaluated in the personal samples. The two major indoor sources of indoor particles were smoking and cooking; even in these homes, however, more than half of the indoor particles came from outdoors, and a substantial portion of the indoor particles were of undetermined indoor origin. Outdoor concentrations near the homes were well correlated with outdoor concentrations at the central site, supporting the idea of using the central site as an indicator of of ambient concentrations over a wider area. Indoor concentrations were only weakly correlated with outdoor concentrations, however, and personal exposures were even more poorly correlated with outdoor concentrations. Elemental profiles were obtained for environmental tobacco smoke (ETS) (major contributions from potassium and chlorine) and cooking emissions (aluminum, iron, calcium, and chlorine). These profiles can be used in future source apportionment studies.