Science.gov

Sample records for concentrator silicon solar

  1. High efficiency silicon concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua

    1990-06-01

    Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

  2. High-efficiency silicon concentrator solar cell research

    NASA Astrophysics Data System (ADS)

    Greene, M. A.; Blakers, A. W.; Zhao, Jianhua; Wang, Ahua; Milne, A. M.; Ximing, Dai; Chong, C. M.

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells.

  3. High-efficiency silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Blakers, A.W.; Jianhua, Zhao; Aihua, Wang; Milne, A.M.; Dai, Ximing; Chong, C.M. . Solar Photovoltaic Lab.)

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready'' cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells. 22 refs., 23 figs., 9 tabs.

  4. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    SciTech Connect

    Martínez Díez, Ana Luisa; Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph; Plaza, David Gómez

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  5. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  6. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  7. Status of Reconstruction of Fragmented Diamond-on-Silicon Collector From Genesis Spacecraft Solar Wind Concentrator

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.

    2009-01-01

    In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.

  8. Critical oxygen concentration in hydrogenated amorphous silicon solar cells dependent on the contamination source

    SciTech Connect

    Woerdenweber, Jan; Merdzhanova, Tsvetelina; Gordijn, Aad; Stiebig, Helmut; Beyer, Wolfhard

    2010-03-08

    For hydrogenated amorphous silicon (a-Si:H) solar cells, the critical concentration of a given impurity defines the lowest concentration which causes a decay of solar cell efficiency. Values of 2-5x10{sup 19} cm{sup -3} are commonly found for the critical oxygen concentration (C{sub O}{sup crit}) of a-Si:H. Here we report a dependence of C{sub O}{sup crit} on the contamination source. For state-of-the-art a-Si:H solar cells prepared at the same plasma deposition conditions, we obtain with a (controllable) chamber wall leak C{sub O}{sup crit} approx2x10{sup 19} cm{sup -3} while for a leak in the gas supply line a higher C{sub O}{sup crit} of approx2x10{sup 20} cm{sup -3} is measured. No such dependence is observed for nitrogen.

  9. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    SciTech Connect

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N.

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  10. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    PubMed

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-06-14

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.

  11. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  12. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  13. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20607883

  14. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20588569

  15. Concentrator silicon cell research

    SciTech Connect

    Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A.

    1992-04-01

    This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

  16. Thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Bacon, C.; Direda, V.; Ford, D. H.; Ingram, A. E.; Cotter, J.; Hughes-Lampros, T.; Rand, J. A.; Ruffins, T. R.; Barnett, A. M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (less than 50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  17. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  18. Performance measurements of new silicon carbide coated reflectors for concentrated solar power applications

    NASA Astrophysics Data System (ADS)

    Belasri, Djawed; Nakamura, Kazuki; Armstrong, Peter; Calvet, Nicolas

    2016-05-01

    The new silicon carbide coated mirrors (SiC-mirrors) developed by Ibiden Co., Ltd. and tested at the Masdar Institute of Science and Technology offer several advantages in concentrated solar power (CSP) structure and operation. The purpose of this paper is to present the results of the reflectance and durability of the SiC-mirrors compared to high quality CSP glass mirrors in conjunction with two different applied cleaning methods. SiC-mirrors are 40 % lighter than high quality CSP glass mirrors, which leads to reduce costs of heliostat, parabolic trough or linear Fresnel structures, including assembly and installation time, lower drive power requirements, and stress during tracking operation. Lab and field tests show the SiC mirrors' reflectance is as high as the high quality CSP glass mirrors. Indeed, after 32 weeks of exposure, the high quality CSP glass mirrors' reflectance has decreased by 19 %, while the SiC mirrors' reflectance has decreased by 20 % when the brushing with water cleaning was applied. Using the brushing without water cleaning, the reflectance has decreased by 13 % and 2 % for the high quality CSP glass mirrors and the SiC-mirrors, respectively.

  19. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  20. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  1. Investigation of the topographical features of surface carrier concentrations in silicon solar cell material using electrolyte electroreflectance

    NASA Technical Reports Server (NTRS)

    Pollay, F. H.; Okeke, C. E.; Raccah, P. M.

    1977-01-01

    Topographical variations in carrier concentration delta N/N across the surface of n(+) on p diffused silicon solar cell material are studied by utilizing electrolyte electroreflectance with a spatial resolution of 100 microns within approximately 500 A of the surface. The topographical variations of delta N/N approximately 10 - 20% are found to be comparable to Czochralski grown material. The electroreflectance method can also be utilized to investigate other semiconductors such as GaAs.

  2. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    NASA Astrophysics Data System (ADS)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  3. Solar concentrator

    SciTech Connect

    Smyth, J.S.

    1982-06-08

    A solar concentrator having an open framework formed as a geodesic dome. A rotatable support axle extends substantially diametrically across the dome and has the opposite ends thereof supported on the framework. The support axle defines a first rotational axis which is oriented to extend substantially parallel with the earth's north-south axis. A support post is hingedly mounted on the support shaft substantially at the midpoint thereof for permitting angular displacement of the support post relative to the support shaft about a second rotational axis which is perpendicular to the first axis. A dishshaped reflector assembly is positioned within the interior of the framework and fixedly secured to the support post. First and second drives effect angular displacement of the reflector assembly about the first and second axes, respectively, to permit tracking of the solar position.

  4. Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Broder, J. D.; Mazaris, G. A., Jr.; Hsu, L.

    1978-01-01

    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells.

  5. Application of the MOS-C-V technique to determine impurity concentrations and surface parameters on the diffused face of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.

    1975-01-01

    The feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta2O5 coatings is studied. Results indicate that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n+ surface of silicon solar cells.

  6. 19.5% Efficient Screen Printed Crystalline Silicon Metal Wrap Through (mwt) Solar Cells for Concentrator (2-25x) Applications

    NASA Astrophysics Data System (ADS)

    Fellmeth, Tobias; Fritz, Susanne; Menkoe, Michael; Clement, Florian; Biro, Daniel; Preu, Ralf

    2010-10-01

    One of the main barriers on the way to mass production of concentrator silicon solar cells is the lack of industrially feasible process sequences. Therefore, a concentrator silicon based Metal Wrap Through (C-MWT) solar cell completely processed at the Fraunhofer ISE Photo Voltaic Technology Evaluation Center (PV-TEC) is introduced. This means no clean room or photolithographic steps have been used. Under one-sun conditions, a conversion efficiency of 18.6% could be reached which is so far the highest efficiency reported for a MWT silicon solar cell. The highest efficiency achieved was 19.5% at 6 suns and even 18.1% at 23 suns. The series resistance as major loss mechanism concentrator solar cells are suffering from is the main focus in this work. Concerning this matter an investigation of the Light Induced Plating (LIP) step is presented. A simulation tool containing an analytical series resistance model has been developed and the 2-diode-model was added providing the calculation of the efficiency and the fill factor in dependency of the concentration at given parameters.

  7. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. V.; Cleland, J. W.; Westbrook, R. D.; Davis, H. L.; Wood, R. F.; Lindmayer, J.; Wakefield, G. F.

    1975-01-01

    The economic production of silicon solar cell arrays circumvents p-n junction degradation by nuclear doping, in which the Si-30 transmutes to P-31 after thermal neutron capture. Also considered are chemical purity specifications for improved silicon bulk states, surface induced states, and surface states.

  8. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1975-01-01

    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.

  9. Silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.; Addis, F. W.; Miller, W. A.

    1985-01-01

    The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.

  10. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  11. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  12. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  14. Development of concentrator solar cells

    SciTech Connect

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  15. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

    NASA Technical Reports Server (NTRS)

    Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.

    1986-01-01

    A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.

  16. Lithium counterdoped silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I. (Inventor); Brandhorst, H. W., Jr. (Inventor)

    1986-01-01

    The resistance to radiation damage of an n(+)p boron doped silicon solar cell is improved by lithium counterdoping. Even though lithium is an n-dopant in silicon, the lithium is introduced in small enough quantities so that the cell base remains p-type. The lithium is introduced into the solar cell wafer by implantation of lithium ions whose energy is about 50 keV. After this lithium implantation, the wafer is annealed in a nitrogen atmosphere at 375 C for two hours.

  17. Laser wafering for silicon solar.

    SciTech Connect

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  18. Recombination kinetics in a silicon solar cell at low concentration: electro-analytical characterization of space-charge and quasi-neutral regions.

    PubMed

    Yadav, Pankaj; Tripathi, Brijesh; Pandey, Kavita; Kumar, Manoj

    2014-08-01

    The present work reports a detailed electro-analytical framework for studying commercially available mono-crystalline silicon solar cells under varying illumination conditions to explore their application in the up-and-coming field of low concentration photovoltaics (LCPVs). The effect of low concentration illumination (>1-12 suns) on performance indicating parameters, i.e., short circuit current, open circuit voltage, fill factor, efficiency and ideality factor, was investigated using DC characterization. The same framework can be used for AC characterization in order to explore diffusion capacitance, transition capacitance, diffusion resistance and recombination kinetics under varying illumination. Recent developments in the impedance spectroscopy technique have broadened its horizon and have allowed its use in addressing unexplored material and performance aspects of mono-crystalline Si solar cells under non-equilibrium conditions. The obtained DC and AC experimental results are coupled with theoretical treatment to demonstrate the characteristic features of charge recombination in the space-charge region and the quasi-neutral region.

  19. Silicon film solar cell process

    NASA Technical Reports Server (NTRS)

    Hall, R. B.; Mcneely, J. B.; Barnett, A. M.

    1984-01-01

    The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed.

  20. Point contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1987-01-01

    A new type of silicon solar cell has been developed. It is called the point-contact cell because the metal semiconductor contacts are restricted to an array of small points on the back of the cell. The point contact cell has recently demonstrated 22 percent conversion efficiency at one sun and 27.5 percent at 100 suns under an AM1.5 spectrum.

  1. 22. 8% efficient silicon solar cell

    SciTech Connect

    Blakers, A.W.; Wang, A.; Milne, A.M.; Zhao, J.; Green, M.A. )

    1989-09-25

    A new silicon solar cell structure, the passivated emitter and rear cell, is described. The cell structure has yielded independently confirmed efficiencies of up to 22.8%, the highest ever reported for a silicon cell.

  2. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  3. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  4. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  5. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  6. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  7. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  8. Solar cell with silicon oxynitride dielectric layer

    SciTech Connect

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0silicon oxynitride dielectric layer.

  9. Cz-Silicon Produced from Solar-Grade and Recycled Materials. Part II: Investigating Performances of Solar Cell Produced from Solar-Grade Cz-Silicon

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Øvrelid, Eivind Johannes; Di Sabtino, Marisa; Juel, Mari; Tranell, Gabriella

    2015-03-01

    This paper is the second of two, investigating the properties of P-type Cz-silicon materials and solar cells produced with recycled silicon and Elkem Solar Silicon (ESS) materials. While the focus on the first work was on the bulk properties and grown defects of the material, the current study focuses on the solar cell performances. In the processing of the solar cells, the phosphorous diffusion process was optimized to improve the bulk properties and thus to maximize the final solar cell characteristics. Results from the characterization of material defects suggest that the performances of the experimental ingots are limited by the activated grown-in defects, which should be strictly controlled during crystal growth and solar cell processing. The solar cells produced from the investigated ingots showed efficiency values up to 18.5 pct and fill factor values up to 79 pct, comparable to conventional silicon produced from poly silicon. Solar cells produced from mixed recycled and ESS material exhibit a better performance than 100 pct recycled material. Boron and oxygen concentration levels and net doping level showed a concurrent effect on light-induced degradation (LID). Appropriate compensation was finally demonstrated to be an efficient way to improve solar cells efficiency of Cz-silicon produced from recycled silicon, even though higher dopant concentration incurred relatively faster LID.

  10. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  11. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept. PMID:23816910

  12. Concentrated Solar Thermoelectric Power

    SciTech Connect

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  13. Thin solar concentrator with high concentration ratio

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2013-09-01

    Solar concentrators are often used in conjunction with III-V multi-junction solar cells for cost reduction and efficiency improvement purposes. High flux concentration ratio, high optical efficiency and high manufacture tolerance are the key features required for a successful solar concentrator design. This paper describes a novel solar concentrator that combines the concepts, and thus the advantages, of both the refractive type ad reflective type. The proposed concentrator design adopts the Etendue-cascading concept that allows the light beams from all the concentric annular entrance pupils to be collected and transferred to the solar cell with minimal loss. This concept enables the system to perform near its Etendue-Limit and have a high concentration ratio simultaneously. Thereby reducing the costs of solar cells and therefor achieves a better the per watts cost. The concentrator demonstrated has a thing aspect ratio of 0.19 with a zero back focal distance. The numerical aperture at the solar cell immersed inside the dielectric concentrator is as high as 1.33 achieving a unprecedented high optical concentration ratio design.

  14. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  15. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    DOE PAGESBeta

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantifiedmore » by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.« less

  16. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    SciTech Connect

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantified by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.

  17. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  18. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  19. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  20. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  1. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    SciTech Connect

    Black, Marcie

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  2. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  3. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  4. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  5. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  6. Silver nanoparticles-coated glass frits for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  7. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  8. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  9. Large area Czochralski silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Wakefield, G. F.

    1976-01-01

    A detailed model of a typical Czochralski silicon crystal puller is utilized to predict maximum crystal growth rate as a function of various furnace parameters. Results of this analysis, when combined with multiblade slurry sawing, indicate that the Czochralski process is highly attractive for achieving near-term cost reduction of solar cell silicon.

  10. Progress on the carbothermic production of solar-grade silicon using high-purity starting materials

    SciTech Connect

    Schultz, F.W.; Aulich, H.A.; Fenzi, H.J.; Hecht, M.D.

    1984-05-01

    Solar-grade silicon was produced by carbothermic reduction (CR) in a 70 kW arc-furnace. Silicon suitable for solar cells with an efficiency > 10% was obtained form silicon dioxide of different origin and purified carbon. The importance of a low P- and B-concentration (<10/sup 17/a/cm/sup 3/) in the silicon produced was established. Cells made from CR-Si were successfully processed into modules using conventional technology.

  11. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2016-07-12

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  12. Energy 101: Concentrating Solar Power

    SciTech Connect

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  13. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  14. Arrays of ultrathin silicon solar microcells

    SciTech Connect

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  15. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  16. Manufacture of silicon carbide using solar energy

    DOEpatents

    Glatzmaier, Gregory C.

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  17. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  19. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of a study for Task 3 of the Low Cost Solar Array Project, directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicon based materials, are reported. Results of the following are discussed: (1) weather-ometer stressing vs. weathering history of silicon and silicon modified materials; (2) humidity/temperature cycling exposure; (3) exposure at high humidity/high temperature; (4) outdoor exposure stress; (5) thermal cycling stress; and (6) UV screening agents. The plans for the next quarter are outlined.

  20. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  1. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  2. Compensated amorphous-silicon solar cell

    DOEpatents

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  3. Flat-plate solar array project. Volume 2: Silicon material

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  4. Solar energy innovation and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  5. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K. M.; Kapur, V. K.; Bartlett, R. W.; Westphal, S.

    1980-01-01

    A process was developed for the economic production of high purity Si from inexpensive reactants, based on the Na reduction of SiF4 gas. The products of reaction (NaF, Si) are separated by either aqueous leaching or by direct melting of the NaF-Si product mixture. Impurities known to degrade solar cell performance are all present at sufficiently low concentrations so that melt solidification (e.g., Czochralski) will provide a silicon material suitable for solar cells.

  6. Stable passivations for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gruenbaum, P. E.; Gan, J. Y.; King, R. R.; Swanson, R. M.

    Initial designs of single-crystal silicon point-contact solar cells have shown a degradation in their efficiency after being exposed to concentrated sunlight. The main mechanism appears to be an increase in recombination centers at the Si/SiO2 interface due to ultraviolet light photoinjecting electrons from the silicon conduction band into the silicon dioxide that passivates the cell's front surface. Trichloroethane, texturization, and aluminum during the forming gas anneal all contribute to the instability of the interface. A reasonably good resistance to UV light can be obtained by putting a phosphorus diffusion at the surface and can be improved further by stripping off the deposited oxide after the diffusion and regrowing a dry thermal oxide. A second technique, which utilizes ultrathin oxides and thin polysilicon films and can yield stable point-contact solar cells that are more efficient at higher concentrations, is also described.

  7. Towards stable silicon nanoarray hybrid solar cells

    NASA Astrophysics Data System (ADS)

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  8. Towards stable silicon nanoarray hybrid solar cells

    PubMed Central

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells. PMID:24430057

  9. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  10. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  11. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  12. Microsheet Glass In Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1993-01-01

    Microsheet glass used as highly protective covering material for developmental concentrating reflectors for solar power systems. Together with other materials, possible to fabricate lightweight, highly reflective, accurate, and long-lived concentrators. Desirable properties include durability and smoothness. Glass not affected by ultraviolet radiation, and not degraded by atomic oxygen, found in low orbits around Earth. Though concentrators intended for use in outer space, noteworthy that terrestrial concentrator fabricated with glass sheet 0.7 mm thick.

  13. Application of the MOS C-V technique to determine impurity concentrations and surface parameters on the diffused face of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.

    1975-01-01

    An experimental and theoretical investigation of the feasibility of using the MOS C-V (capacitance-voltage) technique to determine impurity and surface state concentrations on the diffused face of Si solar cells with Ta2O5 coatings. Impurity concentration 10 A from the diffused surface is found to be 2.9 times 10 to the 20th power per cu cm. Charge density in surface and oxide states is 2.1 times 10 to the 13th power per sq cm. These data agree with theoretical predictions.-

  14. Advanced solar concentrator: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary design of a point-focusing solar concentrator, consisting of a steerable space frame structure supporting a paraboloidal mirror glass reflector, is described. A mass production, operation, and maintenance cost assessment is presented. A conceptual evaluation of a modified concentrator design is included. The detailed design of one of the lightweight, structurally efficient reflective elements comprising the paraboloidal reflective surface is given.

  15. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  16. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  17. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  18. Development of an economical silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    The growth of electronically viable silicon films on inexpensive foreign substrates is studied, with the objective of creating a technology to radically reduce the overall cost of the silicon employed in photovoltaic solar energy conversion. The approach employed is to enhance crystalline ordering during film nucleation by confining arriving silicon atoms to a narrow band traveling across a substrate, i.e., the Lateral Growth Technique (LGT). The efforts have employed physical vapor deposition of silicon in a vacuum evaporator on glass and metal substrates with both slit masks and single defining edges, and subsequent chemical vapor deposition (CVD) of thicker films on these thin film structures by pyrolysis of silane at higher temperatures.

  19. Silicon heterojunction solar cell and crystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (<200°C). In first part of this dissertation, I will introduce our work on front-junction SHJ solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (<600 nm) light, leading to non-ideal blue response and lower short circuit currents (JSC) in the front-junction SHJ cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since

  20. New Packing Structure of Concentration Solar Receiver

    SciTech Connect

    Tsai, Shang-Yu; Lee, Yueh-Mu; Shih, Zun-Hao; Hong, Hwen-Fen; Shin, Hwa-Yuh; Kuo, Cherng-Tsong

    2010-10-14

    This paper presents a solution to the temperature issue in High Concentration Photovoltaic (HCPV) module device by using different thermal conductive material and packing structure. In general, the open-circuited voltage of a device reduces with the increase of temperature and therefore degrades its efficiency. The thermal conductive material we use in this paper, silicon, has a high thermal conductive coefficient (149 W/m{center_dot}K) and steady semiconductor properties which are suitable for the application of solar receiver in HCPV module. Solar cell was soldered on a metal-plated Si substrate with a thicker SiO{sub 2} film which acts as an insulating layer. Then it was mounted on an Al-based plate to obtain a better heat dissipating result.

  1. Effect of zinc impurity on silicon solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Sah, C.-T.; Chan, P. C. H.; Wang, C.-K.; Yamakawa, K. A.; Lutwack, R.; Sah, R. L.-Y.

    1981-01-01

    Zinc is a major residue impurity in the preparation of solar-grade silicon material by the zinc vapor reduction of silicon tetrachloride. This paper projects that in order to get a 17-percent AM1 cell efficiency for the Block IV module of the Low-Cost Solar Array Project, the concentration of the zinc recombination centers in the base region of silicon solar cells must be less than 4 x 10 to the 11th Zn/cu cm in the p-base n+/p/p+ cell and 7 x 10 to the 11th Zn/cu cm in the n-base p+/n/n+ cell for a base dopant impurity concentration of 5 x 10 to the 14 atoms/cu cm. If the base dopant impurity concentration is increased by a factor of 10 to 5 x 10 to the 15th atoms/cu cm, then the maximum allowable zinc concentration is increased by a factor of about two for a 17-percent AM1 efficiency. The thermal equilibrium electron and hole recombination and generation rates at the double-acceptor zinc centers are obtained from previous high-field measurements as well as new measurements at zero field described in this paper. These rates are used in the exact dc-circuit model to compute the projections.

  2. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  3. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  4. Silicon Solar Cell Fabrication Technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1980-01-01

    Device fabrication and photoconductive lifetime decay measurements were used to characterize single and polycrystalline silicon substracts. The device characterization of the processed materials was done by spectral response measurements and absolute quantum efficiency at a single wavelength. The results were then reduced to yield the diffusion length of the various samples. The photoconductive lifetime decay method was implemented in order to determine the minority carrier lifetime in unprocessed wafers.

  5. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  6. Concentrating Solar Power Fact Sheet

    SciTech Connect

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  7. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  8. Study of the Effects of Impurities on the Properties of Silicon Materials and Performance of Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1979-01-01

    Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.

  9. Offset truss hex solar concentrator

    NASA Technical Reports Server (NTRS)

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)

    1991-01-01

    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  10. Efficiency of silicon solar cells containing chromium

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1982-01-01

    Efficiency of silicon solar cells containing about one quadrillon atoms cu cm of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200 C to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon mateial.

  11. Efficiency of silicon solar cells containing chromium

    DOEpatents

    Frosch, Robert A. Administrator of the National Aeronautics and Space; Salama, Amal M.

    1982-01-01

    Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

  12. Optical models for silicon solar cells

    SciTech Connect

    Marshall, T.; Sopori, B.

    1995-08-01

    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  13. Direct glassing of silicon solar cells

    NASA Astrophysics Data System (ADS)

    White, P. A.; Crabb, R. L.; Dollery, A. A.

    1989-08-01

    An alternative method of attaching coverglasses to silicon solar cells, currently achieved using silicon adhesives, is presented. The process is a direct bond between the glass and cell and uses an electrostatic technique. An essential preequisite of the process is a coverglass with the same expansion coefficient as the cell. The coverglass and cell are joined by a permanent, chemical, anodic bond which is formed by subjecting the cell and coverglass to voltage, temperature and pressure whilst in intimate contact with each other. Since the front surface of the solar cell is one of the bonding interfaces, it is important to understand the significance of any changes in the bonding process to the cell. The basic theory of direct glassing is reviewed. Recent results of research in this area are presented.

  14. Silicon concentrator cell-assembly development

    NASA Astrophysics Data System (ADS)

    1982-08-01

    The purpose was to develop an improved cell assembly design for photovoltaic concentrator receivers. Efforts were concentrated on a study of adhesive/separator systems that might be applied between cell and substrate, because this area holds the key to improved heat transfer, electrical isolation and adhesion. It is also the area in which simpler construction methods offer the greatest benefits for economy and reliability in the manufacturing process. Of the ten most promising designs subjected to rigorous environmental testing, eight designs featuring acrylic and silicon adhesives and fiberglass and polyester separators performed very well.

  15. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  16. Environmentally benign silicon solar cell manufacturing

    SciTech Connect

    Tsuo, Y.S.; Gee, J.M.; Menna, P.; Strebkov, D.S.; Pinov, A.; Zadde, V.

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  17. MIS silicon solar cells: potential advantages

    SciTech Connect

    Cheek, G.; Mertens, R.

    1981-05-01

    Recent progress with silicon solar cells based on the MIS or SIS structure is reviewed. To be competitive with pn junction technology in the near term, these cells must be much cheaper or have a higher efficiency in a production environment. Apparently, the minority carrier MIS cells have the greatest potential for large-scale applications. The data currently indicate that all types of MIS/SIS cells have some inherent instability problems.

  18. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  19. Feasibility of low cost silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Currin, C. G.; Smith, W. A.; Ling, K. S.; Ralph, E. L.; Stirn, R. J.

    1972-01-01

    Future costs of silicon solar cells are projected on the basis of more than a thousand-fold increase in volume. If no major application of new manufacturing technology is made, the cost remains excessive for any large scale energy system. However, the development of a multiple-ribbon crystal growth process could permit a 300-fold reduction in cell costs to about $375/kW of cell output.

  20. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, T.F.

    1995-03-28

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  1. Fracture strength of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1979-01-01

    A test program was developed to determine the nature and source of the flaw controlling the fracture of silicon solar cells and to provide information regarding the mechanical strength of cells. Significant changes in fracture strengths were found in seven selected in-process wafer-to-cell products from a manufacturer's production line. The fracture strength data were statistically analyzed and interpreted in light of the exterior flaw distribution of the samples.

  2. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, Theodore F.

    1995-01-01

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  3. Low cost silicon-on-ceramic photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  4. Silicon solar cell fabrication technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1979-01-01

    The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.

  5. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  6. Solar silicon via improved and expanded metallurgical silicon technology

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.; Mccormick, J. R.

    1977-01-01

    A completed preliminary survey of silica sources indicates that sufficient quantities of high-purity quartz are available in the U.S. and Canada to meet goals. Supply can easily meet demand for this little-sought commodity. Charcoal, as a reductant for silica, can be purified to a sufficient level by high-temperature fluorocarbon treatment and vacuum processing. High-temperature treatment causes partial graphitization which can lead to difficulty in smelting. Smelting of Arkansas quartz and purified charcoal produced kilogram quantities of silicon having impurity levels generally much lower than in MG-Si. Half of the goal was met of increasing the boron resistivity from 0.03 ohm-cm in metallurgical silicon to 0.3 ohm-cm in solar silicon. A cost analysis of the solidification process indicate $3.50-7.25/kg Si for the Czochralski-type process and $1.50-4.25/kg Si for the Bridgman-type technique.

  7. Development of standardized specifications for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1977-01-01

    A space silicon solar cell assembly (cell and coverglass) specification aimed at standardizing the diverse requirements of current cell or assembly specifications was developed. This specification was designed to minimize both the procurement and manufacturing costs for space qualified silicon solar cell assembilies. In addition, an impact analysis estimating the technological and economic effects of employing a standardized space silicon solar cell assembly was performed.

  8. Silicon quantum dot superlattice solar cell structure including silicon nanocrystals in a photogeneration layer

    PubMed Central

    2014-01-01

    The solar cell structure of n-type poly-silicon/5-nm-diameter silicon nanocrystals embedded in an amorphous silicon oxycarbide matrix (30 layers)/p-type hydrogenated amorphous silicon/Al electrode was fabricated on a quartz substrate. An open-circuit voltage and a fill factor of 518 mV and 0.51 in the solar cell were obtained, respectively. The absorption edge of the solar cell was 1.49 eV, which corresponds to the optical bandgap of the silicon nanocrystal materials, suggesting that it is possible to fabricate the solar cells with silicon nanocrystal materials, whose bandgaps are wider than that of crystalline silicon. PACS 85.35.Be; 84.60.Jt; 78.67.Bf PMID:24936160

  9. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency. PMID:20588573

  10. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency. PMID:20607882

  11. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  12. Terrestrial concentrator solar cell module

    SciTech Connect

    Fraas, L.M.; Mansoori, N.; Kim, N.B.; Avery, J.E.

    1992-06-02

    This patent describes a solar cell module having a plurality of discrete cell units wherein each cell unit constitutes a tandem cell comprising an upper cell of a first semiconductive material and a lower cell of a second semiconductive material. It comprises a housing having a base and an upper portion; primary outer lens elements supported by the housing upper portion; a secondary radiant energy concentrating element associated with each primary lens element for protecting the carrier tape against incident light; each of the solar cell units being thermally coupled to the base; and parallel spaced strips of conductive material carried by the tape with means for separately connecting the strips to predetermined contact surfaces of the upper and lower cells of each cell unit.

  13. Determination of a Definition of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Hill, D. E.; Gutsche, H. W.

    1975-01-01

    A definition of solar grade silicon was determined by investigating the singular and the combined effect of the impurities usually found in metallurgical grade silicon on solar cell device performance. The impurity matrix was defined by Jet Propulsion Laboratory Technical Direction Memorandum. The initial work was focussed on standardizing the solar cell process and test procedure, growing baseline crystals, growing crystals contaminated with carbon, iron, nickel, zirconium, aluminum and vanadium, solar blank preparation, and material characterization.

  14. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    2004-01-01

    The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.

  15. V-grooved silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W.

    1975-01-01

    Silicon solar cells with macroscopic V-shaped grooves and microscopically texturized surfaces have been made by preferential etching techniques. Various conditions for potassium hydroxide and hydrazine hydrate etching were investigated. Optical reflection losses from these surface were reduced. The reduced reflection occurred at all wavelengths and resulted in improved short circuit current and spectral response. Improved collection efficiency is also expected from this structure due to generation of carriers closer to the cell junction. Microscopic point measurements of collected current using a scanning electron microscope showed that current collected at the peaks of the texturized surface were only 80% of those collected in the valleys.

  16. V-grooved silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W., Jr.

    1975-01-01

    Silicon solar cells with macroscopic V-shaped grooves and microscopically texturized surfaces were made by preferential etching techniques. Various conditions for potassium hydroxide and hydrazine hydrate etching were investigated. Optical reflection losses from these surface were reduced. The reduced reflection occurred at all wavelengths and resulted in improved short circuit current and spectral response. Improved collection efficiency is also expected from this structure due to generation of carriers closer to the cell junction. Microscopic point measurements of collected current using a scanning electron microscope showed that current collected at the peaks of the texturized surface were only 80 percent of those collected in the valleys.

  17. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  18. Solar concentrators for space processing applications

    NASA Technical Reports Server (NTRS)

    Mcdermit, J. H.; Ruff, R. C.

    1975-01-01

    A study on the technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies related to the many aspects of the problem are reviewed. It was concluded from this effort that the technology for fabricating, orbiting, and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conducive to the processes of interest. The study indicates that solar concentrators of reasonable dimensions can satisfactorily provide both of these factors. This study also indicates that solar concentrators are attractive for space processing from the viewpoint of system specific power and system flexibility.

  19. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  20. Solar-grade silicon prepared by carbothermic reduction of silica

    NASA Technical Reports Server (NTRS)

    Aulich, H. A.; Schulze, F. W.; Urbach, H. P.; Lerchenberger, A.

    1986-01-01

    An advanced carbothermic reduction (ACR) process was developed to produce solar grade (SC) silicon from high purity silica and carbon. Preparation of starting materials and operation of the arc furnace to product high purity silicon is described. Solar cells prepared from single crystal SG-Si had efficiencies of up to 12.3% practically identical to cells made from electronic grade silicon. The ACR process is not in the pilot stage for further evaluation.

  1. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  2. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Raichoudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600 C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after growth, preferentially segregates to grain and becomes electrically deactivated. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty year device lifetime.

  3. Modeling of concentrating solar thermoelectric generators

    NASA Astrophysics Data System (ADS)

    McEnaney, Kenneth; Kraemer, Daniel; Ren, Zhifeng; Chen, Gang

    2011-10-01

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable alternative in the non-concentrating regime. This paper addresses the possibility of STEGs being used as the power block in concentrating solar power systems. STEG power blocks have no moving parts, they are scalable, and they eliminate the need for an external traditional thermomechanical generator, such as a steam turbine or Stirling engine. Using existing skutterudite and bismuth telluride materials, concentrating STEGs can have efficiencies exceeding 10% based on a geometric optical concentration ratio of 45.

  4. High-purity silicon for solar cell applications

    NASA Technical Reports Server (NTRS)

    Dosaj, V. D.; Hunt, L. P.; Schei, A.

    1978-01-01

    The article discusses the production of solar cells from high-purity silicon. The process consists of reducing the level of impurities in the raw materials, preventing material contamination before and after entering the furnace, and performing orders-of-magnitude reduction of metal impurity concentrations. The high-purity raw materials are considered with reference to carbon reductants, silica, and graphite electrodes. Attention is also given to smelting experiments used to demonstrate, in an experimental-scale furnace, the production of high-purity SoG-Si. It is found that high-purity silicon may be produced from high-purity quartz and chemically purified charcoal in a 50-kVA arc furnace. The major contamination source is shown to be impurities from the carbon reducing materials.

  5. IR characterization of hydrogen in crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Stavola, M.; Kleekajai, S.; Wen, L.; Peng, C.; Yelundur, V.; Rohatgi, A.; Carnel, L.; Kalejs, J.

    2009-12-01

    Hydrogen is commonly introduced into silicon solar cells to reduce the deleterious effects of defects and to increase cell efficiency. A process that is widely used by industry to introduce hydrogen is by the post-deposition annealing of a hydrogen-rich SiN x layer that is used as an anti-reflection coating. A number of questions about this hydrogen introduction process and hydrogen's subsequent interactions with defects have proved difficult to address because of the low concentration of hydrogen that is introduced into the Si bulk. We have used the fundamental knowledge of hydrogenated defects that has been revealed by recent investigations of impurity-H complexes to develop strategies by which hydrogen in silicon can be detected by IR spectroscopy with high sensitivity. The introduction of hydrogen into Si by the post-deposition annealing of a SiN x coating has been investigated.

  6. Solar concentrator with a toroidal relay module.

    PubMed

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2015-10-01

    III-V multijunction solar cells require solar concentrators with a high concentration ratio to reduce per watt cost and to increase solar energy transforming efficiency. This paper discusses a novel solar concentrator design that features a high concentration ratio, high transfer efficiency, thin profile design, and a high solar acceptance angle. The optical design of the concentrator utilizes a toroidal relay module, which includes both the off-axis relay lens and field lens design in a single concentric toroidal lens shape. The optical design concept of the concentrator is discussed and the simulation results are shown. The given exemplary design has an aspect ratio of 0.24, a high averaged optical concentration ratio 1230×, a maximum efficiency of 76.8%, and the solar acceptance angle of ±0.9°.

  7. Heat-rejection design for large concentrating solar arrays

    NASA Technical Reports Server (NTRS)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  8. Spraylon fluorocarbon encapsulation for silicon solar cell arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.

  9. Pushing concentration of stationary solar concentrators to the limit.

    PubMed

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around. PMID:20607887

  10. Pushing concentration of stationary solar concentrators to the limit.

    PubMed

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun-earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around. PMID:20588575

  11. Effect of copper impurity on polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1978-01-01

    The presence of copper impurity, up to 10 to the 15th atoms/cc, in single crystal silicon has been shown to have no deleterious effect on the p-n junction solar cell performance. However, in polycrystalline silicon, copper atoms tend to migrate to the defect sites because of the structural sensitive properties of copper. This study was undertaken to investigate the influence of this behavior of copper impurity on the performance of p-n junction solar cells fabricated from structurally imperfect silicon. Two sets of polycrystalline silicon substrates containing copper were examined. In one set of samples, copper was incorporated during growth, whereas in the other, copper was diffused. Solar cells were fabricated on both the sets of substrates by a standard process. Dark and light I-V and spectral response characteristics of the cells were measured and compared with copper-free polycrystalline silicon solar cells. The results and the model are discussed.

  12. A base-metal conductor system for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.

    1980-01-01

    Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.

  13. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  14. Thin silicon solar cell performance characteristics

    NASA Technical Reports Server (NTRS)

    Gay, C. F.

    1978-01-01

    Refined techniques for surface texturizing, back surface field and back surface reflector formation were evaluated for use with shallow junction, single-crystal silicon solar cells. Each process was characterized individually and collectively as a function of device thickness and bulk resistivity. Among the variables measured and reported are open circuit voltage, short circuit current and spectral response. Substantial improvements were obtained by the utilization of a low cost aluminum paste process to simultaneously remove the unwanted n(+) diffused region, form the back surface field and produce an ohmic contact metallization. The highly effective BSF which results from applying this process has allowed fabrication of cells 0.05 mm thick with initial outputs as high as 79.5 mW/4 sq cm (28 C, AM0) and superior electron radiation tolerance. Cells of 0.02 mm to 0.04 mm thickness have been fabricated with power to mass ratios well in excess of 2 watts per gram.

  15. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  16. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  17. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Minahan, J. A.

    1981-01-01

    The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.

  18. Low-Concentration-Ratio Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Reed, David A., Jr.

    1986-01-01

    Paper presents design concept for mass-producible arrays of solar electric batteries and concentrators tailored to individual requirements. Arrays intended primarily for space stations needing about 100 kW of power. However, modular, lightweight, compact, and relatively low-cost design also fulfill requirements of some terrestrial applications. Arrays built with currently available materials. Pultrusions, injectionmolded parts, and composite materials used extensively to keep weight low. For added flexibility in design and construction, silicon and gallium arsenide solar-cell panels interchangeable.

  19. Light shield for solar concentrators

    DOEpatents

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  20. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  1. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  2. Non-tracking solar concentrator with a high concentration ratio

    DOEpatents

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  3. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  4. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Several of the key parameters describing the heavily doped regions of silicon solar cells are examined. The experimentally determined energy gap narrowing and minority carrier diffusivity and mobility are key factors in the investigation.

  5. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  6. Novel duplex vapor electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kapur, V.; Sancier, K. M.; Sanjurjo, A.; Leach, S.; Westphal, S.; Bartlett, R.; Nanis, L.

    1978-01-01

    Progress in the development of low-cost solar arrays is reported. Topics covered include: (1) development of a simplified feed system for the Na used in the Na-SiF4 reactor; (2) production of high purity silicon through the reduction of sodium fluosilicate with sodium metal; (3) the leaching process for recovering silicon from the reaction products of the SiF4-Na reaction; and (4) silicon separation by the melting of the reaction product.

  7. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    Preparation for full scale operation of the pilot line included reduction of the back metallization coverage to reduce the differential thermal expansion of very thin cells, mapping excess injection current at low dark forward voltage, determining the radius of curvature for fracture as a function of silicon thickness, and determining absorptance/emittance ratios for thin silicon solar cells.

  8. A silicon sheet casting experiment. [for solar cell water production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Sanchez, L. E.; Sampson, W. J.

    1980-01-01

    The casting of silicon blanks for solar cells directly without slicing is an exciting concept. An experiment was performed to investigate the feasibility of developing a machine that casts wafers directly. A Czochralski furnace was modified to accept a graphite ingot-simulating fixture. Silicon was melted in the middle of the ingot simulator in a boron nitride mold. Sample castings showed reasonable crystal size. Solar cells were made from the cast blanks. The performance is reported.

  9. Improved High/Low Junction Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.

    1986-01-01

    Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.

  10. Buried contact multijunction thin film silicon solar cell

    SciTech Connect

    Green, M.

    1995-08-01

    In early 1994, the Center for Photovoltaic Devices and Systems announced the filing of patent applications on an improved silicon thin film photovoltaic module approach. With material costs estimated to be about 20 times lower than those in present silicon solar cell modules along with other production advantages, this technology appears likely to make low cost, high performance solar modules available for the first time. This paper describes steps involved in making a module and module performance.

  11. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  12. Cassegrainian concentrator solar array exploratory development module

    SciTech Connect

    Patterson, R.E.; Crabtree, W.L.

    1982-08-01

    A multiyear program is underway for the development of a miniaturized Cassegrainian concentrator solar array concept which promises to significantly reduce the recurring costs of multikilowatt spacecraft solar arrays. The concentrator panels are comparable in thickness, area, and specific performance to conventional rigid solar array panels. Miniaturization of the concentrator element results in excellent heat distribution with passive thermal control for achievement of acceptably low steady state solar cell temperatures. A single element and a nine element demonstration module were designed, assembled, and tested. The test hardware has an effective concentration ratio of 88. Preliminary thermal vacuum test results indicate that the steady state solar cell temperature will be in the range of 75/sup 0/ to 95/sup 0/C with an effective concentration ratio of 100. Demonstration hardware test results obtained to date support the technical feasibility of the concept.

  13. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  14. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  15. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  16. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGESBeta

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  17. Plasma Texturing of Silicon Solar Cells

    SciTech Connect

    Narayanan, Mohan; Roy, Madhu; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texture promotes enhanced light absorption in Si solar cells. The quality of lower cost multicrystalline-silicon (mc-Si) has increased to the point that its cell performance is close to that of single c-Si cells, with the major difference resulting from the inability to texture mc-Si affordably. This has reduced the cost-per-watt advantage of mc-Si. Surface texturing aimed at enhanced absorption in Si has been historically obtained by creating multimicrometer-sized pyramids using anisotropic wet etchants on single-crystalline silicon that take advantage of its single crystalline orientation. Since the surface feature sizes are several times the length of the incident solar wavelengths involved, the optical analysis of the reflected and absorbed light can be understood using geometrical optics. Geometrical textures reduce reflection and improve absorption by double-bounce and oblique light coupling into the semiconductor. However, geometrical texturing suffers from several disadvantages that limit its effectiveness. Some of these are listed below: (a) Wet-chemical anisotropic etching used to form random pyramids on <100> crystal orientation is not effective in the texturing of low-cost multicrystalline wafers, (b) Anti-reflection films deposited on random features to reduce reflection have a resonant structure limiting their effectiveness to a narrow range of angles and wavelengths. Various forms of surface texturing have been applied to mc-Si in research, including laser-structuring, mechanical grinding, porous-Si etching, and photolithographically defined etching. However, these may be too costly to ever be used in large-scale production. A Japanese firm has reported the development of an RIE process using Cl{sub 2} gas, which textures multiple wafers per batch, making it attractive for mass-production [1]. Using this process, they have produced a 17.1% efficient 225-cm{sup 2} mc-Si cell, which is the highest efficiency mc-Si cell of its size ever reported

  18. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  19. Production of fullerenes using concentrated solar flux

    DOEpatents

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  20. Effect of impurity doping concentration on solar cell output

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Soclof, S. I.

    1975-01-01

    Experimental measurements were made of solar cell and related photovoltaic parameters for silicon with high concentrations of dopant impurities. The cell output peaked for doping levels around 10 to the 17th power per cu cm. Independent measurements of diffusion length and open circuit voltage at high doping levels showed severe reductions at concentrations above 10 to the 18th power per cu cm. Theoretical reasons are given to explain these reductions. Indication is given of the problems requiring solution before increased cell output can be achieved at high doping levels.

  1. Silicon-film{trademark} on ceramic solar cells. Final report

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1993-02-01

    The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

  2. Flexible Protocrystalline Silicon Solar Cells with Amorphous Buffer Layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuaki; Schubert, Markus B.

    2006-09-01

    A low deposition temperature of 110 °C is mandatory for directly growing amorphous-silicon-based solar cells on plastic foil. The optimum absorber material at this low temperature is protocrystalline, i.e., right at the transition between amorphous and crystalline silicon. Polyethylene terephtalate foil of 50 μm thickness form the substrate of our flexible p-i-n single-junction cells. We discuss three peculiar processing techniques for achieving the maximum photovoltaic conversion efficiency of flexible low-temperature solar cells. First, we employ an optimized microcrystalline silicon p-type window layer; second, we use protocrystalline silicon for the i-layer; third, we insert an undoped amorphous silicon buffer layer at the p/i interface. The best flexible cells attain power conversion efficiencies of up to 4.9%.

  3. Methods and systems for concentrated solar power

    DOEpatents

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  4. Thin single-crystalline silicon solar cells for space applications

    NASA Astrophysics Data System (ADS)

    Nijs, J.; Caymax, M.; Acke, P.; Roggen, J.; Lambrechts, M.; Gravesen, P.

    1986-11-01

    A technology to perform etching after the formation of the solar cell, using epitaxial deposition of the active layer of the cell combined with an etch stop technique is proposed. This can result in highly efficient silicon solar cells with thicknesses down to 10 microns.

  5. Photocurrent images of amorphous-silicon solar-cell modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.; Trask, J.

    1985-01-01

    Results obtained in applying the unique characteristics of the solar cell laser scanner to investigate the defects and quality of amorphous silicon cells are presented. It is concluded that solar cell laser scanners can be effectively used to nondestructively test not only active defects but also the cell quality and integrity of electrical contacts.

  6. Thin foil silicon solar cells with coplanar back contacts

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.; Baraona, C. R.

    1981-01-01

    To fabricate 50 microns thick, coplanar back contact (CBC) silicon solar cells, wraparound junction design was selected and proved to be effective. The process sequence used, the cell design, and the cell performance are described. CBC cells with low solar absorptance have shown AMO efficiencies to 13%, high cells up to 14%; further improvements are projected with predictable optimization.

  7. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  8. Si concentrator solar cell development. [Final report

    SciTech Connect

    Krut, D.D.

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  9. Investigations of silicon nitride films for silicon solar cells

    SciTech Connect

    Elmiger, J.R.; Kunst, M.

    1996-12-31

    Silicon nitride films on crystalline silicon were deposited in a low-temperature (<400 C) Plasma Enhanced Chemical Vapour Deposition process. The deposition process is monitored with in situ Time Resolved Microwave Conductivity measurements leading to an on-line quality control of the deposited films. It is shown that at the start of the deposition there is a strong decrease of the lifetime of the measured transient signal due to plasma induced damage at the silicon surface. Afterwards an increase of the lifetime is observed due to passivation of the interface. For thin films (<30 nm), the lifetime and the film composition depend on the film thickness. Furthermore, the film composition has a strong impact on the passivation of thick (100 nm) silicon nitride films. The best passivation is obtained for almost stoichiometric films characterized by a refractive index of 1.95.

  10. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A cost effective encapsulant system was identified and a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared. The effectiveness of the cover material in protecting photo-oxidatively sensitive polymers was demonstrated.

  11. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  12. Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial

    SciTech Connect

    Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

    2004-11-08

    In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

  13. Solar steam generation: Steam by thermal concentration

    NASA Astrophysics Data System (ADS)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  14. Concentrating solar collector-performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report summarizes test results from evaluation of concentrating solar collector thermal performance, from transient behavior, and incident-of-angle behavior. Tests were conducted using National Bureau of Standards recommedations and specifications.

  15. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  16. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  17. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  18. Development of Solar Grade (SoG) Silicon

    SciTech Connect

    Joyce, David B; Schmid, Frederick

    2008-01-18

    The rapid growth of the photovoltaics (PV) industry is threatened by the ongoing shortage of suitable solar grade (SoG) silicon. Until 2004, the PV industry relied on the off spec polysilicon from the electronics industry for feedstock. The rapid growth of PV meant that the demand for SoG silicon predictably surpassed this supply. The long-term prospects for PV are very bright as costs have come down, and efficiencies and economies of scale make PV generated electricity ever more competitive with grid electricity. However, the scalability of the current process for producing poly silicon again threatens the future. A less costly, higher volume production technique is needed to supply the long-term growth of the PV industry, and to reduce costs of PV even further. This long-term need was the motivation behind this SBIR proposal. Upgrading metallurgical grade (MG) silicon would fulfill the need for a low-cost, large-scale production. Past attempts to upgrade MG silicon have foundered/failed/had trouble reducing the low segregation coefficient elements, B, P, and Al. Most other elements in MG silicon can be purified very efficiently by directional solidification. Thus, in the Phase I program, Crystal Systems proposed a variety of techniques to reduce B, P, and Al in MG silicon to produce a low cost commercial technique for upgrading MG silicon. Of the variety of techniques tried, vacuum refining and some slagging and additions turned out to be the most promising. These were pursued in the Phase II study. By vacuum refining, the P was reduced from 14 to 0.22 ppmw and the Al was reduced from 370 ppmw to 0.065 ppmw. This process was scaled to 40 kg scale charges, and the results were expressed in terms of half-life, or time to reduce the impurity concentration in half. Best half-lives were 2 hours, typical were 4 hours. Scaling factors were developed to allow prediction of these results to larger scale melts. The vacuum refining required the development of new crucibles

  19. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  20. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  1. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  2. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  3. A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Samundsett, Chris; Yan, Di; Allen, Thomas; Peng, Jun; Cui, Jie; Zhang, Xinyu; Bullock, James; Cuevas, Andres

    2016-09-01

    Among the metals, magnesium has one of the lowest work functions, with a value of 3.7 eV. This makes it very suitable to form an electron-conductive cathode contact for silicon solar cells. We present here the experimental demonstration of an amorphous silicon/magnesium/aluminium (a-Si:H/Mg/Al) passivating contact for silicon solar cells. The conduction properties of a thermally evaporated Mg/Al contact structure on n-type crystalline silicon (c-Si) are investigated, achieving a low resistivity Ohmic contact to moderately doped n-type c-Si (˜5 × 1015 cm-3) of ˜0.31 Ω cm2 and ˜0.22 Ω cm2 for samples with and without an amorphous silicon passivating interlayer, respectively. Application of the passivating cathode to the whole rear surface of n-type front junction c-Si solar cells leads to a power conversion efficiency of 19% in a proof-of-concept device. The low thermal budget of the cathode formation, its dopant-less nature, and the simplicity of the device structure enabled by the Mg/Al contact open up possibilities in designing and fabricating low-cost silicon solar cells.

  4. Low earth orbit durability of protected silicone for refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    McCollum, Timothy A.; deGroh, Kim K.

    1995-01-01

    Photovoltaic power systems with novel refractive silicone solar concentrators are being developed for use in low Earth orbit (LEO). Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation, these lenses are coated with a multilayer metal oxide protective coating. The objective of this work was to evaluate the effects of atomic oxygen and thermal exposures on multilayer coated silicone. Samples were exposed to high-fluence ground-laboratory and low-fluence in-space atomic oxygen. Ground testing resulted in decreases in both total and specular transmittance, while in-space exposure resulted in only small decreases in specular transmittance. A contamination film, attributed to exposed silicone at coating crack sites, was found to cause transmittance decreases during ground testing. Propagation of coating cracks was found to be the result of sample heating during exposure. The potential for silicone exposure, with the resulting degradation of optical properties from silicone contamination, indicates that this multilayer coated silicone is not durable for LEO space applications where thermal exposures will cause coating crack development and propagation.

  5. Characterization of solar-grade silicon produced by the SiF4-Na process

    NASA Technical Reports Server (NTRS)

    Sanjurjo, A.; Sancier, K. M.; Emerson, R. M.; Leach, S. C.; Minahan, J.

    1986-01-01

    A process was developed for producing low cost solar grade silicon by the reaction between SiF4 gas and sodium metal. The results of the characterization of the silicon are presented. These results include impurity levels, electronic properties of the silicon after crystal growth, and the performance of solar photovoltaic cells fabricated from wafers of the single crystals. The efficiency of the solar cells fabricated from semiconductor silicon and SiF4-Na silicon was the same.

  6. Study of the effects of impurities on the properties of silicon materials and performance of silicon solar cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1980-01-01

    Zinc is a major residue impurity in the preparation of solar grade silicon material by the zinc vapor reduction of silicon tetrachloride. It was found that in order to get a 17 percent AMl cell efficiency, the concentration of the zinc recombination centers in the base region of silicon solar cells must be less than 4 x 10 to the 11th power Zn/cu cm in the p-base n+/p/p+ cell and 7 x 10 to the 11th power Zn/cu cm in the n-base p+/n/n+ cell for a base dopant impurity concentration of 5 x 10 to the 14th power atoms/cu cm. If the base dopant impurity concentration is increased by a factor of 10 to 5 x 10 to the 15th power atoms/cu cm, then the maximum allowable zinc concentration is increased by a factor of about two for a 17 percent AMl efficiency. The thermal equilibrium electron and hole recombination and generation rates at the double acceptor zinc cancers were obtained from previous high field measurements as well as new measurements at zero field. The rates were used in the exact d.c. circuit model to compute the projections.

  7. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  8. General Electric point focus solar concentrator status

    NASA Technical Reports Server (NTRS)

    Zimmerman, J.

    1981-01-01

    The concentrator design approach evolved by a systemmatic process of examining the operating requirements particular to the solar application, minimizing material content through detail structural design and structurally efficient subsystem features, and utilizing materials and processes compatible with high volume production techniques. The design approach, the present concentrator configuration and the status of the hardware development are described.

  9. Plasma interactions with biased concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Stillwell, R. P.; Stevens, N. J.

    1986-12-01

    Concentrator solar arrays are being proposed for future space missions as replacements for less efficient (power/mass) planar arrays. While planar solar arrays have been used in space and their characteristics evaluated, concentrator cell interactions have not. This study investigates the possible interactions between a biased concentrator cell and a plasma environment. This study involved experimental and preliminary analytical work. It has been found that the electric fields associated with the biased cell are confined to the light collector region of the cell configuration, and that the cell arcs in dense plasma environments, at negative voltages of less than -200 volts, in a way similar to the arcing experienced by planar cells.

  10. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  11. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  12. MIS and SIS solar cells on polycrystalline silicon

    SciTech Connect

    Cheek, G.; Mertens, R.

    1980-02-01

    MIS and SIS structured solar cells are receiving much attention in the photovoltaic community. Seemingly, these cells could be a viable alternative to thermally diffused p-n junctions for use on thin-film polycrystalline silicon substrates. This review describes MIS/SIS structured solar cells and the possible advantages of these structures for use with thin-film polycrystalline silicon. The results of efficiency calculations are presented. Also addressed are lifetime stability and fabrication techniques amenable to large scale production. Finally, the relative advantages and disadvantages of these cells and the results obtained are presented.

  13. Increased radiation resistance in lithium-counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  14. Damage coefficients in low resistivity silicon. [solar cells

    NASA Technical Reports Server (NTRS)

    Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.

    1975-01-01

    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.

  15. Cassegrainian concentrator solar array exploratory development module

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Crabtree, W. L.

    1982-01-01

    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  16. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  17. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    SciTech Connect

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  18. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE PAGESBeta

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  19. Building a parabolic solar concentrator prototype

    NASA Astrophysics Data System (ADS)

    Escobar-Romero, J. F. M.; Montiel, S. Vázquez y.; Granados-Agustín, F.; Cruz-Martínez, V. M.; Rodríguez-Rivera, E.; Martínez-Yáñez, L.

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  20. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Thompson, S.; Rosler, D.; Jackson, J.

    1977-01-01

    The conversion of metallurgical grade silicon into semiconductor grade silicon by way of a three step SiF2 polymer transport purification process was investigated. Developments in the following areas were also examined: (1) spectroscopic analysis and characterization of (SiF2) sub x polymer and Si sub x F sub y homologue conversion; (2) demonstration runs on the near continuous apparatus; (3) economic analysis; and (4) elemental analysis.

  1. Silicon material task. Part 3: Low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  2. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  3. Inexpensive transparent nanoelectrode for crystalline silicon solar cells.

    PubMed

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-12-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost. PMID:27356559

  4. Inexpensive transparent nanoelectrode for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-06-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  5. Developments toward an 18% efficient silicon solar cell

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.

    1983-01-01

    Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.

  6. Crystalline silicon solar cells with high resistivity emitter

    NASA Astrophysics Data System (ADS)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  7. Inexpensive transparent nanoelectrode for crystalline silicon solar cells.

    PubMed

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-12-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  8. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  9. Pin solar cells made of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Plaettner, R. D.; Kruehler, W. W.

    Investigations leading to solar cells with a structure SnO2-pin and an efficiency up to 9.8% are reviewed. The production of large-surface metal/pin/transparent conductive oxide (TCO)-solar cells is discussed. A two-chamber reactor, grid structure and tinning of cells, and an a-Si-module are described. The production of glass/TCO/pin/metal-solar cells and a-SiGe:H-compounds is outlined. Measurements on solar cells and diodes including the efficiency of a-Si:H-solar cells, spectral sensitivity, diffusion lengths, field effect measurements, and modifications of solar cells (space-charge limited currents, reduction of solar cells aging) are treated.

  10. Performance Enhancement of Crystalline Silicon Solar Cells by Coating with Luminescent Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Basu, Tuhin Shuvra; Ray, Mallar; Bandyopadhyay, Nil Ratan; Pramanick, Ashit Kumar; Hossain, Syed Minhaz

    2013-03-01

    In this work we report a technique that is potentially capable of increasing the efficiency of crystalline silicon solar cells, which dominate the present-day market of photovoltaic devices. The simple and cost-effective method involves coating the surface of a commercially procured silicon solar cell with luminescent silicon nanocrystals. Core/shell silicon/silicon-oxide nanostructures are fabricated by an inexpensive and reproducible technique, where coarse silicon powders are repeatedly milled, oxidized, and etched until their sizes are reduced so as to exhibit room-temperature photoluminescence under ultraviolet excitation. A thin coating of these nanostructures on a standard solar cell, obtained by a simple dip-coating method, increases the open-circuit voltage and short-circuit current, which consequently increases the maximum power delivered by ~16.3% and efficiency by almost ˜39%. We propose that the core/shell nanostructures act as luminescent convertors that convert higher-energy photons to lower-energy photons, thereby leading to less thermal relaxation loss of photoexcited carriers.

  11. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  12. Turbulent flow inside a solar concentrator receiver

    NASA Astrophysics Data System (ADS)

    Ramirez, Manuel; Ramos, Eduardo

    2014-11-01

    A solar concentrator receiver is a heat exchanger designed to absorb a beam of radiant heat coming from a field of heliostats. Inside the device, a slow forced flow generated bye an external pressure gradient is present, together with a natural convective a turbulent flow produced by the large temperature gradients due to intense heating. We present a model of this device based on the numerical solution of the mass, momentum and energy conservation equations. We consider heating conditions that lead to turbulence convective flow. For this season, a large eddy simulation model is incorporated. The results are potentially useful for the design of solar concentrator receivers.

  13. Silicon Solar Cell Process Development, Fabrication and Analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    The standard solar cells (2x2 cm) from the cast silicon heatexchanger method) showed a maximum AMO efficiency of 10.1%. Cells from low resistivity material (0.5 ohm-cm) showed lower performance than those of the high resistivity cast silicon (3 ohm-cm), an average efficiency 9.5% versus 7.6% Maximum AMO efficiency of the standard solar cells (2x2 cm) from the EFG (RH) ribbons was about 7.5%. The solar cells from controlled SiC, using the displaced die, showed more consistent and better performance than those of the uncontrolled SiC ribbons, an average efficiency of 6.6% versus 5.4% The average AMO efficiency of the standard silicon ceramic (soc) solar calls were about 6%. These were large area solar cells (an average area of 15 sq cm). A maximum efficiency of 7.3% was obtained. The SOC solar cells showed both leakage and series resistance problems, leading to an average curve fill factor of about 60%.

  14. The effects of copper and titanium on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1978-01-01

    Copper-doped N/P silicon solar cells fabricated from the Czochralski grown single-crystal wafers were found to have good electrical characteristics, but the titanium-doped N/P silicon solar cells has considerably lower conversion efficiency. However, in the copper/titanium-doped solar cells, copper seems to mitigate the unfavorable effects of titanium. To explain this behavior, microstructural tests were performed on silicon wafers and solar cells doped with copper, titanium and copper/titanium. Dark forward and reverse I-V measurements were performed on the solar cells to correlate the microstructural defects with the p-n junction properties. It was found that copper precipitates were formed in the copper-doped and copper/titanium-doped wafers and cells. There was a significant voltage drop in the dark reverse I-V measurements of the titanium solar cells. Also, there were some electronically active defects in the depletion region of some titanium-doped cells. Reasons that lead to the above results are given in detail.

  15. Silicon solar cell using optimized intermediate reflector layer

    NASA Astrophysics Data System (ADS)

    Khalifa, Ahmed E.; Swillam, Mohamed A.

    2016-03-01

    Thin film silicon based photovoltaic cells have the advantages of using low cost nontoxic abundant constituents and low thermal manufacturing budget. However, better long-term efficiencies need to be achieved overcoming its inherent bad electrical properties of amorphous and/or microcrystalline Silicon. For the goal of achieving best results, multijunction cells of amorphous and microcrystalline silicon thin layers are industrially and lab utilized in addition to using one or more light management techniques such as textured layers, periodic and plasmonic back reflectors, flattened reflective substrates and intermediate reflector layer (IRL) between multijunction cells. The latter, IRL, which is the focus of this paper, serves as spectrally selective layer between different cells of the multijunction silicon thin film solar cell. IRL, reflects to the top cell short wavelength while permitting and scattering longer ones to achieve the best possible short circuit current. In this study, a new optimized periodic design of Intermediate reflector layer in micromorph (two multijunction cells of Microcrystalline and Amorphous Silicon) thin film solar cells is proposed. The optically simulated short circuit current reaches record values for same thickness designs when using all-ZnO design and even better results is anticipated if Lacquer material is used in combination with ZnO. The design methodology used in the paper can be easily applied to different types of IRL materials and also extended to triple and the relatively newly proposed quadruple thin films solar cells.

  16. Polycrystalline silicon on glass for thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2009-07-01

    Although most solar cell modules to date have been based on crystalline or polycrystalline wafers, these may be too material intensive and hence always too expensive to reach the very low costs required for large-scale impact of photovoltaics on the energy scene. Polycrystalline silicon on glass (CSG) solar cell technology was developed to address this difficulty as well as perceived fundamental difficulties with other thin-film technologies. The aim was to combine the advantages of standard silicon wafer-based technology, namely ruggedness, durability, good electronic properties and environmental soundness with the advantages of thin-films, specifically low material use, large monolithic construction and a desirable glass superstrate configuration. The challenge has been to match the different preferred processing temperatures of silicon and glass and to obtain strong solar absorption in notoriously weakly-absorbing silicon of only 1-2 micron thickness. A rugged, durable silicon thin-film technology has been developed with amongst the lowest manufacturing cost of these contenders and confirmed efficiency for small pilot line modules already in the 10-11% energy conversion efficiency range, on the path to 12-13%.

  17. Transmissive Diffractive Optical Element Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Baron, Richard; Moynihan, Philip; Price, Douglas

    2008-01-01

    Solar-thermal-radiation concentrators in the form of transmissive diffractive optical elements (DOEs) have been proposed as alternatives to mirror-type solar concentrators now in use. In comparison with functionally equivalent mirror-type solar concentrators, the transmissive, diffractive solar concentrators would weigh and cost less, and would be subject to relaxed mechanical tolerances. A DOE concentrator would be made from a thin, flat disk or membrane of a transmissive material having a suitable index of refraction. By virtue of its thinness, the DOE concentrator would have an areal mass density significantly less than that of a functionally equivalent conventional mirror. The DOE concentrator would have a relatively wide aperture--characterized by a focal-length/aperture-diameter ratio ('f number') on the order of 1. A kinoform (a surface-relief phase hologram) of high diffractive order would be microfabricated onto one face of the disk. The kinoform (see figure) would be designed to both diffract and refract incident solar radiation onto a desired focal region, without concern for forming an image of the Sun. The high diffractive order of this kinoform (in contradistinction to the low diffractive orders of some other kinoforms) would be necessary to obtain the desired f number of 1, which, in turn, would be necessary for obtaining a desired concentration ratio of 2,500 or greater. The design process of optimizing the concentration ratio of a proposed DOE solar concentrator includes computing convolutions of the optical bandwidth of the Sun with the optical transmission of the diffractive medium. Because, as in the cases of other non-imaging, light-concentrating optics, image quality is not a design requirement, the process also includes trading image quality against concentration ratio. A baseline design for one example calls for an aperture diameter of 1 m. This baseline design would be scalable to a diameter as large as 10 m, or to a smaller diameter for a

  18. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  19. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  20. A metallurgical route to solar-grade silicon

    NASA Technical Reports Server (NTRS)

    Schei, A.

    1986-01-01

    The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.

  1. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  2. On concentration dependence of arsenic diffusivity in silicon

    NASA Astrophysics Data System (ADS)

    Velichko, O. I.

    2016-05-01

    An analysis of the equations used for modeling thermal arsenic diffusion in silicon has been carried out. It was shown that for arsenic diffusion governed by the vacancy-impurity pairs and the pairs formed due to interaction of impurity atoms with silicon self-interstitials in a neutral charge state, the doping process can be described by the Fick’s second law equation with a single effective diffusion coefficient which takes into account two impurity flows arising due to interaction of arsenic atoms with vacancies and silicon self-interstitials, respectively. Arsenic concentration profiles calculated with the use of the effective diffusivity agree well with experimental data if the maximal impurity concentration is near the intrinsic carrier concentration. On the other hand, for higher impurity concentrations a certain deviation in the local regions of arsenic distribution is observed. The difference from the experiment can occur due to the incorrect use of effective diffusivity for the description of two different impurity flows or due to the formation of nonuniform distributions of neutral vacancies and neutral self-interstitials in heavily doped silicon layers. We also suppose that the migration of nonequilibrium arsenic interstitial atoms makes a significant contribution to the formation of a low concentration region on thermal arsenic diffusion.

  3. Grain size dependence of silicon solar cell parameters

    NASA Technical Reports Server (NTRS)

    Koliwad, K. M.; Daud, T.

    1980-01-01

    Measurements of the non-uniform diffusion length of the minority carriers near grain boundaries in polycrystalline silicon have been used to develop an analytical model for the calculation of solar cell output as a function of grain size. Experimental results are presented which verify the theoretical analysis. Variation of open circuit voltage and fill factor with grain size is discussed.

  4. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Specific power output and radiation resistance characteristics developed for thin film silicon solar cells are reported. The technological base for fabricating these high efficiency cells and limitations of cell photovoltage are included. In addition, optical and electronic measurement instrumentation and mathematical analyses aids are included. Antireflection coatings for these cells are discussed.

  5. NREL Success Stories - Quest for Inexpensive Silicon Solar Cells

    ScienceCinema

    Branz, Howard

    2016-07-12

    Scientists at the National Renewable Energy Laboratory (NREL) share their story about a successful partnership with Oak Ridge National Laboratory and the Ampulse Corporation and how support from the US Department of Energy's Technology Commercialization & Deployment Fund has helped it and their silicon solar cell research thrive.

  6. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.

    1977-01-01

    An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.

  7. Development of high efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  8. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  9. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  10. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  11. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.

  12. Design, manufacturing and measurement of a PV miniconcentrator for front point-contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pérez, D.; Miñano, J. C.; Benítez, P.; Muñoz, F.; Mohedano, R.

    2005-08-01

    A novel photovoltaic concentrator has been developed in the framework of the European project "High efficiency silicon solar cells concentrator". In this project, front-contacted silicon solar cell have also been designed and manufactured by the project leader (the French LETI). This silicon cell concept is potentially capable to perform well (24% efficiency has been predicted) for much higher concentration levels than the back-contacted cells (and, of course, than the two-side contacted cells). The concentrator is formed by one lens of squared contour with flat entry surface and large-facet Fresnel exit surface, and a secondary that encapsulates the solar cell. On the contrary to the conventional Fresnel lens plus nonimaging secondary concentrators, the primary and secondary are designed simultaneously, leading to better concentration-acceptance angle product without compromise with the compactness. The grid lines in the front-contacted cells are aluminium prisms (which contact the p+ and n+ emitters, alternatively), acting as a linear cone concentrator that concentrates Cg =1.52× in the cross sectional dimension of the prisms. The secondary concentrator has a refractive rotational symmetric top surface that is crossed with two linear flow-line TIR mirror. Then, in the cross section normal to the aluminium prisms, the secondary provides a 2D concentration of Cg =12×, while in the cross section parallel to the prisms it provides a 2D concentration of Cg =24.16× as the grid lines in this dimension. Therefore, the cell is rectangular (1:2.08 aspect ratio), being the grid lines parallel to the shorter rectangle side. The total 3D geometrical concentration is 24.16×(12×1.52) = 455× for the square aperture and rectangular cell, and gets a design acceptance angle α=+/-1.8 degrees. Injection moulded prototypes are have been manufactured and measured, proving an optical efficiency of 79%. Computer modelling of the concentrator performance will also be presented.

  13. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  14. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  15. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Wanghua; Pareige, Philippe; Roca i Cabarrocas, Pere

    2016-06-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish the nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.

  16. Lightweight solar concentrator structures, phase 2

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  17. Variable-shape solar-energy concentrator

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Phol, J. H.

    1979-01-01

    Proposed low cost three dimensional tracking solar concentrator fabricated from lightweight, flexible polymeric film membrane is controlled in shape by differential pressure loading. Fine adjustments to shape could be made by mounting electrets or magnets on membrane or applying electric or magnetic field.

  18. Multiple-Panel Cylindrical Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  19. Concentrating solar cookers with eccentric axis

    SciTech Connect

    Wang Xiping; Sha Yong Ling; Hou Shugin; Liu Zude

    1992-12-31

    This paper describes the design, development and use of a concentrating solar cooker with eccentric axis in China. For the same power, the older circular parabolic cookers are large in volume and less convenient to operate than the cooker with eccentric axis. Calculations are presented for the design of the cooker and for obtaining an accurate test of its efficiency.

  20. Concentrating Solar Power Commercial Application Study

    SciTech Connect

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  1. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  2. Transparent conductive oxides for thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  3. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1978-01-01

    Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified.

  4. Space station solar concentrator materials research

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.

  5. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  6. White butterflies as solar photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  7. White butterflies as solar photovoltaic concentrators

    PubMed Central

    Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-01-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  8. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  9. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-01-01

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  10. A reclaiming process for solar cell silicon wafer surfaces.

    PubMed

    Pa, P S

    2011-01-01

    The low yield of epoxy film and Si3N4 thin-film deposition is an important factor in semiconductor production. A new design system using a set of three lamination-shaped electrodes as a machining tool and micro electro-removal as a precision reclaiming process of the Si3N4 layer and epoxy film removal from silicon wafers of solar cells surface is presented. In the current experiment, the combination of the small thickness of the anode and cathodes corresponds to a higher removal rate for the thin films. The combination of the short length of the anode and cathodes combined with enough electric power produces fast electroremoval. A combination of the small edge radius of the anode and cathodes corresponds to a higher removal rate. A higher feed rate of silicon wafers of solar cells combined with enough electric power produces fast removal. A precise engineering technology constructed a clean production approach for the removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers from solar cells that can reduce pollution and lower cost. PMID:21446525

  11. Luminescent solar concentrators with fiber geometry.

    PubMed

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  12. Step tracking program for concentrator solar collectors

    NASA Astrophysics Data System (ADS)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  13. Silicon diffusion in aluminum for rear passivated solar cells

    SciTech Connect

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-04-11

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50{+-}0.06) {mu}m/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  14. Degradation of bulk diffusion length in CZ silicon solar cells

    SciTech Connect

    Reiss, J.H.; King, R.R.; Mitchell, K.W.

    1995-08-01

    Commercially-produced, unencapsulated, CZ silicon solar cells can lose 3 to 4% of their initial efficiency after exposure to light. After this initial, rapid ( < 30 min.) decrease, the cell power output remains stable. The cell performance recovers in a matter of hours in the dark at room temperature, and degrades again under light exposure. The different conditions under which CZ silicon cells degrade, and the reverse process, annealing, are characterized with the methods of spectral response and current-voltage (I-V) measurements. Iron impurities are a possible cause of this effect.

  15. Atomic structure of interface states in silicon heterojunction solar cells.

    PubMed

    George, B M; Behrends, J; Schnegg, A; Schulze, T F; Fehr, M; Korte, L; Rech, B; Lips, K; Rohrmüller, M; Rauls, E; Schmidt, W G; Gerstmann, U

    2013-03-29

    Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.

  16. Silicon Solar Cell Process Development, Fabrication and Analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    The standard solar cells (2x2 cm) from the cast silicon (HEM) showed a maximum AMO efficiency of 10.1%. Cells from the low resistivity material (0.5 ohm-cm) showed lower performance than those of the high resistivity cast silicon (3 ohm-cm), an average efficiency 9.5% versus 7.6%. Maximum AMO efficiency of the standard solar cells from the EFG (RH) ribbons was about 7.5%. The solar cells from the controlled SiC, using the displaced die, showed more consistent and better performance than those of the uncontrolled SiC ribbons, an average efficiency of 6.6% versus 5.4%. The average AMO efficiency of the standard SOC solar cells were about 6%. These were large area solar cells (an average area of 15 sq cm). A maximum efficiency of 7.3% was obtained. The SOC solar cells showed both leakage and series resistance problems, leading to an average curve fill factor of about 60%.

  17. Advanced Silicon Solar Cell Device Physics and Design

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael Gardner

    A fundamental challenge in the development and deployment of solar photovoltaic technology is a reduction in cost enabling direct competition with fossil-fuel-based energy sources. A key driver in this cost reduction is optimized device efficiency, because increased energy output leverages all photovoltaic system costs, from raw materials and module manufacturing to installation and maintenance. To continue progress toward higher conversion efficiencies, solar cells are being fabricated with increasingly complex designs, including engineered nanostructures, heterojunctions, and novel contacting and passivation schemes. Such advanced designs require a comprehensive and unified understanding of the optical and electrical device physics at the microscopic scale. This thesis focuses on a microscopic understanding of solar cell optoelectronic performance and its impact on cell optimization. We consider this in three solar cell platforms: thin-film crystalline silicon, amorphous/crystalline silicon heterojunctions, and thin-film cells with nanophotonic light trapping. The work described in this thesis represents a powerful design paradigm, based on a detailed physical understanding of the mechanisms governing solar cell performance. Furthermore, we demonstrate the importance of understanding not just the individual mechanisms, but also their interactions. Such an approach to device optimization is critical for the efficiency and competitiveness of future generations of solar cells.

  18. Resource recovery of scrap silicon solar battery cell.

    PubMed

    Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua

    2013-05-01

    In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%.

  19. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  20. Solar power conversion efficiency in modulated silicon nanowire photonic crystals

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    It is suggested that using only 1 μm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power conversion efficiency in the range of 15%-20% can be achieved. Choosing a specific modulation profile provides antireflection, light trapping, and back-reflection over broad angles in targeted spectral regions for high efficiency power conversion without solar tracking. Solving both Maxwell's equations in the 3D photonic crystal and the semiconductor drift-diffusion equations in each nanowire, we identify optimal junction and contact geometries and study the influence of the nanowire surface curvature on solar cell efficiency. We demonstrate that suitably modulated nanowires enable 20% efficiency improvement over their straight counterparts made of an equivalent amount of silicon. We also discuss the efficiency of a tandem amorphous and crystalline silicon nanowire photonic crystal solar cell. Opportunities for "hot carrier" collection and up-conversion of infrared light, enhanced by photonic crystal geometry, facilitate further improvements in power efficiency.

  1. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  2. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  3. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.

    PubMed

    Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M

    2007-10-18

    Solar cells are attractive candidates for clean and renewable power; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend and dye-sensitized solar cells, to demonstrate carrier multiplication, and to enable low-temperature processing of photovoltaic devices. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.

  4. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect

    Sopori, B.

    2013-03-01

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  5. Structural concepts for large solar concentrators

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Miller, Richard K.

    1987-01-01

    The Sunflower large solar concentrator, developed in the early 1970's, is a salient example of a high-efficiency concentrator. The newly emphasized needs for solar dynamic power on the Space Station and for large, lightweight thermal sources are outlined. Existing concepts for high efficiency reflector surfaces are examined with attention to accuracy needs for concentration rates of 1000 to 3000. Concepts using stiff reflector panels are deemed most likely to exhibit the long-term consistent accuracy necessary for low-orbit operation, particularly for the higher concentration ratios. Quantitative results are shown of the effects of surface errors for various concentration and focal-length diameter ratios. Cost effectiveness is discussed. Principal sources of high cost include the need for various dished panels for paraboloidal reflectors and the expense of ground testing and adjustment. A new configuration is presented addressing both problems, i.e., a deployable Pactruss backup structure with identical panels installed on the structure after deployment in space. Analytical results show that with reasonable pointing errors, this new concept is capable of concentration ratios greater than 2000.

  6. InP concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.; Osterwald, C. R.

    1991-01-01

    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells are described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy. A preliminary assessment of the effects of grid-collection distance and emitter-sheet resistance on cell performance is presented. At concentration ratios of around 100, cells with efficiencies of 21.4 percent AM0 (24.3 percent direct) at 25 C are fabricated. These are the highest efficiencies yet reported for single-junction InP solar cells. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined. Application of these results to other InP-based photovoltaic devices is discussed.

  7. Material for a luminescent solar concentrator

    DOEpatents

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  8. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.

  9. Low concentration ratio solar array structural configuration

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.

    1984-01-01

    The design and structural properties of a low concentration ratio solar array are discussed. The assembled module consists of six interconnected containers which are compactly stowed in a volume of 3.24 m(3) for delivery to orbit by the shuttle. The containers deploy in accordian fashion into a rectangular area of 19.4 x 68 meters and can be attached to the user spacecraft along the longitudinal centerline of the end container housing. Five rotary incremental actuators requiring about 8 watts each will execute the 180-degree rotation at each joint. Deployable masts (three per side) are used to extend endcaps from the housing in both directions. Each direction is extended by three masts requiring about 780 watts for about 27 minutes. Concentrator elements are extended by the endcaps and are supported by cable systems that are connected between the housings and endcaps. These power generating elements contain reflector panels which concentrate light onto the solar panels consisting of an aluminum radiator with solar cells positioned within the element base formed by the reflectors. A flat wire harness collects the power output of individual elements for transfer to the module container housing harnesses.

  10. Optical stability of silicon nitride MIS inversion layer solar cells

    NASA Astrophysics Data System (ADS)

    Jaeger, K.; Hezel, R.

    1985-09-01

    For MIS inversion layer solar cells with silicon nitride as an AR coating, accelerated optical stress tests were performed. Degradation of the cell characteristics occurred which was found to be caused by photons with energies equal to or greater than 3.7 eV (wavelength of 335 nm or less). Generation of interface states at the silicon-insulator interface by UV light is shown to be the mechanism responsible. The original cell data could be completely restored by heat treatment (activation energy 0.5 eV) and partially by illumination with short-wavelength light. As the most striking result, however, it is demonstrated that the UV light-induced instability can be drastically improved by incorporation of cesium ions into the silicon nitride layer. An interpretation is given for this effect.

  11. Laser recrystallization for efficient multi-crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Song, Lihui; Wilson, John; Lee, James

    2016-08-01

    A multi-crystalline silicon wafer contains dislocations and grain boundaries, which are detrimental to the performance of the multi-crystalline silicon solar cell. The dislocations and grain boundaries extend across the junction and dramatically degrade the ideality and fill factor of the cell. In this paper, a laser is used to recrystallize the emitter region of a multi-crystalline silicon wafer to remove crystallographic defects present in the junction. It was demonstrated that, with an appropriate laser power and scan speed, laser recrystallized patterns can have an enhanced photoluminescence response and internal quantum efficiency. Backscattered electron image and x-ray diffraction analyses also revealed that the laser recrystallized layer resembles a single crystalline like layer. Introducing a full area laser recrystallized layer may improve the open circuit voltage and fill factor of the cell, which significantly improved cell efficiency. External quantum efficiency and dark I–V measurements consistently supported this result.

  12. Reliable screen-printed contacts on silicon solar cells

    NASA Astrophysics Data System (ADS)

    Michel, J.; Baudry, H.; Diguet, D.; David, G.

    A screen-printing process for phi 100 mm silicon solar cells is examined. The adherence of silver to silicon is obtained with a glass binder designed to be steam boiling water (SBW) resistant, and the dissolution of the silicon surface by the glass is analyzed. It is found that when the firing temperature of the screen-printed conductors increases, the mechanical and SBW resistance increase; and since the junction depth has to be increased at the same time, the cell output power decreases. A 0.5 micron junction depth and a firing temperature of 680 C appear to be the best trade off, leading to omega 100 mm cells with screen-printed contacts exhibiting good electrical performances, a 300 g standard tensile strength, and over 500 hours SBW lifetime.

  13. Laser recrystallization for efficient multi-crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Song, Lihui; Wilson, John; Lee, James

    2016-08-01

    A multi-crystalline silicon wafer contains dislocations and grain boundaries, which are detrimental to the performance of the multi-crystalline silicon solar cell. The dislocations and grain boundaries extend across the junction and dramatically degrade the ideality and fill factor of the cell. In this paper, a laser is used to recrystallize the emitter region of a multi-crystalline silicon wafer to remove crystallographic defects present in the junction. It was demonstrated that, with an appropriate laser power and scan speed, laser recrystallized patterns can have an enhanced photoluminescence response and internal quantum efficiency. Backscattered electron image and x-ray diffraction analyses also revealed that the laser recrystallized layer resembles a single crystalline like layer. Introducing a full area laser recrystallized layer may improve the open circuit voltage and fill factor of the cell, which significantly improved cell efficiency. External quantum efficiency and dark I-V measurements consistently supported this result.

  14. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  15. Interaction between cast silicon properties and solar cell performance

    NASA Technical Reports Server (NTRS)

    Hyland, S.; Iles, P.; Leung, D.; Schwuttke, G.; Engelbrecht, J. A. A.

    1982-01-01

    Three types of cast silicon, Silso, HEM (Heat-Exchanger Method) and UCP (Ubiquitous Crystallization Process) were studied for their use as solar cells. Optical microscopy after etching revealed a high density of uniform dislocations (approaching 1,000,000/sq cm), lines of dislocations indicating stress during crystal growth, and precipitates, some of which generate dislocations. Solar cells were fabricated by three processes. Results of solar cell processing revealed that these materials produce cells of lower efficiency than Czochralski control cells, and that the efficiencies of the three materials were quite close. Diffusion length and spectral response data are shown. Certain structural features are correlated with solar cell efficiency, diffusion length, and spectral response. Electron-beam induced current (EBIC) and light spot scanning are used to back up other measurements.

  16. Structural concepts for large solar concentrators

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Miller, R. K.

    1986-01-01

    Solar collectors for space use are examined, including both early designs and current concepts. In particular, attention is given to stiff sandwich panels and aluminum dishes as well as inflated and umbrella-type membrane configurations. The Sunflower concentrator is described as an example of a high-efficiency collector. It is concluded that stiff reflector panels are most likely to provide the long-term consistent accuracy necessary for low-orbit operation. A new configuration consisting of a Pactruss backup structure, with identical panels installed after deployment in space, is presented. It is estimated that concentration ratios in excess of 2000 can be achieved with this concept.

  17. Mechanical wafer engineering for semitransparent polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Willeke, G.; Fath, P.

    1994-03-01

    A concept for the realization of semitransparent bifacially active highly efficient and light weight crystalline silicon solar cells is presented. The concept is based on the preparation of perpendicular V-grooves in silicon blanks by mechanical abrasion using a dicing saw and beveled blades. Holes of variable diameter are formed automatically in the processing step, which provide a connection between the passivated phosphorus doped front and back side emitters. A maximum bulk-emitter distance of ˜30 μm has been realized in 200 μm thick structures which should result in highly efficient solar cell devices even in small grain low quality polycrystalline material. The partial transparency of the presented solar cell structure opens the way for new applications (crystalline Si photovoltaic windows, etc.). The feasibility of the mechanical grooving process has been demonstrated on Wacker SILSO cast silicon. Double-side V-grooved structures (distance between grooves 90 and 140 μm, bevel angle 35°) with hole diameters in the range 10-70 μm, corresponding to a transmittance of up to 30% in the visible, have been prepared with excellent uniformity and mechanical stability over a large area (5×5 cm2). An average total reflectance in the range 500-1000 nm of Rav=0.9% has been measured on a structure with a geometrical hole fraction of 1.7% after growth of a 1170 Å thick layer of thermal oxide. This SILSO structure had an effective silicon thickness of 120 μm, whereas the absorptance spectrum near the band edge was similar to a 5.5 mm thick nongrooved silicon wafer, indicating the excellent light trapping obtained.

  18. Lithium concentration dependent structure and mechanics of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.

    2016-06-01

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  19. Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-01-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200degC in air and N{sub 2} respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850degC, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  20. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Significant improvements were made in the short-circuit current-decay method of measuring the recombination lifetime tau and the back surface recombination velocity S of the quasineutral base of silicon solar cells. The improvements include a circuit implementation that increases the speed of switching from the forward-voltage to the short-circuit conditions. They also include a supplementation of this method by some newly developed techniques employing small-signal admittance as a function of frequency omega. This supplementation is highly effective for determining tau for cases in which the diffusion length L greatly exceeds the base thickness W. Representative results on different solar cells are reported. Some advances made in the understanding of passivation provided by the polysilicon/silicon heterojunction are outlined. Recent measurements demonstrate that S 10,000 cm/s derive from this method of passivation.

  1. Silicon solar cells with nickel/solder metallization

    NASA Technical Reports Server (NTRS)

    Petersen, R. C.; Muleo, A.

    1981-01-01

    The use of nickel plus solder is shown to be feasible for contact metallization for silicon solar cells by offering a relatively inexpensive method of making electrical contact with the cell surfaces. Nickel is plated on silicon solar cells using an electroless chemical deposition method to give contacts with good adhesion, and in some cases where adhesion is poor initially, sintering under relatively mild conditions will dramatically improve the quality of the bond without harming the p-n junction of the cell. The cells can survive terrestrial environment stresses, which is demonstrated by a 1000 hour test at 85 C and 85% relative humidity under constant forward bias of 0.45 volt.

  2. Light funnel concentrator panel for solar power

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The solar concentrator design concept provides a theoretical concentration efficiency of 96 percent with power-to-weight ratios as high as 50 W/kg. Further, it eliminates the need for fragile reflective coatings and is very tolerant to pointing inaccuracies. The concept differs from conventional reflective mirrors and lens design in that is uses the principle of total internal reflection in order to funnel incident sunlight into a concentrator photovoltaic cell. The feasibility of the light funnel concentrator concept was determined through a balanced approach of analysis, development, and fabrication of prototypes, and testing of components. A three-dimensional optical model of the light funnel concentrator and photovoltaic cell was developed in order to assess the ultimate performance of such systems. In addition, a thermal and structural analysis of a typical unit was made. Techniques of fabricating the light funnel cones, optically coupling them to GaAs concentrator cells, bonding the funnels to GaAs cells, making electrical interconnects, and bonding substrates was explored and a prototype light funnel concentrator unit was fabricated and tested. Testing of the system included measurements of optical concentrating efficiency, optical concentrator to cell coupling efficiency, and electrical efficiency.

  3. Silicon halide-alkali metal flames as a source of solar grade silicon. Final report

    SciTech Connect

    Olson, D.B.; Miller, W.J.; Gould, R.K.

    1980-01-01

    The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  4. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  5. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  6. Laser doping for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jäger, Ulrich; Wolf, Andreas; Steinhauser, Bernd; Benick, Jan; Nekarda, Jan; Preu, Ralf

    2012-10-01

    Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of Δ ƞ= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high quality n-type silicon.

  7. Nonparabolic solar concentrators matching the parabola.

    PubMed

    Cooper, Thomas; Schmitz, Max; Good, Philipp; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2014-08-01

    We consider the limit of geometric concentration for a focusing concave mirror, e.g., a parabolic trough or dish, designed to collect all radiation within a finite acceptance angle and direct it to a receiver with a flat or circular cross-section. While a concentrator with a parabolic cross-section indeed achieves this limit, it is not the only geometry capable of doing so. We demonstrate that there are infinitely many solutions. The significance of this finding is that geometries which can be more easily constructed than the parabola can be utilized without loss of concentration, thus presenting new avenues for reducing the cost of solar collectors. In particular, we investigate a low-cost trough mirror profile which can be constructed by inflating a stack of thin polymer membranes and show how it can always be designed to match the geometric concentration of a parabola of similar form.

  8. Optimized metallization patterns for large-area silicon solar cells

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Chiang, S. Y.; Carbajal, B. G.

    1976-01-01

    Design criteria is presented for optimizing the front-surface metallization pattern of large-area silicon solar cells. A computer program calculates the spacing of metal fingers which minimizes resistive and shadowing losses. Finger spacing and efficiency for the optimum design are presented as a function of finger width and cell size. It is shown that quantitative evaluation of metallization pattern options can be made without cell fabrication.

  9. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  10. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    SciTech Connect

    Shen, L.; Liang, Z. C. Liu, C. F.; Long, T. J.; Wang, D. L.

    2014-02-15

    Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 10{sup 20} cm{sup −3} and 7.78 × 10{sup 20} cm{sup −3} and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 Ω/□ sheet resistance.

  11. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  12. Modeling of Silicon Heterojunction Solar Cells

    SciTech Connect

    Luppina, P.; Lugli, P.; Goodnick, S.

    2015-06-14

    Here we present modeling results on crystalline Si/amorphous Si (a-Si) heterojunction solar cells using Sentaurus including various models for defect states in the a-Si barriers, as well as explicit models for the ITO emitter contact. We investigate the impact of the band offsets and barrier heights of the a-Si/c-Si interface, particularly in terms of the open circuit voltage. It is also shown that the solar cell performance is sensitively dependent on the quality of the a-Si in terms of defect states and their distribution, particularly on the emitter side. Finally, we have investigate the role of tunneling and thermionic emission across the heterointerface in terms of transport from the Si to the ITO contact layer

  13. Amorphous-silicon solar cells with screen-printed metallization

    NASA Astrophysics Data System (ADS)

    Baert, Kris A.; Roggen, J.; Nijs, Johan F.; Mertens, Robert P.

    1990-03-01

    The use of screen printing for the back-side metallization of amorphous-silicon solar cells on glass is proposed. Compared with the conventional aluminum evaporation process, screen printing is attractive because it offers high throughput and because direct patterning is performed during the printing process. The critical point in realizing a thick-film screen-printed contact on amorphous-silicon solar cells is found to be the contact resistivity between the contact and the n-layer. Contact resistivities below 1 ohm-sq cm have been obtained using a microcrystalline instead of an amorphous n+ layer and a screen-printed contact based on Mo, Ti, or Ni. Amorphous-silicon solar cells with a screen-printed back contact had a performance comparable with that of cells with an evaporated Al contact, resulting in a efficiency of 9.7 percent. Spectral response measurements demonstrated that the screen-printed contact is an efficient reflector of long-wavelength photons, resulting in a high red response due to internal light trapping.

  14. Photoinjected hot-electron damage in silicon point-contact solar cells

    NASA Astrophysics Data System (ADS)

    Gruenbaum, P. E.; King, R. R.; Swanson, R. M.

    1989-12-01

    Initial designs of single-crystal silicon point-contact solar cells have shown a degradation in their efficiency after being exposed to concentrated sunlight. The main mechanism appears to be an increase in recombination centers at the Si/SiO2 interface due to ultraviolet light photoinjecting electrons from the silicon conduction band into the silicon dioxide that passivates the cell's front surface. The instability of the interface is significantly worse if the oxide is grown in the presence of trichloroethane. Texturization of the surface also leads to more instability. A reasonably good resistance to ultraviolet can be created by putting a phosphorus diffusion at the surface, and can be improved further by stripping off the deposited oxide after the diffusion and regrowing a dry thermal oxide.

  15. Production of fullerenes with concentrated solar flux

    NASA Astrophysics Data System (ADS)

    Hale, M. J.; Fields, C.; Lewandowski, A.; Bingham, C.; Pitts, R.

    1994-01-01

    Research at the National Renewable Energy Laboratory (NREL) has demonstrated that fullerenes can be produced using highly concentrated sunlight from a solar furnace. Since they were first synthesized in 1989, fullerenes have been the subject of intense research. They show considerable commercial potential in advanced materials and have potential applications that include semiconductors, superconductors, high-performance metals, and medical technologies. The most common fullerene is C60, which is a molecule with a geometry resembling a soccer ball. Graphite vaporization methods such as pulsed-laser vaporization, resistive heating, and carbon arc have been used to produce fullerenes. None of these, however, seems capable of producing fullerenes economically on a large scale. The use of concentrated sunlight may help avoid the scale-up limitations inherent in more established production processes. Recently, researchers at NREL made fullerenes in NREL's 10 kW high flux solar furnace (HFSF) with a vacuum reaction chamber designed to deliver a solar flux of 1200 W/sq cm to a graphite pellet. Analysis of the resulting carbon soot by mass spectrometry and high pressure liquid chromatography confirmed the existence of fullerenes. This paper presents the method, experimental apparatus, and results of fullerene production research performed with the HFSF.

  16. Ultralightweight Fresnel Lens Solar Concentrators for Space Power

    NASA Technical Reports Server (NTRS)

    ONeill, M. J.; McDanal, A. J.

    2000-01-01

    The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.

  17. Capacitance and conductance studies on silicon solar cells subjected to 8 MeV electron irradiations

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Bhat, P.; Rao, Asha; Sanjeev, Ganesh; Usha, G.; Priya, G. Krishna; Sankaran, M.; Puthanveettil, Suresh E.

    2015-06-01

    The space grade silicon solar cells were irradiated with 8 MeV electrons with doses ranging from 5-100 k Gy. Capacitance and conductance measurements were carried out in order to investigate the anomalous degradation of the cells in the radiation harsh environments and the results are presented in this paper. Detailed and systematic analysis of the frequency-dependent capacitance and conductance measurements were performed to extract the information about the interface trap states. The small increase in density of interface states was observed from the conductance-frequency measurements. The reduction in carrier concentration upon electron irradiation is due to the trapping of charge carriers by the radiation induced trap centres. The Drive Level Capacitance Profiling (DLCP) technique has been applied to study the properties of defects in silicon solar cells. A small variation in responding state densities with measuring frequency was observed and the defect densities are in the range 1015 -1016 cm-3.

  18. Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.

    2013-01-01

    NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.

  19. Diode laser processed crystalline silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Varlamov, S.; Eggleston, B.; Dore, J.; Evans, R.; Ong, D.; Kunz, O.; Huang, J.; Schubert, U.; Kim, K. H.; Egan, R.; Green, M.

    2013-03-01

    Line-focus diode laser is applied to advance crystalline silicon thin-film solar cell technology. Three new processes have been developed: 1) defect annealing/dopant activation; 2) dopant diffusion; 3) liquid phase crystallisation of thin films. The former two processes are applied to either create a solar cell device from pre-crystallised films or improve its performance while reducing the maximum temperature experienced by substrate. The later process is applied to amorphous silicon films to obtain high crystal and electronic quality material for thin-film solar cells with higher efficiency potential. Defect annealing/dopant activation and dopant diffusion in a few micron thick poly-Si films are achieved by scanning with line-focus 808 nm diode laser beam at 15-24 kW/cm2 laser power and 2~6 ms exposure. Temperature profile in the film during the treatment is independent from laser power and exposure but determined by beam shape. Solar cell open-circuit voltages of about 500 mV after such laser treatments is similar or even higher than voltages after standard rapid-thermal treatments while the highest temperature experienced by glass is 300C lower. Amorphous silicon films can be melted and subsequently liquid-phase crystallised by a single scan of line laser beam at about 20 kW/cm2 power and 10-15 ms exposure. Solar cells made of laser-crystallised material achieve 557 mV opencircuit voltage and 8.4% efficiency. Electronic quality of such cells is consistent with efficiencies exceeding 13% and it is currently limited by research-level simplified cell metallisation.

  20. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  1. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect

    Not Available

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  2. Silicon based solar cells using a multilayer oxide as emitter

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  3. Luminescent solar concentrator improvement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W.; Schmidt, Timothy W.; Argyros, Alexander

    2015-12-01

    Luminescent solar concentrators (LSCs) offer the prospect of reducing the cost of solar energy, and are a promising candidate for building integrated photovoltaic (PV) structures. However, the realization of commercially viable efficiency of LSCs is currently hindered by reabsorption losses. In this work, a method is introduced for reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire length of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption, and directed by the seed laser towards a small target PV cell. A mathematical model of such a system is presented which identifies different physical parameters responsible for the power conversion efficiency and gives the net effective output power.

  4. Luminescent solar concentrators utilizing stimulated emission.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power. PMID:27136870

  5. Luminescent solar concentrators utilizing stimulated emission.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  6. A cellular glass substrate solar concentrator

    NASA Technical Reports Server (NTRS)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  7. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation. PMID:26072893

  8. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  9. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  10. Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns.

    PubMed

    Sheu, Jinn-Kong; Chen, Fu-Bang; Wu, Shou-Hung; Lee, Ming-Lun; Chen, Po-Cheng; Yeh, Yu-Hsiang

    2014-08-25

    InGaN/GaN-based solar cells with vertical-conduction feature on silicon substrates were fabricated by wafer bonding technique. The vertical solar cells with a metal reflector sandwiched between the GaN-based epitaxial layers and the Si substrate could increase the effective thickness of the absorption layer. Given that the thermally resistive sapphire substrates were replaced by the Si substrate with high thermal conductivity, the solar cells did not show degradation in power conversion efficiency (PCE) even when the solar concentrations were increased to 300 suns. The open circuit voltage increased from 1.90 V to 2.15 V and the fill factor increased from 0.55 to 0.58 when the concentrations were increased from 1 sun to 300 suns. With the 300-sun illumination, the PCE was enhanced by approximately 33% compared with the 1-sun illumination.

  11. Effects of Impurities and Processing on Silicon Solar Cells, Phase 3

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.

  12. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  13. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories. PMID:18795026

  14. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  15. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  16. An evaluation of spectrally selective reflectors (cold mirror membranes) for use with concentrator solar arrays

    NASA Astrophysics Data System (ADS)

    Beauchamp, W. T.; Rancourt, J. D.; Lott, D. R.

    1980-06-01

    Spectrally selective reflector (SSR) coatings on lightweight transparent membranes were evaluated as a method of concentrating light for achieving increased power without suffering severe temperature losses on solar arrays. Analysis and laboratory tests indicate that SSR concentrators are more effective than opaque reflectors with both silicon and GaAs cells for increasing array output. Large area SSR membranes can be produced in roll to roll coaters at cost that will be competitive with other reflecting membranes.

  17. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  18. Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling

    SciTech Connect

    Fenning, D. P.; Bertoni, M. I.; Hudelson, S.; Buonassisi, T.; Hofstetter, J.; Canizo, C. del; Rinio, M.; Lelievre, J. F.; Lai, B.

    2011-04-18

    The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi{sub 2} precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively.

  19. Features of photoconversion in highly efficient silicon solar cells

    SciTech Connect

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, N. R.; Sokolovskyi, I. O.

    2015-02-15

    The photoconversion efficiency η in highly efficient silicon-based solar cells (SCs) is analyzed depending on the total surface-recombination rate S{sub s} on illuminated and rear surfaces. Solar cells based on silicon p-n junctions and α-Si:H or α-SiC:H-Si heterojunctions (so-called HIT structures) are considered in a unified approach. It is shown that a common feature of these SCs is an increased open-circuit voltage V{sub oc} associated with an additional contribution of the rear surface. Within an approach based on analysis of the physical features of photoconversion in SCs, taking into account the main recombination mechanisms, including Shockley-Read-Hall recombination, radiative recombination, surface recombination, recombination in the space-charge region, and band-to-band Auger recombination, expressions for the photoconversion efficiency of such SCs are obtained. The developed theory is compared with experiments, including those for SCs with record parameters, e.g., η = 25% and 24.7% for SCs with a p-n junction for HIT structures, respectively, under AM1.5 conditions. By comparing theory and experiment, the values of S{sub s} achieved as a result of recombination-loss minimization by various methods are determined. The results of calculations of the maximum possible value η{sub max} in silicon SCs are compared with the data of other papers. Good agreement is observed.

  20. Horizontal Silicon Nanowires with Radial p-n Junctions: A Platform for Unconventional Solar Cells.

    PubMed

    Zhang, Xing; Pinion, Christopher W; Christesen, Joseph D; Flynn, Cory J; Celano, Thomas A; Cahoon, James F

    2013-06-20

    The silicon p-n junction is the most successful solar energy technology to date, yet it accounts for a marginal percentage of worldwide energy production. To change the status quo, a disruptive technological breakthrough is needed. In this Perspective, we discuss the potential for complex silicon nanowires to serve as a platform for next-generation photovoltaic devices. We review the synthesis, electrical characteristics, and optical properties of core/shell silicon nanowires that are subwavelength in diameter and contain radial p-n junctions. We highlight the unique features of these nanowires, such as optical antenna effects that concentrate light and intense built-in electric fields that enable ultrafast charge-carrier separation. We advocate a paradigm in which nanowires are arranged in periodic horizontal arrays to form ultrathin devices. Unlike conventional planar silicon, nanowire structures provide the flexibility to incorporate multiple semiconductor, dielectric, and metallic materials in a single system, providing the foundation for a disruptive, unconventional solar energy technology.

  1. Horizontal Silicon Nanowires with Radial p-n Junctions: A Platform for Unconventional Solar Cells.

    PubMed

    Zhang, Xing; Pinion, Christopher W; Christesen, Joseph D; Flynn, Cory J; Celano, Thomas A; Cahoon, James F

    2013-06-20

    The silicon p-n junction is the most successful solar energy technology to date, yet it accounts for a marginal percentage of worldwide energy production. To change the status quo, a disruptive technological breakthrough is needed. In this Perspective, we discuss the potential for complex silicon nanowires to serve as a platform for next-generation photovoltaic devices. We review the synthesis, electrical characteristics, and optical properties of core/shell silicon nanowires that are subwavelength in diameter and contain radial p-n junctions. We highlight the unique features of these nanowires, such as optical antenna effects that concentrate light and intense built-in electric fields that enable ultrafast charge-carrier separation. We advocate a paradigm in which nanowires are arranged in periodic horizontal arrays to form ultrathin devices. Unlike conventional planar silicon, nanowire structures provide the flexibility to incorporate multiple semiconductor, dielectric, and metallic materials in a single system, providing the foundation for a disruptive, unconventional solar energy technology. PMID:26283243

  2. Nonimaging optics in luminescent solar concentration.

    PubMed

    Markman, B D; Ranade, R R; Giebink, N C

    2012-09-10

    Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design. PMID:23037529

  3. Polyimide based amorphous silicon solar modules

    NASA Technical Reports Server (NTRS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  4. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    SciTech Connect

    Maruska, P

    1996-09-01

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  5. Light-induced anodisation of silicon for solar cell passivation

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wang, X.; Opila, R.; Lennon, A.

    2013-11-01

    This paper reports a new method for forming anodic oxides on silicon surfaces using the light-induced current of pn-junction solar cells to make p-type silicon surfaces anodic. The light-induced anodisation process enables anodic oxide layers as thick as 79 nm to be formed at room temperature in a faster, more uniform, and controllable manner compared to previously reported clip-based anodisation methods. Although the effective minority carrier lifetime decreased immediately after light-induced anodisation from initial values measured with an 17 nm thermally grown oxide on both wafer surfaces, the 1-sun implied open circuit voltage of wafers on which the thermally grown oxide on the p-type surface was replaced by an anodic oxide of the same thickness could be returned to its initial value of ˜635 mV (for 3-5 Ω-cm Cz silicon wafers) after a 400 °C anneal in oxygen and then forming gas. The passivation of the formed anodic oxide layers was stable for a period of 50 days providing the oxide was protected by a 75 nm thick silicon nitride capping layer.

  6. Simulation of an electrowetting solar concentration cell

    NASA Astrophysics Data System (ADS)

    Khan, Iftekhar; Rosengarten, Gary

    2015-09-01

    Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.

  7. The Production of Solar Cell Grade Silicon from Bromosilanes

    NASA Technical Reports Server (NTRS)

    Schumacher, J. C.; Woerner, L.; Moore, E.; Newman, C.

    1979-01-01

    A continuous Flow Reactor (CFR) process based on the hydrogen reduction of the bromosilanes SiBr4 and SiHBr3 was proposed. Initial experiments carried and directed at obtaining overall yield data for bromosilane reduction in the CFR, indicated the need for increased reactor residence time and deposition substrate particle packing density to fully characterize the kinetics (rate) and thermodynamics (yield) of observed silicon production. Fluidized bed experiments were therefore initiated to overcome these experimental difficulties, which showed both thermal decomposition and hydrogen reduction of SiHBr3 in a fluid bed reactor to present attractive closed-loop processes for producing solar cell grade polycrystalline silicon. No process selection could be made however due to the fact that preliminary optimization of 2 of 3 process stages in each case during the course of the experimental program showed comparable attainment of cost element objectives.

  8. Towards a 700 mV silicon solar cell

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Blakers, A. W.; Gauja, E.; Willison, M. R.; Szpitalak, T.

    1982-01-01

    The key to improved silicon solar cell performance lies in increasing cell open circuit voltage. Not only does improved voltage direclty increase cell efficiency, but it also increases the limiting value of fill factor and decreases the temperature sensitivity of the cell. Limits on attainable open circuit voltage are not well defined. A thermodynamic limit of 850 mV exists for black body silicon cells, with 700 mV long regarded as a practical limit. This paper describes experimental work which has resulted in experimental devices with open circuit voltages approaching 700 mV. Values up to 694 (AM0, 25 C) have been demonstrated. The cells are similar in structure to conventional p-n junction cells, but particular attention is paid to passivating the entire top surface of the cell, including regions under the top contact.

  9. Effects of impurities on silicon solar-cell performance

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs (back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings) can produce devices with conversion efficiencies above 20%. To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentraion at which cell performance degrades is more than an order of magnitude lower for an 18% cell than for a 16% cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as grown material can lead to the production of devices with efficiencies above 18%, as verified experimentally.

  10. 22.8 percent efficient silicon solar cell

    NASA Astrophysics Data System (ADS)

    Blakers, Andrew W.; Wang, Aihua; Milne, Adele M.; Zhao, Jianhua; Green, Martin A.

    1989-09-01

    A new silicon solar cell structure, the passivated emitter and rear cell (PERC), is described. There are two major differences between the PERC and the cells reported earlier by Green et al. (1984, 1988). One is a structural difference, arising from the method of contacting the cell rear by a large number of contact holes through a passivating oxide layer. The second is the use of chlorine-based processing, to maintain high minority-carrier lifetimes during processing and to improve the quality of the passivating oxide enshrouding the cell. Devices with the PERC structure of 40sq-cm area, fabricated on 0.2 ohm cm p-type float zone substrates, demonstrated energy conversion efficiency of 22.8 percent, the highest efficiency ever reported for a silicon cell.

  11. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  12. Applications of nonimaging optics for very high solar concentrations

    SciTech Connect

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  13. Solar Concentrator Demonstrator for Lunar Regolith Processing

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Gerrish, Harold P.; Patrick, Stephen L.

    2008-01-01

    NASA at the Marshall Space Flight Center (MSFC) is building a portable inflatable solar concentrator ground demonstrator for use in testing in-situ resource utilization (ISRU) lunar regolith processing methods. Of primary interest is the production of oxygen as a propellant oxidizer and for life support. There are various processes being proposed for the in-situ reduction of the lunar regolith, the leading processes are hydrogen reduction, carbothermal reduction and vapor phase pyrolysis. The concentrator system being built at MSFC could support demonstrations of all of these processes. The system consists of a light inflatable concentrator that will capture sunlight and focus it onto a receiver inside a vacuum chamber. Inflatable concentrators are good for space based applications due to their low weight and dense packaging at launch. The hexapod design allows the spot size to be increased to reduce the power density if needed for the process being demonstrated. In addition to the hardware development, a comprehensive simulation model is being developed and will be verified and validated using the system hardware. The model will allow for the evaluation of different lunar locations and operational scenarios for the lunar regolith processing with a high confidence in the predicted results.

  14. Critical Concentration Ratio for Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    ur Rehman, Naveed; Siddiqui, Mubashir Ali

    2016-06-01

    A correlation for determining the critical concentration ratio (CCR) of solar concentrated thermoelectric generators (SCTEGs) has been established, and the significance of the contributing parameters is discussed in detail. For any SCTEG, higher concentration ratio leads to higher temperatures at the hot side of modules. However, the maximum value of this temperature for safe operation is limited by the material properties of the modules and should be considered as an important design constraint. Taking into account this limitation, the CCR can be defined as the maximum concentration ratio usable for a particular SCTEG. The established correlation is based on factors associated with the material and geometric properties of modules, thermal characteristics of the receiver, installation site attributes, and thermal and electrical operating conditions. To reduce the number of terms in the correlation, these factors are combined to form dimensionless groups by applying the Buckingham Pi theorem. A correlation model containing these groups is proposed and fit to a dataset obtained by simulating a thermodynamic (physical) model over sampled values acquired by applying the Latin hypercube sampling (LHS) technique over a realistic distribution of factors. The coefficient of determination and relative error are found to be 97% and ±20%, respectively. The correlation is validated by comparing the predicted results with literature values. In addition, the significance and effects of the Pi groups on the CCR are evaluated and thoroughly discussed. This study will lead to a wide range of opportunities regarding design and optimization of SCTEGs.

  15. Critical Concentration Ratio for Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    ur Rehman, Naveed; Siddiqui, Mubashir Ali

    2016-10-01

    A correlation for determining the critical concentration ratio (CCR) of solar concentrated thermoelectric generators (SCTEGs) has been established, and the significance of the contributing parameters is discussed in detail. For any SCTEG, higher concentration ratio leads to higher temperatures at the hot side of modules. However, the maximum value of this temperature for safe operation is limited by the material properties of the modules and should be considered as an important design constraint. Taking into account this limitation, the CCR can be defined as the maximum concentration ratio usable for a particular SCTEG. The established correlation is based on factors associated with the material and geometric properties of modules, thermal characteristics of the receiver, installation site attributes, and thermal and electrical operating conditions. To reduce the number of terms in the correlation, these factors are combined to form dimensionless groups by applying the Buckingham Pi theorem. A correlation model containing these groups is proposed and fit to a dataset obtained by simulating a thermodynamic (physical) model over sampled values acquired by applying the Latin hypercube sampling (LHS) technique over a realistic distribution of factors. The coefficient of determination and relative error are found to be 97% and ±20%, respectively. The correlation is validated by comparing the predicted results with literature values. In addition, the significance and effects of the Pi groups on the CCR are evaluated and thoroughly discussed. This study will lead to a wide range of opportunities regarding design and optimization of SCTEGs.

  16. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  17. Analysis of costs of gallium arsenide and silicon solar arrays for space power applications

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.

    1981-01-01

    A parametric analysis was performed to compare the costs of silicon and gallium arsenide arrays for Earth orbital missions. The missions included electric power in low Earth orbit (LEO), electric power in geosynchronous Earth orbit (GEO), and power for electric propulsion of a LEO to GEO orbit transfer mission. Inputs to the analysis for all missions included launch and purchase costs of the array. For the orbit transfer mission, the launch and purchase costs of the electric propulsion system were added. Radiation flux as a function of altitude and rediation tolerance as a function of cell type were used to determine power degradation for each mission. Curves were generated that show the sensitivity of launch-array cost and total mission cost to a variety of input parameters for each mission. These parameters included mission duration, cover glass thickness, array specific cost, array specific mass, and solar cell efficiency. Solar concentration was considered and the sensitivities of cost to concentration ratio, concentrator costs, and concentrator mass were also evaluated. Results indicate that solar cell development should give a high priority to reducing array costs and that the development of low cost, lightweight, solar concentrators should be pursued.

  18. Photo-Injected Hot-Electron Damage at the Silicon/silicon Dioxide Interface in Point-Contact Solar Cells.

    NASA Astrophysics Data System (ADS)

    Gruenbaum, Peter E.

    1990-01-01

    Point-contact solar cells currently hold the record for the most efficient silicon solar cell, reaching 28.5% under concentrated sunlight. These cells have both p and n contacts on the back, eliminating the losses due to grid shadowing found in a conventional cell. However, this means that the electron-hole pairs created near the front of the cell during illumination must diffuse all the way to the back of the cell without recombining. Therefore, point-contact solar cells have been processed to have the minimum number of recombination centers possible. Unfortunately, a decrease in the efficiency of these highly efficient cells can be measured after exposure to concentrated sunlight for just a few hours. The degradation was found to be due to an increase in the surface recombination velocity at the front surface of the cell. Experimental evidence suggests that what is occurring is an effect called "hot electron photoinjection", where electrons can absorb enough energy from an ultraviolet photon that they can overcome the 3.1 eV barrier between the silicon conduction band and the oxide conduction band, and be injected from the silicon into the oxide. This injection has been reported to create interface states, although the mechanism is not well understood. By utilizing literature results about hot electron injection, we were able to slow the degradation rate considerably by altering oxidation conditions to reduce water and mechanical stress at the interface. The stability of the cells also can be increased greatly by putting a light phosphorus diffusion at the interface. This creates an electric field near the surface that will keep holes away from the interface; since both electrons and holes are needed for recombination, the carrier recombination at the surface will be reduced, even though the surface recombination velocity itself can be very high. We have also been able to utilize the hot -electron resistance of ultrathin oxides by putting them on the front of

  19. Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-23

    The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

  20. Development of low cost contacts to silicon solar cells

    NASA Technical Reports Server (NTRS)

    Tanner, D. P.

    1980-01-01

    The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.

  1. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  2. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  3. Performance measurement of low concentration ratio solar array for space application

    NASA Technical Reports Server (NTRS)

    Mills, M. W.

    1984-01-01

    The measured performance of a silicon and a gallium arsenide low concentration ratio solar array (LCRSA) element is presented. The element characteristics measured in natural sunlight are off pointing performance and response to mechanical distortions. Laboratory measurements of individual silicon and gallium-arsenide solar cell assemblies are also made. The characteristics measured in the laboratory involved responses to temperature and intensity variations as well as to the application of reverse bias potentials. The element design details covered include the materials, the solar cells, and the rationale for selecting these specific characteristics. The measured performance characteristics are contrasted with the predicted values for both laboratory testing and high altitude natural sunlight testing. Excellent agreement between analytical predictions and measured performance is observed.

  4. Low concentration solar louvres for building integration

    NASA Astrophysics Data System (ADS)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  5. Modular off-axis solar concentrator

    SciTech Connect

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  6. Enclosed, off-axis solar concentrator

    DOEpatents

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  7. High efficiency silicon nanohole/organic heterojunction hybrid solar cell

    SciTech Connect

    Hong, Lei; Wang, Xincai; Zheng, Hongyu; He, Lining; Wang, Hao; Rusli E-mail: erusli@ntu.edu.sg; Yu, Hongyu E-mail: erusli@ntu.edu.sg

    2014-02-03

    High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1 μm. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

  8. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  9. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  10. Dry plasma processing for industrial crystalline silicon solar cell production

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Rentsch, J.; Preu, R.

    2010-10-01

    This paper gives an overview on the standard crystalline silicon solar cell manufacturing processes typically applied in industry. Main focus has been put on plasma processes which can replace existing, mainly wet chemical processes within the standard process flow. Finally, additional plasma processes are presented which are suited for higher-efficient solar cells, i.e. for the “passivated emitter and rear cell” concept (PERC) or the “heterojunction with intrinsic thin layer” approach (HIT). Plasma processes for the deposition of thin dielectric or semiconducting layers for surface passivation, emitter deposition or anti-reflective coating purposes are presented. Plasma etching processes for the removal of phosphorus silicate glass or parasitic emitters, for wafer cleaning and masked and mask-free surface texturisation are discussed.

  11. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  12. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  13. Burst annealing of electron damage in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Day, A. C.; Horne, W. E.; Thompson, M. A.; Lancaster, C. A.

    1985-01-01

    A study has been performed of burst annealing of electron damage in silicon solar cells. Three groups of cells consisting of 3 and 0.3 ohm-cm silicon were exposed to fluences of 2 x 10 to the 14th power, 4 x 10 to the 14th power, and 8 x 10 to the 14th power 1-MeV electrons/sq cm, respectively. They were subsequently subjected to 1-minute bursts of annealing at 500 C. The 3 ohm-cm cells showed complete recovery from each fluence level. The 0.3 ohm-cm cells showed complete recovery from the 2 x 10 to the 14th power e/sq cm fluence; however, some of the 0.3 ohm-cm cells did not recover completely from the higher influences. From an analysis of the results it is concluded that burst annealing of moderate to high resistivity silicon cell arrays in space is feasible and that with more complete understanding, even the potentially higher efficiency low resistivity cells may be usable in annealable arrays in space.

  14. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  15. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  16. Recombination-active defects in silicon ribbon and polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1984-01-01

    This paper reports results from a study of recombination-active structural defects in silicon ribbon and polycrystalline solar cells using the electron beam induced current (EBIC) technique in a scanning electron microscope. It is demonstrated that low temperature EBIC measurements can reveal a range of defects that are not observable at room temperature, including slip dislocations in silicon dendritic web ribbons as well as decorated twin boundaries and dislocation complexes in cast polycrystalline silicon solar cell materials.

  17. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  18. Direct glass bonded high specific power silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.

    1991-01-01

    A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.

  19. Solar cells and modules from dentritic web silicon

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Rohatgi, A.; Seman, E. J.; Davis, J. R.; Rai-Choudhury, P.; Gallagher, B. D.

    1980-01-01

    Some of the noteworthy features of the processes developed in the fabrication of solar cell modules are the handling of long lengths of web, the use of cost effective dip coating of photoresist and antireflection coatings, selective electroplating of the grid pattern and ultrasonic bonding of the cell interconnect. Data on the cells is obtained by means of dark I-V analysis and deep level transient spectroscopy. A histogram of over 100 dentritic web solar cells fabricated in a number of runs using different web crystals shows an average efficiency of over 13%, with some efficiencies running above 15%. Lower cell efficiency is generally associated with low minority carrier time due to recombination centers sometimes present in the bulk silicon. A cost analysis of the process sequence using a 25 MW production line indicates a selling price of $0.75/peak watt in 1986. It is concluded that the efficiency of dentritic web cells approaches that of float zone silicon cells, reduced somewhat by the lower bulk lifetime of the former.

  20. Solar Concentration for Electricity and Cooking

    NASA Astrophysics Data System (ADS)

    Kim, Mike; Fourt, Connor; Schwartz, Pete; Lee, Michael; Frostholm, Taylor; Fernandes, Josh; Tower, Jared

    2012-11-01

    Over 8000 Schefflers exist worldwide, mostly in Africa and Asia. Having constructed the first Scheffler reflector in North America 2 years ago, the next goal was to make it less expensive. The original model took 4 students 2 months and about 1000. In order to lower the cost and construction time the design was minimized, less expensive materials were used, and the construction process was automated. The original complex frame took 1000 people-hours and it was minimized to a day. Instead of using aluminum for the reflective dish, we turned to using aluminized Mylar, which cut the cost by over 90%. A thermal storage unit was added to extend cooking time well into the evening. Finally, a concentrated solar module of High Efficiency Photo Voltaics (HEPV) is to be placed at the focus of the concentrator to generate electricity and water as a byproduct. The final cost is estimated to be about 200 (0.10 per thermal watt) including the HEPV, an 80% cost reduction. Such technology is practical in the U.S. as well as developing nations.

  1. Amorphous-silicon thin-film heterojunction solar cells

    SciTech Connect

    Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

    1981-01-01

    The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

  2. Silicon materials task of the low cost solar array project, part 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rai-Choudhury, P.; Blais, P. D.; Mccormick, J. R.

    1976-01-01

    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency.

  3. Measurement and Characterization of Concentrator Solar Cells II

    NASA Technical Reports Server (NTRS)

    Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave

    2005-01-01

    Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].

  4. Origin of reverse annealing in radiation-damaged silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation damaged n(+)/p silicon solar cell. It is reported that the responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400 C.

  5. Toward a systematic design theory for silicon solar cells using optimization techniques

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    This work is a first detailed attempt to systematize the design of silicon solar cells. Design principles follow from three theorems. Although the results hold only under low injection conditions in base and emitter regions, they hold for arbitrary doping profiles and include the effects of drift fields, high/low junctions and heavy doping concentrations of donor or acceptor atoms. Several optimal designs are derived from the theorems, one of which involves a three-dimensional morphology in the emitter region. The theorems are derived from a nonlinear differential equation of the Riccati form, the dependent variable of which is a normalized recombination particle current.

  6. Optimization of antireflection coating design for multijunction solar cells and concentrator systems

    NASA Astrophysics Data System (ADS)

    Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin

    2008-06-01

    Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.

  7. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  8. Study of the effects of impurities on the properties of silicon materials and performance of silicon solar cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1981-01-01

    The effect of silicon film thickness on the energy conversion efficiency of a back surface field solar cell is investigated. A computer-aided design study on the dependence of efficiency peaks on the concentrations of the recombination and dopant impurities is presented. The illuminated current voltage characteristics of over 100 cell designs were obtained using the transmission line circuit model to numerically solve the Shockley Equations. Using an AM1 efficiency of 17% as a target value, it is shown that the efficiency versus thickness dependence has a broad maximum which varies less than 1% over more than three-to-one range of cell thickness from 30 to 100 microns. Optical reflecting back surface will give only a slight improvement of AM1 efficiency, about 0.7%, in this thickness range. The sensitive dependence of efficiency on patchiness across the back surface field, low high junction in thin cells is noted.

  9. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.

    PubMed

    Ziegler, Johannes; Haschke, Jan; Käsebier, Thomas; Korte, Lars; Sprafke, Alexander N; Wehrspohn, Ralf B

    2014-10-20

    The influence of different black silicon (b-Si) front side textures prepared by inductively coupled reactive ion etching (ICP-RIE) on the performance of back-contacted back silicon heterojunction (BCB-SHJ) solar cells is investigated in detail regarding their optical performance, black silicon surface passivation and internal quantum efficiency. Under optimized conditions the effective minority carrier lifetime measured on black silicon surfaces passivated with Al(2)O(3) can be higher than lifetimes measured for the SiO(2)/SiN(x) passivation stack used in the reference cells with standard KOH textures. However, to outperform the electrical current of silicon back-contact cells, the black silicon back-contact cell process needs to be optimized with aspect to chemical and thermal stability of the used dielectric layer combination on the cell.

  10. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  11. Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.

  12. National solar technology roadmap: Film-silicon PV

    SciTech Connect

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  13. Solar Grade Silicon from Agricultural By-products

    SciTech Connect

    Richard M. Laine

    2012-08-20

    In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it

  14. Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Shi, Zhen-Liang; Ji, Yun; Yu, Wei; Yang, Yan-Bin; Cong, Ri-Dong; Chen, Ying-Juan; Li, Xiao-Wei; Fu, Guang-Sheng

    2015-07-01

    Microcrystalline silicon (μc-Si:H) solar cell with graded band gap microcrystalline silicon oxide (μc-SiOx:H) buffer layer is prepared by plasma enhanced chemical vapor deposition and exhibits improved performance compared with the cell without it. The buffer layer moderates the band gap mismatch by reducing the barrier of the p/i interface, which promotes the nucleation of the i-layer and effectively eliminates the incubation layer, and then enhances the collection efficiency of the cell in the short wavelength region of the spectrum. The p/i interface defect density also decreases from 2.2 × 1012 cm-2 to 5.0 × 1011 cm-2. This graded buffer layer allows to simplify the deposition process for the μc-Si:H solar cell application. Project supported by the Key Basic Research Project of Hebei Province, China (Grant Nos. 12963930D and 12963929D), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and E2012201059), and the Science and Technology Research Projects of the Education Department of Hebei Province, China (Grant No. ZH2012030).

  15. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    PubMed

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  16. Gettering and passivation of high efficiency multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Narasimha, S.; Cai, L.

    1997-02-01

    A detailed study was conducted on aluminum and phosphorus gettering in HEM mc-Si and defect passivation by PECVD SiN in EFG mc-Si to achieve high efficiency solar cells on these promising photovoltaic materials. Solar cells with efficiencies as high as 18.6% (1 cm2 area) were achieved on multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM) by a process which implements impurity gettering, an effective back surface field, front surface passivation, and forming gas annealing. This represents the highest reported solar cell efficiency on mc-Si to date. PCD analysis revealed that the bulk lifetime in certain HEM samples after phosphorus gettering can be as high as 135 μs. By incorporating a deeper aluminum back surface field (Al-BSF), the back surface recombination velocity (Sb) for 0.65 Ω-cm HEM mc-Si solar cells was lowered from 10,000 cm/s to 2,000 cm/s resulting in the 18.6% efficient device. It was also observed that a screen-printed/RTP alloyed Al-BSF process could raise the efficiency of both float zone and relatively defect-free mc-Si solar cells by lowering Sb. However, this process was found to increase the electrical activity of extended defects so that mc-Si devices with a significant defect density showed an overall degradation in performance. In the case of EFG mc-Si, neural network modeling in conjunction with a study of post deposition annealing was used to provide guidelines for effective defect passivation by PECVD SiN films. Appropriate deposition and annealing conditions resulted in a 45% increase in cell efficiency due to AR coating and another 25-30% increase due to defect passivation by atomic hydrogen.

  17. High Efficiency Hybrid Silicon Nanopillar-Polymer Solar Cells

    PubMed Central

    Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Sharma, Manisha; Elam, David; Ponce, Arturo; Ayon, Arturo A

    2014-01-01

    Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ~10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell. PMID:24032746

  18. Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).

  19. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    SciTech Connect

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solar cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.

  20. Progress in amorphous silicon solar cells produced by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Moustakas, T. D.

    The photovoltaic properties of reactively sputtered amorphous silicon are reviewed and it is shown that efficient PIN solar cells can be fabricated by the method of sputtering. The photovoltaic properties of the intrinsic films correlate with their structural and compositional inhomogeneities. Hydrogen incorporation and small levels of phosphorus and boron impurities also affect the photovoltaic properties through reduction of residual dangling bond related defects and modification of their occupation. The optical and transport properties of the doped P and N-films were found to depend sensitively on the amount of hydrogen and boron or phosphorus incorporation into the films as well as on their degree of crystallinity. Combination of the best intrinsic and doped films leads to PIN solar cell structures generating J(sc) of 13 mA/sq cm and V(oc) of between 0.85 to 0.95 volts. The efficiency of these devices, 5 to 6 percent, is limited by the low FF, typically about 50 percent. As a further test to the potential of this technology efficient tandem solar cell structures were fabricated, and device design concepts, such as the incorporation of optically reflective back contacts were tested.

  1. Development of thin wraparound junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1981-01-01

    The state of the art technologies was applied to fabricate 50 micro thick 2x4 cm, coplanar back contact (CBC) solar cells with AMO efficiency above 12%. A requirement was that the cells have low solar absorptance. A wraparound junction (WAJ) with wraparound metallization was chosen. This WAJ approach avoided the need for very complex fixturing, especially during rotation of the cells for providing adequate contacts over dielectric edge layers. The contact adhesion to silicon was considered better than to an insulator. It is indicated that shunt resistance caused by poor WAJ diode quality, and series resistance from the WAJ contact, give good cell performance. The cells developed reached 14 percent AMO efficiency (at 25 C), with solar absorptance values of 0.73. Space/cell environmental tests were performed on these cells and the thin CSC cells performed well. The optimized design configuration and process sequence were used to make 50 deliverable CBC cells. These cells were all above 12 percent efficiency and had an average efficiency of -13 percent. Results of environmental tests (humidity-temperature, thermal shock, and contact adherence) are also given.

  2. Optical, thermal, and electrical performance of low-CR solar arrays. [Concentration Ratio

    NASA Technical Reports Server (NTRS)

    French, E. P.; Mills, M. W.; Backovsky, Z.

    1983-01-01

    This paper describes the analysis and testing of a photovoltaic low-CR concentrator shaped like a truncated pyramid with an aperture of 0.5 m on a side and a geometric concentration ratio of six. The truncated base plane is covered by either silicon (Si) or gallium arsenide (GaAs) solar cells. Ray-trace analysis of the concentrator predicts a peak optical efficiency of 0.77, which falls off only gradually with pointing error. A coupled thermal-electrical analysis of the system shows that the moderately nonuniform illumination produced by the concentrator does not result in significant mismatch losses, provided the solar cells are connected in parallel groups. The results of ground tests involving a full-scale prototype concentrator conform well with theoretical predictions.

  3. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  4. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2014-01-13

    Recent research in the field of photovoltaic and solar cell fabrication has shown the potential to significantly enhance light absorption in thin-film solar cells by using surface texturing and nanostructure coating techniques. In this paper, for the first time, we propose a new method for nano sandwich type thin-film solar cell fabrication by combining the laser amorphization (2nd solar cell generation) and laser nanofibers generation (3rd solar cell generation) techniques. In this novel technique, the crystalline silicon is irradiated by megahertz frequency femtosecond laser pulses under ambient conditions and the multi-layer of amorphorized silicon and nano fibrous layer are generated in the single-step on top of the silicon substrate. Light spectroscopy results show significant enhancement of light absorption in the generated multi layers solar cells (Silicon Oxide nanofibers / thin-film amorphorized silicon). This method is single step and no additional materials are added and both layers of the amorphorized thin-film silicon and three-dimensional (3D) silicon oxide nanofibrous structures are grown on top of the silicon substrate after laser irradiation. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofibers/thin-film cells by optimizing the laser pulse duration. PMID:24921988

  5. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  6. Development of Highly Conductive Boron-Doped Microcrystalline Silicon Films for Application in Solar Cells

    NASA Astrophysics Data System (ADS)

    Lei, Qing-Song; Wu, Zhi-Meng; Xi, Jian-Ping; Geng, Xin-Hua; Zhao, Ying; Sun, Jian

    We have examined the deposition of highly conductive boron-doped microcrystalline silicon (μc-Si:H) films for application in solar cells. Depositions were conducted in a very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) chamber. In the deposition processes, various substrate temperatures (TS) were applied. Highly conductive p-type microcrystalline silicon films were obtained at substrate temperature lower than 210°C. The factors that affect the conductivity of the films were investigated. Results suggest that the dark conductivity, which was determined by the Hall mobility and carrier concentration, is influenced by the structure. The properties of the films are strongly dependent on the substrate temperature. With TS increasing, the dark conductivity (σd) increases initially; reach the maximum values at certain TS and then decrease. Also, we applied the boron-doped μc-Si:H as p-layers to the solar cells. An efficiency of about 8.5% for a solar cell with μc-Si:H p-layer was obtained.

  7. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  8. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    SciTech Connect

    Geissbühler, Jonas Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain; Ballif, Christophe

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  9. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    NASA Astrophysics Data System (ADS)

    Geissbühler, Jonas; Werner, Jérémie; Martin de Nicolas, Silvia; Barraud, Loris; Hessler-Wyser, Aïcha; Despeisse, Matthieu; Nicolay, Sylvain; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-08-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  10. Analytical energy-barrier-dependent Voc model for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Castro-Carranza, A.; Nolasco, J. C.; Reininghaus, N.; Geißendörfer, S.; Vehse, M.; Parisi, J.; Gutowski, J.; Voss, T.

    2016-07-01

    We show that the open circuit voltage (Voc) in hydrogenated amorphous silicon (a-Si:H) solar cells can be described by an analytical energy-barrier-dependent equation, considering thermionic emission as the physical mechanism determining the recombination current. For this purpose, the current-voltage characteristics of two device structures, i.e., a-Si:H(n)/a-Si:H(i)/a-Si:H(p)/AZO p-i-n solar cells with different p-doping concentrations and a-Si:H(n)/a-Si:H(i)/AZO Schottky structures with different intrinsic layer thicknesses, were analyzed in dark and under illumination, respectively. The calculated barrier in the p-i-n devices is consistent with the difference between the work function of the p-layer and the conduction band edge of the i-layer at the interface in thermal equilibrium.

  11. Unanalyzed ion implantation procedure with incoherent light scanning annealing for silicon solar cells manufacturing

    SciTech Connect

    Bentini, G.; Correra, L.; Galloni, R.; Hage-Ali, M.; Mesli, A.; Muller, J.C.; Pedulli, L.; Siffert, P.

    1982-09-01

    Unanalyzed ion implantation procedure (AMI technique) in association with incoherent light scanning annealing in the solid phase regime has been experimented to obtain solar cells. Silicon single crystals have been used to get a better understanding of the process and to make direct comparison with other doping process. The main results of the characterization of the doped layer are: the carrier concentration profile shows a maximum of 3-4 x 10/sup 20/ cm/sup -3/ active ions; the values of carrier mobility are similar to these obtained by furnace annealing. Solar cells test at AM1 show promising values for efficiency. These results have been compared to AMI procedure followed by a laser pulsed annealing in the liquid phase regime and to classical ion implantion solid phase annealed with the incoherent light.

  12. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  13. Electricity from sunlight. [low cost silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.

    1978-01-01

    The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.

  14. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.

  15. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  16. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    PubMed

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  17. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C.

  18. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint

    SciTech Connect

    Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P.

    2012-06-01

    Post-deposition hydrogenation by remote plasma significantly improves performance of heteroepitaxial silicon solar cells. Heteroepitaxial deposition of thin crystal silicon on sapphire for photovoltaics (PV) is an excellent model system for the study and improvement of deposition on inexpensive Al2O3-coated (100) biaxially-textured metal foils. Without hydrogenation, PV conversion efficiencies are less than 1% on our model system. Performance is limited by carrier recombination at electrically active dislocations that result from lattice mismatch, and other defects. We find that low-temperature hydrogenation at 350 degrees C is more effective than hydrogenation at 610 degrees C. In this work, we use measurements such as spectral quantum efficiency, secondary ion mass spectrometry (SIMS), and vibrational Si-H spectroscopies to understand the effects of hydrogenation on the materials and devices. Quantum efficiency increases most at red and green wavelengths, indicating hydrogenation is affecting the bulk more than the surface of the cells. SIMS shows there are 100X more hydrogen atoms in our cells than dangling bonds along dislocations. Yet, Raman spectroscopy indicates that only low temperature hydrogenation creates Si-H bonds; trapped hydrogen does not stably passivate dangling-bond recombination sites at high temperatures.

  19. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C. PMID:26787682

  20. A novel simultaneous diffusion technology for low-cost, high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas Wendell

    Crystalline silicon solar cells account for ˜80% of the modules produced today, and clearly represent the dominant technology for terrestrial photovoltaics applications. In the present work, a novel processing technology was developed to simultaneously diffuse a phosphorus (nsp+) emitter, a boron (psp+) Back Surface Field (BSF), and grow a thin passivating thermal oxide in-situ, for the production of high efficiency nsp+ppsp+ silicon solar cells in a single thermal cycle. This novel processing technology uses dummy silicon wafers coated with Boron (B) and Phosphorus (P) spin-on dopant films as planar doping sources. These homemade B and P sources are interleaved with the solar cell wafers to simultaneously form nsp+ emitter and psp+ BSF diffusions on opposite sides of a silicon wafer. It is shown that the surface concentration of boron and phosphorus can be independently tailored within a fixed thermal budget by controlling the B and P concentration in the Spin-On Dopant (SOD) films. Since the residual diffusion glass is only 50-75 A, a passivating thermal oxide is grown in-situ to provide surface passivation without degrading the anti-reflection coating properties. The passivating quality of the in-situ oxide is shown through reverse saturation current density (Jsbo) measurements to be comparable to a regrown thermal oxide, resulting in Jsbo values in the low 100 fA/cmsp2 range. In addition, by using separate doping sources, impurities in the SOD films remain in the source wafers, producing minority carrier lifetimes in excess of 1 ms on the sample wafers, and efficiency improvements of as much as 28%. Using optimal B and P diffusion profiles, in-situ oxide surface passivation, and high bulk lifetimes resulting from impurity filtering, three generations of solar cells have been fabricated with efficiencies as high as 20.3%, using only one high-temperature furnace step and standard photolithography techniques. A model is presented to explain several attributes of

  1. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-01

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

  2. Solar thermoelectric generators fabricated on a silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    de Leon, Maria Theresa; Chong, Harold; Kraft, Michael

    2014-08-01

    Solar thermal power generation is an attractive electricity generation technology as it is environment-friendly, has the potential for increased efficiency, and has high reliability. The design, modelling, and evaluation of solar thermoelectric generators (STEGs) fabricated on a silicon-on-insulator substrate are presented in this paper. Solar concentration is achieved by using a focusing lens to concentrate solar input onto the membrane of the STEG. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. This thermal model is shown to be in good agreement with actual measurement results. For a 1 W laser input with a spot size of 1 mm, a maximum open-circuit voltage of 3.06 V is obtained, which translates to a temperature difference of 226 °C across the thermoelements and delivers 25 µW of output power under matched load conditions. Based on solar simulator measurements, a maximum TEG voltage of 803 mV was achieved by using a 50.8 mm diameter plano-convex lens to focus solar input to a TEG with a length of 1000 µm, width of 15 µm, membrane diameter of 3 mm, and 114 thermocouples. This translates to a temperature difference of 18 °C across the thermoelements and an output power under matched load conditions of 431 nW. This paper demonstrates that by utilizing a solar concentrator to focus solar radiation onto the hot junction of a TEG, the temperature difference across the device is increased; subsequently improving the TEG’s efficiency. By using materials that are compatible with standard CMOS and MEMS processes, integration of solar-driven TEGs with on-chip electronics is seen to be a viable way of solar energy harvesting where the resulting microscale system is envisioned to have promising applications in on-board power sources, sensor networks, and autonomous microsystems.

  3. Sinusoidal nanotextures for light management in silicon thin-film solar cells.

    PubMed

    Köppel, G; Rech, B; Becker, C

    2016-04-28

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  4. Sinusoidal nanotextures for light management in silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Köppel, G.; Rech, B.; Becker, C.

    2016-04-01

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  5. Mechanical design of a low concentration ratio solar array for a space station application

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  6. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  7. Structure of deformed silicon and implications for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Leipold, M. H.; Turner, G. B.; Digges, T. G., Jr.

    1978-01-01

    The microstructure and minority carrier lifetime of silicon were investigated in uniaxially compressed silicon samples. The objective of the investigation was to determine if it is feasible to produce silicon solar cells from sheet formed by high temperature rolling. The initial structure of the silicon samples ranged from single crystal to fine-grained polycrystals. The samples had been deformed at strain rates of 0.1 to 8.5/sec and temperatures of 1270-1380 C with subsequent annealing at 1270-1380 C. The results suggest that high temperature rolling of silicon to produce sheet for cells of high efficiency is not practical.

  8. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  9. Performance evaluation of the solar kinetics T-700 line concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.

  10. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  11. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, Senpo; Xiu, Fei; Ho, Johnny C.

    2016-09-01

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.

  12. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  13. Plasmonic silicon solar cells: impact of material quality and geometry.

    PubMed

    Pahud, Celine; Isabella, Olindo; Naqavi, Ali; Haug, Franz-Josef; Zeman, Miro; Herzig, Hans Peter; Ballif, Christophe

    2013-09-01

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart. Both approaches show strong resonances around 700 nm in the external quantum efficiency the position and intensity of which vary strongly with the nanoparticle shape. Moreover, disagreement between simulations and our experimental results suggests that the dielectric data of bulk silver do not correctly represent the reality. A better fit is obtained by introducing a porous interfacial layer between the silver and zinc oxide. Without the interfacial layer, e.g. by improved processing of the nanoparticles, our simulations show that the nanoparticles concept could outperform traditional back reflectors. PMID:24104574

  14. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

    PubMed Central

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C.

    2016-01-01

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices. PMID:27671709

  15. Design, performance investigation and delivery of a miniaturized Cassegrainian concentrator solar array

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjunction with low-cost optics. In the MCC single element concept and panel concept, incident solar radiation is reflected from a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4-millimetr diameter solar cell. A light catcher cone is used to improve off-axis performance. An element is approximately 13-millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC single element with a 21 sq cm entrance aperture and a 20 percent efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30-sq cm of 11-percent efficiency (at 68 C) silicon solar cells. The MCC concept provides the potential for a significant reduction in array cost due to a 99 percent reduction in required cell area and a 30 percent reduction in array area relative to planar array of equivalent power.

  16. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  17. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  18. Reactive ion etching (RIE) technique for application in crystalline silicon solar cells

    SciTech Connect

    Yoo, Jinsu

    2010-04-15

    Saw damage removal (SDR) and texturing by conventional wet chemical processes with alkali solution etch about 20 micron of silicon wafer on both sides, resulting in thin wafers with which solar cell processing is difficult. Reactive ion etching (RIE) for silicon surface texturing is very effective in reducing surface reflectance of thin crystalline silicon wafers by trapping the light of longer wavelength. High efficiency solar cells were fabricated during this study using optimized RIE. Saw damage removal (SDR) with acidic mixture followed by RIE-texturing showed the decrease in silicon loss by {proportional_to}67% and {proportional_to}70% compared to conventional SDR and texturing by alkaline solution. Also, the crystalline silicon solar cells fabricated by using RIE-texturing showed conversion efficiency as high as 16.7% and 16.1% compared with 16.2%, which was obtained in the case of the cell fabricated with SDR and texturing with NaOH solution. (author)

  19. New technologies for solar energy silicon - Cost analysis of BCL process

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K.-Y.; Fang, C. S.; Lutwack, R.; Hsu, G.; Leven, H.

    1980-01-01

    New technologies for producing polysilicon are being developed to provide lower cost material for solar cells which convert sunlight into electricity. This article presents results for the BCL Process, which produces the solar-cell silicon by reduction of silicon tetrachloride with zinc vapor. Cost, sensitivity, and profitability analysis results are presented based on a preliminary process design of a plant to produce 1000 metric tons/year of silicon by the BCL Process. Profitability analysis indicates a sales price of $12.1-19.4 per kg of silicon (1980 dollars) at a 0-25 per cent DCF rate of return on investment after taxes. These results indicate good potential for meeting the goal of providing lower cost material for silicon solar cells.

  20. High-intensity flux mapper for concentrating solar collectors

    SciTech Connect

    Cannon, T.W.; Gaul, H.W.

    1982-02-01

    The flux mapper consists of a ceramic scatter plate, video camera with silicon diode array image tube (vidicon), 75 mm focal-length lens with appropriate filters, video frame store, television monitors, disk drive, magnetic tape drive and minicomputer. The camera and scatter plate are installed on a parabolic solar collector at SERI's Advanced Component Research Facility. Calibration was made by focussing the sun directly onto the vidicon target. Light intensity calibration is estimated to be accurate to about 7%. (LEW)

  1. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    DOE PAGESBeta

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; et al

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solarmore » cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.« less

  2. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    SciTech Connect

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.

  3. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGESBeta

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  4. Physics of heavily doped silicon and solar-cell parameter measurement

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    A study of the physics of heavily doped silicon and solar cell parameter measurement was undertaken. The parameters investigated were energy gap, lifetime, recombination velocity, diffusivity, mobility and if N or P is high.

  5. Optical losses in amorphous silicon solar cells due to back reflectors

    SciTech Connect

    Sopori, B.L.; Madjdpour, J.; Von Roedern, B.; Chen, W.; Hegedus, S.S.

    1997-07-01

    The authors have used a new numerical model and here present initial results on how texturing and backreflectors affect the maximum achievable short-circuit current densities in amorphous silicon solar cells.

  6. Efficiency of silicon solar cells as a function of base layer resistivity

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1975-01-01

    This paper reports on a theoretical study of the limitations on silicon solar-cell efficiency for both n(+)-p and n(+)-p-p(+) type cells. Detailed calculations have been made of solar-cell operation using a general computer analysis program for semiconductor devices. The computer program, which simultaneously solves Poisson's equation and the electron and hole quasi-Fermi level equations, provides an accurate numerical solution of solar-cell operation without limiting assumptions or approximations. It is found that minority-carrier lifetime and heavy doping effects in the n(+) surface region present serious limitations to efficiency in low-resistivity silicon solar cells.

  7. Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method

    SciTech Connect

    Baba, T.; Matsuyama, T.; Sawada, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S.

    1994-12-31

    A solid phase crystallization (SPC) method was applied to the fabrication of thin-film polycrystalline silicon (poly-Si) for solar cells for the first time. Among crystalline silicon solar cells crystallized at a low temperature of less than 600 C, the world`s highest conversion efficiency of 8.5% was achieved in a solar cell using thin-film poly-Si with only 10 {micro}m thickness prepared by the SPC method. This solar cell showed high photosensitivity in the long-wavelength region of more than 800 nm and also exhibited no light-induced degradation after light exposure.

  8. Low cost, high concentration ratio solar cell array for space applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Rauschenbach, H. S.; Cannady, M. D.; Whang, U. S.; Crabtree, W. L.

    1981-01-01

    A miniaturized Cassegrainian-type concentrator solar array concept for space applications is described. In-orbit cell operating temperatures near 80 C are achieved with purely passive cell cooling and a net concentration ratio of 100. A multiplicity of miniaturized, rigid solar cell concentrator subassemblies are electrically interconnected in conventional fashion and mounted into rigid frames to form concentrator solar panel assemblies approximately 14-mm thick. A plurality of such interconnected panels forms a stowable and deployable solar cell blanket. It is projected that for 20% efficient silicon cells an array of 500 kW beginning-of-life output capability, including orbiter cradle structures, can be transported by a single shuttle orbiter flight into low earth orbit. In-orbit array specific performance is calculated to be approximately 100 W/sq m and 20 W/kg, including all stowage, deployment and array figure control equipment designed for a 30-year orbital life. Higher efficiency gallium arsenide and multiple band gap solar cells will improve these performance factors correspondingly.

  9. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  10. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  11. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  12. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  13. Investigation of surface passivation schemes for p-type monocrystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Momtazur; Udoy, Ariful Banna

    2016-10-01

    This paper represents an experiment to analyze the dark saturation current densities of passivated surfaces for monocrystalline silicon solar cells. The samples are diffused at peak temperatures of 800-950 °C. Basically, symmetrical lifetime samples with different doping profiles are prepared with alkaline textured and saw damage etched (planar) surfaces. After POCl3 diffusion, the phosphorous silicate glass layers are removed in a wet chemical etching step. Several designs are chosen for the determination of the sheet resistance ( R sh), the concentration profile for excess charge carrier and the minority carrier effective lifetime of the diffused surfaces. The dark saturation current densities ( J o ) and the doping profiles are determined accordingly via quasi-steady state photoconductance decay measurement and electrochemical capacitance-voltage measurement. Three different passivation schemes are investigated as follows: silicon nitride (SiN x ) deposited by plasma-enhanced chemical vapor deposition (PECVD) technique, silicon-rich oxynitride (SiriO x N y ) capped with a PECVD SiN x layer, and thin thermally grown oxide, capped with a PECVD SiN x layer.

  14. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  15. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit

    SciTech Connect

    Biswas, Rana; Xu, Chun

    2011-07-04

    We develop a periodically patterned conformal photonic-plasmonic crystal based solar architecture for a nano-crystalline silicon solar cell, through rigorous scattering matrix simulations. The solar cell architecture has a periodic array of tapered silver nano-pillars as the back-reflector coupled with a conformal periodic structure at the top of the cell. The absorption and maximal current, averaged over the entire range of wavelengths, for this solar cell architecture is at the semi-classical 4n{sup 2} limit over a range of common thicknesses (500-1500 nm) and slightly above the 4n{sup 2} limit for a 500 nm nc-Si cell. The absorption exceeds the 4n{sup 2} limit, corrected for reflection loss at the top surface. The photonic crystal cell current is enhanced over the flat Ag back-reflector by 60%, for a thick 1000 nm nc-Si layer, where predicted currents exceed 31 mA/cm{sup 2}. The conformal structure at the top surface focuses light within the absorber layer. There is plasmonic concentration of light, with intensity enhancements exceeding 7, near the back reflector that substantially enhances absorption.

  16. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bullock, J.; Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-01

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n+ and p+ surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n+) contacts, with SiO2 thicknesses of ˜1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρc of ˜3 mΩ cm2 and a recombination current density J0c of ˜40 fA/cm2. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p+) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  17. Contact resistivities of sputtered TiN and Ti-TiN metallizations on solar-cell-type-silicon

    NASA Technical Reports Server (NTRS)

    Maenpaa, M.; Nicolet, M.-A.; Suni, I.; Colgan, E. G.

    1981-01-01

    The resistivities of TiN and Ti-TiN contacts on a shallow junction solar-cell-type silicon substrate have been determined by the method of the transmission line model. The contacts investigated are shown to be suitable for standard solar cells from an electrical point of view. Contact resistivity values of the order of 0.0001 ohm/sq cm as obtained for the n(+)Si-TiSi2-TiN contact system may be acceptable for concentrations up to 100 times, but lower values are necessary beyond this point.

  18. Effects of angular confinement and concentration to realistic solar cells

    SciTech Connect

    Höhn, O. Kraus, T.; Bläsi, B.; Schwarz, U. T.

    2015-01-21

    In standard solar cells, light impinges under a very small angular range, whereas the solar cell emits light into the whole half space. Due to this expansion of etendué, entropy is generated, which limits the maximal efficiency of solar cells. This limit can be overcome by either increasing the angle of incidence by concentration or by decreasing the angle of emission by an angularly confining element or by a combination of both. In an ideal solar cell with radiative recombination as the only loss mechanism, angular confinement and concentration are thermodynamically equivalent. It is shown that concentration in a device, where non-radiative losses such as Shockley-Read-Hall and Auger recombination are considered, is not equivalent to angular confinement. As soon as non-radiative losses are considered, the gain in efficiency due to angular confinement drops significantly in contrast to the gain caused by concentration. With the help of detailed balance calculations, it is furthermore shown that angular confinement can help to increase the efficiency of solar cells under concentrated sunlight even if no measurable gain is expected for the solar cell under 1-sun-illumination. Our analysis predicts a relative gain of 3.14% relative in efficiency for a realistic solar cell with a concentration factor of 500.

  19. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary

    2015-04-06

    "Very efficient crystalline silicon (c-Si) solar cells have been demonstrated when thin layers of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) are used for passivation and carrier selectivity in a heterojunction device. One limitation of this device structure is the (parasitic) absorption in the front passivation/collection a-Si:H layers; another is the degradation of the a-Si:H-based passivation upon temperature, limiting the post-processes to approximately 200°C thus restricting the contacting possibilities and potential tandem device fabrication. To alleviate these two limitations, we explore the potential of amorphous silicon carbide (a-SiC:H), a widely studied material in use in standard a-Si:H thin-film solar cells, which is known for its wider bandgap, increased hydrogen content and stronger hydrogen bonding compared to a-Si:H. We study the surface passivation of solar-grade textured n-type c-Si wafers for symmetrical stacks of 10-nm-thick intrinsic a-SiC:H with various carbon content followed by either p-doped or n-doped a-Si:H (referred to as i/p or i/n stacks). For both doping types, passivation (assessed through carrier lifetime measurements) is degraded by increasing the carbon content in the intrinsic a-SiC:H layer. Yet, this hierarchy is reversed after annealing at 350°C or more due to drastic passivation improvements upon annealing when an a-SiC:H layer is used. After annealing at 350°C, lifetimes of 0.4 ms and 2.0 ms are reported for i/p and i/n stacks, respectively, when using an intrinsic a-SiC:H layer with approximately 10% of carbon (initial lifetimes of 0.3 ms and 0.1 ms, respectively, corresponding to a 30% and 20-fold increase, respectively). For stacks of pure a-Si:H material the lifetimes degrade from 1.2 ms and 2.0 ms for i/p and i/n stacks, respectively, to less than 0.1 ms and 1.1 ms (12-fold and 2-fold decrease, respectively). For complete solar cells using pure a-Si:H i/p and i/n stacks, the open-circuit voltage (Voc

  20. High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process

    NASA Astrophysics Data System (ADS)

    Haase, F.; Kajari-Schröder, S.; Brendel, R.

    2013-11-01

    This work demonstrates the fabrication of a 45 μm thick back-contact back-junction thin-film monocrystalline silicon solar cell from the porous silicon process with an energy conversion efficiency of 18.9%. We demonstrate an efficiency improvement of 5.4% absolute compared to our prior record of 13.5% for back-contact back-junction thin-film monocrystalline silicon solar cells. This increase in efficiency is achieved by reducing the recombination at the base contact using a back surface field and by increasing the generation with a front texture. We investigate the loss mechanisms in the cell using finite element simulations. A free energy loss analysis based on experiments and simulations determines the dominating loss mechanisms. The efficiency loss by base recombination is 0.8% absolute and the loss by base contact recombination is 0.5% absolute in the 18.9% efficiency cell.

  1. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    NASA Astrophysics Data System (ADS)

    Riesen, Y.; Stuckelberger, M.; Haug, F.-J.; Ballif, C.; Wyrsch, N.

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-induced bandgap reduction and reduced recombination. The FF temperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy

  2. Development and evaluation of die and container materials. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesx, D. E.

    1979-01-01

    Specific compositions of high purity silicon aluminum oxynitride (Sialon) and silicon beryllium oxynitride (Sibeon) solid solutions were shown to be promising refractory materials for handling and manipulating solar grade silicon into silicon ribbon. Evaulation of the interaction of these materials in contact with molten silicon indicated that solid solutions based upon beta-Si3N4 were more stable than those based on Si2N2O. Sibeon was more resistant to molten silicon attack than Sialon. Both materials should preferably be used in an inert atmosphere rather than under vacuum conditions because removal of oxygen from the silicon melt occurs as SiO enhances the dissolution of aluminum and beryllium. The wetting angles of these materials were low enough for these materials to be considered as both die and container materials.

  3. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  4. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  5. Identification of some key parameters limiting the performance of high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, Taher; Kachare, Ram H.

    1986-01-01

    This paper presents, for the first time, a detailed sensitivity analysis of key cell parameters on silicon-cell efficiency by incorporating advanced solar cell physics in a sophisticated numerical simulation program. It delineates the true physical barriers to obtaining a high-efficiency silicon solar cell. Specific parameters presently limiting cell efficiency are identified to be the minority carrier lifetime and the recombination velocities at the front and back surfaces. Practical cell efficiencies in the vicinity of 22 percent are estimated to be attainable by using good quality silicon crystal and substantially reducing surface recombination velocities.

  6. Method of mitigating titanium impurities effects in p-type silicon material for solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1980-01-01

    Microstructural evaluation tests performed on Cu-doped, Ti-doped and Cu/Ti doped p-type silicon single crystal wafers, before and after the solar cell fabrication, and evaluation of both dark forward and reverse I-V characteristic records for the solar cells produced from the corresponding silicon wafers, show that Cu mitigates the unfavorable effects of Ti, and thus provides for higher conversion efficiency, thereby providing an economical way to reduce the deleterious effects of titanium, one of the impurities present in metallurgical grade silicon material.

  7. Porous Silicon Modified Photovoltaic Junctions: An Approach to High-Efficiency Solar Cells

    NASA Astrophysics Data System (ADS)

    Badawy, Waheed A.

    2007-02-01

    The solution of the energy problems of our universe is based on the use of the ultimate source of energy, THE SUN, as the main source of useable energy. The trials to obtain solar cells of appropriate efficiency and suitable price represent one of the main tasks of different research groups over the whole world. In this respect silicon represent the main absorber of sun light that could be converted to electricity, photovoltaic cells, or to high energy chemical products, photoelectrochemical cells. Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H2O/C2H5OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide. The oxide films were prepared by the spray/pyrolysis technique which enables the incorporation of foreign atoms like In, Ru or Sb in the oxide film matrix during the spray process/. The incorporation of foreign atoms improves the surface characteristics of the oxide film which leads to the improvement of the fill factor and higher solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (Isc) compared to our improved silicon single crystal solar cells /6/, due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (Voc) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of

  8. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers. PMID:23842256

  9. Out-of-Focus Alinement of Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Dennison, E. W.

    1985-01-01

    In new alinement technique, no attempt made to simulate infinitely distant light source, and all mirrors left uncovered throughout procedure. Light source placed at distance of 1,650 feet (503 m); other distances used. Alinement of approximately 250 mirror facets of paraboloidal solar concentrator simplified by precalculated images reflected from all facets. Developed for large solar concentrators, technique used with other multiplemirror or multiple-light-source systems for producing specified illuminance patterns.

  10. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  11. Ultrasonic seam welding on thin silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1982-01-01

    The ultrathin silicon solar cell has progressed to where it is a serious candidate for future light weight or radiation tolerant spacecraft. The ultrasonic method of producing welds was found to be satisfactory. These ultrathin cells could be handled without breakage in a semiautomated welding machine. This is a prototype of a machine capable of production rates sufficiently large to support spacecraft array assembly needs. For comparative purposes, this project also welded a variety of cells with thicknesses up to 0.23 mm as well as the 0.07 mm ultrathin cells. There was no electrical degradation in any cells. The mechanical pull strength of welds on the thick cells was excellent when using a large welding force. The mechanical strength of welds on thin cells was less since only a small welding force could be used without cracking these cells. Even so, the strength of welds on thin cells appears adequate for array application. The ability of such welds to survive multiyear, near Earth orbit thermal cycles needs to be demonstrated.

  12. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  13. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  14. Characterization of 23-percent efficient silicon solar cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.; Blakers, Andrew W.; Zhao, Jianhua; Milne, Adele M.; Wang, Aihua

    1990-02-01

    A silicon solar cell structure, PERC (passivated emitter and rear cell), has very recently demonstrated energy conversion efficiency above 23 percent. A number of interesting features of the PERC cell design are discussed. Rear contact design is based on a balance between the beneficial effects of small sparsely spaced contact points upon the open-circuit voltage and short-circuit current of the cell and the corresponding negative effects upon cell fill factor. The noncontacted regions of the rear surface are held in weak depletion by an optically isolated but electrically connected rear Al reflector. Once bulk injection levels become appreciable, the disadvantage of this surface condition disappears. The structure incorporates a reasonably effective light-trapping scheme, although there remains scope for improvements in this area. Along with other improvements, efficiency approaching 24 percent seems feasible with the present cell structure. If a processing regime can be found which allows boron passivation of the contact holes or the entire rear surface without loss of the present exceptionally high bulk lifetimes, efficiencies above 24 percent are likely.

  15. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Macosko, Robert P.

    1999-01-01

    A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.

  16. Silicon heterojunction solar cell with passivated hole selective MoOx contact

    NASA Astrophysics Data System (ADS)

    Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan; Yin, Xingtian; Zheng, Maxwell; Ballif, Christophe; Javey, Ali

    2014-03-01

    We explore substoichiometric molybdenum trioxide (MoOx, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  17. Silicon heterojunction solar cell with passivated hole selective MoO{sub x} contact

    SciTech Connect

    Battaglia, Corsin; Yin, Xingtian; Zheng, Maxwell; Javey, Ali; Martín de Nicolás, Silvia; De Wolf, Stefaan; Ballif, Christophe

    2014-03-17

    We explore substoichiometric molybdenum trioxide (MoO{sub x}, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoO{sub x}, we observe a substantial gain in photocurrent of 1.9 mA/cm{sup 2} in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  18. Light-trapping design for thin-film silicon-perovskite tandem solar cells

    NASA Astrophysics Data System (ADS)

    Foster, Stephen; John, Sajeev

    2016-09-01

    Using finite-difference time-domain simulations, we investigate the optical properties of tandem silicon/perovskite solar cells with a photonic crystal architecture, consisting of a square-lattice array of inverted pyramids with a center-to-center spacing of 2.5 μm. We demonstrate that near-perfect light-trapping and absorption can be achieved over the 300-1100 nm wavelength range with this architecture, using less than 10 μm (equivalent bulk thickness) of crystalline silicon. Using a one-diode model, we obtain projected efficiencies of over 30% for the two-terminal tandem cell under a current-matching condition, well beyond the current record for single-junction silicon solar cells. The architecture is amenable to mass fabrication through wet-etching and uses a fraction of the silicon of traditional designs, making it an attractive alternative to other silicon-perovskite tandem designs.

  19. Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance

    NASA Astrophysics Data System (ADS)

    Panin, Alexander; Bergquist, Jonathon

    2007-10-01

    Solar cells are still too expensive (5-20/watt) to compete with traditional fossil fuel power generating methods (˜1/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar panels. We experiment with flexible solar cell (backed by water cooling pipe) placed in the focus of parabolic trough reflector. Another advantage of parabolic trough concentrator is very relaxed tracking requirement. For example, east-west oriented concentrator (aligned with the ecliptic plane) does not even need any tracking during core 4-6 hours around noon (when maximum illumination is available). The design and the performance of the prototype, as well as possible economical benefits of full scale projects are discussed in the presentation.

  20. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  1. Development of processes for the production of low cost silicon dendritic web for solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  2. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

    NASA Astrophysics Data System (ADS)

    Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A.

    2013-12-01

    The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55-65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170-1320°C range yielded 90 wt.% Zn.

  3. Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Grung, B. L.; Heaps, J. D.; Schmit, F. M.; Schuldt, S. B.; Zook, J. D.

    1981-01-01

    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC.

  4. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide

    NASA Astrophysics Data System (ADS)

    Kerr, M. J.; Schmidt, J.; Cuevas, A.; Bultman, J. H.

    2001-04-01

    The emitter saturation current density (JOe) and surface recombination velocity (Sp) of various high quality passivation schemes on phosphorus-diffused solar cell emitters have been determined and compared. The passivation schemes investigated were (i) stoichiometric plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiN), (ii) forming gas annealed thermally grown silicon oxide, and (iii) aluminum annealed (alnealed) thermal silicon oxide. Emitters with sheet resistances ranging from 30 to 430 and 50 to 380 Ω/□ were investigated for planar and random-pyramid textured silicon surfaces, which covers both industrial and laboratory emitters. The electronic surface passivation quality provided by PECVD SiN films was found to be good, with Sp values ranging from 1400 to 25 000 cm/s for planar emitters. Thin thermal silicon oxides were found to provide superior passivation to PECVD SiN, with the best passivation provided by an alnealed thin oxide (Sp values between 250 and 21 000 cm/s). The optimized PECVD SiN films are, nevertheless, sufficiently good for most silicon solar cell applications.

  5. Review of physics underlying recent improvements in silicon solar-cell performance

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Fossum, J. G.

    1980-01-01

    This paper provides a unifying view of the physics of silicon solar cells, and uses it as a basis for explaining how recent improvements in the performance of these cells have been achieved. The unification is facilitated by a region-by-region analysis of the solar cell, which is also used to compare several recently proposed cell structures.

  6. Evaluation and verification of epitaxial process sequence for silicon solar cell production

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1981-01-01

    The applicability of solar cell and module processing sequences, to be used on lower cost epitaxial silicon wafers was evaluated. The extent to which the process sequences perform effectively when applied to film solar cells formed by epitaxial deposition of Si on potentially inexpensive substrates of upgraded metallurgical grade Si is examined. It is concluded that these substrates are satisfactory in their cell performance.

  7. Studies of silicon p-n junction solar cells. [open circuit photovoltage

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1976-01-01

    Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.

  8. Silicon material development for terrestrial solar cells. Phase of exploration

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    1983-03-01

    A material project based on a multicrystalline silicon is reported. It consists of refining the metallurgical grade silicon via hydro and pyrometallurgical processes, preparation of square shaped ingots by (inert) gas protected or open hearth casting methods, and high speed slicing, using a multiple blade slurry saw. Second generation pilot equipment was constructed. Aluminothermic reduction of quartz sand into silicon and the foil casting process were tested. It is concluded that the production of silicon thru the gaseous phase depends upon the marketing of very cheap basic material (SG-Si 10 dollar/Kg) and that the purification of metallurgical grade silicon by refining is the most promising method.

  9. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    NASA Astrophysics Data System (ADS)

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.; Coletti, Gianluca; Lai, Barry; Fenning, David P.; Buonassisi, Tonio

    2015-05-01

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 1010 cm-3. In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cri] by three orders of magnitude to ≈1010 cm-3. Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible.

  10. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    SciTech Connect

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.; Coletti, Gianluca; Lai, Barry; Fenning, David P.; Buonassisi, Tonio

    2015-05-18

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.

  11. Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination

    NASA Astrophysics Data System (ADS)

    Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.

    2016-07-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.

  12. Photonic and plasmonic structures for enhancing efficiency of thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pattnaik, Sambit

    Crystalline silicon solar cells use high cost processing techniques as well as thick materials that are ˜ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the number and complexity of steps involved to complete a device, thereby allowing a continuous processing capability improving the throughput and hence greatly decreasing the cost. This also leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules can be flexible. Such flexible PV modules are well suited for building-integrated applications and for portable, foldable, PV power products. For economical applications of solar cells, high efficiency is an important consideration. Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve high optical absorption. The previous work in this field has been mostly based on randomly textured back reflectors. In this work, we have used a novel approach, a periodic photonic and plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths without hampering other properties. The two dimensional diffraction effect generated by a periodic structure with the plasmonic light concentration achieved by silver cones to efficiently propagate light in the plane at the back surface of a solar cell, achieves a significant increase in optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in a nano-crystalline (nc-Si) solar cell relative to stainless steel. In addition to nc-Si solar cells on stainless steel, we have also used the periodic photonic structure to enhance optical absorption in amorphous cells and

  13. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    SciTech Connect

    Uzu, Hisashi E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi; Nakano, Kunihiro; Meguro, Tomomi; Yamamoto, Kenji; Hernández, José Luis; Kim, Hui-Seon; Park, Nam-Gyu E-mail: npark@skku.edu

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

  14. Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires.

    PubMed

    Massiot, Inès; Colin, Clément; Sauvan, Christophe; Lalanne, Philippe; Cabarrocas, Pere Roca I; Pelouard, Jean-Luc; Collin, Stéphane

    2013-05-01

    We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling. This approach is generalized to a complete amorphous silicon solar cell, with the additional degrees of freedom provided by the buffer layers. These results could guide the design of resonant structures for optimized ultra-thin solar cells. PMID:24104424

  15. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  16. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  17. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  18. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  19. MIS and PN junction solar cells on thin-film polycrystalline silicon

    SciTech Connect

    Ariotedjo, A.; Emery, K.; Cheek, G.; Pierce, P.; Surek, T.

    1981-05-01

    The Photovoltaic Advanced Silicon (PVAS) Branch at the Solar Energy Research Institute (SERI) has initiated a comparative study to assess the potential of MIS-type solar cells for low-cost terrestrial photovoltaic systems in terms of performance, stability, and cost-effectiveness. Several types of MIS and SIS solar cells are included in the matrix study currently underway. This approach compares the results of MIS and p/n junction solar cells on essentially identical thin-film polycrystalline silicon materials. All cell measurements and characterizations are performed using uniform testing procedures developed in the Photovoltaic Measurements and Evaluation (PV M and E) Laboratory at SERI. Some preliminary data on the different cell structures on thin-film epitaxial silicon on metallurgical-grade substrates are presented here.

  20. Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Reedy, R. C.; Al-Jassim, M. M.; Yan, B.; Yue, G.; Sivec, L.; Yang, J.; Guha, S.; Tong, X.

    2012-04-01

    We report on a direct measurement of electrical potential and field profiles across the n-i-p junction of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells, using the nanometer-resolution potential imaging technique of scanning Kelvin probe force microscopy (SKPFM). It was observed that the electric field is nonuniform across the i layer. It is much higher in the p/i region than in the middle and the n/i region, illustrating that the i layer is actually slightly n-type. A measurement on a nc-Si:H cell with a higher oxygen impurity concentration shows that the nonuniformity of the electric field is much more pronounced than in samples having a lower O impurity, indicating that O is an electron donor in nc-Si:H materials. This nonuniform distribution of electric field implies a mixture of diffusion and drift of carrier transport in the nc-Si:H solar cells. The composition and structure of these nc-Si:H cells were further investigated by using secondary-ion mass spectrometry and Raman spectroscopy, respectively. The effects of impurity and structural properties on the electrical potential distribution and solar cell performance are discussed.