Science.gov

Sample records for concentric ring electrode

  1. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    PubMed

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  2. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    PubMed Central

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  3. Finite element method modeling to assess Laplacian estimates via novel variable inter-ring distances concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Besio, Walter G

    2016-08-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts using finite element method modeling. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the estimation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the estimation error may be decreased more than two-fold while for the quadripolar configuration more than six-fold decrease is expected.

  4. Analytic assessment of Laplacian estimates via novel variable interring distances concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Besio, Walter G

    2016-08-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are analytically compared to their constant inter-ring distances counterparts using coefficients of the Taylor series truncation terms. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the truncation error of the Laplacian estimation resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the truncation error may be decreased more than two-fold while for the quadripolar more than seven-fold decrease is expected.

  5. Study of EHD flow generator's efficiencies utilizing pin to single ring and multi-concentric rings electrodes

    NASA Astrophysics Data System (ADS)

    Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.

    2016-11-01

    EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE

  6. Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno-Barrachina, JM; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2016-02-01

    To overcome the limited spatial resolution of standard 12-lead ECG recordings, concentric ring electrodes (CRE) have been proposed to provide valuable data for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. Although theoretical studies indicate that the dimensions of the CRE regulate the depth of the electric dipoles sensed by these electrodes, this has not been experimentally confirmed. The aim of this work was to analyze the influence of CRE dimensions and position of a wireless multi-CRE sensor node on the cardiac signal recorded. For this, four wireless multichannel ECG recording nodes based on flexible multi-ring electrodes were placed at positions CMV1 (position comparable to V1), CMV2, CMV4R and CMV5; each node providing three bipolar concentric ECG signals (BC-ECG). Standard 12-lead ECG and 12 BC-ECG signals were recorded in 29 volunteers. The results revealed that a ring with an outer diameter of 33.5 mm achieves a balance between the ease-of-use and spatial resolution of smaller electrodes and improved detectability and higher amplitudes of signals from larger ring electrodes. Although a standard 12-lead ECG outperforms BC-ECC recordings in detectability of cardiac waves, if the relative amplitude of the wave is also considered, BC-ECG at CMV1 proved superior at picking up atrial activity. In fact, in most of the BC-ECG signals picked up at CMV1, P1 and P2 atrial activity waves were more clearly identified than in simultaneous 12-Lead ECG signals. Likewise, BC-ECG signals revealed higher spatial resolution in detecting anomalous electrical activity in local regions, such as impaired intraventricular driving, or atrioventricular blocks. Finally, the wireless multi-CRE sensor node provides enhanced comfort and handling to both patient and clinician over wired systems.

  7. Fabrication and characterisation of the graphene ring micro electrode (GRiME) with an integrated, concentric Ag/AgCl reference electrode.

    PubMed

    Dickinson, James W; Bromley, Michael; Andrieux, Fabrice P L; Boxall, Colin

    2013-03-14

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 µm diameter fibre optics, a ~15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices.

  8. Fabrication and Characterisation of the Graphene Ring Micro Electrode (GRiME) with an Integrated, Concentric Ag/AgCl Reference Electrode

    PubMed Central

    Dickinson, James W.; Bromley, Michael; Andrieux, Fabrice P. L.; Boxall, Colin

    2013-01-01

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 μm diameter fibre optics, a ∼15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices. PMID:23493126

  9. Time-frequency representations of the sternocleidomastoid muscle electromyographic signal recorded with concentric ring electrodes.

    PubMed

    Estrada, Luis; Torres, Abel; Garcia-Casado, Javier; Sarlabous, Leonardo; Prats-Boluda, Gema; Jane, Raimon

    2016-08-01

    The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.

  10. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes

    PubMed Central

    Martínez-Juárez, Iris E.; Makeyev, Oleksandr; Gaitanis, John N.; Blum, Andrew S.; Fisher, Robert S.; Medvedev, Andrei V.

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\sim 1\\) \\end{document}% prevalence) affecting \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\sim 67\\) \\end{document} million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos. PMID:27170874

  11. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L; Kay, Steven M; Besio, Walter G

    2012-07-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback.

  12. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes

    PubMed Central

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L.; Kay, Steven M.; Besio, Walter G.

    2012-01-01

    Epilepsy affects approximately one percent of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback. PMID:22772373

  13. Recessed Gold Nanoring-Ring Microarray Electrodes.

    PubMed

    Atighilorestani, Mahdieh; Brolo, Alexandre G

    2017-08-31

    A 6 × 6 recessed Au nanoring-ring electrodes microarray was fabricated over a glass substrate using focused ion beam milling. The electrochemical responses of this device to a reversible redox pair were examined. In redox-cycling mode, the lower ring acts as a generator and the upper ring as a collector. High collection efficiencies (close to 100%) and amplification factors (∼3.5) were achieved with this configuration. The redox-cycling behavior of this device was modeled using COMSOL Multiphysics. The effects of scaling the geometric parameters of the electrodes (ring height and radius), potential sweep rates, and inter-electrode gap distance were evaluated through simulations. The computational models showed that the attainable limiting current depends strongly on the ring radius, while it is almost independent of the ring height variations (for a particular inter-electrode gap). The effects of the scan rate and inter-electrode gap distance on the electrochemical characteristics of the device are also discussed. This study provides insights on the influence of the geometry on the performance of these arrays, which should guide the development of future applications.

  14. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, T.C.

    1999-08-24

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  15. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  16. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  17. Electromagnetic Analysis of Ring Earth Electrode for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    Lightning protection of wind power generation is becoming an important public issue. Japan in particular suffers from frequent and heavy lightning strikes, such as the notorious “winter lightning” found in coastal areas of the Sea of Japan. Also, it is important to understand the “impedance characteristics” of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC, TR61400-24, recommends a “ring earth electrode” however, this concept has not been fully clarified, especially its transient behavior during a lightning strike remains unresolved. To confirm the effect of a ring earth electrode, this report presents an electromagnetic transient analysis on a foundation and ring earth electrode of a wind power generator using a Finite Difference Time Domain (FDTD) method. The results show that the ring earth electrode provides a low steady resistance with little inductive potential rise. Thus, it is confirmed that the ring earth electrode provides effective lightning protection of wind turbines.

  18. OH density optimization in atmospheric-pressure plasma jet by using multiple ring electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Y.; Pei, X.; Lu, X.

    2016-01-01

    OH radical is one of the important reactive species generated by non-equilibrium atmospheric-pressure plasma jets, which is believed to play an important role in plasma medicine applications such as cancer therapy, wound healing and sterilization. In this study, a method to increase OH density is proposed. By using multiple pairs of ring electrodes, we generate 3-5 times more OH radicals than in the common device which uses only one high-voltage ring electrode. Discharge imaging shows that the plasma plume with only one ring electrode is longer and its emission intensity is higher than those with multiple pairs of ring electrodes. Further studies indicate that the distribution of OH radicals is significantly influenced by the gas flow rate. At higher gas flow rates, the OH peak concentration is detected further away from the nozzle, and the position of the peak OH concentration correlates with the product of the gas flow velocity and the pulse duration. As observed from the emission spectra, multiple electrodes only enhance the plasma inside the tube rather than the plasma plume in the surrounding air. These results suggest that the OH radicals are mainly generated inside the tube and then delivered to the outer plasma plume region by the gas flow.

  19. Formation and evolution of concentric vortex rings

    NASA Astrophysics Data System (ADS)

    Sadri, Vahid

    The formation and interactions of concentric vortex rings are studied experimentally and computationally using a concentric piston-cylinder geometry to generate concentric vortex rings in water at a maximum jet Reynolds number of 2000. The effects of cylinder gap ratio, DeltaR/R, and jet stroke length-to-gap ratio, L/DeltaR, on the evolution of the flow were investigated. For the experimental study, the jet pulses were generated using piston stroke to gap size ratios (?R/R) in the range 0.2 to 0.05, and L/DeltaR in the range 1-20, for a trapezoidal piston velocity program. Digital Particle Image Velocimetry (DPIV) was used to measure concentric vortex ring position, vorticity, and velocity. Additional experiments were conducted using dye visualizations to reveal the spatial structure of the instability for concentric vortex rings. For the computational study, the flow was simulated at a jet Reynolds number of 1,000 (based on DeltaR and the jet velocity), L/DeltaR in the range 1-20, and DeltaR/R in the range 0.01-0.25. The large L/DeltaR and small DeltaR/R cases were included, in part, to investigate the pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation DeltaR for comparison with planar vortex dipole behavior. Five characteristic flow evolution patterns were observed and classified based on L/DeltaR and DeltaR/R for concentric vortex ring behavior. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence

  20. The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.

    PubMed

    Li, Yingjie; Yu, Tao; Hu, Yuh-Chung

    2014-09-16

    In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.

  1. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  2. Relation of nickel concentrations in tree rings to groundwater contamination

    USGS Publications Warehouse

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-01-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  3. The modified design of ring electrode quartz crystal resonator for uniform mass sensitivity distribution.

    PubMed

    Gao, Jinyang; Huang, Xianhe; Wang, Yan

    2013-09-01

    The mass sensitivity distribution curve of quartz crystal resonators (QCRs) with common circular electrodes is bell-shaped; however, a uniform mass sensitivity distribution is expected for highly accurate and repeatable measuring results. Pioneers designed a ring electrode QCR with a bimodal distribution curve of mass sensitivity, and an obvious concavity is presented between two peak points for a fundamental operating frequency of 10 MHz. The concavity is an obstacle to uniform mass sensitivity distribution, so eliminating the concavity is the goal of this study; two methods-changing overtone order and designing electrode geometry-are proposed to do so. An analytical theory for sensitivity distribution is introduced in this paper first. Analysis results show that the fifth overtone of 10 MHz is desirable for eliminating the concavity but with a drawback of sacrificing absolute mass sensitivity. The method of designing the electrode geometry can overcome this drawback and dot-ring and double-ring electrode geometries are proposed. When electrode parameters were selected properly, the maximum difference of mass sensitivity between two peak points was reduced by about 42.21% for dot-ring electrode QCR and 77.63% for double-ring electrode QCR compared with that of ring electrode QCR.

  4. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  5. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  6. Multifocal liquid-crystal-lens properties with an additional ring-electrodes

    NASA Astrophysics Data System (ADS)

    Kawamura, Marenori; Tamura, Kensuke; Chida, Makoto; Itoda, Hiroki; Sato, Susumu

    2015-09-01

    We propose a low-driving-voltage multifocal liquid crystal (LC) lens such as a concave lens inside a convex lens. The multifocal LC lens is prepared using a glass substrate with a transparent circularly hole-patterned electrode, an additional ring electrode inside, and a center electrode. The multifocal lens properties are attained, and the focal length of the concave lens and/or convex lens can be changed by applying low voltages to the electrodes.

  7. Electrode kinetics of oxygen reduction - A theoretical and experimental analysis of the rotating ring-disc electrode method

    NASA Technical Reports Server (NTRS)

    Hsueh, K.-L.; Chin, D.-T.; Srinivasan, S.

    1983-01-01

    In order to calculate most of the rate constants for the intermediate formation of H2O2 in the electroreduction of O2 to H2O, the theoretical treatments of the rotating ring-disc electrode method by Damjanovic et al. (1966, 1967), Bagotskii et al. (1968, 1969), and Wroblowa et al. (1976) are modified. Rotating ring-disc electrode experimental data obtained for O2 reduction in Pt in 0.55 M H2SO4 are used to illustrate the calculations of rate constants according to the above theoretical treatments. A simple reaction model as proposed by the first author is consistent with the experimental data. The results indicate that O2 (97 percent) reduces to H2O in a direct four-electron transfer reaction. The adsorption of O2 is probably the rate-determining step in the potential region more negative than 0.5 V vs. reversible hydrogen electrode.

  8. Electrode kinetics of oxygen reduction - A theoretical and experimental analysis of the rotating ring-disc electrode method

    NASA Technical Reports Server (NTRS)

    Hsueh, K.-L.; Chin, D.-T.; Srinivasan, S.

    1983-01-01

    In order to calculate most of the rate constants for the intermediate formation of H2O2 in the electroreduction of O2 to H2O, the theoretical treatments of the rotating ring-disc electrode method by Damjanovic et al. (1966, 1967), Bagotskii et al. (1968, 1969), and Wroblowa et al. (1976) are modified. Rotating ring-disc electrode experimental data obtained for O2 reduction in Pt in 0.55 M H2SO4 are used to illustrate the calculations of rate constants according to the above theoretical treatments. A simple reaction model as proposed by the first author is consistent with the experimental data. The results indicate that O2 (97 percent) reduces to H2O in a direct four-electron transfer reaction. The adsorption of O2 is probably the rate-determining step in the potential region more negative than 0.5 V vs. reversible hydrogen electrode.

  9. Rotating ring-disk electrode with dual dynamic potential control: theory and practice.

    PubMed

    Vesztergom, Soma; Barankai, Norbert; Kovács, Noémi; Ujvári, Mária; Wandlowski, Thomas; Láng, Győző G

    2014-01-01

    Using the LabVIEW™ graphical programming language designed by National Instruments®, a digital simulation model has been developed in order to describe electrochemical processes occurring at rotating ring-disk electrodes. The model allows for taking into consideration independent potential control of the two working electrodes, homogeneous electrode reactions, as well as spatial inhomogeneities of the working electrode surfaces. The main programming concepts, as well as the operation of the simulation software is presented. Several test simulations have been carried out in order to evaluate the accuracy of the calculations.

  10. Possible lunar ring dikes. [evidence of concentric volcanic formations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.; Padgett, J. L.

    1974-01-01

    A search for lunar features that showed characteristics of terrestrial ring dikes was conducted, using the Lunar Orbiter series of photographs. Features exhibiting one or more of the following four criteria were included as lunar analogs to terrestrial ring dikes: (1) inner ridges approximately concentric with the crater wall, (2) inner rills approximately concentric with the crater wall, (3) outer ridges and/or rills approximately concentric with the crater wall, and (4) interior and exterior slopes of the crater wall approximately equal. Features exhibiting each of the four criteria were found, and some had combinations of two or more including rills merging into ridges - e.g., in Taruntius and Posidonius. Gambart is an example of equal inner and outer slopes, while Hesiodus A and Marth are two of the best examples of complete inner rings concentric with the outer rings. Ten per cent of the candidates were probable impact craters but had subsequent volcanic activity of a ring dike nature. The initial search showed a distribution of the possible lunar ring dikes that was nonrandom and strongly associated with the margins of the maria, further implying that they are volcanic features.

  11. Anodic Stripping Voltametry at Mercury Film Deposited on Ultrasmall Carbon Ring Electrodes

    DTIC Science & Technology

    1990-11-05

    ABSTRACT ’Mas-,im 2?0 wC!OS) Anodic stripping voltammetry of lead and cadmium without deliberately added electrolytes has been studied at ultrasmall...ANODIC STRIPPING VOLTAMMETRY AT MERCURY FILMS DEPOSITED ON ULTRASMALL CARBON RING ELECTRODES ABSTRACT Anodic stripping voltammetry of lead and cadmium ...electroac- tive species to the electrode region then arises. Golas and Osteryoung [11,12] have performed anodic stripping square - wave voltam- metry in

  12. Development of a versatile rotating ring-disc electrode for in situ pH measurements.

    PubMed

    Zimer, Alexsandro Mendes; Medina da Silva, Marina; Machado, Eduardo G; Varela, Hamilton; Mascaro, Lucia Helena; Pereira, Ernesto Chaves

    2015-10-15

    There are some electrocatalytic reactions in which the key parameter explaining their behavior is a local change in pH. Therefore, it is of utter importance to develop an electrode that could quantify this parameter in situ, but also be customizable to be used in different systems. The purpose of this work is to build a versatile rotating ring/disc electrode (RRDE) with IrOx deposited on a glass tube as a ring and any kind of material as disc. As the IrOx is sensitive to pH variation, the reactions promoted on the disc can trigger proportional pH shifts on the ring. In such assembly, the IrOx ring presents a fast response time even during the pH transients due to the small thickness of the ring (approximately 10 μm), which enables the detection of interfacial pH changes. The ring electrode was tested toward the interfacial pH shift observed during the electrolytic reduction of water on the disc and also characterized by acid-base titration to determine the response time. As the main conclusions, fast response and durable RRDE were obtained, and this assembly could be used to revisit many electrocatalytic reactions in order to test the importance of local pH on the process. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.

    PubMed

    Zeng, Jinwei; Gao, Jie; Luk, Ting S; Litchinitser, Natalia M; Yang, Xiaodong

    2015-08-12

    Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam with an orbital angular momentum. We experimentally illustrate the realization of both radially and azimuthally polarized vortex beams using such concentric-ring patterned magnetic metamaterials. These results contribute to the advanced complex light manipulation with optical metamaterials, making it one step closer to realizing the simultaneous control of polarization and orbital angular momentum of light on a chip.

  14. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  15. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    SciTech Connect

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  16. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  17. Flexible split-ring electrode for insect flight biasing using multisite neural stimulation.

    PubMed

    Tsang, Wei Mong; Stone, Alice L; Aldworth, Zane N; Hildebrand, John G; Daniel, Tom L; Akinwande, Akintunde Ibitayo; Voldman, Joel

    2010-07-01

    We describe a flexible multisite microelectrode for insect flight biasing using neural stimulation. The electrode is made of two layers of polyimide (PI) with gold sandwiched in between in a split-ring geometry. The split-ring design in conjunction with the flexibility of the PI allows for a simple insertion process and provides good attachment between the electrode and ventral nerve cord of the insect. Stimulation sites are located at the ends of protruding tips that are circularly distributed inside the split-ring structure. These protruding tips penetrate into the connective tissue surrounding the nerve cord. We have been able to insert the electrode into pupae of the giant sphinx moth Manduca sexta as early as seven days before the adult moth emerges, and we are able to use the multisite electrode to deliver electrical stimuli that evoke multidirectional, graded abdominal motions in both pupae and adult moths. Finally, in loosely tethered flight, we have used stimulation through the flexible microelectrodes to alter the abdominal angle, thus causing the flying moth to deviate to the left or right of its intended path.

  18. Concentric dot-ring metal nanostructures prepared by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Li, G.; Zopf, D.; Schmidl, G.; Fritzsche, W.; Stranik, O.

    2016-10-01

    A large scale production of well-defined metallic nanostructures represents an important step for a real application of plasmonic technology. Here, we report about a development in colloidal lithography for the production of metallic nanostructures of flexible geometry, which can be changed between disks, cones, rings and even concentric dot-ring structures. We show that the simple spherical colloidal mask—applied to produce metallic disks—can be modified by chemical and plasma etching process to produce either ring or dot-ring structure. Furthermore, etching of the colloidal mask leads to cone shaped metallic nanostructures. All these structures are prepared by the same fabrication steps, and different geometries are achieved just by variation of the fabrication parameters. We are able to prepare homogenously dispersed nanostructures (with defined density) with a height between 20 and 50 nm and a lateral dimension between 100 and 200 nm. In the realized nanostructures, the thickness of the ring is 46.2 ± 4.4 nm and the dot structure has an outer diameter of ˜217 nm.

  19. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors.

    PubMed

    Fukushima, Takehiro; Harayama, Takahisa; Davis, Peter; Vaccaro, Pablo O; Nishimura, Takehiro; Aida, Tahito

    2002-08-15

    We fabricated quasi-stadium laser diodes whose resonators consist of two concentric curved end mirrors and two straight sidewall mirrors. We observed two lasing modes that correspond to different beam propagations along the cavity axis and along a ring trajectory, and different far-field patterns with wide angular separation. The modes can be selected by control of an electrode pattern. We also show that the far-field patterns numerically obtained by the extended Fox-Li mode calculation method are in good agreement with the experimental results.

  20. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    NASA Astrophysics Data System (ADS)

    Lan, Tran Nguyen

    2014-01-01

    We have used the non-equilibrium Green's function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene-electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p-n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  1. Sampling of the NMR time domain along concentric rings

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2007-01-01

    We present a novel approach to sampling the NMR time domain, whereby the sampling points are aligned on concentric rings, which we term concentric ring sampling (CRS). Radial sampling constitutes a special case of CRS where each ring has the same number of points and the same relative orientation. We derive theoretically that the most efficient CRS approach is to place progressively more points on rings of larger radius, with the number of points growing linearly with the radius, a method that we call linearly increasing CRS (LCRS). For cases of significant undersampling to reduce measurement time, a randomized LCRS (RLCRS) is also described. A theoretical treatment of these approaches is provided, including an assessment of artifacts and sensitivity. The analytical treatment of sensitivity also addresses the sensitivity of radially sampled data processed by Fourier transform. Optimized CRS approaches are found to produce artifact-free spectra of the same resolution as Cartesian sampling, for the same measurement time. Additionally, optimized approaches consistently yield fewer and smaller artifacts than radial sampling, and have a sensitivity equal to Cartesian and better than radial sampling. We demonstrate the method using numerical simulations, as well as a 3-D HNCO experiment on protein G B1 domain. PMID:17070715

  2. Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode

    NASA Astrophysics Data System (ADS)

    Zolotukhina, Anna S.; Spiridonov, Alexander O.; Karchevskii, Evgenii M.; Nosich, Alexander I.

    2017-01-01

    We study the lasing modes of microdisk lasers with ring-like electrodes or active regions, in two-dimensional (2-D) formulation. The considered eigenvalue problem is adapted to the extraction of both modal spectra and thresholds from the Maxwell equations with exact boundary conditions. We reduce it to a transcendental equation and solve it numerically. The obtained lasing frequencies and the associated values of threshold material gain of the ring-pumped laser are compared with similar quantities of the fully active microdisk. This comparison shows that the optimal position of the active ring is shifted inward from the disk rim. Its location and width can be used as an engineering instrument to manipulate the thresholds. This effect is explained using the optical theorem and overlap coefficients.

  3. Fabrication of a free-standing Pt micro-ring on an electrode chip as a small magnetic source

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Takeda, Hironao; Saka, Masumi

    2009-08-01

    This paper describes a technique for fabricating a free-standing micro-ring on an electrode chip using a cutting and welding technique which utilizes Joule heating. A thin Pt wire with a diameter of about 650 nm was prepared on a Cu electrode chip, and mechanical deformation of the thin wire was induced by twisting it around an Ag core using a nano-manipulator. One end of the thin Pt wire was then welded by Joule heating onto another Pt wire that was located on the same electrode chip, but the Pt wire was electrically isolated from the thin Pt wire. The diameters of the micro-rings fabricated were 11 and 30 µm. The micro-ring supported by simple beams was then positioned above a permanent magnet, and the ring structure was deflected vertically by supplying a current to the ring. It was found from the experimental results that the deflection of the simply supported micro-ring was proportional to the amount of current that was supplied. The linear behavior of the deflection of the ring structure can be explained by the electromagnetic force between a micro-ring and a magnet which is proportional to the current supplied to the micro-ring.

  4. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  5. Carbon Fiber/Epoxy Composite Ring-disk Electrode: Fabrication, Characterization and Application to Electrochemical Detection in Capillary High Performance Liquid Chromatography

    PubMed Central

    Xu, Xiaomi

    2009-01-01

    Carbon fiber/epoxy composite materials, which are manufactured using the pultrusion process, are commercially available in various shapes and sizes at very low cost. Here we demonstrate the application of such a material as an electrochemical detector in a flow system. Cyclic voltammetry shows that the material's electrochemical behavior resembles that of glassy carbon. Using tube and rod composites, we successfully fabricated a ring-disk electrode with a 20 μm gap between the ring and the disk. The narrow gap is favorable for mass transfer in the generator-collector experiment. This composite ring-disk electrode is assembled in a thin-layer radial-flow cell and used as an electrochemical detector. The disk electrode, placed directly opposite to the flow inlet, is operated as a generator electrode with the ring electrode being a collector. The high collection efficiency on the ring electrode (0.8 for a chemically reversible species) enhances the detection selectivity. PMID:20160941

  6. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    PubMed

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  7. Central ring electrode for trapping and excitation/detection in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ostrander, C M; Arkin, C R; Laude, D

    2001-01-01

    The use of a central trapping ring electrode for Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is demonstrated. Ions are trapped with an oppositely biased static potential superimposed on both the excite and detect electrodes and maintained throughout the experiment, including the application of a dipolar rf excite waveform and the image current ion detection event. The use of a central trapping electrode for FTICR coupled with an open cell design retains the advantages of high ion throughput and gas conductance, while simplifying the electrode geometry and reducing the overall dimensions of the cell. This allows the central trapping electrode to be of utility in volume-limited vacuum chambers including FTICR instrument miniaturization. Presented here are the preliminary experimental results using the central trapping electrode as an FTICR cell in which the excitation and detection electrodes also create a trapping depression to constrain the z-axis motion of the ions. The cell overcomes the principle limitation of an earlier single trapping electrode design by producing a 91% effective potential well depth compared to 19% for the single trapping electrode and 33% for standard open cells. This allows the central trapping electrode configuration to achieve an order of magnitude improvement in ion capacity compared to more conventional open cell designs.

  8. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  9. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  10. Electrorefining cell with parallel electrode/concentric cylinder cathode

    SciTech Connect

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-12-31

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium and a mixture of uranium and plutonium for use as a fresh blanket and core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped cathode is disposed about the outer anodic dissolution baskets. Uranium is deposited from the anode baskets in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium collection efficiency enhanced by increasing the electrode area and reducing the anode-cathode spacing for enhanced trapping and recovery of uranium dendrites scraped off of the cylindrical cathodes which may be greater in number than two.

  11. The electronic properties of concentric double quantum ring and possibility designing XOR gate

    NASA Astrophysics Data System (ADS)

    AL-Badry, Lafy. F.

    2017-03-01

    In this paper I have investigated the Aharonov-Bohm oscillation in concentric double quantum ring. The outer ring attached to leads while the inner ring only tunnel-coupled to the outer ring. The effect of inner ring on electron transport properties through outer ring studied and found that the conductance spectrum consists of two types of oscillations. One is the normal Aharonov-Bohm oscillation, and other is a small oscillations superposed above AB oscillation. The AB oscillation utilized to designing nanoscale XOR gate by choosing the magnetic flux and tuning the gate voltages which realization XOR gate action.

  12. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    PubMed

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  13. Urinary fluoride concentration as an estimator of welding fume exposure from basic electrodes.

    PubMed Central

    Sjörgren, B; Hedström, L; Lindstedt, G

    1984-01-01

    Urinary fluoride concentrations have been measured in electric arc welders using basic electrodes. The fluoride concentration and the total welding fume concentration in air showed a linear relation with postshift urinary fluoride concentration. The measured concentrations were below internationally recommended postshift urinary fluoride concentrations believed to cause fluorosis. Biological monitoring by postshift urinary fluoride measurements is evaluated for the prediction of total welding fume exposure, when a specific basic electrode was used, by means of confidence limits and tests of validity. PMID:6722046

  14. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  15. Concentric rings: an unusual presentation of tinea corporis caused by Microsporum gypseum.

    PubMed

    Sun, Pei-Lun; Ho, Hsin-Tsung

    2006-03-01

    A case of tinea corporis with the unusual presentation of concentric erythematous rings on the abdomen is reported. The pathogen was identified as Microsporum gypseum. While a number of unusual lesions have been described in M. gypseum infections, we are unaware of any reports on concentric rings.

  16. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Gu, Guiru; Lu, Xuejun

    2017-10-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field (E-field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E-fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement.

  17. Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments

    SciTech Connect

    Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.; Chen, Jenn-Shing

    2003-07-01

    The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.

  18. Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis?

    PubMed

    Doucet, Annick; Savard, Martine M; Bégin, Christian; Smirnoff, Anna

    2011-02-28

    Tree-ring nitrogen concentrations and isotope ratios (δ(15)N) are gaining in popularity for environmental research although their use is still debated because of nitrogen mobility in tree stems. Modern studies generally present results on wood that is pre-treated to remove soluble nitrogen compounds and to minimize the impact of radial translocation on tree-ring nitrogen environmental records. However, the necessity to use such pre-treatment has never been fully assessed. Here we compare the nitrogen concentrations and δ(15)N values of two wood preparation protocols applied to beech and red spruce tree rings for the removal of soluble compounds from ring pairs with non pre-treated tree rings. For both tree species, pre-treatment did not minimize the radial patterns of tree-ring nitrogen concentrations and the increasing concentration trends that are coincident with the heartwood-sapwood boundary. Therefore, even if the tree-ring nitrogen concentrations are slightly modified by pre-treatment, these concentrations are considered to reflect internal stem processes rather than environmental conditions in both species. The δ(15)N values were similar for untreated and pre-treated ring pairs, suggesting that wood pre-treatment did not substantially change the δ(15)N values and temporal trends in ring series. In addition, tree-ring δ(15)N series of untreated and pre-treated wood did not show any sign of influence of the heartwood-sapwood boundary in either tree species, indicating that nitrogen translocation did not generate significant isotopic fractionation. We therefore suggest that untreated ring δ(15)N values of beech and red spruce trees can be used for environmental research.

  19. A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells.

    PubMed

    Hsiung, Lo-Chang; Yang, Chun-Hui; Chiu, Chi-Li; Chen, Chen-Lin; Wang, Yueh; Lee, Hsinyu; Cheng, Ji-Yen; Ho, Ming-Chih; Wo, Andrew M

    2008-12-01

    Uniform patterning of cells is highly desirable for most cellular studies involving cell-cell interactions but is often difficult in an in vitro environment. This paper presents the development of a collagen-coated planar interdigitated ring electrode (PIRE) array utilizing positive dielectrophoresis to pattern cells uniformly. Key features of the PIRE design include: (1) maximizing length along the edges where the localized maximum in the electric field exists; (2) making the inner gap slightly smaller than the outer gap in causing the electric field strength near the center of a PIRE being generally stronger than that near the outer edge of the same PIRE. Results of human hepatocellular carcinoma cells, HepG2, adhered on a 6x6 PIRE array show that cells patterned within minutes with good uniformity (48+/-6 cells per PIRE). Cell viability test revealed healthy patterned cells after 24h that were still confined to the collagen-coated PIREs. Furthermore, quantification of fluorescence intensity of living cells shows an acceptable reproducibility of cell viability among PIREs (mean normalized intensity per PIRE was 1+/-0.138). The results suggest that the PIRE array would benefit applications that desire uniform cellular patterning, and improve both response and reproducibility of cell-based biosensors.

  20. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes.

    PubMed

    Rodríguez R, Miriam G; Mendoza, Víctor; Puebla, Héctor; Martínez D, Sergio A

    2009-04-30

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused.

  1. Baldcypress tree ring elemental concentrations at Reelfoot Lake, Tennessee from AD 1795 to AD 1820

    SciTech Connect

    Van Arsdale, R.; Hall, G.

    1995-11-01

    Many two hundred year old baldcypress trees in Reelfoot Lake, Tennessee, lived through the great New Madrid earthquakes of 1811--1812. This study was undertaken to determine if the elemental composition of baldcypress tree rings showed any systematic variation through the earthquake period of AD 1795 through AD 1820. Multiple cores were collected from two Reelfoot Lake baldcypress trees and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Individual yearly rings and five-year ring segments were analyzed to determine their elemental compositions. The cores were analyzed for Li through U but only Ba, Ce, Cs, Cu, I, La, Mg, Mn, Nd, Rb, Sm, Sr, and Zn were found to be in appropriate concentrations for this study. Of these elements only Ce, I, La, Nd, Rb, and Sm showed any systematic changes within individual cores. Comparison of three cores taken from one tree reveal that tree-ring elemental concentrations and changes in tree-ring elemental concentration through time are very different among the cores. When comparing the elemental concentrations of tree rings for the same years in the two different trees neither elemental concentrations nor changes in elemental concentration through time were similar. We conclude that the elemental concentrations in the tree rings of the two baldcypress trees analyzed in this study show no systematic change through the earthquake period of AD 1795 through AD 1820.

  2. Using multivariate analyses to compare subsets of electrodes and potentials within an electrode array for predicting sugar concentrations in mixed solutions.

    SciTech Connect

    Stork, Christopher Lyle; Steen, William Arthur

    2008-04-01

    A non-selective electrode array is presented for the quantification of fructose, galactose, and glucose in mixed solutions. A unique feature of this electrode array relative to other published work is the wide diversity of electrode materials incorporated within the array, being constructed of 41 different metals and metal alloys. Cyclic voltammograms were acquired for solutions containing a single sugar at varying concentrations, and the correlation between current and sugar concentration was calculated as a function of potential and electrode array element. The correlation plots identified potential regions and electrodes that scaled most linearly with sugar concentration, and the number of electrodes used in building predictive models was reduced to 15. Partial least squares regression models relating electrochemical response to sugar concentration were constructed using data from single electrodes and multiple electrodes within the array, and the predictive abilities of these models were rigorously compared using a non-parametric Wilcoxon test. Models using single electrodes (Pt:Rh (90:10) for fructose, Au:Ni (82:18) for galactose, and Au for glucose) were judged to be statistically superior or indistinguishable from those built with multiple electrodes. Additionally, for each sugar, interval partial least squares regression successfully identified a subset of potentials within a given electrode that generated a model of statistically equivalent predictive ability relative to the full potential model. While including data from multiple electrodes offered no benefit in predicting sugar concentration, use of the array afforded the versatility and flexibility of selecting the best single electrode for each sugar.

  3. Type II GaSb quantum ring solar cells under concentrated sunlight.

    PubMed

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  4. Thoriated-tungsten, split-ring, hollow-cathode electrode for discharge devices

    NASA Astrophysics Data System (ADS)

    Seibert, Edward J.; Ferguson, Gerald D.; Taylor, Marie E.

    1994-09-01

    An electrode assembly for a gas or metal vapor discharge device is disclosed. A pair of electrode assemblies each comprising thoriated tungsten with an alloy composition of tungsten (W) and from about 2% to about 3% of thorium dioxide, ThO2, are located at opposite ends of the discharge chamber of the discharge device. The tip of the electrode preferably has four slots equally spaced around its circumference and a groove at its outermost edge. The tip of the electrode provides mechanical flexibility that inhibits the cracking of the thoriated tungsten electrode when it is mounted in the discharge device. Each electrode assembly further comprises a copper spacer, preferably I-shaped in cross-section, brazed against the base of the electrode and against a vacuum flange. The pair of electrode assemblies confines the discharge of the discharge device between the tips of the electrodes and inhibits the arc condition from finding its way to delicate vacuum seals.

  5. Electrode Placement for Active Tuning of Silicon-on-Insulator (SOI) Ring Resonator Structure Clad in Nematic Liquid Crystals

    DTIC Science & Technology

    2014-08-01

    the resulting electric field x-component, as well as the change in the resonant peak caused by LC reorientation. The maximum ring resonator tuning ...1.62 V/μm is slightly above the threshold voltage of LIXON™. Nevertheless, resonator tuning takes place at these low electric field values. The...large fringe fields present near the electrodes are responsible for this effect. 5 Figure 6. Electric field x-component for a 30-V applied

  6. Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis.

    PubMed

    Lima, Renato S; Piazzetta, Maria H O; Gobbi, Angelo L; Segato, Thiago P; Cabral, Murilo F; Machado, Sergio A S; Carrilho, Emanuel

    2013-12-18

    In this communication, we describe for the first time the integration of concentric electrodes (wrapping around the microchannel) in microchips. The use of such electrodes has been shown to be effective towards improvement of the sensitivity and detectability in pressure-driven flow platforms incorporating C(4)D.

  7. The standard concentric needle cannula cannot replace the Macro EMG electrode.

    PubMed

    Sandberg, Arne

    2014-02-01

    To establish the usefulness of the single use and affordable standard concentric EMG electrode as a substitute for the expensive standard macro electrode. Macro EMG performed with macro electrode is compared with recordings from the uninsulated cannula of a standard EMG electrode at two different recording depths in the tibialis anterior muscle. This was performed both in muscles with signs of collateral reinnervation and without. The amplitude of the motor units recorded with the uninsulated concentric needle cannula were lower for the deeply recorded motor units compared to motor unit potential (MUP) amplitudes recorded with the standard macro electrode. The deeply recorded concentric needle (CN) cannula recorded MUPs amplitudes were also lower than superficially recorded CN cannula MUPs. The standard Macro EMG signals show no difference between deeply and superficially recorded motor units. The uninsulated cannula of the concentric needle electrode cannot replace the standard Macro EMG electrode due to technical reasons, probably from different effects of shunting of the bare cannula in deep vs. superficially recorded motor units. The standard CN electrode could not be used as substitute for the standard Macro EMG needle. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Fiber ring laser for axial micro-strain measurement by employing few-mode concentric ring core fiber

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Liang, Xiao; Sun, Chunran; Jian, Shuisheng

    2017-01-01

    We proposed and demonstrated a novel few-mode concentric-ring core fiber (FM-CRCF) for axial micro-strain measurement with fiber ring laser based on few-mode-singlemode-few-mode fiber structure. The core area of CRCF consists of four concentric rings which refractive indices are 1.448, 1.441, 1.450, 1.441, respectively. LP01 and LP11 are two dominated propagating mode groups contributing in the CRCF. In this few-mode-singlemode-few-mode structure, two sections of CRCF act as the mode generator and coupler, respectively. The basis of sensing is the center single mode fiber. Moreover, this structure can be used as an optical band-pass filter. By using fiber ring cavity laser, the axial micro-strain sensing system has high intensity (∼20 dB), high optical signal to noise ratio (∼45 dB) and narrow 3 dB bandwidth (∼0.1 nm). In the axial micro-strain range from 0 to 1467 με , the lasing peak wavelength shifts from 1561.05 nm to 1559.9 nm with the experimentally sensitivity of ∼ 0.81pm / με .

  9. Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry.

    PubMed

    Kadjo, Akinde F; Stamos, Brian N; Shelor, C Phillip; Berg, Jordan M; Blount, Benjamin C; Dasgupta, Purnendu K

    2016-06-21

    A fixed area punch in dried blood spot (DBS) analysis is assumed to contain a fixed amount of blood, but the amount actually depends on a number of factors. The presently preferred approach is to normalize the measurement with respect to the sodium level, measured by atomic spectrometry. Instead of sodium levels, we propose electrical conductivity of the extract as an equivalent nondestructive measure. A dip-type small diameter ring-disk electrode (RDE) is ideal for very small volumes. However, the conductance (G) measured by an RDE depends on the depth (D) of the liquid below the probe. There is no established way of computing the specific conductance (σ) of the solution from G. Using a COMSOL Multiphysics model, we were able to obtain excellent agreement between the measured and the model predicted conductance as a function of D. Using simulations over a large range of dimensions, we provide a spreadsheet-based calculator where the RDE dimensions are the input parameters and the procedure determines the 99% of the infinite depth conductance (G99) and the depth D99 at which this is reached. For typical small diameter probes (outer electrode diameter ∼ <2 mm), D99 is small enough for dip-type measurements in extract volumes of ∼100 μL. We demonstrate the use of such probes with DBS extracts. In a small group of 12 volunteers (age 20-66), the specific conductance of 100 μL aqueous extracts of 2 μL of spotted blood showed a variance of 17.9%. For a given subject, methanol extracts of DBS spots nominally containing 8 and 4 μL of blood differed by a factor of 1.8-1.9 in the chromatographically determined values of sulfate and chloride (a minor and major constituent, respectively). The values normalized with respect to the conductance of the extracts differed by ∼1%. For serum associated analytes, normalization of the analyte value by the extract conductance can thus greatly reduce errors from variations in the spotted blood volume/unit area.

  10. Effect of a floating electrode on a plasma jet

    SciTech Connect

    Hu, J. T.; Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Shi, J. J.; Ostrikov, K.

    2013-08-15

    Two kinds of floating electrode, floating dielectric barrier covered electrode (FDBCE) and floating pin electrode (FPE), which can enhance the performance of plasma jet are reported. The intense discharge between the floating electrode and power electrode decreased the voltage to trigger the plasma jet substantially. The transition of plasma bullet from ring shape to disk shape in the high helium concentration region happened when the floating electrode was totally inside the powered ring electrode. The enhanced electric field between propagating plasma bullet and ground electrode is the reason for this transition. The double plasma bullets happened when part of the FDBCE was outside the powered ring electrode, which is attributed to the structure and surface charge of FDBCE. As part of the FPE was outside the powered ring electrode, the return stroke resulted in a single intensified plasma channel between FPE and ground electrode.

  11. Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy.

    PubMed

    Suh, Hyun Sang; Lee, Won Hee; Cho, Young Sun; Kim, Ji-Hwan; Kim, Tae-Seong

    2010-01-01

    For effective stimulation with tDCS, spatial focality of induced electrical field (EF) is one of the important factors to be considered. Recently, there have been some studies to improve the spatial focality via different types of electrodes and their new configurations: some improvements using ring electrodes were reported over the conventional pad electrodes. However, most of these studies assumed isotropic conductivities in the head. In this work, we have investigated the effect of tissue anisotropy on the spatial focality of tDCS with the 4+1 ring electrode configuration via a 3-D high-resolution finite element (FE) head model with anisotropic conductivities in the skull and white matter. By examining the profiles of the induced EF from the head models with isotropic and anisotropic conductivities respectively, we found that the spatial focality of the induced EF significantly drops and get diffused due to tissue anisotropy. Our analysis suggests that it is critical to incorporate tissue anisotropy in the stimulation of the brain via tDCS.

  12. Radial patterns of tree-ring chemical element concentration in two Appalachian hardwood stands

    Treesearch

    D.R. Dewalle; B.R. Swistock; W.E. Sharpe

    1991-01-01

    Radial patterns in tree-ring chemical element concentration in red oak (Quercus rubra L.) and black (Prunus serotina Ehrh.) were analyzed to infer past environmental changes at two mature Appalachian forest sites.

  13. 5D Einstein-Maxwell solitons and concentric rotating dipole black rings

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2008-09-15

    We discuss the application of the solitonic techniques to the 5D Einstein-Maxwell gravity. As an illustration we construct a new exact solution describing two concentric rotating dipole black rings. The properties of the solution are investigated.

  14. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    PubMed

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry.

  15. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  16. Radiocarbon concentration in modern tree rings from Fukushima, Japan.

    PubMed

    Xu, Sheng; Cook, Gordon T; Cresswell, Alan J; Dunbar, Elaine; Freeman, Stewart P H T; Hastie, Helen; Hou, Xiaolin; Jacobsson, Piotr; Naysmith, Philip; Sanderson, David C W

    2015-08-01

    A 30-year-old Japanese cedar (Cryptomeria japonica), collected from Iwaki, Fukushima in 2014, was analyzed for the long-lived radionuclide (14)C. Values of Δ(14)C varied from 211.7‰ in 1984 to 16.9‰ in 2013. The temporal Δ(14)C variation can be described as an exponential decline, indistinguishable from the general Northern Hemisphere Zone 2 (NH Zone 2) values in the atmosphere, until at least 1994. Values of Δ(14)C for 1999 and 2004 are slightly depleted compared with NH Zone 2 values, while from 1999 to 2013 the data suggest a clear depletion with a 2-8 ppmV additional CO2 contribution from a (14)C-free (i.e. fossil carbon) source. This change coincides with local traffic increases since two nearby expressways were opened in the 1990's. In addition, the small but visible (14)C pulse observed in the 2011 tree-ring might be caused by release from the damaged reactors during the Fukushima nuclear accident.

  17. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  18. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    PubMed

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  19. In situ control of local pH using a boron doped diamond ring disk electrode: optimizing heavy metal (mercury) detection.

    PubMed

    Read, Tania L; Bitziou, Eleni; Joseph, Maxim B; Macpherson, Julie V

    2014-01-07

    A novel electrochemical approach to modifying aqueous solution pH in the vicinity of a detector electrode in order to optimize the electrochemical measurement signal is described. A ring disk electrode was employed where electrochemical decomposition of water on the ring was used to generate a flux of protons which adjusts the local pH controllably and quantifiably at the disk. Boron doped diamond (BDD) functioned as the electrode material given the stability of this electrode surface especially when applying high potentials (to electrolyze water) for significant periods of time. A pH sensitive iridium oxide electrode electrodeposited on the disk electrode demonstrated that applied positive currents on the BDD ring, up to +50 μA, resulted in a local pH decrease of over 4 orders of magnitude, which remained stable over the measurement time of 600 s. pH generation experiments were found to be in close agreement with finite element simulations. The dual electrode arrangement was used to significantly improve the stripping peak signature for Hg in close to neutral conditions by the generation of pH = 2.0, locally. With the ability to create a localized pH change electrochemically in the vicinity of the detector electrode, this system could provide a simple method for optimized analysis at the source, e.g., river and sea waters.

  20. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  1. Electrocatalytic reduction of nitrate and nitrite at Nafion-coated electrodes in concentrated sodium hydroxide solution

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1988-12-31

    The electrochemical reduction of nitrate ions in alkaline solution has been studied using various cathode materials and is the basis for a patent describing the conversion of nitrate into hydroxide ion in carbonate solutions. Recently, Taniguchi et al. have reported that certain well studied transition metal cyclic amine complexes, namely Co(III)-cyclam and Ni(II)-cyclam where cyclam is 1,4,8,11-tetraazacyclotetradecane, efficiently electrocatalyze the reduction of nitrate and nitrite to hydroxylamine at mercury electrodes. Here the authors report that the metal cyclam catalyst can be incorporated into a Nafion film electrode, and that the reduction of nitrate and nitrite proceeds efficiently at these electrodes in concentrated NaOH solution. Nafion is a perfluoroalkanesulfonated cation exchange material that has been widely used to immobilize redox couples at electrode surfaces, including electrocatalysis species.

  2. Trapping Ring Electrode Cell: A FTICR Mass Spectrometer Cell for Improved Signal-to-Noise and Resolving Power

    PubMed Central

    Weisbrod, Chad R.; Kaiser, Nathan K.; Skulason, Gunnar E.; Bruce, James E.

    2010-01-01

    A novel FTICR cell called the trapping ring electrode cell (TREC) has been conceived, simulated, developed, and tested. The performance of the TREC is compared to a closed cylindrical cell at different excited cyclotron radii. The TREC permits the ability to maintain coherent ion motion at larger initial excited cyclotron radii by decreasing the change in radial electric field with respect to z-axis position in the cell. This is accomplished through postexcitation modulation of the trapping potentials applied to segmented trap plates. Resolving power approaching the theoretical limit was achieved using the novel TREC technology; over 420 000 resolving power was observed on melittin [M + 4H]4+ species when employed under modest magnetic field strength (3T) and a data acquisition duration of 13 s. A 10-fold gain in signal-to-noise ratio is demonstrated over the closed cylindrical cell optimized with common potentials on all ring electrodes. The observed frequency drift during signal acquisition over long time periods was also significantly reduced, resulting in improved resolving power. PMID:18681460

  3. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations.

    PubMed

    Domingos, Rute F; Carreira, Sara; Galceran, Josep; Salaün, Pascal; Pinheiro, José P

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu(2+)) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration.

  4. Spectroscopic Analysis of Ion Concentration Profile at Electrode/Electrolyte Interface by Interferometry

    NASA Astrophysics Data System (ADS)

    Moore, David; Saraf, Ravi

    2014-03-01

    Owing to the difference in Fermi levels at an electrode/electrolyte interface, ions form an electrical double layer (EDL) with ion concentrations well over 10-fold compared to bulk. The concentration profile of the EDL intrinsically affects the electrochemical reaction rates at the electrode, which is of great significance in many applications, such as batteries and biosensors. Conventionally, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the electrical properties of the EDL are represented as ``equivalent circuits'' consisting of the resistance to charge transfer (Rct), the double layer capacitance (Cdl) and a ``Warburg (constant phase) diffusion element'' that represents the long range diffusion of ions to the electrode. The translation to the well-understood physical structure can be lost as complicated effects are often lumped together. For example, the effect of subtle modification of the electrode surface by say, redox compounds, enzymes, or polymers is not directly measured, and must be inferred by capacitance changes. An interferometer method will be described to directly measure changes in concentration at the interface during redox process. This method in concert with CV or EIS performed concomitantly will lead to more information to model the diffuse layer for improved understanding of the kinetics of the reaction at different distances from the electrode. Applications to DNA and polymer adsorption binding will be discussed.

  5. Modulation of photonic nanojets generated by microspheres decorated with concentric rings.

    PubMed

    Wu, M X; Huang, B J; Chen, R; Yang, Y; Wu, J F; Ji, R; Chen, X D; Hong, M H

    2015-07-27

    A novel design of decorating microsphere surface with concentric rings to modulate the photonic nanojet (PNJ) is investigated. By introducing the concentric ring structures into the illumination side of the microspheres, a reduction of the full width at half maximum (FWHM) intensity of the PNJ by 29.1%, compared to that without the decoration, can be achieved numerically. Key design parameters, such as ring number and depth, are analyzed. Engineered microsphere with four uniformly distributed rings etched at a depth of 1.2 μm and width of 0.25 μm can generate PNJ at a FWHM of 0.485 λ (λ = 400nm). Experiments were carried out by direct observation of the PNJ with an optical microscope under 405 nm laser illumination. As a result, shrinking of PNJ beam size of 28.0% compared to the case without the rings has been achieved experimentally. Sharp FWHM of this design can be beneficial to micro/nanoscale fabrication, optical super-resolution imaging, and sensing.

  6. Highly sensitive detection of glucose concentration with opto-fluidics ring resonator

    NASA Astrophysics Data System (ADS)

    Luo, Yunhan; Khaing Oo, Maung Kyaw; Ge, Jia; Chen, Zhe; Fan, Xudong

    2012-06-01

    Noninvasive detection of glucose has been heavily researched in their roles of offering cost-effective, painless, and bloodless monitoring of glucose concentration. In this work, we describe a novel, label-free, and sensitive approach for detecting the glucose concentration in human interstitial fluid samples using the opto-fluidic ring resonator (OFRR). The OFRR incorporates microfluidics and optical ring resonator sensing technology to achieve rapid label-free detection in a small and low-cost platform. In this study, bulk refractive index measurements are presented. Results show that the OFRR is able to detect glucose at medically relevant concentrations in interstitial fluid ranging from 0 to 25 mM, with a detection limit of 0.32 mM, which is lower than clinical requirement by one order of magnitude. Our work is believed to lead to a device that can be used to frequently monitor glucose concentration in a low-cost and painless manner.

  7. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    DTIC Science & Technology

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  8. Concentration Field of Reactants and Products Species in a Reacting Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Tryggvason, Gretar; Brooker, J. (Technical Monitor)

    2001-01-01

    The proposed paper will present experimental and numerical results on the concentration fields of both reactants and products species in a reacting vortex ring that is generated from the interaction between a diffusion flame and a laminar vortex ring. Flame-vortex interactions are canonical configurations used to study the underlying processes occurring in complicated turbulent reacting flows. This type of configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. The current configuration has been studied experimentally by Chen and Dahm and Chen et al. under microgravity conditions, and by Park and Shin, and You et al. under normal gravity conditions. This configuration is similar to that used in the analyses of Karagozian and Manda of their 2-D vortex pair in which both fuel and entrained oxidizer are present. The vortex ring used in this study is generated by issuing methane into an air environment through the exit of an axisymmetric nozzle. The experiments were conducted under microgravity conditions in order to remove the undesirable effects of buoyancy that can affect both the flame structure and ring dynamics resulting in possibly asymmetric and nonrepeatable interactions. The experimental technique of diode laser wavelength modulation spectroscopy (WMS) is used to measure concentration fields of reactants, CH4 and O2, products, H2O, CO2, OH, and temperature fields which can be inferred from either line pairs of O2 or OH lines. This technique has been investigated previously by Silver and Bomse et al. This is the first time that the technique has been applied to reacting vortex rings under microgravity conditions. The effect of ring circulation and fuel volume on the species concentration fields will be investigated. The experimental results will be compared to the current numerical

  9. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  10. Statistical analysis of particulate concentration from electrode erosion of gas discharge

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Liu, Yunlong; Wang, Lei; Jin, Dazhi; Tan, Xiaohua

    2017-01-01

    In discharge processes, electrode erosion is inevitable and may be a primary cause of gap failure. Features generated from electrode erosion, such as particulates and pits, would lead to field distortion and self-breakdown failure, in essence. To quantitatively clarify how these features of erosion are generated as the discharge shot accumulates, this paper introduces a statistical method to analyze particulate concentration in the eroded surface. Based on experimental data from laser confocal microscopy, this method could extract and process the profile of the electrode surface after different discharge shots. Statistical results indicate that conditioning effects have been found in the first 100 shots, where the discharge arc plays a role to polish more prominently, rather than ablate, the electrode surface. After this period, electrode erosion could be found to be increasingly heavier and the number of particulates and pits increases rapidly. The proportion function of the particulates height or pits depth can be fitted by power distribution and the correlations between the two function coefficients a, b and discharge shots number n are roughly linear, positive and negative, respectively.

  11. Electrode

    SciTech Connect

    Clere, T.M.

    1983-08-30

    A 3-dimensional electrode is disclosed having substantially coplanar and substantially flat portions and ribbon-like curved portions, said curved portions being symmetrical and alternating in rows above and below said substantially coplanar, substantially flat portions, respectively, and a geometric configuration presenting in one sectional aspect the appearance of a series of ribbon-like oblate spheroids interrupted by said flat portions and in another sectional aspect, 90/sup 0/ from said one aspect, the appearance of a square wave pattern.

  12. Interference enhancement and modulation introduced by surface plasmon polaritons in a concentric-ring structure

    NASA Astrophysics Data System (ADS)

    Lai, Senfeng; Wu, Wen; Peng, Li; Gu, Wenhua

    2015-10-01

    This article studied the interference enhancement and modulation introduced by surface plasmon polaritons (SPPs) in a double-concentric-ring structure. Young's double-slit interference experiment is a classic experiment in the history of physics, and has many modifications with deep impacts in many areas including physics, optics, and electromagnetics. In this work, to use the classic bull's eye structure to produce the surface plasmon polariton effect, a double-concentricring- hole structure was used instead of the double-slit structure to generate optical interference, and the bull's eye structure was applied in the surroundings to generate surface plasmonic wave for modulation of the interference. For structure details, a concentric double-ring-hole was etched in a silver film, with a series of periodic concentric-ringshaped shallow grooves etched in both the upper and bottom surfaces of the silver films. Simulation results showed that the interference of the double-ring-hole could be modulated by SPPs, generating new transmission spectra with desired peak positions and intensities. The transmission peak intensity could be enhanced by 2 to 6 times. The proposed structure can be used as a powerful and convenient tool to adjust the transmission spectra, which can have promising applications in the design and implementation of optical devices for filtering and sensing, especially in the sub-wavelength structure size range.

  13. Minimum Alveolar Concentration and Cardiopulmonary Effects of Isoflurane in Ring-tailed Lemurs (Lemur catta).

    PubMed

    Chinnadurai, Sathya K; Balko, Julie A; Williams, Cathy V

    2017-07-01

    The goal of this study was to determine the minimum alveolar concentration (MAC) and cardiopulmonary effects of isoflurane in ring-tailed lemurs (Lemur catta). The MAC of isoflurane was determined by using a tail-clamp stimulus in adult ring-tailed lemurs (6 male, 4 female). Once MAC was determined, another group of 10 adult ring-tailed lemurs (5 male, 5 female) were anesthetized and instrumented similarly as the previous group and maintained at 0.5, 1, 1.5, and 2 times MAC for 15 min each with no external stimulation. Five lemurs were exposed to increasing concentrations (that is, 0.5 times MAC increasing to 2 times MAC), and the other 5 animals were exposed to decreasing concentrations. MAC of isoflurane for ringtailed lemurs was 1.9%. The animals became hypotensive, but no significant differences were found in heart rate or systolic, mean, and diastolic blood pressures at the different multiples of MAC examined. At 1 MAC, all lemurs developed a moderate respiratory acidosis, which became more severe at 2 MAC. Given these findings, isoflurane at 0.5 to 2 times MAC in ringtailed lemurs does not result in predictable depression of blood pressure, but hypoventilation occurs at 1 MAC or greater.

  14. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcaddo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1994-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  15. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcadoo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1995-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  16. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  17. Concentration and density changes at an electrode surface and the principle of unchanging total concentration

    DOE PAGES

    Stephen W. Feldberg; Lewis, Ernie R.

    2016-02-17

    In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (Xz11 and Xz22) plus one or more non-electroactive species (Xz33,Xz44...Xzjmaxjmax) where Xzjj is the jth species with charge zj and concentration; cj. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation, i.e.: Σjmaxj=1[Xzjj]=Σjmaxj=1 cj = SP With this principle we deduce the electrochemically induced difference betweenmore » the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.« less

  18. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774-775

    NASA Astrophysics Data System (ADS)

    Rakowski, Andrzej Z.; Krąpiec, Marek; Huels, Mathias; Pawlyta, Jacek; Dreves, Alexander; Meadows, John

    2015-10-01

    Evidence of a rapid increase in atmospheric radiocarbon (14C) content in AD 774-775 was presented by Miyake et al. (2012), who observed an increase of about 12‰ in the 14C content in annual tree rings from Japanese cedar. Usoskin et al. (2013) report a similar 14C spike in German oak, and attribute it to exceptional solar activity. If this phenomenon is global in character, such rapid changes in 14C concentration may affect the accuracy of calibrated dates, as the existing calibration curve is composed mainly of decadal samples. Single-year samples of dendro-chronologically dated tree rings of deciduous oak (Quercus robur) from Kujawy, a village near Krakow (SE Poland), spanning the years AD 765-796, were collected and their 14C content was measured using the AMS system in the Leibniz Laboratory. The results clearly show a rapid increase of 9.2 ± 2.1‰ in the 14C concentration in tree rings between AD 774 and AD 775, with maximum Δ14C = 4.1 ± 2.3‰ noted in AD 776.

  19. Concentration and density changes at an electrode surface and the principle of unchanging total concentration

    SciTech Connect

    Stephen W. Feldberg; Lewis, Ernie R.

    2016-02-17

    In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (Xz11 and Xz22) plus one or more non-electroactive species (Xz33,Xz44...Xzjmaxjmax) where Xzjj is the jth species with charge zj and concentration; cj. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation, i.e.: Σjmaxj=1[Xzjj]=Σjmaxj=1 cj = SP With this principle we deduce the electrochemically induced difference between the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.

  20. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  1. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures.

    PubMed

    Wiberg, Gustav K H; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  2. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  3. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  4. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.

    PubMed

    Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna

    2008-10-01

    Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.

  5. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-06

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences.

  6. Deposition of amorphous silicon using a tubular reactor with concentric-electrode confinement

    NASA Astrophysics Data System (ADS)

    Conde, J. P.; Chan, K. K.; Blum, J. M.; Arienzo, M.; Cuomo, J. J.

    1992-04-01

    High-quality, hydrogenated amorphous silicon (a-Si:H) is deposited at room temperature by rf glow discharge at a high deposition rate using a tubular reactor with cylindrical symmetry (concentric-electrode plasma-enhanced chemical vapor deposition, CE-PECVD). Using the novel CE-PECVD design, room-temperature deposition of a-Si:H with growth rates up to 14 Å s-1, low hydrogen concentration (≲10%), and the bonded hydrogen in the Si-H monohydride configuration, is achieved for the first time using an rf glow-discharge technique. The influence of the deposition parameters (silane flow rate, pressure, and power density) on the growth rate, optical band gap, and silicon-hydrogen bonding configuration, is quantitatively predicted using a deposition mechanism based on the additive contribution of three growth precursors, SiH2, SiH3, and Si2H6, with decreasing sticking coefficients of 0.7, 0.1, and 0.001, respectively. The low hydrogen concentration is due to the enhanced ion bombardment resulting from the concentric electrode design.

  7. SPHERE/SHINE reveals concentric rings in the debris disk of HIP 73145

    NASA Astrophysics Data System (ADS)

    Feldt, M.; Olofsson, J.; Boccaletti, A.; Maire, A. L.; Milli, J.; Vigan, A.; Langlois, M.; Henning, Th.; Moor, A.; Bonnefoy, M.; Wahhaj, Z.; Desidera, S.; Gratton, R.; Kóspál, Á.; Abraham, P.; Menard, F.; Chauvin, G.; Lagrange, A. M.; Mesa, D.; Salter, G.; Buenzli, E.; Lannier, J.; Perrot, C.; Peretti, S.; Sissa, E.

    2017-05-01

    Context. Debris disks correspond to the final evolutionary stage of circumstellar disks around young stars. Gas-deprived structures seen in debris disks are normally, but not always, attributed to dynamical interactions in young planetary systems. Aims: The debris disk of HIP 73145 has been detected in scattered light in the near-IR, and at far-IR wavelengths before, but no substructure has been seen so far. Detection of such substructures in combination with detailed modeling can hint at the presence of perturbing planetary bodies, or reveal other mechanisms acting to replenish gas and dust reservoirs and forming structures such as spirals or rings. Methods: We obtained multiwavelength images with SPHERE in the near-IR in the H2 and H3 bands with the IRDIS camera and a 0.95-1.35 μm spectral cube with the IFS. Data were acquired in pupil-tracking mode, thus allowing for angular differential imaging. The SPHERE standard suite of angular differential imaging algorithms was applied. ALMA Band 6 observations complement the SPHERE data. Results: We detect a bright ring of scattered light plus some secondary structures inside, at least one of them forming a secondary, concentric ring with the first. This is the first detection of this disk in total-intensity scattered light. A second object is detected in the field at high contrast but concluded to be a background star. Forward modeling yields information on the primary parameters of the disk and confirms that the detected substructures are not due to the data analysis approach, which sometimes leads to spurious structures. Conclusions: We detect a series of concentric rings in the disk around HIP 73145. This is one of the rare cases where multiple components are necessary to fit the SED and are also detected in scattered light. The presence of such ring structures somewhat questions the nature of the object as a pure debris disk, but the gas and dust content would presumably offer sufficient explanations for such

  8. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola (Inventor); Chen, Tianming (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  9. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  10. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.

    PubMed

    Ibbini, M S; Cain, C A

    1990-01-01

    While two-dimensional phased arrays can be electronically focused and steered in three dimensions without physically moving the applicator, they generally require a relatively large number of small transducer elements and, consequently, complex drive electronics. A configuration that does not require a large number of elements is that of a concentric-ring array. The field conjugation method can be used to produce a focal spot (or multiple spots) along the array axis. The resulting focal regions are very small and need to be steered transversely to heat tumours of typical size. However, steering the focused beam away from the array axis results in annular heating patterns which are often associated with undesired secondary foci (hot spots). In this paper, a method based on combining electrical and mechanical scanning using a concentric-ring applicator is presented. Advantages of the new method over the mechanically scanned fixed-focus transducers, currently in use, are pointed out. Computer simulations are conducted to investigate the possibility of heating different size tumours by appropriately combining the two scanning techniques. The bioheat transfer equation is solved numerically and temperature distributions associated with relevant heating patterns are presented and discussed. The simulations demonstrate the possibility of the combined technique to produce useful heating patterns which cannot be produced by either technique separately.

  11. Seasonal changes in concentrations of plasma hormones in the male ring dove (Streptopelia risoria).

    PubMed

    Lea, R W; Sharp, P J; Klandorf, H; Harvey, S; Dunn, I C; Vowles, D M

    1986-03-01

    Seasonal changes in concentrations of plasma LH, prolactin, thyroxine (T4), GH and corticosterone were measured in captive male ring doves exposed to natural lighting at latitude 56 degrees N. Plasma LH levels decreased steeply in autumn when the daylength fell below about 12.5 h but increased in November as the birds became short-day refractory. In comparison with plasma LH concentrations in a group of short-day refractory birds exposed to 6 h light/day from the winter solstice, plasma LH levels in birds exposed to natural lighting increased further in spring after the natural daylength reached about 12.5 h. There were no seasonal changes in plasma prolactin concentrations and plasma T4 concentrations were at their highest during December, January and February, the coldest months of the year. The seasonal fall in plasma LH levels in September was associated with a transitory increase in plasma T4, a transitory decrease in plasma corticosterone and a sustained increase in plasma GH. It is suggested that in the ring dove, short-day refractoriness develops rapidly in November to allow the bird to breed when the opportunity arises, during the winter and early spring. The annual breeding cycle is synchronized by a short-day induced regression of the reproductive system in the autumn, the primary function of which may be to enable the birds to meet the energy requirements for the annual moult. The changes in plasma T4, corticosterone and especially of GH at this time of year are probably concerned with the control of moult or the associated changes in energy requirements.

  12. A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time.

    PubMed

    Kao, Yung-Yuan; Chao, Paul C-P

    2011-01-01

    A new liquid crystal lens design is proposed to improve the recovery time with a ring-and-pie electrode pattern through a suitable driving scheme and using dual-frequency liquid crystals (DFLC) MLC-2048. Compared with the conventional single hole-type liquid crystal lens, this new structure of the DFLC lens is composed of only two ITO glasses, one of which is designed with the ring-and-pie pattern. For this device, one can control the orientation of liquid crystal directors via a three-stage switching procedure on the particularly-designed ring-and-pie electrode pattern. This aims to eliminate the disclination lines, and using different drive frequencies to reduce the recovery time to be less than 5 seconds. The proposed DFLC lens is shown effective in reducing recovery time, and then serves well as a potential device in places of the conventional lenses with fixed focus lengths and the conventional LC lens with a single circular-hole electrode pattern.

  13. A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time

    PubMed Central

    Kao, Yung-Yuan; Chao, Paul C.-P.

    2011-01-01

    A new liquid crystal lens design is proposed to improve the recovery time with a ring-and-pie electrode pattern through a suitable driving scheme and using dual-frequency liquid crystals (DFLC) MLC-2048. Compared with the conventional single hole-type liquid crystal lens, this new structure of the DFLC lens is composed of only two ITO glasses, one of which is designed with the ring-and-pie pattern. For this device, one can control the orientation of liquid crystal directors via a three-stage switching procedure on the particularly-designed ring-and-pie electrode pattern. This aims to eliminate the disclination lines, and using different drive frequencies to reduce the recovery time to be less than 5 seconds. The proposed DFLC lens is shown effective in reducing recovery time, and then serves well as a potential device in places of the conventional lenses with fixed focus lengths and the conventional LC lens with a single circular-hole electrode pattern. PMID:22163906

  14. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    PubMed Central

    Lochala, Joshua A.; Kwok, Alexander; Deng, Zhiqun Daniel

    2017-01-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1–1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges. PMID:28852621

  15. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications.

    PubMed

    Zheng, Jianming; Lochala, Joshua A; Kwok, Alexander; Deng, Zhiqun Daniel; Xiao, Jie

    2017-08-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.

  16. Concentric-Electrode Organic Electrochemical Transistors: Case Study for Selective Hydrazine Sensing

    PubMed Central

    Pecqueur, Sébastien; Lenfant, Stéphane; Guérin, David; Alibart, Fabien; Vuillaume, Dominique

    2017-01-01

    We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting of concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs have been studied as aqueous sensors that are specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10−5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for nine other water-soluble common analytes, the capability to entirely recover its base signal after water flushing, and a very low operation voltage. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode, and enables an increase in the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 µm, and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device—more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talk, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore further promote the development of OECT biosensors. PMID:28287475

  17. Concentric-Electrode Organic Electrochemical Transistors: Case Study for Selective Hydrazine Sensing.

    PubMed

    Pecqueur, Sébastien; Lenfant, Stéphane; Guérin, David; Alibart, Fabien; Vuillaume, Dominique

    2017-03-11

    We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting of concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs have been studied as aqueous sensors that are specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10(-5) M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for nine other water-soluble common analytes, the capability to entirely recover its base signal after water flushing, and a very low operation voltage. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode, and enables an increase in the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 µm, and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device-more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talk, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore further promote the development of OECT biosensors.

  18. Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

    PubMed Central

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Chen, Jiuling; Zhu, Zhonghua

    2011-01-01

    Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba0.5-xSr0.5-yCo0.8Fe0.2O3-δ (BSCF-D) was prepared by simply treating porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) backbone with microwave-plasma. Electrochemical impedance spectroscopy reveals that the oxygen surface exchange rate of the BSCF-D is enhanced by ~250% that of the pristine BSCF due to the appearance of the shell. The heterostructured electrode shows an interfacial resistance as low as 0.148 Ω cm2 at 550°C and an unchanged electrochemical performance after heating treatment for 200 h. This method offers potential to prepare heterostructured oxides not only for electrochemical devices but also for many other applications that use ceramic materials. PMID:22355670

  19. Element concentrations in growth rings of trees near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Yanosky, T.M.; Carmichael, J.K.

    1993-01-01

    Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also

  20. Polarization-dependent transmittance of concentric ring plasmonic lens: a polarizing interference investigation

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Zang, Tianyang; Ren, Yuan; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Lu, Yonghua; Wang, Pei

    2016-10-01

    Plasmonic lenses are widely applied to manipulate optical phase or polarization distribution in the near and far field, but its polarization-dependent optical anisotropy is seldomly reported. Not only the plasmonic mode (excited by transverse magnetic polarization), but also the photonic mode (excited by transverse electric polarization) has an effect on the field distribution. In this paper, polarization-dependent optical anisotropy of concentric ring plasmonic lens has been investigated with polarizing microscope and explained by polarizing interference theoretical model. Moreover, several kinds of plasmonic lenses are mutually compared and dramatic different optical anisotropy is found. Our work bears a fundamental importance in design of micro-nano-devices as well as provides the potential to advance the applications of polarizing interferometry into plasmonic structure characterization.

  1. Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea.

    PubMed

    Jung, Raae; Ahn, Young Sang

    2017-08-01

    This study aimed to determine mercury concentrations in tree rings and surface soils at distances of 4, 26 and 40 km from a fertilizer plant located in Yeosu City, Korea. Mercury concentrations in all tree rings were low prior to the establishment of the plant in 1977 and became elevated thereafter. The highest average mercury concentration in the tree rings was 11.96 ng g(-1) at the Yeosu site located nearest to the plant, with the lowest average mercury concentration of 4.45 ng g(-1) at the Suncheon site furthest away from the plant. In addition, the highest mercury content in the surface soil was 108.51 ng cm(-3) at the Yeosu site, whereas the lowest mercury content in the surface soil was 31.47 ng cm(-3) at the Suncheon site. The mercury levels decreased gradually with increasing distance from the plant.

  2. Estimation of regional CO2 fluxes in northern Wisconsin using the ring of towers concentration measurements

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Denning, A. S.; Corbin, K.; Miles, N.; Richardson, S.; Davis, K.

    2006-12-01

    The WLEF TV tower in northern Wisconsin is instrumented to take continuous measurements of CO2 mixing ratio at 6 levels from 11 to 396m. During the spring and summer of 2004 additional CO2 measurements were deployed on five 76 m communication towers forming a ring around the WLEF tower with a 100-150 km radius. The data from the ring of towers are being used to estimate regional fluxes of CO2. The modeling framework developed for this purpose is based on SiB-RAMS: Regional Atmospheric Modeling System linked to Simple Biosphere model. The RAMS domain extends over the entire continental US with nested grids centered in northern Wisconsin. The CO2 lateral boundary conditions are provided by a global transport model PCTM (Parameterized Chemistry and Transport Model). This model system is capable to realistically reproduce diurnal cycle of CO2 fluxes as well as their spatial patterns in regional scale related to different vegetation types. However, there is still significant uncertainty in simulating atmospheric transport of CO2 due to synoptic and mesoscale circulations. We are attempting to assimilate available CO2 tower data into our modeling system in order to provide corrections for the fluxes simulated by the SiB-RAMS. These corrections applied separately to respiration and assimilation fluxes have spatial patterns but are assumed constant in time during a period of 10 days. Another correction is estimated for the CO2 inflow concentration entering the regional domain. The CO2 data assimilation is based the Lagrangian Particle Dispersion (LPD) model and the Bayessian inversion technique. The LPD model is driven by meteorological fields from the SiB-RAMS and is used for a regional domain in its adjoint mode to trace particles backward in time to derive influence functions for each concentration sample. The influence functions provide information on potential contributions both from surface sources and inflow fluxes that make their way through the modeling domain

  3. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    PubMed

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, René A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Detection of lead ions in picomolar concentration range using underpotential deposition on silver nanoparticles-deposited glassy carbon electrodes.

    PubMed

    Sivasubramanian, R; Sangaranarayanan, M V

    2011-09-30

    The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of -0.7 V during the electrodeposition step for a period of 50s. The interference of surfactants in the detection of lead ions is also studied.

  5. Concentric Ring Method for generating pollen maps. Quercus as case study.

    PubMed

    Oteros, Jose; Valencia, Rosa Mª; Del Río, Sara; Vega, Ana Mª; García-Mozo, Herminia; Galán, Carmen; Gutiérrez, Pablo; Mandrioli, Paolo; Fernández-González, Delia

    2017-01-15

    Mapping pollen concentrations is of great interest to study the health impact and ecological implications or for forestry or agronomical purposes. A deep knowledge about factors affecting airborne pollen is essential for predicting and understanding its dynamics. The present work sought to predict annual Quercus pollen over the Castilla and León region (Central and Northern Spain). Also to understand the relationship between airborne pollen and landscape. Records of Quercus and Quercus pyrenaica pollen types were collected at 13 monitoring sites over a period of 8years. They were analyzed together with land use data applying the Concentric Ring Method (CRM), a technique that we developed to study the relationship between airborne particle concentrations and emission sources in the region. The maximum correlation between the Quercus pollen and forms of vegetation was determined by shrubland and "dehesa" areas. For the specific Qi pyrenaica model (Q. pyrenaica pollen and Q. pyrenaica forest distribution), the maximum influence of emission sources on airborne pollen was observed at 14km from the pollen trap location with some positive correlations up to a distance of 43km. Apart from meteorological behavior, the local features of the region can explain pollen dispersion patterns. The method that we develop here proved to be a powerful tool for multi-source pollen mapping based on land use.

  6. Concentrations and microbial mineralization of four to six ring polycyclic aromatic hydrocarbons in composted municipal waste

    SciTech Connect

    Martens, R.

    1982-01-01

    Contents of four to six ring polycyclic aromatic hydrocarbons (PAHs) were estimated in twelve composted municipal wastes of different origin and age. By means of clean-up procedures and subsequent gas chromatography nine different PAHs or isomeric mixtures of PAHs could be separated in extracts. Concentrations of PAHs ranged from 0.17 ..mu..g perylene to 56.75 ..mu..g benz(a)anthracene/chrysene g/sup -1/ compost (dwt). In each compost the same distinct relation between the amounts of individual PAHs was found. In spite of total weight reduction during compost processing (40-60% loss) no accumulation of PAH concentrations in ripe composts was detected. This points to a decay of PAHs by microbial activities during composting. Degradation studies carried out with four /sup 14/C-labelled PAHs indicated that in fresh composts only minor amounts of PAHs can be degraded. However, microbial populations of ripe composts possess considerable capabilities to mineralize these recalcitrant molecules.

  7. Increasing Glucose Concentrations Interfere with Estimation of Electrolytes by Indirect Ion Selective Electrode Method.

    PubMed

    Goyal, Bela; Datta, Sudip Kumar; Mir, Altaf A; Ikkurthi, Saidaiah; Prasad, Rajendra; Pal, Arnab

    2016-04-01

    The estimation of electrolytes like sodium (Na(+)), potassium (K(+)) and chloride (Cl(-)) using direct and indirect ion-selective electrodes (ISE) is a routine laboratory practice. Interferents like proteins, triglycerides, drugs etc. are known to affect the results. The present study was designed to look into the effect of increasing glucose concentrations on estimation of Na(+), K(+) and Cl(-) by direct and indirect ISE. Pooled sera was mixed with glucose stock solution (20 g/dL) prepared in normal saline to obtain glucose concentrations ranging from ~100 to ~5000 mg/dL. Na(+), K(+) and Cl(-) levels were estimated by direct and indirect ISE analyzers and results were statistically analysed using ANOVA and Pearson's correlation. Similar experiment was also performed in 24 h urine sample from healthy subjects. Significant difference was observed between Na(+) and Cl(-) measurements by direct and indirect ISE, with indirect ISE values being consistently higher than direct ISE. Besides this, significant difference was observed amongst Na(+) and Cl(-) values from baseline values obtained by indirect ISE at glucose concentrations ≥2486 mg/dL. However, no such difference was observed with direct ISE. Na(+) and Cl(-) estimation by indirect ISE showed significant negative correlation with glucose concentration, more so, above ~2000 mg/dL. K(+), however, showed no significant difference with varying glucose. Similar results were observed in 24 h urine samples with a significant difference observed amongst Na(+) and Cl(-) values at ≥2104 mg/dL glucose. Thus we conclude that high glucose concentrations interfere significantly in estimation of Na(+) and Cl(-) by indirect ISE in serum as well as urine.

  8. A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach

    NASA Astrophysics Data System (ADS)

    Bielewicz, P.; Wandelt, B. D.; Banday, A. J.

    2013-02-01

    We present a method for the computation of the variance of cosmic microwave background (CMB) temperature maps on azimuthally symmetric patches using a fast convolution approach. As an example of the application of the method, we show results for the search for concentric rings with unusual variance in the 7-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We re-analyse claims concerning the unusual variance profile of rings centred at two locations on the sky that have recently drawn special attention in the context of the conformal cyclic cosmology scenario proposed by Penrose. We extend this analysis to rings with larger radii and centred on other points of the sky. Using the fast convolution technique enables us to perform this search with higher resolution and a wider range of radii than in previous studies. We show that for one of the two special points rings with radii larger than 10° have systematically lower variance in comparison to the concordance Λ cold dark matter model predictions. However, we show that this deviation is caused by the multipoles up to order ℓ = 7. Therefore, the deficit of power for concentric rings with larger radii is yet another manifestation of the well-known anomalous CMB distribution on large angular scales. Furthermore, low-variance rings can be easily found centred on other points in the sky. In addition, we show also the results of a search for extremely high-variance rings. As for the low-variance rings, some anomalies seem to be related to the anomalous distribution of the low-order multipoles of the WMAP CMB maps. As such our results are not consistent with the conformal cyclic cosmology scenario.

  9. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Farma, R.; Deraman, M.; Talib, I. A.; Awitdrus, Omar, R.; Ishak, M. M.; Taer, E.; Basri, N. H.; Dolah, B. N. M.

    2015-04-01

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N2 environment at 800°C to produce carbon monoliths (CM) and the CM was CO2 activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H2SO4 electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  10. Concentration-dependent photoredox conversion of As(III)/As(V) on illuminated titanium dioxide electrodes.

    PubMed

    Monllor-Satoca, Damián; Gómez, Roberto; Choi, Wonyong

    2012-05-15

    The photoconversion of As(III) (arsenite) and As(V) (arsenate) over a mesoporous TiO(2) electrode was investigated in a photoelectrochemical (PEC) cell for a wide range of concentrations (μM-mM), under nonbiased (open-circuit potential measurements) and biased (short-circuit current measurements) conditions. Not only As(III) can be oxidized, but also As(V) can be reduced in the anoxic condition under UV irradiation. However, the reversible nature of As(III)/As(V) photoconversion was not observed in the normal air-equilibrated condition because the dissolved O(2) is far more efficient as an electron acceptor than As(V). Although As(III) should be oxidized by holes, its presence did not increase the photooxidation current in a monotonous way: the photocurrent was reduced by the presence of As(III) in the micromolar range but enhanced in the millimolar range. This abnormal concentration-dependent behavior is related with the fate of the intermediate As(IV) species which can be either oxidized or reduced depending on the experimental conditions, combined with surface deactivation for the water photooxidation process. The lowering of the photooxidation current in the presence of micromolar As(III) is ascribed to the role of As(IV) as a charge recombination center. Being an electron acceptor, the addition of As(V) consistently lowers the photocurrent in the entire concentration range. A global concentration-dependent mechanism is proposed accounting for all the PEC results and its relation with the photocatalytic oxidation mechanism is discussed.

  11. Electrochemical behavior of heavily cycled nickel electrodes in Ni/H2 cells containing electrolytes of various KOH concentrations

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    A study has been made of charge and discharge voltage changes with cycling of Ni/H2 cells containing electrolytes of various KOH concentrations. A study has also been made of electrochemical behavior of the nickel electrodes from the cycled Ni/H2 cells as a function of overcharge amounts. Discharge voltages depressed gradually with cycling for cells having high KOH concentrations (31 to 36 percent), but the voltages increased for those having low KOH concentrations (21 to 26 percent). To determine if there was a crystallographic change of the active material due to cycling, electrochemical behavior of nickel electrodes was studied in an electrolyte flooded cell containing either 31 or 26 percent KOH electrolyte as a function of the amount of overcharge. The changes in discharge voltage appear to indicate crystal structure changes of active material from gamma-phase to beta-phase in low KOH concentrations, and vice versa in high KOH concentration.

  12. Ring waveguide resonator on surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Weihnacht, M.

    2007-04-01

    A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.

  13. The minimum alveolar concentration of sevoflurane in ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis).

    PubMed

    Chinnadurai, Sathya K; Williams, Cathy

    2016-01-01

    To determine the minimum alveolar concentration (MAC) of sevoflurane for ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis). Prospective experimental trial. Six adult ring-tailed lemurs, aged 1.3-11.2 years (median age: 8.26) and weighing a mean ± standard deviation (SD) of 2283 ± 254 g. Five adult aye-ayes, aged 4.4-19.3 years (median age: 8.0) and weighing 2712 ± 191 g. Minimum alveolar concentration of sevoflurane was determined using a tail-clamp stimulus. The end-tidal sevoflurane (Fe'Sevo) concentration was increased or decreased by approximately 10% after a positive or negative response to tail clamping, respectively. This procedure was repeated until a positive and negative result were seen on two consecutive trials (i.e. a negative result was achieved and a single 10% decrease in Fe'Sevo concentration resulted in a positive test). The MAC for that animal was determined to be the mean of the concentrations at the two consecutive trials. The mean ± SD MAC of sevoflurane for ring-tailed lemurs was 3.48 ± 0.55% and 1.84 ± 0.17 for aye-ayes. This represents a 47.1% higher MAC in ring-tailed lemurs compared to aye-ayes. The sevoflurane MAC was significantly higher in ring-tailed lemurs, compared to aye-ayes. The MAC of sevoflurane in aye-ayes is consistent with reported MAC values in other species. Extrapolation of sevoflurane anesthetic dose between different species of lemurs could lead to significant errors in anesthetic dosing. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  14. Concentration-induced planar-to-homeotropic anchoring transition of stiff ring polymers on hard walls.

    PubMed

    Poier, Peter; Egorov, Sergei A; Likos, Christos N; Blaak, Ronald

    2016-09-28

    We study the structure and interfacial ordering of stiff ring polymers close to repulsive walls. For this purpose, we employ an anisotropic effective model in which the rings are pictured as soft, penetrable discs [P. Poier, C. N. Likos, A. J. Moreno and R. Blaak, Macromolecules, 2015, 48, 4983]. We have studied this model in the bulk and in the presence of a wall, employing Density Functional Theory and computer simulations. While the Ornstein-Zernike equation in combination with the Hypernetted Chain Approximation gives results that are in quantitative agreement with computer simulations, a simple Mean Field approximation strongly overestimates the interaction between the effective particles in the bulk. We discover that by increasing density one can induce a reorientation of the effective rings in the vicinity of a wall, which prefer to orient themselves parallel to the surface (face-on or planar) for low densities ρ and reorient orthogonal to the wall (edge-on or homeotropic) for higher values of ρ. This transition in the surface-structure can be observed in both computer simulations, as well as in an appropriate density functional theory. We trace its physical origin in the penetrable character of the rings, which allows for a reduction of the surface tension contribution due to ring-ring interactions upon the emergence of homeotropic ordering on the wall and increasing the density of the system.

  15. FAST TRACK COMMUNICATION: Self-patterned aluminium interconnects and ring electrodes for arrays of microcavity plasma devices encapsulated in Al2O3

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Park, S.-J.; Eden, J. G.

    2008-01-01

    Automatic formation of Al interconnects and ring electrodes, fully encapsulated by alumina, in planar arrays of Al2O3/Al/Al2O3 microcavity plasma devices has been accomplished by electrochemical processing of Al foil. Following the fabrication of cylindrical microcavities (50-350 µm in diameter) in 127 µm thick Al foil, virtually complete anodization of the foil yields azimuthally symmetric Al electrodes surrounding each cavity and interconnects between adjacent microcavities that are produced and simultaneously buried within a transparent Al2O3 film without the need for conventional patterning techniques. The diameter and pitch of the microcavities prior to anodization, as well as the anodization process parameters, determine which of the microcavity plasma devices in a one- or two-dimensional array are connected electrically. Data presented for 200 µm diameter cavities with a pitch of 150-225 µm illustrate the patterning of the interconnects and electrode connectivity after 4-10 h of anodization in oxalic acid. Self-patterned, linear arrays comprising 25 dielectric barrier devices have been excited by a sinusoidal or bipolar pulse voltage waveform and operated in 400-700 Torr of rare gas. Owing to the electrochemical conversion of most of the Al foil into Al2O3, the self-formed arrays exhibit an areal capacitance ~82% lower than that characteristic of previous Al/Al2O3 device arrays (Park et al 2006 J. Appl. Phys. 99 026107).

  16. Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2nanoparticles

    NASA Astrophysics Data System (ADS)

    Mazloum-Ardakani, Mohammad; Taleat, Zahra; Beitollahi, Hadi; Naeimi, Hossein

    2011-04-01

    In the present paper, the use of a carbon paste electrode modified by quinizarine (QZ) and TiO2nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron-transfer properties of quinizarine coupled to TiO2nanoparticles at a carbon paste electrode was investigated using cyclic voltammetry and chronoamperometry in aqueous buffer solutions. The modified electrode showed excellent character for the electrocatalytic oxidization of hydrazine (HZ). Differential pulse voltammetric peak currents of HZ increased linearly with their concentrations at the range of 0.5 µM to 1900.0 µM and the detection limit (2σ) was determined to be 77 nM. Finally, this method was used for the determination of HZ in water samples, using a standard addition method.

  17. Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2 nanoparticles.

    PubMed

    Mazloum-Ardakani, Mohammad; Taleat, Zahra; Beitollahi, Hadi; Naeimi, Hossein

    2011-04-01

    In the present paper, the use of a carbon paste electrode modified by quinizarine (QZ) and TiO(2) nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron-transfer properties of quinizarine coupled to TiO(2) nanoparticles at a carbon paste electrode was investigated using cyclic voltammetry and chronoamperometry in aqueous buffer solutions. The modified electrode showed excellent character for the electrocatalytic oxidization of hydrazine (HZ). Differential pulse voltammetric peak currents of HZ increased linearly with their concentrations at the range of 0.5 µM to 1900.0 µM and the detection limit (2σ) was determined to be 77 nM. Finally, this method was used for the determination of HZ in water samples, using a standard addition method.

  18. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    NASA Astrophysics Data System (ADS)

    Calva-Vázquez, G.; Razo-Angel, G.; Rodríguez-Fernández, L.; Ruvalcaba-Sil, J. L.

    2006-08-01

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years.

  19. Energy Dependence of Vitreous B2O3 On Boroxol Ring Concentration

    SciTech Connect

    Park, Byeongwon; Bylaska, Eric J.; Corrales, Louis R.

    2003-06-01

    Total energy calculations of borate glass samples with fixed fraction of boroxol rings are carried out using density function theory. In this work, the method of preparation of the samples is described and preliminary results are presented. This work suggests that initial structures may strongly affect simulation results, although further work is needed.

  20. Radiocarbon concentration in tree-ring samples collected in the south-west Slovakia (1974-2013).

    PubMed

    Kontuľ, I; Ješkovský, M; Kaizer, J; Šivo, A; Richtáriková, M; Povinec, P P; Čech, P; Steier, P; Golser, R

    2017-08-01

    Radiocarbon measurements of tree-ring samples collected in Vysoká pri Morave were compared with tree-ring data of the Žlkovce monitoring station situated 5km south-east from the Jaslovské Bohunice Nuclear Power Plant (NPP). Radiocarbon concentrations in Vysoká pri Morave and in Žlkovce tree rings were decreasing exponentially with decay constants of 14.48±1.23 y and 17.96±1.97 y, respectively, in agreement with similar results obtained at other radiocarbon stations. The Suess effect, represented by a dilution in (14)C levels by fossil fuel CO2 emissions, was observed in both tree-ring data sets. The Vysoká pri Morave (14)C data were during 1974-1995 systematically lower by about 50‰ than the Schauinsland (Germany) clean air reference values due to a regional fossil-fuel impact. However, after 1996 the Vysoká pri Morave (14)C data were closer to the Schauinsland data due to lower CO2 emissions as a result of closing some of the heavy industry technologies in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A simple technique for measuring the fracture energy of lithiated thin-film silicon electrodes at various lithium concentrations

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Pharr, Matt; Oh, Kyu Hwan; Vlassak, Joost J.

    2015-10-01

    We have measured the fracture energy of lithiated silicon thin-film electrodes as a function of lithium concentration using a bending test. First, silicon thin-films on copper substrates were lithiated to various states of charge. Then, bending tests were performed by deforming the substrate to a pre-defined shape, producing a variation of the curvature along the length of the electrode. The bending tests allow determination of the critical strains at which cracks initiate in the lithiated silicon. Using the substrate curvature technique, we also measured the elastic moduli and the stresses that develop in the electrodes during electrochemical lithiation. From these measurements, the fracture energy was calculated as a function of lithium concentration using a finite element simulation of fracture of an elastic film on an elastic-plastic substrate. The fracture energy was determined to be Γ = 12.0 ± 3.0 J m-2 for amorphous silicon and Γ = 10.0 ± 3.6 J m-2 for Li3.28Si, with little variation in the fracture energy for intermediate Li concentrations. These results provide a guideline for the practical design of high-capacity lithium ion batteries to avoid fracture. The experimental technique described in this paper also provides a simple means of measuring the fracture energy of brittle thin-films.

  2. Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz

    2017-01-01

    The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.

  3. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    SciTech Connect

    Farma, R.; Awitdrus,; Taer, E.; Deraman, M. Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M.

    2015-04-16

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  4. Vacancies in Si Can Improve the Concentration-Dependent Lithiation Rate: Molecular Dynamics Studies of Lithiation Dynamics of Si Electrodes

    SciTech Connect

    Kim, Kwang Jin; Qi, Yue

    2015-10-29

    The study of lithiation dynamics is important because it affects both stress generation and rate performance of electrodes for Li-ion batteries. This topic becomes more crucial for Si anodes because its high capacity is accompanied by dramatic volume and structural changes, which lead to mechanical fracture, capacity loss, and limited cycle life. To provide fundamental insights into the lithiation dynamics, determine the rate-limiting process of lithiation, and investigate the effect of concentration on Li diffusivity, molecular dynamics along with reactive force field was used to simulate the lithiation process of both amorphous and crystalline Si electrodes. The local Li concentration evolution shows that lithiation dynamics can be characterized as occurring in two stages: an initial mixing stage followed by a subsequent random walk diffusion stage. The Li diffusion is demonstrated to be concentration-dependent as Li diffuses faster with higher Li concentration, opposite to many intercalation compounds. The degree of Li diffusivity increment with respect to Li concentration increases dramatically up to Li0.8Si. This relationship provides an underlying reason for the experimentally observed two-phase lithiation in both c-Si and a-Si. Furthermore, it is found that the lithiation rate during the initial mixing stage increases exponentially with vacancy concentration in Si. This relationship reveals that the Si–Si bond breaking is the rate-limiting factor for Si lithiation.

  5. Measurements of lithium-ion concentration equilibration processes inside graphite electrodes

    NASA Astrophysics Data System (ADS)

    Kindermann, Frank M.; Osswald, Patrick J.; Klink, Stefan; Ehlert, Günter; Schuster, Jörg; Noel, Andreas; Erhard, Simon V.; Schuhmann, Wolfgang; Jossen, Andreas

    2017-02-01

    Methods for estimating inner states in a lithium-ion cell require steady state conditions or accurate models of the dynamic processes. Besides often used inner states such as state-of-charge, state-of-health or state-of-function, relaxation processes strongly influence the mentioned states. Inhomogeneous utilization of electrodes and consequent limitations in the operating conditions have recently been brought to attention. Relaxation measurements after an inhomogeneous current distribution through the thickness of an electrode have not been addressed so far. By using a previously developed laboratory cell, we are able to show an inhomogeneous retrieval of lithium-ions from a graphite electrode through the layer with spatial resolution. After this inhomogeneity caused by a constant current operation, equilibration processes are recorded and can be assigned to two different effects. One effect is an equilibration inside the particles (intra-particle) from surface to bulk and vice versa. The other effect is an assimilation between the particles (inter-particle) to reach a homogeneous state-of-charge in each particle throughout the electrode layer. While intra-particle relaxation is observed to be finished within 4 h, inter-particle relaxation through the layer takes more than 40 h. The overall time for both equilibration processes shows to be in the order of 48 h.

  6. Local contamination, and not feeding preferences, explains elevated PCB concentrations in Labrador ringed seals (Pusa hispida).

    PubMed

    Brown, Tanya M; Iverson, Sara J; Fisk, Aaron T; Macdonald, Robie W; Helbing, Caren C; Reimer, Ken J

    2015-05-15

    Polychlorinated biphenyls (PCBs) in high trophic level species typically reflect the contributions of myriad sources, such that source apportionment is rarely possible. The release of PCBs by a military radar station into Saglek Bay, Labrador contaminated the local marine food web. For instance, while heavier (higher chlorinated) PCB profiles in some ringed seals (Pusa hispida) were previously attributed to this local source, differences in feeding preferences among seals could not be ruled out as a contributing factor. Herein, similar fatty acid profiles between those seals with 'local' PCB profiles and those with 'long-range' or background profiles indicate little support for the possibility that differential feeding ecologies underlay the divergent PCB profiles. Ringed seals appeared to feed predominantly on zooplankton (Mysis oculata and Themisto libellula), followed by the dusky snailfish (Liparis gibbus), arctic cod (Boreogadus saida), and shorthorn sculpin (Myoxocephalus scorpius). Principal components analysis (PCA) and PCB homolog profiles illustrated the extent of contamination of the Saglek food web, which had very different (and much heavier) PCB profiles than those food web members contaminated by 'long-range' sources. Locally contaminated prey had PCB levels that were higher (2- to 544-fold) than prey contaminated by 'long-range' sources and exceeded wildlife consumption guidelines for PCBs. The application of multivariate analyses to two distinct datasets, including PCB congeners (n=50) and fatty acids (n=65), afforded the opportunity to clearly distinguish the contribution of locally-released PCBs to a ringed seal food web from those delivered via long-ranged transport. Results from the present study strongly suggest that habitat use rather than differences in prey selection is the primary mechanism explaining the divergent PCB patterns in Labrador ringed seals.

  7. Effect of applied voltage, initial concentration and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes

    PubMed Central

    Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2012-01-01

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797

  8. Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes.

    PubMed

    Sun, Mei; Reible, Danny D; Lowry, Gregory V; Gregory, Kelvin B

    2012-06-05

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H(2) at the cathode and oxidizing conditions and O(2) at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration, and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (k(NB)) and NSB (k(NSB)) increased with applied voltage between 2 V and 3.5 V (when the initial NB concentration was 100 μM, k(NB) = 0.3 h(-1) and k(NSB) = 0.04 h(-1) at 2 V; k(NB) = 1.6 h(-1) and k(NSB) = 0.64 h(-1) at 3.5 V) but stopped increasing beyond the threshold of 3.5 V. When initial NB concentration decreased from 100 to 5 μM, k(NB) and k(NSB) became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased k(NB) while slightly increased k(NSB), but only to a limited extent (∼factor of 3) for dissolved organic carbon content up to 100 mg/L. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation.

  9. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.

    PubMed

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-02-07

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency.

  10. Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode.

    PubMed

    Deng, Dongli; Deng, Fei; Tang, Bobin; Zhang, Jinzhong; Liu, Jiang

    2017-03-07

    The electrocatalytic reduction of thiamphenicol (TAP) and florfenicol (FF) was investigated with multi-walled carbon nanotubes (MWCNTs) modified electrode. MWCNTs was dispersed in pure water with the assistance of dihexadecyl phosphate (DHP), and then modified on glassy carbon electrode (GCE). The electrocatalytic reduction conditions, such as bias voltage, supporting electrolyte and its initial pH, and the initial concentrations of TAP and FF, were also optimized. The experimental results indicated that the removal efficiencies of 2mgL(-1) TAP and FF in 0.1M NH3·H2O-NH4Cl solution (pH 7.0) reached 87% and 89% at a bias voltage of -1.2V after 24h electrocatalytic reduction, respectively. The removal process could be described by pseudo first-order kinetic model, and the removal rate constants of TAP and FF were obtained as 0.0837 and 0.0915h(-1), respectively. The electrocatalytic reduction products of TAP and FF were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the possible reduction mechanisms were preliminarily analyzed. Electrocatalytic reduction is promising to remove low-concentration TAP and FF in wastewater with the MWCNTs modified electrode, and may cut down their toxicity through dehalogenation and carbonyl reduction.

  11. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    PubMed Central

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-01-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors. PMID:26507006

  12. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    NASA Astrophysics Data System (ADS)

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-10-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors.

  13. An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Boucher, É.; Guiot, J.; Hatté, C.; Daux, V.; Danis, P.-A.; Dussouillez, P.

    2013-11-01

    Over the last decades, dendroclimatologists have relied upon linear transfer functions to reconstruct historical climate. Transfer functions need to be calibrated using recent data from periods where CO2 concentrations reached unprecedented levels (near 400 ppm). Based on these transfer functions, dendroclimatologists must then reconstruct a different past, a past where CO2 concentrations were much below 300 ppm. However, relying upon transfer functions calibrated in this way may introduce an unanticipated bias in the reconstruction of past climate, particularly if CO2 levels have had a noticeable fertilizing effect since the beginning of the industrial era. As an alternative to the transfer function approach, we run the MAIDENiso ecophysiological model in an inverse mode to link together climatic variables, atmospheric CO2 concentrations and tree growth parameters. Our approach endeavors to find the optimal combination of meteorological conditions that best simulate observed tree ring patterns. We test our approach in the Fontainebleau forest (France). By comparing two different CO2 scenarios, we present evidence that increasing CO2 concentrations have had a slight, yet significant, effect on reconstruction results. We demonstrate that higher CO2 concentrations augment the efficiency of water use by trees, therefore favoring the reconstruction of a warmer and drier climate. Under elevated CO2 concentrations, trees close their stomata and need less water to produce the same amount of wood. Inverse process-based modeling represents a powerful alternative to the transfer function technique, especially for the study of divergent tree-ring-to-climate relationships. The approach has several advantages, most notably its ability to distinguish between climatic effects and CO2 imprints on tree growth. Therefore our method produces reconstructions that are less biased by anthropogenic greenhouse gas emissions and that are based on sound ecophysiological knowledge.

  14. PCDD/F and PCB concentrations in Arctic ringed seals (Phoca hispida) have not changed between 1981 and 2000.

    PubMed

    Addison, R F; Ikonomou, M G; Fernandez, M P; Smith, T G

    2005-12-01

    Concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) and of non-ortho-, mono-ortho- and di-ortho-substituted polychlorinated biphenyls (NO-CB, MO-CB and DO-CB) were measured in blubber of ringed seals sampled at Holman, NWT, in 1981, 1991, 1996 and 2000. Total PCDD and PCDF concentrations were usually below approx. 10 and 5 pg/g wet wt., respectively, and did not change significantly between 1981 and 2000, although there were sporadic temporal differences in some congeners. Total NO-CB, MO-CB and DO-CB concentrations were below approx. 1 ng/g, 250 ng/g and 1 microg/g wet wt. respectively; none of the total PCB concentrations changed significantly over the sampling period. Neither PCDD nor PCDF concentrations differed between males and females, nor did they increase with age in male samples. MO-CB and DO-CB concentrations increased with age in males, but not in females, and concentrations of total MO-CB and DO-CB were usually lower in females than in males. Changes in the distribution of PCB congeners between the 1980s and the 1990s are consistent with atmospheric transport processes becoming increasingly important in the introduction of PCBs to the Arctic in recent years.

  15. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. © 2016 Wiley Periodicals, Inc.

  16. [Interannual variation patterns of heavy metals concentrations in tree rings of Larix gmelinii near Xilin Lead-zinc Mine, Yichun of Northeast China].

    PubMed

    Hu, Shen; Wang, Xiao-Chun; Yang, Jin-Yan

    2013-06-01

    By using dendro-environmental methods, this paper measured and analyzed the variations of five heavy metals (Pb, Cd, Zn, Cu, and Mn) concentrations in the tree rings of Larix gmelinii near Xilin Lead-zinc Mine, Yichun of Northeast China. Among the test heavy metals, the Mn concentration in the tree rings was the highest, while the Cd concentration was the lowest. The Cd, Zn, and Cu concentrations in the tree rings near the ground (0.3 m high from the ground, D0.3) were significantly higher than those at breast height (1.3 m high from the ground, D1.3), while the Pb and Mn concentrations at the two heights had less difference. In 1987-2010, the Pb concentration in the tree rings had a slight increase, but the Cd, Zn, Cu, and Mn concentrations presented a decreasing trend. The Cd concentration decreased most obviously, while the Zn, Cu, and Mn concentrations decreased after an initial increase. With the increase of tree ring width, the Pb concentration decreased, while the Cd, Zn, Cu, and Mn concentrations were in adverse. The relationships between the Pb and other four heavy metals concentrations in the tree rings near the ground and at breast height had definite differences. Near the ground, the Pb concentration showed a significant positive correlation with the other four heavy metals concentrations, but at breast height, less correlation was observed, and even, the Cd concentration decreased significantly with increasing Pb concentration. The variations of the heavy metals concentrations in the L. gmelinii tree rings could be affected by the production and mining activities of Xilin Lead-zinc Mine, an thus, it would be possible to use the Pb concentration in the tree rings to reconstruct the mining his tory of the study area. At present, the Pb concentration in the tailing wastes has polluted the surrounding environments near Xilin Lead-zinc Mine. Therefore, countermeasures should be adopted to manage the heavy metals in tailing wastes if the Mine would be

  17. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    NASA Astrophysics Data System (ADS)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  18. Influence of Electrolyte Concentration on the Aggregation Of Colloidal Particles Near Electrodes in Oscillatory Fields

    NASA Astrophysics Data System (ADS)

    Bukosky, Scott; Saini, Sukhleen; Ristenpart, William

    2016-11-01

    Micron-scale particles suspended in various aqueous electrolytes have been widely observed to aggregate near electrodes in response to oscillatory electric fields, a phenomenon believed to result from electrically induced flows around the particles. Most work has focused on a narrow range of ionic strengths. Here we demonstrate that an applied field causes micron-scale particles in aqueous NaCl to rapidly aggregate over a wide range of ionic strengths, but with significant differences in aggregation morphology. Optical microscopy observations reveal that at higher ionic strengths ( 1 mM) particles arrange as hexagonally closed-packed (HCP) crystals, but at lower ionic strengths ( 0.05 mM) the particles arrange in randomly closed-packed (RCP) structures. We interpret this behavior in terms of two complementary effects: an increased particle diffusivity at lower ionic strengths due to increased particle height over the electrode and the existence of a deep secondary minimum in the particle pair interaction potential at higher ionic strength that traps particles in close proximity to one another. The results suggest that electrically induced crystallization will readily occur only over a narrow range of ionic strengths.

  19. The study of concentration effects of target hybridization on cervical cancer detection using interdigitated electrodes (IDE)

    NASA Astrophysics Data System (ADS)

    Noriani, C.; Hashim, U.; Azizah, N.

    2016-07-01

    Human Papilloma Virus (HPV) is a virus from the Papilloma virus family that affects human skin and the moist membranes that line the body, such as the throat, mouth, feet, fingers, nails, anus and cervix [1]. There are over 100 types, of which 40 can affect the genital area. Most known HPV types cause no symptoms to humans. Some, however, can cause verrucae (warts), while a small number can increase the risk of developing several cancers, such as that of the cervix, penis, vagina, anus and oropharynx (oral part of the pharynx - throat cancer). HPV strand 16 and 18 are well known for causing the advanced of Cervical Cancer (CC). Currently, integrated electrodes (IDEs) are implemented in various sensing devices including surface acoustic wave (SAW) sensors, chemical sensors as well as current MEMS biosensors. IDEs have been optimized for a variety of sensing applications including biosensors sensors, acoustic sensors, and chemical sensors. However, optimization for cancer cell detection has yet to be reported. The output signal strength of IDEs is controlled through careful design of the active area, width, and spacing of the electrode fingers the efficiency of DNA nanochip depends mainly on the sequence of the capture probes and the way they are attached to the support [2]. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis. The coupling procedure must be quick, covalent, and reproducible.

  20. Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xingwei; Li, Cong; Feng, Chunlei; Wang, Qi; Ding, Hongbin

    2017-05-01

    To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide (NO2), there is an increasing demand for real-time and in situ analysis of NO2 in the discharge region. Pulsed cavity ring-down spectroscopy (CRDS) provides an excellent diagnostic approach. In the present paper, CRDS has been applied in situ for time evolution measurement of NO2 concentration which is rarely investigated in gas discharges. In pulsed direct current discharge of NO2/Ar mixture at a pressure of 500 Pa, a peak voltage of -1300 V and a frequency of 30 Hz, for higher initial NO2 concentration (3.05 × 1014 cm-3, 8.88 × 1013 cm-3), the NO2 concentration sharply decreases at the beginning of the discharge afterglow and then becomes almost constant, and the pace of decline increases with pulse duration; however, for lower initial NO2 concentration of 1.69 × 1013 cm-3, the NO2 concentration also decreases at the beginning of the discharge afterglow for 200 ns and 1 μs pulse durations, while it slightly increases and then declines for 2 μs pulse duration. Thus, the removal of low-level NO2 could not be promoted by a higher mean energy input.

  1. On electron-optical spatial and temporal aberrations in a bi-electrode spherical concentric system with electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Zhou, Li-wei; Gong, Hui; Zhang, Zhi-quan; Zhang, Yi-fei

    2009-07-01

    For a concentric spherical system composed of two electrodes with electrostatic focusing, the electrostatic potential distribution and the spatial-temporal trajectory of electron motion can be expressed by analytical forms. It is naturally to take such system as an ideal model to investigate the imaging properties, as well as the spatial-temporal aberrations, to analyze its particularity and to find the clue of universalities and regularities. Research on this problem can afford academic foundation not only in studying the static imaging for the night vision tube, but also in studying the dynamic imaging for high speed image converter tube. In the present paper, based on the practical electron ray equation and electron motion equation for a bi-electrode concentric spherical system with electrostatic focusing, the spatial-temporal trajectory of moving electron emitted from the photocathode is solved, the exact and approximate formulae for image position and arriving time, have been deduced. From the solution of spatial-temporal trajectory the electron optical spatial and temporal properties of this system are then discussed, the paraxial and geometrical lateral aberrations with different orders, as well as the paraxial and geometrical temporal aberrations with different orders, are defined and deduced, that are classified by the order of (ɛz/Φac)1/2 and (ɛr/Φac)1/2

  2. High-accuracy measurements of N2O concentration and isotopic composition of low and high concentration samples with small volume injections using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Palmer, Melissa; Huang, Kuan

    2015-04-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N2O production in various pathways and N2O fluxes across different reservoirs is the key to understanding the role of N2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its associated isotopic ratios (δ 15Nα , δ 15{N}β & δ 18O) is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high-precision measurements of [N2O] and Site-Preference-δ 15N (SP-δ 15N) and δ 18O of a continuous gas flow. However, many N2O samples are discrete with limited volume ( 2 ppm), and are not suitable for direct continuous measurements by CRDS. Here we present results of a small sample introduction and handling device, labelled as Small Sample Isotope Module (SSIM), coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM requires 20 ml of sample volume per analysis at STP, and transfers the sample to the CRDS for high-precision concentration and isotope ratio measurements. When the injected sample is

  3. Comparing the performance of multiple imaging systems with Fabry-Perot interferometers, concentric ring masks, and diffractive multifocal lenses

    NASA Astrophysics Data System (ADS)

    Sedukhin, Andrey G.

    2007-06-01

    Based on the conditions of alowable angular sampling of interfering waves, monochromatic multiple imaging systems with replicating spatial-frequency filters in the form of Fabry-Perot Interferometers, concentric ring masks, and diffractive multifocal lenses are compared with each other in their performance. Though these systems are shown to realize the same effect of multiple equidistant imaging, the forms of manifestation of the effect are not identical due to the difference in spectral content of the wave fields produced by the systems. The most perfect systems are found to be those with pure-phase diffractive multifocal lenses. First of all, they benefits from the extremely high total light efficiency and the sharply defined longitudinal localization of the visualized object space defined by the efficient focal depth. This enhances considerably the brightness of reproduced images and decreases their parasitic diffraction dispersion, background noise, and blurring.

  4. Nanotextured Superhydrophobic Electrodes enable Detection of attomolar-scale DNA concentration within a Droplet by non-Faradaic Impedance Spectroscopy

    PubMed Central

    Ebrahimi, Aida; Dak, Piyush; Salm, Eric; Dash, Susmita; Garimella, Suresh V.; Bashir, Rashid; Alam, Muhammad A.

    2013-01-01

    Label-free, rapid detection of biomolecules in microliter volumes of highly diluted solutions (sub-femtomolar) is of essential importance for numerous applications in medical diagnostics, food safety, and chem-bio sensing for homeland security. At ultra-low concentrations, regardless of the sensitivity of the detection approach, the sensor response time is limited by physical diffusion of molecules towards the sensor surface. We have developed a fast, low cost, non-faradaic impedance sensing method for detection of synthetic DNA molecules in DI water at attomolar levels by beating the diffusion limit through evaporation of a micro-liter droplet of DNA on a nanotextured superhydrophobic electrode array. Continuous monitoring of the impedance of individual droplets as a function of evaporation time is exploited to dramatically improve the sensitivity and robustness of detection. Formation of the nanostructures on the electrode surface not only increases the surface hydrophobicity, but also allows robust pinning of the droplet contact area to the sensor surface. These two features are critical for performing highly stable impedance measurements as the droplet evaporates. Using this scheme, the detection limit of conventional non-faradaic methods is improved by five orders of magnitude. The proposed platform represents a step-forward towards realization of ultra-sensitive lab-on-chip biomolecule detectors for real time point-of-care application. Further works are however needed to ultimately realize the full potential of the proposed approach to appraise biological samples in complex buffer solutions rather than DI water. PMID:24056864

  5. Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly.

    PubMed

    Sreelatha, S; Velvizhi, G; Naresh Kumar, A; Venkata Mohan, S

    2016-08-01

    Treatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%). Concurrent increment in dye load resulted in enhanced azo reductase and dehydrogenase activities respectively (300mg dye/l: 39.6U; 4.96μg/ml). Derivatives of cyclic voltammograms also supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-c, cytochrome-bc1 and flavoproteins during the electron transfer. Bacterial respiration during BET operation utilized various electron acceptors such as electrodes and dye intermediates with simultaneous bioelectricity generation. This study illustrates the synergistic interaction of biocatalyst with electrode assembly for efficient treatment of azo dye wastewater.

  6. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    PubMed

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-05

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples.

  7. Photoresponse and Donor Concentration of Plasma-Sprayed TiO2 and TiO2-ZnO Electrodes

    NASA Astrophysics Data System (ADS)

    Ye, F.-X.; Ohmori, A.; Li, C.-J.

    2005-12-01

    The photoelectrochemical characteristics of plasma-sprayed porous TiO2, TiO2-5%ZnO, and TiO2-10%ZnO electrodes in 0.1 N NaOH solution were studied through a three-electrode cell system. The microstructure, morphology, and composition of the electrodes were analyzed using an electron probe surface roughness analyzer (ERA-8800FE), scanning electron microscopy, and x-ray diffraction. The results indicate that the sprayed electrodes have a porous microstructure, which is affected by the plasma spray parameters and composition of the powders. The TiO2-ZnO electrodes consist of anatase TiO2, rutile TiO2, and Zn2Ti3O8 phase. The photoresponse characteristics of the plasma-sprayed electrodes are comparable to those of single-crystal TiO2, but the breakdown voltage is close to 0.5 V (versus that of a saturated calomel electrode). The short-circuit photocurrent density ( J SC) increases with a decrease of donor concentration, which was calculated according to the Gartner-Butler model. For the lowest donor concentration of a TiO2-5%ZnO electrode sprayed under an arc current of 600 A, the short-circuit J SC is approximately 0.4 mA/cm2 higher than that of the TiO2 electrodes under 30 mW/cm2 xenon light irradiation. The J SC increases linearly with light intensity.

  8. Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells.

    PubMed

    Poudineh, Mahla; Mohamadi, Reza M; Sage, Andrew; Mahmoudian, Laili; Sargent, Edward H; Kelley, Shana O

    2014-05-21

    Biomarkers such as proteins and nucleic acids released from human cells, bacteria, and viruses offer a wealth of information pertinent to diagnosis and treatment ranging from cancer to infectious disease. The release of these molecules from within cells is a crucial step in biomarker analysis. Here we show that purely electric-field-driven lysis can be achieved, inline, within a microfluidic channel; that it can produce highly efficient lysis and biomarker release; and, further, that it can do so with minimal degradation of the released biomarkers. Central to this new technology is the use of three-dimensional sharp-tipped electrodes (3DSTEs) in lysis, which we prove using experiment and finite-element modeling produce the electric field concentration necessary for efficient cell wall rupture.

  9. The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells

    DTIC Science & Technology

    1999-12-01

    December 1999 Abstract Activation and concentration polarization effects in anode-supported solid oxide fuel cells ( SOFC ) were examined. The anode and...and Chemical Properties’, Schlol Solid state devices such as solid oxide fuel cells Ringberg, Germany, March 8-13, 1998. ( SOFC ) consist of a cathode...mail address: anil.virkar@m.cc.utah.edu (AV Virkar) development of the SOFC ; the electrolyte-supported 0167-2738/00/$ - see front matter © 2000 Elsevier

  10. HPV DNA target hybridization concentrations studies using interdigitated electrodes (IDE) for early detection of cervical cancer

    NASA Astrophysics Data System (ADS)

    Noriani, C.; Hashim, U.; Azizah, N.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.

    2017-03-01

    Human Papillomaviruses (HPV) is the major cause of cervical cancer. HPV 16 and HPV 18 are the two types of HPV are the most HPV-associated cancers and responsible as a high-risk HPV. Cervical cancer took about 70 percent of all cases due to HPV infections. Cervical cancer mostly growth on a woman's cervix and its was developed slowly as cancer. TiO2 particles give better performance and low cost of the biosensor. The used of 3-aminopropyl triethoxysilane (APTES) will be more efficient for DNA nanochip. APTES used as absorption reaction to immobilize organic biomolecules on the inorganic surface. Furthermore, APTES provide better functionalization of the adsorption mechanism on IDE. The surface functionalized for immobilizing the DNA, which is the combination of the DNA probe and the HPV target produces high sensitivity and speed detection of the IDE. The Current-Voltage (IV) characteristic proved the sensitivity of the DNA nanochip increase as the concentration varied from 0% concentration to 24% of APTES concentration.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  12. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  13. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries

    PubMed Central

    2014-01-01

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684

  14. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries.

    PubMed

    Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L

    2014-04-03

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.

  15. Solvent, Temperature And Concentration Effects on the Optical Activity of Chiral FIVE-And-SIX Membered Ring Ketones Conformers

    NASA Astrophysics Data System (ADS)

    Al-Basheer, Watheq

    2017-06-01

    Chiral five-and-six membered ring ketones are important molecules that are found in many biological systems and can exist in many possible conformers. In this talk, experimental and computational investigation of solvent, temperature and concentration effects on the circular dichroism (CD) and optical rotation (OR) of (R)-3 -methylcyclohexanone (R3MCH), (R)-3-methylcyclopentanone (R3MCP) and carvone conformers will be discussed. CD and OR measurements of these ketones gaseous samples and in ten common solvents of wide polarity range for different concentrations and sample temperatures were recorded and related to molecular conformation. Density functional theoretical calculations were performed using Gaussian09 at B3LYP functions with aug-cc-pVDZ level of theory. Also, CD and OR spectra for the optimized geometries of the ketones dominant conformers were computed over the ultraviolet and visible region in the gas phase as well as in ten solvents of varying polarity range, and under the umbrella of the polarizable continuum model (PCM). By comparing theoretical and experimental results, few thermodynamic parameters were deduced for the individual equatorial and axial conformers of each molecule in gas phase and in solvation.

  16. Concentration and Assembly of the Division Ring Proteins FtsZ, FtsA, and ZipA during the Escherichia coli Cell Cycle

    PubMed Central

    Rueda, Sonsoles; Vicente, Miguel; Mingorance, Jesús

    2003-01-01

    The concentration of the cell division proteins FtsZ, FtsA, and ZipA and their assembly into a division ring during the Escherichia coli B/r K cell cycle have been measured in synchronous cultures obtained by the membrane elution technique. Immunostaining of the three proteins revealed no organized structure in newly born cells. In a culture with a doubling time of 49 min, assembly of the Z ring started around minute 25 and was detected first as a two-dot structure that became a sharp band before cell constriction. FtsA and ZipA localized into a division ring following the same pattern and time course as FtsZ. The concentration (amount relative to total mass) of the three proteins remained constant during one complete cell cycle, showing that assembly of a division ring is not driven by changes in the concentration of these proteins. Maintenance of the Z ring during the process of septation is a dynamic energy-dependent event, as evidenced by its disappearance in cells treated with sodium azide. PMID:12754232

  17. Jitter Values on Voluntary Active Periocular Muscles of Healthy Subjects with Conventional (37 mm) Concentric Needle Electrode

    PubMed Central

    BAYSAL KIRAÇ, Leyla; KOCASOY ORHAN, Elif; GÖNDERTEN, Saygın; BASLO, Mehmet Barış; ÖGE, Ali Emre

    2016-01-01

    Introduction The aim of this study was to re-evaluate jitter values of healthy subjects in whom pairs of single-fiber-like potentials were recorded from voluntary activated periocular muscles using a disposable 37-mm concentric needle electrode (CNE) with 2-kHz low-cut filtering. Methods We reviewed the recordings of 129 subjects (85 women; 44 men; mean age, 43.8±15.3 years). The m. frontalis group included 116 subjects, and the m. orbicularis oculi group included 18 subjects. Jitter values were expressed as the mean consecutive difference (MCD) of 20 different pairs. Results The mean MCD (n=2680) was 22.5±9.7 μs (range, 5–121 μs), and the upper 95% confidence limit (CL) was 39 μs. The mean of 134 MCD values for each subject was 22.5±3.7 μs (range, 15–33 μs), and the upper 95% CL was 30 μs. The outer limit of the 18th highest MCD values out of 20 recordings for each subject was 31.3±6.5 μs (range, 18–53 μs), with an upper 95% CL of 43.3 μs. Conclusion Using a conventional 37-mm CNE with 2-kHz low-cut filtering may be a cost effective alternative to a single-fiber electrode in periocular muscles if strict criteria are used for acceptable signals. Jitter values of >44 μs that were calculated from single-fiber-like action potential pairs should alert the physician regarding the possibility of neuromuscular junction disorders and constitute an indication for a further diagnostic investigation. PMID:28360784

  18. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.

    PubMed

    Zheng, Xin; Sun, Yihui; Yan, Xiaoqin; Sun, Xu; Zhang, Guangjie; Zhang, Qian; Jiang, Yaru; Gao, Wenchao; Zhang, Yue

    2016-12-15

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. Here, we prepared in situ Al-doped ZnO nanowire arrays by using continuous flow injection (CFI) hydrothermal method to promote the conductivity. This reasonable method offers highly stable precursor concentration for doping that effectively avoid the appearance of the low conductivity ZnO nanosheets. Benefit from this, three orders of magnitude rise of the carrier concentration from 10(16)cm(-3) to 10(19)cm(-3) can be achieved compared with the common hydrothermal (CH) mothed in Mott-Schottky measurement. Possible effect of Al-doping was discussed by first-principle theory. On this basis, Al-doped ZnO nanowire arrays was developed as a binder-free conductive support for supercapacitor electrodes and high capacitance was triggered. It is owing to the dramatically decreased transfer resistance induced by the growing free-moving electrons and holes. Our results have a profound significance not merely in the controlled synthesis of other doping nanomaterials by co-precipitation method but also in the application of binder-free energy materials or other materials.

  19. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  20. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  1. Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy).

    PubMed

    Caselli, Maurizio; de Gennaro, Gianluigi; Marzocca, Annalisa; Trizio, Livia; Tutino, Maria

    2010-09-01

    A BTEX monitoring campaign, consisting of two weekly periods, was carried out in Bari, south-eastern Italy, in order to evaluate the impact of the vehicular traffic on the air quality at the main access roads of the city. Twenty-one sampling sites were selected: the pollution produced by the traffic in the vicinity of all exits from the ring road and some access roads to the city, those with higher traffic density, were monitored. Contemporarily the main meteorological parameters (ambient temperature, wind, atmospheric pressure and natural radioactivity) were investigated. It was found that in the same traffic conditions, barriers, buildings and local meteorological conditions can have important effects on the atmospheric dispersion of pollutants. This situation is more critical in downtown where narrow roads and high buildings avoid an efficient dispersion producing higher levels of BTEX. High spatial resolution monitoring allowed both detecting the most critical areas of the city with high precision and obtaining information on the mean level of pollution, meaning air quality standard of the city. The same concentration pattern and the correlation among BTEX levels in all sites confirmed the presence of a single source, the vehicular traffic, having a strong impact on air quality.

  2. Estimation of regional CO2 fluxes using concentration measurements from the ring of towers in northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Denning, A.; Schuh, A.; Richardson, S. J.; Miles, N.; Davis, K. J.; Zupanski, D.

    2005-12-01

    The WLEF TV tower in northern Wisconsin is instrumented to take continuous measurements of CO2 mixing ratio at 6 levels from 11 to 396m. During the spring and summer of 2004 additional CO2 measurements were deployed on five 76 m communication towers forming a ring around the WLEF tower with a 100-150 km radius. The data from the ring of towers are being used to estimate regional fluxes of CO2. The modeling framework developed for this purpose is based on SiB-RAMS: Regional Atmospheric Modeling System linked to Simple Biosphere model. This model system is capable to realistically reproduce diurnal cycle of CO2 fluxes as well as their spatial patterns in regional scale related to different vegetation types. However, there is still significant uncertainty in simulating atmospheric transport of CO2 due to synoptic and mesoscale circulations. We are attempting to assimilate available CO2 tower data into our modeling system in order to provide corrections for fluxes simulated by the SiB-RAMS. These corrections applied separately to respiration and assimilation fluxes have spatial patterns but are assumed constant in time during a period of 5 to 10 days. The CO2 data assimilation is based the Lagrangian Particle Dispersion (LPD) model and two different inversion techniques. The LPD model is driven by meteorological fields from the SiB-RAMS and is used for a regional domain in its adjoint mode to trace particles backward in time to derive influence functions for each concentration sample. The influence functions provide information on potential contributions both from surface sources and inflow fluxes that make their way through the modeling domain boundaries into the CO2 concentration sample. Then the Bayesian inversion technique is applied to estimate unknown corrections for the CO2 fluxes. Several tests of the modeling framework were performed with the aid of model generated concentration pseudo-data. Different configurations of source areas within 500 km radius from

  3. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    PubMed

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2017-09-12

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  4. Equivalency between emulated disc electrodes and conventional disc electrode human electroencephalography.

    PubMed

    Zhu, Zhenghan; Brooks, James; Makevey, Oleksandr; Kay, Steven M; Besio, Walter G

    2014-01-01

    We have previously shown that tripolar concentric ring electrode (TCRE) Laplacian electroencephalography (tEEG) has significantly better signal-to-noise ratio, spatial resolution, and mutual information than disc electrode electroencephalography (EEG). This paper compares the EEG signals acquired simultaneously from the outer ring of the TCRE (oTCRE), shorting all three elements of the TCRE (sTCRE) and disc electrode (disc) concurrently from nearly the same location on the human scalp. We calculated the average correlation for the time series between each pair of signals and average coherence over the pass-band frequencies between all pairs of signals as well. All the correlations and coherences were above 0.99. The results suggest that the oTCRE can be used to record EEG concurrently with tEEG from the same sensor at the same location.

  5. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode.

    PubMed

    Dorraji, Parisa S; Jalali, Fahimeh

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03-0.3 μM and 0.3-1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98-102%). The electrode showed excellent reproducibility, selectivity and antifouling effects.

  6. Concentration and mobility of charge carriers in thin polymers at high temperature determined by electrode polarization modeling

    NASA Astrophysics Data System (ADS)

    Diaham, Sombel; Locatelli, Marie-Laure

    2012-07-01

    Charge carrier concentration (n0) and effective mobility (μeff) are reported in two polymer films (<10 μm) and in a very high temperature range (from 200 to 400 °C). This was possible thanks to an electrode polarization modeling of broadband dielectric spectroscopy data. It is shown that the glass transition temperature (Tg) occurrence has a strong influence on the temperature dependence of n0 and μeff. We carry out that n0 presents two distinct Arrhenius-like behaviors below and above Tg, while μeff exhibits a Vogel-Fulcher-Tamman behavior only above Tg whatever the polymer under study. For polyimide films, n0 varies from 1 × 1014 to 4 × 1016 cm-3 and μeff from 1 × 10-8 to 2 × 10-6 cm2 V-1 s-1 between 200 °C to 400 °C. Poly(amide-imide) films show n0 values between 6 × 1016 and 4 × 1018 cm-3 from 270 °C to 400 °C, while μeff varies between 1 × 10-10 and 2 × 10-7 cm2 V-1 s-1. Considering the activation energies of these physical parameters in the temperature range of investigation, n0 and μeff values appear as coherent with those reported in the literature at lower temperature (<80 °C). Surface charge carrier concentrations (nS) are reported and discussed for potential passivation (i.e., surface electrical insulation) applications. Polyimide films appear as good candidates due to nS values less than 1011 cm-2 up to 300 °C.

  7. Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes

    SciTech Connect

    Zhang, Kai; Li, Yong; Zheng, Bailin

    2015-09-14

    The composition-gradient electrode material is considered as one of the most promising materials for lithium-ion batteries because of its excellent electrochemical performance and thermal stability. In this work, the effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induce stress in the composition-gradient electrodes were studied. The coupling equations of elasticity and diffusion under both potentiostatic charging and galvanostatic charging were developed to obtain the distributions of both the Li-ions concentration and the stress. The results indicated that the effects of the concentration-dependent elastic modulus on the Li-ions diffusion and the diffusion-induce stresses are controlled by the lithiation induced stiffening factor in the composition-gradient electrodes: a low stiffening factor at the center and a high stiffening factor at the surface lead to a significant effect, whereas a high stiffening factor at the center and a low stiffening factor at the surface result in a minimal effect. The results in this work provide guidance for the selection of electrode materials.

  8. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  9. Non‐water‐suppressed short‐echo‐time magnetic resonance spectroscopic imaging using a concentric ring k‐space trajectory

    PubMed Central

    Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M. Albert

    2017-01-01

    Water‐suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non‐water‐suppressed MRS spectrum is used for artefact correction, reconstruction of phased‐array coil data and metabolite quantification. Here, a two‐scan metabolite‐cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short‐echo (T E = 14 ms), two‐dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite‐cycling is counterbalanced by a time‐efficient concentric ring k‐space trajectory. To validate the technique, water‐suppressed MRSI acquisitions were also performed for comparison. The proposed non‐water‐suppressed metabolite‐cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high‐resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non‐water‐suppressed and water‐suppressed techniques. The achieved spectral quality, signal‐to‐noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in‐plane resolution of 10 × 10 mm2 in 8 min and with a Cramér‐Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non‐water‐suppressed technique enabled voxel‐wise single‐scan frequency, phase and eddy current correction. These findings demonstrate that our non‐water‐suppressed metabolite‐cycling MRSI technique can perform robustly on 3 T MRI systems and

  10. Non-water-suppressed short-echo-time magnetic resonance spectroscopic imaging using a concentric ring k-space trajectory.

    PubMed

    Emir, Uzay E; Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M Albert

    2017-03-08

    Water-suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non-water-suppressed MRS spectrum is used for artefact correction, reconstruction of phased-array coil data and metabolite quantification. Here, a two-scan metabolite-cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short-echo (TE  = 14 ms), two-dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite-cycling is counterbalanced by a time-efficient concentric ring k-space trajectory. To validate the technique, water-suppressed MRSI acquisitions were also performed for comparison. The proposed non-water-suppressed metabolite-cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high-resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non-water-suppressed and water-suppressed techniques. The achieved spectral quality, signal-to-noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in-plane resolution of 10 × 10 mm(2) in 8 min and with a Cramér-Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non-water-suppressed technique enabled voxel-wise single-scan frequency, phase and eddy current correction. These findings demonstrate that our non-water-suppressed metabolite-cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time.

  11. Experimental Investigation of Vibratory Stresses in a Concentric-Ring Direct-Air-Cycle Nuclear Fuel Element

    NASA Technical Reports Server (NTRS)

    Chiarito, Patrick T.

    1957-01-01

    Preliminary tests made by the General Electric Company indicated that aerodynamic loads might cause large enough distortions in the thin sheet-metal rings of a nuclear fuel element to result in structural failure. The magnitude of the distortions in a test fuel element was determined from strains measured with airflow conditions simulating those expected during engine operation. The measured vibratory strains were low enough to indicate the improbability of failure by fatigue. A conservative estimate of the radial deflection that accompanied peak strains in the outer ring was +0.0006 inch.

  12. Preset Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  13. Variability in pigment concentration in warm-core rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Garcia-Moliner, Graciela; Yoder, James A.

    1994-01-01

    A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). Warm-core rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their cores. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.

  14. Variability in pigment concentration in warm-core rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Garcia-Moliner, Graciela; Yoder, James A.

    1994-01-01

    A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). Warm-core rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their cores. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.

  15. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  16. Detection of an Epstein-Barr genome analog at physiological concentrations via the biometallization of interdigitated array electrodes.

    PubMed

    Zaccheo, Brian A; Crooks, Richard M

    2009-07-15

    This paper reports a simple DNA sensor having a detection limit of about 24 oligonucleotides and that operates without the need for PCR amplification. The sensor platform is based on an interdigitated array (IDA) of electrodes. The electrodes are modified with DNA capture probes, which are complementary to an analog for the Epstein-Barr genome, and then exposed to an alkaline phosphatase-labeled target. The enzyme catalyzes the formation of L-ascorbic acid, which reduces Ag(+) in solution to yield conductive Ag filaments that span the gap between the electrodes of the IDA. Resistance measurements, made with an inexpensive, hand-held multimeter, signal the presence of the target. The sensor response is insensitive to the presence of a large excess of non-complementary DNA sequences.

  17. Optimization of bioelectricity generation in fed-batch microbial fuel cell: effect of electrode material, initial substrate concentration, and cycle time.

    PubMed

    Cirik, Kevser

    2014-05-01

    Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90 ± 3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m(2).

  18. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Rabaey, Korneel; Radjenovic, Jelena

    2013-01-01

    Reverse osmosis concentrate from wastewater reclamation contains biorefractory trace organic contaminants that may pose environmental or health hazard. Due to its high conductivity, electrochemical oxidation of brine requires low voltage which is energetically favourable. However, the presence of chloride ions may lead to the formation of chlorinated by-products, which are likely to exert an increased toxicity and persistence to further oxidation than their non-chlorinated analogues. Here, the performance of Ti/Pt-IrO(2), Ti/SnO(2)-Sb and Si/BDD anodes was evaluated for the electrochemical oxidation of ROC in the presence of chloride, nitrate or sulfate ions (0.05 M sodium salts). In order to investigate the electrooxidation of ROC with nitrate and sulfate ions as dominant ion mediators, chloride ion concentration was decreased 10 times by electrodialytic pretreatment. The highest Coulombic efficiency for chemical oxygen demand (COD) removal was observed in the presence of high chloride ions concentration for all anodes tested (8.3-15.9%). Electrooxidation of the electrodialysed concentrate at Ti/SnO(2)-Sb and Ti/Pt-IrO(2) electrodes exhibited low dissolved organic carbon (DOC) (i.e. 23 and 12%, respectively) and COD removal (i.e. 37-43 and 6-22%, respectively), indicating that for these electrodes chlorine-mediated oxidation was the main oxidation mechanism, particularly in the latter case. In contrast, DOC removal for the electrodialysed concentrate stream was enhanced at Si/BDD anode in the presence of SO(4)(2-) (i.e. 51%) compared to NO(3)(2-) electrolyte (i.e. 41%), likely due to the contribution of SO(4)(·-) and S(2)O(8)(2-) species to the oxidative degradation. Furthermore, decreased concentration of chloride ions lead to a lower formation of haloacetic acids and trihalomethanes at all three electrodes tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation

    SciTech Connect

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C. T.; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-01-01

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself.

  20. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Feng, Yujie; Lv, Jiangwei; Liu, Junfeng; Gao, Na; Peng, Hongyan; Chen, Yuqiang

    2011-02-01

    A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH4/H2/B(OCH3)3 gas mixture. A maximum growth rate of 0.65 mg cm-2 h-1 was obtained with CH4/H2/B(OCH3)3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH3)3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH4/H2/B(OCH3)3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 1020 cm-3 with CH4/H2/B(OCH3)3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH4/H2/B(OCH3)3 ratio of 4/190/10 possessed the best phenol removal efficiency.

  1. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  2. Luminescent Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles.

    The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left.

    Saturn's shadow carves a dark triangle out of the lower right corner of this image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  3. Electrode Configurations in Atmospheric Pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  4. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.

    PubMed

    Kim, Choonsoo; Lee, Juhan; Srimuk, Pattarachai; Aslan, Mesut; Presser, Volker

    2017-07-07

    We present a novel multichannel membrane flow-stream capacitive deionization (MC-MCDI) concept with two flow streams to control the environment around the electrodes and a middle channel for water desalination. The introduction of side channels to our new cell design allows operation in a highly saline environment, while the feed water stream in the middle channel (conventional CDI channel) is separated from the electrodes with anion- and cation-exchange membranes. At a high salinity gradient between side (1000 mm) and middle (5 mm) channels, MC-MCDI exhibited an unprecedented salt-adsorption capacity (SAC) of 56 mg g(-1) in the middle channel with charge efficiency close to unity and low energy consumption. This excellent performance corresponds to a fourfold increase in desalination performance compared to the state-of-the-art in a conventional CDI cell. The enhancement originates from the enhanced specific capacitance in high-molar saline media in agreement with the Gouy-Chapman-Stern theory and from a double-ion desorption/adsorption process of MC-MCDI through voltage operation from -1.2 to +1.2 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. EDM Electrode for Internal Grooves

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  6. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  7. Electrochemical incineration of high concentration azo dye wastewater on the in situ activated platinum electrode with sustained microwave radiation.

    PubMed

    Zhao, Guohua; Gao, Junxia; Shi, Wei; Liu, Meichuan; Li, Dongming

    2009-09-01

    In this study, an in situ microwave activated platinum electrode was developed for the first time to completely incinerate the azo dye simulated wastewater containing methyl orange. The experiments were carried out in a circulating system under atmospheric pressure. Azo bond of methyl orange was partly broken on Pt, certain decoloration was reached, and the total organic carbon was not removed effectively without microwave activation. However, methyl orange was mineralized completely and efficiently on the in situ microwave activated Pt. 2,5-Dinitrophenol, p-nitrophenol, hydroquinone, benzoquinone, maleic and oxalic acids are the main intermediates during degradation of methyl orange. Aromatic products are the main substances leading to the poisoning of Pt and decrease of electrochemical oxidation efficiency, so methyl orange removal can not be carried out thoroughly. However, the intermediates were broke down quickly with in situ microwave activation promoting the mineralization of methyl orange on Pt.

  8. Tree ring proxies show physiological responses of eastern red cedar to increased CO2 and SO4 concentrations over the 20th century

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Spal, S.; Maxwell, S.; Nippert, J. B.

    2011-12-01

    We examined the relationships between tree growth during the past century and the ratio of internal carbon dioxide concentration to atmospheric CO2 concentration (ci/ca) and instantaneous water-use efficiency (iWUE) by analyzing δ13C in tree rings of Juniperus virginiana growing on a limestone outcrop in West Virginia, US. Tree rings from years 1909 to 2008 from five Juniperus virginiana trees that ranged from 116 years to over 300 years in age were measured for basal area growth and used for isotopic analysis. Instantaneous WUE increased from approximately 75 to 112μmol mmol-1 over the past century, representing a 49% increase. In addition, we found a positive relationship between iWUE and the basal area increase over this time period, suggesting the increase in WUE translated into greater growth of the Juniperus trees. Typically, we might expect that increased growth of these trees reflects increased photosynthetic rates and decreased stomatal conductance rates resulting from increased atmospheric CO2 concentrations. However, this area of the central Appalachian Mountains has historically received some of the highest rates of acid deposition in the nation resulting from being downwind from an abundance of coal-fired power plants in the Ohio River valley. Our results show that ci/ca declined 14% between 1909 and 1980, but increased 9.6% between 1980 and 2009. We hypothesize that the directional change in ci/ca that occurred around 1980 was due to a reduction in sulfur emissions imposed by the Clean Air Act, environmental legislation enacted in 1970 and amended in 1990. Sulfur deposition measured by the National Atmospheric Deposition Program (NADP) in West Virginia near our Juniperus site shows a 53% decline between 1979 and 2009 and these NADP data show a highly significant negative correlation with ci/ca of Juniperus over this time period. Previously, experimental studies have shown that acidic sulfur mist leaches calcium from leaves causing a reduction in

  9. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  10. One sample is not enough: Differences and similarities in element concentrations of tree rings in dependence of sampling direction and height along the stem

    NASA Astrophysics Data System (ADS)

    Scharnweber, Tobias; Hevia Cabal, Andrea; van der Maaten, Ernst; Buras, Allan; Wilmking, Martin

    2015-04-01

    Dendrochemistry, i.e. the chronological analysis of element concentrations in the rings of living trees and archaeological wood is an evolving field. Attempts have been made to attribute trends, peaks or depletion of certain metal elements to volcanic eruptions, atmospheric pollution and other abrupt and gradual environmental or climatic changes (e.g. Padilla and Anderson, 2002; Pearson et al., 2009; Watmough, 1999). Once scientifically successfully established, the relationship between environmental drivers (the contemporary growth environment) and element concentrations in tree rings may offer great annually or even intra-annually resolved proxy potential as trees or archaeological/subfossil wood are widely available. Current challenges to dendrochemistry are mainly due to: 1) Possible radial or vertical translocation processes of elements in the wood (active during heartwood formation or passive) that might blur or obscure any dendrochemical signal and hamper precise dating of events. 2) Labour and time intensive methods (e.g. atomic absorption spectrometry (AAS) or inductively coupled plasma mass spectroscopy (ICP-MS)) that normally require sample digestion or solvent extraction and limit the amount of samples which can be processed. This leads to usually small sample sizes (<10) in dendrochemical studies, with mostly only one sample (core) per individual analyzed. X-ray fluorescence (µXRF) provides a non-destructive, high resolution and timesaving alternative and offers the opportunity to increase sample size, but needs to be methodologically tested to ensure scientific accuracy. In our study we systematically compare count-rates of certain elements (Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Ni) between three different stem expositions (N, S and W) and three different heights (base, middle and top) along the stems of mature deciduous (Castanea sativa Mill.) and coniferous (Pinus sylvestris L.) trees. Measurements are conducted with an ITRAX Multiscanner equipped

  11. Hydrogen Isotopic Composition of Arctic and Atmospheric CH4 Determined by a Portable Near-Infrared Cavity Ring-Down Spectrometer with a Cryogenic Pre-Concentrator

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lehmann, Kevin K.; Peng, Y.; Pratt, L. M.; White, J. R.; Cadieux, S. B.; Sherwood Lollar, B.; Lacrampe-Couloume, G.; Onstott, T. C.

    2016-10-01

    In this study, near-infrared continuous wave cavity ring-down spectroscopy was applied to the measurement of the δ2H of methane (CH4). The cavity ring-down spectrometer (CRDS) system consisted of multiple DFB laser diodes to optimize selection of spectral line pairs. By rapidly switching measurements between spectral line peaks and the baseline regions, the long-term instrumental drift was minimized, substantially increasing measurement precision. The CRDS system coupled with a cryogenic pre-concentrator measured the δ2H of terrestrial atmospheric CH4 from 3 standard liters of air with a precision of ±1.7‰. The rapidity with which both C and H isotopic measurements of CH4 can be made with the CRDS will enable hourly monitoring of diurnal variations in terrestrial atmospheric CH4 signatures that can be used to increase the resolution of global climate models for the CH4 cycle. Although the current instrument is not capable of measuring the δ2H of 10 ppbv of martian CH4, current technology does exist that could make this feasible for future spaceflight missions. As biological and abiotic CH4 sources have overlapping carbon isotope signatures, dual-element (C and H) analysis is key to reliable differentiation of these sources. Such an instrument package would therefore offer improved ability to determine whether or not the CH4 recently detected in the martian atmosphere is biogenic in origin.

  12. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.

    PubMed

    Zhao, Tong; Yao, Jiafeng; Liu, Kai; Takei, Masahiro

    2016-03-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi  > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi  ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices.

  13. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel

    PubMed Central

    Zhao, Tong; Liu, Kai; Takei, Masahiro

    2016-01-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices. PMID:27158288

  14. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  15. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    SciTech Connect

    Ohtsu, Yasunori Matsumoto, Naoki

    2014-05-15

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode.

  16. Uphill transport membrane electrodes

    SciTech Connect

    Uto, M.; Yoshida, H.; Sugawara, M.; Umezawa, Y.

    1986-07-01

    A new membrane electrode was constructed in which carrier-mediated uphill transport of analytes is incorporated. The electrode can boost selectively virtual concentration of specific analytes by uphill transport against their concentration gradient across a built-in liquid membrane into its inner filling solution, whose volume is purposely made very small. Cd(II), UO/sub 2//sup 2 +/, and Cu(II) ion uphill transport membrane electrodes constructed here as illustrative examples utilize three different types of input energies, i.e., complexation, concentration gradient, and redox, respectively, for uphill transport of each analyte. Voltammetric detections were demonstrated for Cd(II) and UO/sub 2//sup 2 +/ ion uphill transport electrodes, and a potentiometric detection for a Cu(II) ion uphill transport membrane electrode is also described in terms of fundamental behaviors and a possible use for a new type of electrochemical sensor.

  17. Electrochemical detection of blood alcohol concentration using a disposable biosensor based on screen-printed electrode modified with Nafion and gold nanoparticles.

    PubMed

    Luo, Peng; Xie, Guoming; Liu, Yi; Xu, Huajian; Deng, Shixiong; Song, Fangzhou

    2008-01-01

    Blood alcohol determination plays an important role in laboratory medicine and forensic medicine. Nowadays, many methods are being used for alcohol measurement, but these methods are time-consuming and complex to perform laborious sample pre-treatment. The disposable amperometric biosensor, due to its portability, low cost and potential for fabrication, should be readily applicable for blood alcohol determination. The biosensor was fabricated by immobilizing alcohol dehydrogenase and nicotinamide adenine dinucleotide coated by Nafion combined with gold nanoparticles onto the surface of screen-printed electrode modified with Meldola's blue. Evaluations of biosensor performance were performed according to the relevant National Committee for Clinical Laboratory Standards standard. The biosensor response for serum alcohol presents good linearity, precision, stability, accuracy, and specificity. The biosensor exhibits the capability of detecting blood alcohol concentration in the clinical laboratory and in forensic medicine, unnecessarily performing laborious sample pre-treatment.

  18. Thermodynamic black di-rings

    SciTech Connect

    Iguchi, Hideo; Mishima, Takashi

    2010-10-15

    Previously the five dimensional S{sup 1}-rotating black rings have been superposed in a concentric way by some solitonic methods, and regular systems of two S{sup 1}-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions 'black di-rings'). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution sets of the black di-rings. Then the existence of thermodynamic black di-rings is shown, in which both isothermality and isorotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  19. Development of a high time resolution measurement of NO2 and HCHO concentration in the atmosphere using high repetition rate cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Ida, A.; Nakamura, K.; Kajii, Y. J.

    2013-12-01

    Many chemical species with light absorption band at 300 ~ 350 nm are contained in the atmosphere, however these trace gases have important role in the atmosphere. The sun light is absorbed by these trace gases then free radicals cause the photochemistry in the atmosphere are formed by photolysis of these trace gases. Both hydrogen and formylradicals which will be converted into HO2 radicals in the atmosphere are generated in the photolysis of formaldehyde in the atmosphere. NO2 is important precursor for O3 in the troposphere that strongly control oxidation capacity of the air because OH radicals are formed in the photolysis of ozone. It is important to measure concentrations of these photoactive species precisely to reveal the atmospheric chemistry. These trace gases have short lifetimes and the forming process are complicated then these trace gases have wide fluctuations of concentrations. In this study, we developed a measurement system of NO2 and H2CO with high time resolution and high sensitivity using UV laser absorption system. The Cavity ring-down system was employed with high repetition rate laser system (10kHz). The ring-down time of N2 was measured to be 2.9×0.9, 3.0×0.1, 2.90×0.01 μs with the averaging time of 1 (0.1 ms), 50 (5ms) and 100000 (1s) shots, respectively. The uncertainty was decreasing to increase average times and the limit of detection was drastically decreasing. For example of NO2, the limit of detection was improved from 1.4 ppm to 3 ppb. The intercomparison measurement of the sample gases containing NO2 was performed under the several NO2 concentrations with this CRDS system and NOx analyser (MODEL 42i: Thermo Electron Corporation) employed cemiluminescense. The correlation factor was calculated to be 0.975. Measurement values from CRDS system was ensured. H2CO absorbs the UV light around 350~360 nm. The concentration was determined using the absorption band. The limit of detection was about 10 ppb of H2CO. In January 2012, ambient

  20. Variable-temperature rate coefficients of proton-transfer equilibrium reaction C2H4 + H3O+ ⇄ C2H5+ + H2O measured with a coaxial molecular beam radio frequency ring electrode ion trap.

    PubMed

    Smith, Mark A; Yuan, Bing; Sanov, Andrei

    2012-11-29

    The rate coefficients for the forward and reverse proton-transfer reactions C(2)H(4) + H(3)O(+) ⇄ C(2)H(5)(+) + H(2)O are studied with respect to independent varied neutral molecule and ion temperatures. The measurements are performed using a coaxial molecular beam radio frequency ring electrode ion trap at trap temperatures down to 23 K and beam temperatures up to 450 K. The temperature-dependent rate coefficients suggest that in this temperature window, the reaction proceeds through a statistically equilibrated complex. In order to explain the observed rate coefficients, a new type of reaction temperature was defined in these studies that considered collisional and internal (rotational and vibrational) degrees of freedom of both H(3)O(+) and C(2)H(4). The enthalpy and entropy of the equilibrium reaction deduced from a Van't Hoff plot are ΔH = (5.1 ± 0.5) kJ·mol(-1) and ΔS = (-15.0 ± 0.9) J·mol(-1)·K(-1), respectively.

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  2. Reference values for voluntary and stimulated single-fibre EMG using concentric needle electrodes: a multicentre prospective study.

    PubMed

    Kokubun, Norito; Sonoo, Masahiro; Imai, Tomihiro; Arimura, Yumiko; Kuwabara, Satoshi; Komori, Tetsuo; Kobayashi, Masahito; Nagashima, Takahide; Hatanaka, Yuki; Tsuda, Emiko; Misawa, Sonoko; Abe, Tatsuya; Arimura, Kimiyoshi

    2012-03-01

    The aim of this study is to establish reference values for single-fibre electromyography (SFEMG) using concentric needles in a prospective, multicentre study. Voluntary or stimulated SFEMG at the extensor digitorum communis (EDC) or frontalis (FRO) muscles was conducted in 56-63 of a total of 69 normal subjects below the age of 60years at six Japanese institutes. The cut-off values for mean consecutive difference (MCD) of individual potentials were calculated using +2.5 SD or 95% prediction limit (one-tail) of the upper 10th percentile MCD value for individual subjects. The cut-off values for individual MCD (+2.5 SD) were 56.8μs for EDC-V (voluntary SFEMG for EDC), 58.8μs for EDC-S (stimulated SFEMG for EDC), 56.8μs for FRO-V (voluntary SFEMG for FRO) and 51.0μs for FRO-S (stimulated SFEMG for FRO). The false positive rates using these cut-off values were around 2%. The +2.5 SD and 95% prediction limit might be two optimal cut-off values, depending on the clinical question. The obtained reference values were larger than those reported previously using concentric needles, but might better coincide with conventional values. This is the first multicentre study reporting reference values for SFEMG using concentric needles. The way to determine cut-off values and the statistically correct definition of the percentile were discussed. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Hydrogen Isotopic Composition of Arctic and Atmospheric CH4 Determined by a Portable Near-Infrared Cavity Ring-Down Spectrometer with a Cryogenic Pre-Concentrator.

    PubMed

    Chen, Y; Lehmann, Kevin K; Peng, Y; Pratt, L M; White, J R; Cadieux, S B; Sherwood Lollar, B; Lacrampe-Couloume, G; Onstott, T C

    2016-10-01

    In this study, near-infrared continuous wave cavity ring-down spectroscopy was applied to the measurement of the δ(2)H of methane (CH4). The cavity ring-down spectrometer (CRDS) system consisted of multiple DFB laser diodes to optimize selection of spectral line pairs. By rapidly switching measurements between spectral line peaks and the baseline regions, the long-term instrumental drift was minimized, substantially increasing measurement precision. The CRDS system coupled with a cryogenic pre-concentrator measured the δ(2)H of terrestrial atmospheric CH4 from 3 standard liters of air with a precision of ±1.7‰. The rapidity with which both C and H isotopic measurements of CH4 can be made with the CRDS will enable hourly monitoring of diurnal variations in terrestrial atmospheric CH4 signatures that can be used to increase the resolution of global climate models for the CH4 cycle. Although the current instrument is not capable of measuring the δ(2)H of 10 ppbv of martian CH4, current technology does exist that could make this feasible for future spaceflight missions. As biological and abiotic CH4 sources have overlapping carbon isotope signatures, dual-element (C and H) analysis is key to reliable differentiation of these sources. Such an instrument package would therefore offer improved ability to determine whether or not the CH4 recently detected in the martian atmosphere is biogenic in origin. Key Words: Arctic-Hydrogen isotopes-Atmospheric CH4-CRDS-Laser. Astrobiology 16, 787-797.

  4. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    PubMed

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  5. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  6. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement.

    PubMed

    Ylinen-Hinkka, T; Niskanen, A J; Franssila, S; Kulmala, S

    2011-09-19

    C-reactive protein (CRP) was determined in the concentration range 0.01-10 mg L(-1) using hot electron induced electrochemiluminescence (HECL) with devices combining both working and counter electrodes and sample confinement on a single chip. The sample area on the electrodes was defined by a hydrophobic ring, which enabled dispensing the reagents and the analyte directly on the electrode. Immunoassay of CRP by HECL using integrated electrodes is a good candidate for a high-sensitivity point-of-care CRP-test, because the concentration range is suitable, miniaturisation of the measurement system has been demonstrated and the assay method with integrated electrodes is easy to use. High-sensitivity CRP tests can be used to monitor the current state of cardiovascular disease and also to predict future cardiovascular problems in apparently healthy people. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle.

    PubMed

    Megahed, A A; Hiew, M W H; Grünberg, W; Constable, P D

    2016-09-01

    Two low-cost ion-selective electrode (ISE) handheld meters (CARDY C-131, LAQUAtwin B-731; Horiba Ltd., Albany, NY) have recently become available for measuring the potassium concentration ([K(+)]) in biological fluids. The primary objective of this study was to characterize the analytical performance of the ISE meters in measuring [K(+)] in bovine whole blood, plasma, urine, milk, and abomasal fluid. We completed 6 method comparison studies using 369 whole blood and plasma samples from 106 healthy periparturient Holstein-Friesian cows, 138 plasma samples from 27 periparturient Holstein-Friesian cows, 92 milk samples and 204 urine samples from 16 lactating Holstein-Friesian cows, and 94 abomasal fluid samples from 6 male Holstein-Friesian calves. Deming regression and Bland-Altman plots were used to characterize meter performance against reference methods (indirect ISE, Hitachi 911 and 917; inductively coupled plasma-optical emission spectroscopy). The CARDY ISE meter applied directly in plasma measured [K(+)] as being 7.3% lower than the indirect ISE reference method, consistent with the recommended adjustment of +7.5% when indirect ISE methods are used to analyze plasma. The LAQUAtwin ISE meter run in direct mode measured fat-free milk [K(+)] as being 3.6% lower than the indirect ISE reference method, consistent with a herd milk protein percentage of 3.4%. The LAQUAtwin ISE meter accurately measured abomasal fluid [K(+)] compared to the indirect ISE reference method. The LAQUAtwin ISE meter accurately measured urine [K(+)] compared to the indirect ISE reference method, but the median measured value for urine [K(+)] was 83% of the true value measured by inductively coupled plasma-optical emission spectroscopy. We conclude that the CARDY and LAQUAtwin ISE meters are practical, low-cost, rapid, accurate point-of-care instruments suitable for measuring [K(+)] in whole blood, plasma, milk, and abomasal fluid samples from cattle. Ion-selective electrode methodology is

  8. Impact of electrode kinetics on the dynamic response of a DMFC to change of methanol feed concentration

    NASA Astrophysics Data System (ADS)

    Schultz, Thorsten; Krewer, Ulrike; Sundmacher, Kai

    A dynamic one-dimensional rigorous process model of a single-cell direct methanol fuel cell (DMFC) is presented. Multi-component mass transport in the diffusion layers and the polymer electrolyte membrane (PEM) is described using the generalised Maxwell-Stefan equation for porous structures. In the PEM, local swelling behaviour and non-idealities are accounted for by a Flory-Huggins activity model. This model is used as basis of a model family with different anode and cathode reaction mechanisms (single-step and multi-step with and without adsorption to catalyst surface sites). The model variants were used to simulate the dynamic (transient) response of the DMFC to stepwise changes in the methanol feed concentration from typical operating levels down to zero, while maintaining the cell current. For validation, similar experiments were carried out. In the experiments, the cell voltage broke down only after an unexpectedly long period of time, and for a variety of operating conditions even a cell voltage overshoot could be observed. Such overshoot behaviour is also predicted by those model variants, which feature anode reaction mechanisms with reaction intermediates (e.g. CO) adsorbed to the anode catalyst, while models without such detailed anode reaction mechanisms fail in this respect. The model-based analysis reveals that the observed overshoots result from the different time constants of the responses of the anode and cathode overpotentials to the feed change.

  9. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  10. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  11. Neptune Rings

    NASA Image and Video Library

    1999-10-29

    This 591-second exposure of the rings of Neptune were taken with the clear filter by NASA Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged.

  12. Ring Backdrop

    NASA Image and Video Library

    2011-01-03

    Saturn moon Enceladus brightly reflects sunlight before a backdrop of the planet rings and the rings shadows cast onto the planet. NASA Cassini spacecraft captured this snapshot during its flyby of the moon on Nov. 30, 2010.

  13. Increasing Ambient CO2 Concentrations are Reflected in the Stable C and O Isotopes from Tree Rings along a Siberian North South Transect in the Last 150 Years

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T.; Sidorova, O. V.; Saurer, M.; Knorre, A.; Kirdyanov, A.

    2010-12-01

    The ongoing industrialization in the last 150 years left its fingerprints with an increase in atmospheric CO2 (ca) from ca. 260 to 385 ppm due to the growing use of fossil fuels. Elevated CO2 affects the vegetation, as plants respond instantaneously with an increased photosynthetic rate, and a reduction in stomatal conductance. This results in a lower ci/ca ratio (ci leaf intercellular CO2 concentration), causing a reduced 13C fractionation during photosynthesis. This is reflected in the intrinsic water use efficiency (WUEi), although plants acclimatize, i.e. down regulate the maximum photosynthetic capacity (Amax) as a consequence of elevated CO2 for the last 150 years. The degree of the long-term response to changes in CO2 varies largely between plants growing under different growth conditions, i.e. water availability, temperature, nutrient supply and between different species. Along with an increasing CO2 concentration a rise in the mean annual temperature is observed at the Northern timberline. An increasing temperature might stimulate tree growth, yet it also increases the Air to Leaf Vapor Pressure Difference (ALVPD), resulting in an increase of drought stress, as the precipitation in the Siberian regions is rather low. This will induce a reduction in stomatal conductance and a diminished productivity, reflected in tree ring width. We present C and O isotope values from tree rings for the last 150 years. The data reflect changes in the carbon water relations (WUEi) from central Siberia (Russia) along a north south transect of ca. 2400 km from the northern timberline to the forest steppe. Changes in the environment either increase or reduce the effect of elevated CO2 on trees, growing in the highly sensitive Siberian ecosystem. The combination of the C and O isotope values in a conceptual model (Scheidegger et al., 2000; Saurer and Siegwolf, 2007) allows the link between tree response reflected in δ13C and δ18O data and gas exchange patterns providing a

  14. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  15. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  16. Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Feng, Yonglan

    2014-02-01

    A reliable sensor was fabricated by modifying an acetylene black paste electrode with graphene (denoted as GR/ABPE) for sensitive and selective determination of tryptophan (Trp). Due to the high sorption ability, large surface area and numerous active sites, the GR/ABPE showed a strong enhancement effect on the oxidation of Trp, and greatly increased the peak current. The parameters affecting the Trp determination were investigated. In 1.0 M H2SO4 the voltammetric responses of Trp and tyrosine (Tyr) were well separated into two distinct peaks with peak potential difference (ΔE(pa)) of 115 mV. Under the optimized conditions, in the presence of 0.1 mM Tyr, the oxidation peak current of Trp was proportional to its concentration in the range between 0.1 μM and 0.1 mM, with the limit of detection of 60 nM (S/N=3). The GR/ABPE was applied to the direct detection of Trp in pharmaceutical and biological samples with satisfactory results. This work provides a simple and easy approach to selective detection of Trp in the presence of Tyr.

  17. Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes.

    PubMed

    Morf, W E; Pretsch, E; De Rooij, N F

    2010-03-15

    The applicability of extremely thin non-electroneutral membranes for ion-selective electrodes (ISEs) is investigated. A theoretical treatment of potential and concentration profiles in space-charge membranes of < 1 μm thickness is presented. The theory is based on the Nernst-Planck equation for ion fluxes, which reduces to Boltzmann's formula at equilibrium, and on the Poisson relationship between space-charge density and electric field gradient. A general solution in integral form is obtained for the potential function and the corresponding ion profiles at equilibrium. A series of explicit sub-solutions is derived for particular cases. Membrane systems with up to three different ion species are discussed, including trapped ionic sites and co-extracted ions. Solid-contacted thin membranes (without formation of aqueous films at the inner interface) are shown to exhibit a sub-Nernstian response. The theoretical results are confirmed by numerical simulations using a simplified finite-difference procedure based on the Nernst-Planck-Poisson model, which are shown to be in excellent agreement.

  18. Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes

    PubMed Central

    Morf, W. E.; Pretsch, E.; De Rooij, N. F.

    2010-01-01

    The applicability of extremely thin non-electroneutral membranes for ion-selective electrodes (ISEs) is investigated. A theoretical treatment of potential and concentration profiles in space-charge membranes of << 1 μm thickness is presented. The theory is based on the Nernst-Planck equation for ion fluxes, which reduces to Boltzmann’s formula at equilibrium, and on the Poisson relationship between space-charge density and electric field gradient. A general solution in integral form is obtained for the potential function and the corresponding ion profiles at equilibrium. A series of explicit sub-solutions is derived for particular cases. Membrane systems with up to three different ion species are discussed, including trapped ionic sites and co-extracted ions. Solid-contacted thin membranes (without formation of aqueous films at the inner interface) are shown to exhibit a sub-Nernstian response. The theoretical results are confirmed by numerical simulations using a simplified finite-difference procedure based on the Nernst-Planck-Poisson model, which are shown to be in excellent agreement. PMID:23255874

  19. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  20. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  1. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  2. Translucent Rings

    NASA Image and Video Library

    2014-12-08

    Although solid-looking in many images, Saturn's rings are actually translucent. In this picture, we can glimpse the shadow of the rings on the planet through (and below) the A and C rings themselves, towards the lower right hand corner. For centuries people have studied Saturn's rings, but questions about the structure and composition of the rings lingered. It was only in 1857 when the physicist James Clerk Maxwell demonstrated that the rings must be composed of many small particles and not solid rings around the planet, and not until the 1970s that spectroscopic evidence definitively showed that the rings are composed mostly of water ice. This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014 in near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 24 degrees. Image scale is 85 miles (136 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18295

  3. Widening Rings

    NASA Image and Video Library

    2010-03-18

    Saturn rings and its moon Rhea are imaged before a crescent of the planet in this image captured by NASA Cassini spacecraft. The shadows of the rings continue to grow wider after their disappearing act during the planet August 2009 equinox.

  4. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  5. Ring Slicer

    NASA Image and Video Library

    2015-07-06

    Saturn's moon Prometheus, seen here looking suspiciously blade-like, is captured near some of its sculpting in the F ring. Prometheus' (53 miles or 86 kilometers across) orbit sometimes takes it into the F ring. When it enters the ring, it leaves a gore where its gravitational influence clears out some of the smaller ring particles. Below Prometheus, the dark lanes interior to the F ring's bright core provide examples of previous ring-moon interactions. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 15, 2015. The view was obtained at a distance of approximately 286,000 miles (461,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 115 degrees. Image scale is 1.7 miles (2.8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18324

  6. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  7. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  8. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  9. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices.

    PubMed

    Gwamuri, Jephias; Marikkannan, Murugesan; Mayandi, Jeyanthinath; Bowen, Patrick K; Pearce, Joshua M

    2016-01-20

    The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic (PV) cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO) films (sub-50 nm) using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm) RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity), and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222) reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10(-4) Ω·cm) were obtained and high optical transparency is exhibited in the 300-1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical, and optical

  10. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    PubMed Central

    Gwamuri, Jephias; Marikkannan, Murugesan; Mayandi, Jeyanthinath; Bowen, Patrick K.; Pearce, Joshua M.

    2016-01-01

    The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic (PV) cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO) films (sub-50 nm) using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm) RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity), and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222) reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm) were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical, and optical

  11. Warm core rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Gulf stream phenomena have been the focus of numerous studies by U.S. and Canadian oceanographic laboratories. Two years ago, observations of warm core rings associated with the Gulf Stream were reported in The Oceanography Report, (November 2, 1982, p. 834). It was noted then that the structure of warm core rings can undergo rapid transformation. Recently, a multidisciplinary group of physical and biological oceanographic institutions has examined the evolution of warm core rings in detail [Nature, 308, pp. 837-840, 1984]. The study has involved research vessels Endeavor, Atlantis II, and Albatross IV for surface measurements of temperature, salinity, and for measurement surface pigments to assess the concentration of marine plants. The results are that even though warm core rings are often very stable, undergoing only slow changes, it turns out that major alterations in structure can and do occur in short periods of 2-5 days.

  12. A self-polishing platinum ring voltammetric sensor and its application to complex media.

    PubMed

    Cavanillas, Santiago; Winquist, Fredrik; Eriksson, Mats

    2015-02-15

    A self-polishing voltammetric sensor was recently developed and has been applied to samples of urea, milk and sewage water. The polishing device continuously grinds a platinum ring electrode, offering a reproducible and clean electrode surface. Principal component analysis (PCA) and partial least squares (PLS) techniques were applied to interpret the data and to build prediction models. In an evaluation of samples with different urea concentrations, the grinding step allows for repeatable measurements, similar to those after electrochemical cleaning. Furthermore, for the determination of sewage water concentrations in drinking water and for the evaluation of different fat contents in milk samples, the polishing eliminates sensor drift produced by electrode fouling. The results show that the application of a self-polishing unit offers a promising tool for electrochemical studies of difficult analytes and complex media. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Perrot, C.; Boccaletti, A.; Pantin, E.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Maire, A.-L.; Mazoyer, J.; Milli, J.; Rousset, G.; Gratton, R.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Langlois, M.; Lannier, J.; Mesa, D.; Peretti, S.; Salter, G.; Sissa, E.; Chauvin, G.; Desidera, S.; Feldt, M.; Vigan, A.; Di Folco, E.; Dutrey, A.; Péricaud, J.; Baudoz, P.; Benisty, M.; De Boer, J.; Garufi, A.; Girard, J. H.; Menard, F.; Olofsson, J.; Quanz, S. P.; Mouillet, D.; Christiaens, V.; Casassus, S.; Beuzit, J.-L.; Blanchard, P.; Carle, M.; Fusco, T.; Giro, E.; Hubin, N.; Maurel, D.; Moeller-Nilsson, O.; Sevin, A.; Weber, L.

    2016-05-01

    Context. Transition disks correspond to a short stage between the young protoplanetary phase and older debris phase. Along this evolutionary sequence, the gas component disappears leaving room for a dust-dominated environment where already-formed planets signpost their gravitational perturbations. Aims: We endeavor to study the very inner region of the well-known and complex debris, but still gas-rich disk, around HD 141569A using the exquisite high-contrast capability of SPHERE at the VLT. Recent near-infrared (IR) images suggest a relatively depleted cavity within ~200 au, while former mid-IR data indicate the presence of dust at separations shorter than ~100 au. Methods: We obtained multi-wavelength images in the near-IR in J, H2, H3 and Ks-bands with the IRDIS camera and a 0.95-1.35 μm spectral data cube with the IFS. Data were acquired in pupil-tracking mode, thus allowing for angular differential imaging. Results: We discovered several new structures inside 1'', of which the most prominent is a bright ring with sharp edges (semi-major axis: 0.4'') featuring a strong north-south brightness asymmetry. Other faint structures are also detected from 0.4'' to 1'' in the form of concentric ringlets and at least one spiral arm. Finally, the VISIR data at 8.6 μm suggests the presence of an additional dust population closer in. Besides, we do not detect companions more massive than 1-3 mass of Jupiter. Conclusions: The performance of SPHERE allows us to resolve the extended dust component, which was previously detected at thermal and visible wavelengths, into very complex patterns with strong asymmetries; the nature of these asymmetries remains to be understood. Scenarios involving shepherding by planets or dust-gas interactions will have to be tested against these observations. Based on data collected at the European Southern Observatory, Chile, ESO programs 095.C-0381 and 095.C-0298.

  14. Electrochemical studies of some quinolone antibiotics. Part I. Qualitative analysis on mercury and carbon electrodes.

    PubMed

    Warowna-Grześkiewicz, M; Chodkowski, J; Fijałek, Z

    1995-01-01

    Direct current polarography and cyclic voltammetry was used to study quinolone antibiotics: ciprofloxacin, enoxacin, norfloxacin, ofloxacin and pefloxacin on a mercury and carbon electrode. The dependence of limiting currents and half-wave potentials on the pH of the solution, mercury head, temperature, ionic strength of the solution, methyl cellulose concentration, scan rate and quinolone concentration was studied. The optimal parameters and background solutions have been chosen. It was concluded that on mercury electrode quinolones are reduced in two one-electron waves and the process of the reduction is accompanied by an acid-base equilibrium. An anodic peak observed on graphite electrode is probably caused by the oxidation of piperazine ring in the molecule.

  15. Ring King

    NASA Image and Video Library

    2014-08-18

    Saturn reigns supreme, encircled by its retinue of rings. Although all four giant planets have ring systems, Saturn's is by far the most massive and impressive. Scientists are trying to understand why by studying how the rings have formed and how they have evolved over time. Also seen in this image is Saturn's famous north polar vortex and hexagon. This view looks toward the sunlit side of the rings from about 37 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on May 4, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 2 million miles (3 million kilometers) from Saturn. Image scale is 110 miles (180 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18278

  16. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nickel gradient electrode

    SciTech Connect

    Zimmerman, A.H.

    1988-03-31

    This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.

  18. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  19. Advantage of four-electrode over two-electrode defibrillators

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  20. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  1. Practical nitric oxide measurement employing a nitric oxide-selective electrode

    NASA Astrophysics Data System (ADS)

    Ichimori, K.; Ishida, H.; Fukahori, M.; Nakazawa, H.; Murakami, E.

    1994-08-01

    An NO-selective electrode was developed as an easily applicable tool for a real-time nitric oxide (NO) measurement. The working electrode (0.2 mm diam) was made from Pt/Ir alloy coated with a three-layered membrane. The counterelectrode was made from a carbon fiber. When a stable NO donor, S-nitroso-N-acetyl-dl-penicillamine, was applied, the electrode current increased in a dose-dependent fashion. The current and calculated NO concentration showed a linear relationship in the range from 0.2 nM (S/N=1) to 1 μM of NO. The response of the electrode was 1.14±0.09 s. The effects of temperature, pH, and chemicals other than NO on the electrode current were also evaluated. Electrodes which were placed in the luminal side of rat aortic rings exhibited 30 pA of current due to NO generation induced by the addition of 10-6 M of acetylcholine. The current was eliminated in the presence of 50 μM NG-monomethyl-L-arginine, an inhibitor of NO synthase. Thus, this NO-selective electrode is applicable to real-time NO assay in biological systems.

  2. Modeling the electrode-plasma interaction in the Archimedes Plasma Mass Filter

    NASA Astrophysics Data System (ADS)

    Cluggish, Brian; Ohkawa, Tihiro; Verboncouer, John; Hua, Daniel

    2001-10-01

    The use of concentric ring electrodes to generate a radial electric field perpendicular to an axial magnetic field is a well established technique. It has been used with some success on a number of plasma devices such as magnetic mirrors, Q-machines, and RF discharges. The Archimedes Technology Group is now utilizing this technique in the development of its Plasma Mass Filter. However, only limited theoretical work has been performed to support the design of electrode systems. Furthermore, there is little understanding of how the voltages applied to the discrete electrodes translate into a smooth potential profile in the plasma. To facilitate the design of the electrode system for the Plasma Mass Filter, we have developed a fluid model of the interaction of the electrodes with the plasma. The model provides simple guidelines for determining the required number, size, and spacing of the electrodes. In addition, it shows that discontinuities in the potential profile applied to the electrodes are smoothed out by variations in the potential drop in the sheath. We are currently verifying the model by applying XOOPIC, a two-dimensional particle-in-cell code, to the problem. The results of the model will be compared with the particle-in-cell simulations.

  3. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  4. Subdural Electrodes

    PubMed Central

    Lesser, Ronald P.; Crone, Nathan E.; Webber, W.R.S.

    2010-01-01

    Subdural electrodes are frequently used to aid in the neurophysiological assessment of patients with intractable seizures. We review the indications for these, their uses for localizing epileptogenic regions and for localizing cortical regions supporting movement, sensation, and language. PMID:20573543

  5. Cave Rings

    DTIC Science & Technology

    2010-10-13

    hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...Literature The ‘splash ring’ conjecture is described in [5]. It is claimed that 45◦ is the most probable angle for secondary drops to be ejected at, and that...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by

  6. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  7. A season in Saturn's rings: Cycling, recycling and ring history

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.

    2012-04-01

    Cassini experiments have watched Saturn's ring system evolve before our eyes. Images and occultations show changes and transient events. The rings are a dynamic and complex geophysical system, incompletely modeled as a single-phase fluid. Key Cassini observations: High resolution images show straw, propellers, embedded moonlets, and F ring objects. Multiple UVIS, RSS and VIMS occutlations indicate multimodal ringlet and edge structure, including free and forced modes along with stochastic perturbations that are most likely caused by nearby mass concentrations. Vertical excursions are evident at ring edges and in other perturbed regions. The rings are occasionally hit by meteorites that leave a signature that may last centuries; meteoritic dust pollutes the rings. Temperature, reflectance and transmission spectra are influenced by the dynamical state of the ring particles. Saturn's Equinox 2009: Oblique lighting exposed vertical structure and embedded objects. The rings were the coldest ever. Images inspired new occultation and spectral analysis that show abundant structure in the perturbed regions. The rings are more variable and complex than we had expected prior to this seasonal viewing geometry. Sub-kilometer structure in power spectral analysis: Wavelet analysis shows features in the strongest density waves and at the shepherded outer edge of the B ring. Edges are variable as shown by multiple occultations and occultations of double stars. F ring kittens: 25 features seen in the first 102 occultations show a weak correlation with Prometheus location. We interpret these features as temporary aggregations. Simulation results indicate that accretion must be enhanced to match the kittens' size distribution. Images show that Prometheus triggers the formation of transient objects. Propellers and ghosts: Occulations and images provide evidence for small moonlets in the A, B and C rings. These indicate accretion occurs inside the classical Roche limit. Implications

  8. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  9. Membrane reference electrode

    DOEpatents

    Redey, Laszlo; Bloom, Ira D.

    1989-01-01

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured with high spatial resolution.

  10. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  11. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  12. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  13. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  14. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  15. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  16. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  17. Microvoltammetric Electrodes.

    DTIC Science & Technology

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  18. Advances in microbicide vaginal rings.

    PubMed

    Malcolm, R Karl; Edwards, Karen-Leigh; Kiser, Patrick; Romano, Joseph; Smith, Thomas J

    2010-12-01

    Vaginal ring devices capable of providing sustained/controlled release of incorporated actives are already marketed for steroidal contraception and estrogen replacement therapy. In recent years, there has been considerable interest in developing similar ring devices for the administration of microbicidal compounds to prevent vaginal HIV transmission. Intended to be worn continuously, such coitally independent microbicide rings are being developed to maintain effective vaginal microbicide concentrations over many weeks or months, thereby overcoming issues around timing of product application, user compliance and acceptability associated with more conventional semi-solid formulations. In this article, an overview of vaginal ring technologies is presented, followed by a review of recent advances and issues pertaining to their application for the delivery of HIV microbicides. This article forms part of a special supplement on presentations covering intravaginal rings, based on the symposium "Trends in Microbicide Formulations", held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  20. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  1. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be

  2. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, Nicholas E.; Huff, James R.; Leddy, Johna

    1989-01-01

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

  3. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

    1987-10-16

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

  4. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  5. Immobilization of enzyme to platinum electrode and its use as enzyme electrode

    SciTech Connect

    Kawakami, Mitsuyasu; Koya, Hidekazu; Gondo, Shinichiro

    1991-12-31

    This report describes a glucose electrode for use in biochemical analysis or perhaps for biochemical conversion technologies. A glucose electrode was fabricated by immobilizing glucose oxidase covalently onto a platinized platinum electrode. The sensor showed rapid response with response time of 2-4 s, and also the linear response to the glucose concentration, ranging from 2 x 10{sup -3} to 5 mM. The sensitivity was found to be correlated with the surface area of a base electrode used.

  6. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  7. Kinetics of ring formation

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2011-06-01

    We study reversible polymerization of rings. In this stochastic process, two monomers bond and, as a consequence, two disjoint rings may merge into a compound ring or a single ring may split into two fragment rings. This aggregation-fragmentation process exhibits a percolation transition with a finite-ring phase in which all rings have microscopic length and a giant-ring phase where macroscopic rings account for a finite fraction of the entire mass. Interestingly, while the total mass of the giant rings is a deterministic quantity, their total number and their sizes are stochastic quantities. The size distribution of the macroscopic rings is universal, although the span of this distribution increases with time. Moreover, the average number of giant rings scales logarithmically with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring formation process and we present numerical verification of the theoretical predictions.

  8. Novel ion traps using planar resistive electrodes: implications for miniaturized mass analyzers.

    PubMed

    Austin, Daniel E; Peng, Ying; Hansen, Brett J; Miller, Ivan W; Rockwood, Alan L; Hawkins, Aaron R; Tolley, Samuel E

    2008-10-01

    In radiofrequency ion traps, electric fields are produced by applying time-varying potentials between machined metal electrodes. The electrode shape constitutes a boundary condition and defines the field shape. This paper presents a new approach to making ion traps in which the electrodes consist of two ceramic discs, the facing surfaces of which are lithographically imprinted with sets of concentric metal rings and overlaid with a resistive material. A radial potential function can be applied to the resistive material such that the potential between the plates is quadrupolar, and ions are trapped between the plates. The electric field is independent of geometry and can be optimized electronically. The trap can produce any trapping field geometry, including both a toroidal trapping geometry and the traditional Paul-trap field. Dimensionally smaller ion trajectories, as would be produced in a miniaturized ion trap, can be achieved by increasing the potential gradient on the resistive material and operating the trap at higher frequency, rather than by making any physical changes to the trap or the electrodes. Obstacles to miniaturization of ion traps, such as fabrication tolerances, surface smoothness, electrode alignment, limited access for ionization or ion injection, and small trapping volume are addressed using this design.

  9. Ringing phenomenon of the fiber ring resonator.

    PubMed

    Ying, Diqing; Ma, Huilian; Jin, Zhonghe

    2007-08-01

    A resonator fiber-optic gyro (R-FOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A fiber ring resonator is the core sensing element in the R-FOG. When the frequency of the fiber ring resonator input laser is swept linearly with time, ringing of the output resonance curve is observed. The output field of the fiber ring resonator is derived from the superposition of the light transmitted through the directional coupler directly and the multiple light components circulated in the fiber ring resonator when the frequency of the laser is swept. The amplitude and phase of the output field are analyzed, and it is found that the difference in time for different light components in the fiber ring resonator to reach a point of destructive interference causes the ringing phenomenon. Finally the ringing phenomenon is observed in experiments, and the experimental results agree with the theoretical analysis well.

  10. The Ring Sculptor

    NASA Image and Video Library

    2006-09-08

    Prometheus zooms across the Cassini spacecraft field of view, attended by faint streamers and deep gores in the F ring. This movie sequence of five images shows the F ring shepherd moon shaping the ring inner edge

  11. Beyond Bright Rings

    NASA Image and Video Library

    2009-12-30

    The tiny moon Pandora appears beyond the bright disk of Saturn rings in this image taken by NASA Cassini spacecraft. Pandora orbits outside the F ring and, in this image, is farther from Cassini than the rings are.

  12. Swarming rings of bacteria.

    NASA Astrophysics Data System (ADS)

    Brenner, M. P.; Levitov, L. S.

    1996-03-01

    The behavior of bacterii controlled by chemotaxis can lead to a complicated spatial organization, producing swarming rings, and steady or moving aggregates( E. O. Budrene, and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630-633 (1991). ). We present a simple theory that explains the experimentally observed structures, by solving analytically two coupled differential equations, for the densities of bacterii and of chemoattractant. The equations have an interesting relation to the exactly solvable Burgers equation, and admit soliton-like solutions, that can be steady or moving. In addition, we find that there are singular solutions to the equations in which the bacterial density diverges. The theory agrees very well with the experiment: the solitons correspond to the observed travelling rings, the singularities describe formation of aggregates. In particular, the theory explains why the velocity of swarming rings decreases with the increase of the food concentration, the fact apparently not accounted by other existing approaches( L. Tsimring et. al., Phys. Rev. Lett., 75, 1859 (1995); Woodward, et al, Biophysical Journal, 68, 2181-2189 (1995). ).

  13. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  14. Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment.

    PubMed

    Wang, Tao; Zhao, Huanping; Wang, Hui; Liu, Botan; Li, Chunqing

    2016-07-01

    The membrane electro-bioreactor (MEBR) is a novel technology, it treats wastewater by combining membrane filtration, electrokinetic phenomena, and biological processes in one reactor. This paper aims to deal with hard biodegradation and high concentration phenol wastewater. Investigating the influence factors such as initial concentration, voltage, pH value, temperature and mixed liquor suspended solids (MLSS) toward phenol degradation process in electrocatalytic process and membrane bioreactor (MBR), and then apply the optimum conditions in the MEBR system. Results of continuous flow experiments demonstrated that MEBR increased the quality of the treated wastewater than conventional MBR. The above technics followed the zero-order reaction kinetics. The removal efficiency of MEBR was about 11.1% higher for phenol than the sum of the two individual processes. With the help of gas chromatography/mass spectrometry (GC-MS), this qualitative analysis looks at the degradation products of phenol generated in MEBR, through which 2,6-di-tert-butyl-p-benzoquinone was confirmed as the main degradation product. Copyright © 2016. Published by Elsevier Ltd.

  15. Charge transport through a semiconductor quantum dot-ring nanostructure.

    PubMed

    Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M

    2015-07-08

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.

  16. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  17. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  18. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  19. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  20. Role of the activity coefficient in the dissemination of pH: comparison of primary (Harned cell) and secondary (glass electrode) measurements on phosphate buffer considering activity and concentration scales.

    PubMed

    Fisicaro, Paola; Ferrara, Enzo; Prenesti, Enrico; Berto, Silvia

    2005-09-01

    Despite recent efforts devoted to assessing both the theoretical rationale and the experimental strategy for assignment of primary pH values, these have not yet been accomplished satisfactorily. Traceability and comparability of pH values are achieved only within the constraints of internationally accepted conventions and predefined conditions that cannot account for all possible situations when pH is measured. Critical parameters to be defined are, in particular, the activity coefficients (gamma (i)) of the ionic species involved in the equilibrium with the hydrogen ions in the solution, which are usually estimated with the approximation typical of the Debye-Hückel theoretical model. For this paper, primary (Harned cell) measurements (traceable to the SI system) of the pH of a phosphate buffer have been considered and the results have been compared with secondary (glass electrode) measurements obtained by considering either the activity (paH) or concentration (pcH) scale of the hydrogen ions. With conventional approaches based on measurements related to activity or concentration scale, discrepancies emerge which have been assigned to incomplete inferences of gamma (i) arising from chemical features of the solution. It is shown that fitting and comparable paH and pcH results are attainable if evaluation of gamma (i) is performed using better estimates of the ionic strength, according to an enhanced application of the Debye-Hückel theory.

  1. Enzyme nanoband electrodes

    SciTech Connect

    Wang, J.; Naser, N. ); Renschler, C.L. )

    1993-07-01

    Enzyme nanoelectrodes have been constructed by immobilizing glucose oxidase, alcohol oxidase or tyrosinase onto ultrathin carbon films (of 35-50 nm thickness). The enzyme immobilization is accomplished via entrapment within electropolymerized poly(o-phenylenediamine) coatings. Cyclic voltammetry and controlled-potential amperometry are used to characterize the performance of the new nanoscopic biosensors under different preparation and operation conditions. The resulting electrodes offer convenient and rapid measurements of millimolar substrate concentrations, and (to the best of the authors' knowledge) are the smallest enzyme probes reported to date. 10 refs., 7 figs.

  2. History of Neptune's Ring Arcs

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  3. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  4. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  5. Birth Control Ring

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in this ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  6. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  7. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  8. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  9. A new ring-shaped graphite monitor ionization chamber

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M. T.; Caldas, L. V. E.

    2010-07-01

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energéticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  10. Stepped electrophoresis for movement and concentration of DNA

    DOEpatents

    Miles, Robin R.; Wang, Amy Wei-Yun; Mariella, Jr., Raymond P.

    2005-03-15

    A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.

  11. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  12. A topologically driven glass in ring polymers

    NASA Astrophysics Data System (ADS)

    Michieletto, Davide

    2016-05-01

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition.

  13. A topologically driven glass in ring polymers

    PubMed Central

    Michieletto, Davide; Turner, Matthew S.

    2016-01-01

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition. PMID:27118847

  14. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  15. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  16. Ring wormholes via duality rotations

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2016-09-01

    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than -c4 / 4 G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  17. Controlled porosity in electrodes

    DOEpatents

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  18. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  19. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  20. Effects of phosphoric acid concentration on oxygen reduction kinetics at platinum

    SciTech Connect

    Hsueh, K.L.; Chin, D.T.; Gonzalez, E.R.; Srinivasan, S.

    1984-04-01

    The oxygen reduction reaction was investigated at platinum electrodes in phosphoric acid in the concentration range 0.7M(6.6%) to 17.5M(95%) at 25/sup 0/C using the rotating ring-disk electrode technique. As a complement, cyclic voltammograms on platinum and potentials of zero charge of mercury were obtained as a function of phosphoric aci concentration. The mechanism of the oxygen electrode reaction is discussed in terms of the direct four-electron transfer reduction to water and the formation of hydrogen peroxide as an intermediate in a parallel two-electron transfer reaction The rate constants of the intermediate reaction steps were calculated from the ring-disk data for various potentials and electrolyte concentrations. The characteristics of the reaction were found to be markedly dependent on the concentration of phosphoric acid. These results are interpreted in terms of changes in oxygen solubility, proton activity, and double laye characteristics when passing over from a water to a phosphoric acid solvent structure.

  1. Single-ring magnetic cusp low gas pressure ion source

    DOEpatents

    Bacon, Frank M.; Brainard, John P.; O'Hagan, James B.; Walko, Robert J.

    1985-01-01

    A single-ring magnetic cusp low gas pressure ion source designed for use in a sealed, nonpumped neutron generator utilizes a cathode and an anode, three electrically floating electrodes (a reflector behind the cathode, a heat shield around the anode, and an aperture plate), together with a single ring-cusp magnetic field, to establish and energy-filtering mechanism for producing atomic-hydrogen ions.

  2. Soldering-based easy packaging of thin polyimide multichannel electrodes for neuro-signal recording

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Hyun; Han, Chang-Hee; Jung, Ha-Chul; Kim, Seon Min; Im, Chang-Hwan; Oh, Hyun-Jik; Jungho Pak, James; Lee, Sang-Hoon

    2012-11-01

    We propose a novel packaging method for preparing thin polyimide (PI) multichannel microelectrodes. The electrodes were connected simply by making a via-hole at the interconnection pad of a thin PI electrode, and a nickel (Ni) ring was constructed by electroplating through the via-hole to permit stable soldering with strong adhesion to the electrode and the printed circuit board. The electroplating conditions were optimized for the construction of a well-organized Ni ring. The electrical properties of the packaged electrode were evaluated by fabricating and packaging a 40-channel thin PI electrode. Animal experiments were performed using the packaged electrode for high-resolution recording of somatosensory evoked potential from the skull of a rat. The in vivo and in vitro tests demonstrated that the packaged PI electrode may be used broadly for the continuous measurement of bio-signals or for neural prosthetics.

  3. Collision mechanics and the structure of planetary ring edges

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Greenberg, Richard

    1987-01-01

    The present numerical simulation of collisional evolution, in the case of a hypothetical ring whose parameters are modeled after those of Saturn's rings, gives attention to changes in radial structure near the ring edges and notes that when random motion is in equilibrium, the rings tend to spread in order to conserve angular momentum while energy is dissipated in collisions. As long as random motion is damped, ring edges may contract rather than spread, producing a concentration of material at the ring edges. For isotropic scattering, damping dominates for a coefficient of restitution of velocity value of up to 0.83.

  4. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-07

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  5. Rings Through Atmosphere

    NASA Image and Video Library

    2010-05-26

    NASA Cassini spacecraft looks toward the limb of Saturn and, on the right of this image, views part of the rings through the planet atmosphere. Saturn atmosphere can distort the view of the rings from some angles.

  6. Wavy, Wiggly Ring

    NASA Image and Video Library

    2012-04-23

    The constant change in Saturn wavy, wiggly F ring is on display in this image obtained by NASA Cassini spacecraft. The image shows a view looking directly down onto the ring with the planet removed from the center.

  7. Saturn Rings in Infrared

    NASA Image and Video Library

    2006-10-11

    This mosaic of Saturn rings was acquired by NASA Cassini visual and infrared mapping spectrometer instrument on Sept. 15, 2006, while the spacecraft was in the shadow of the planet looking back towards the rings

  8. The Inner Rings

    NASA Image and Video Library

    2007-02-01

    The Cassini spacecraft looks toward the innermost region of Saturn rings, capturing from right to left the C and B rings. The dark, inner edge of the Cassini Division is just visible in the lower left corner

  9. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  10. Connectivity among sinkholes and complex networks: The case of Ring of Cenotes in northwest Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Nicolas, Mariana; Rebolledo-Vieyra, Mario; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain

    2014-05-01

    A 180-km-diameter semicircular alignment of abundant karst sinkholes (locally known as cenotes) in northwestern Yucatán, México, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a meteorite. The secondary permeability generated by the fracturing and faulting of the sedimentary sequence in the Chicxulub impact, has favored the karstification process and hence the development of genuine underground rivers that carry water from the continent to the sea. The study of the structure and morphology of the crater has allowed researchers to understand the key role of the crater in the Yucatán hydrogeology. It is generally accepted that the Ring of Cenotes, produced by the gravitational deformation of the Tertiary sedimentary sequence within the crater, controls the groundwater in northern Yucatán. However, today there is not solid evidence about the connectivity among cenotes, which is important because if established, public policies could be designed to manage sanitary infrastructure, septic control, regulation of agricultural and industrial activities and the protection of water that has not been compromised by anthropogenic pollution. All these directly affect more than half a million people whose main source of drinking water lies in the aquifer. In this contribution we investigated a set of 16 cenotes located in the vicinity of a gravimetric anomaly of Chicxulub crater ring, using complex networks to model the interconnectivity among them. Data from a geoelectrical tomography survey, collected with SuperSting R1/IP equipment, with multi-electrodes (72 electrodes), in a dipole-dipole configuration was used as input of our model. Since the total number of cenotes on the ring structure amounts to about 2000, the application of graph theoretic algorithms and Monte Carlo simulation to efficiently investigate network

  11. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  12. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  13. Modules over hereditary rings

    SciTech Connect

    Tuganbaev, A A

    1998-04-30

    Let A be a hereditary Noetherian prime ring that is not right primitive. A complete description of {pi}-injective A-modules is obtained. Conditions under which the classical ring of quotients of A is a {pi}-projective A-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.

  14. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  15. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  16. Eyeing the E Ring

    NASA Image and Video Library

    2009-12-24

    NASA Cassini spacecraft takes a look at Saturn diffuse E ring which is formed from icy material spewing out of the south pole of the moon Enceladus. The E ring is seen nearly edge-on from slightly above the northern side of Saturn ring plane.

  17. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  18. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  19. Dusty D Ring

    NASA Image and Video Library

    2014-02-24

    Saturn D ring is easy to overlook since it trapped between the brighter C ring and the planet itself. In this view from NASA Cassini spacecraft, all that can be seen of the D ring is the faint and narrow arc as it stretches from top right of the ima

  20. On certain Hecke rings

    PubMed Central

    Evens, Sam; Bressler, Paul

    1987-01-01

    We examine rings that embed into the smash product of the group algebra of the Weyl group with the field of meromorphic functions on the Cartan subalgebra and are generated by elements that satisfy braid relations. We prove that every such ring is isomorphic to either the Hecke algebra, the nil Hecke ring, or the group algebra of the Weyl group. PMID:16593804

  1. Soft normed rings.

    PubMed

    Uluçay, Vakkas; Şahin, Mehmet; Olgun, Necati

    2016-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft normed rings by soft set theory. The notions of soft normed rings, soft normed ideals, soft complete normed rings are introduced and also several related properties and examples are given.

  2. Coffee Drops and Coffee Rings: Contact Line Deposits from Evaporation

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    1997-03-01

    When a small drop of coffee placed on a counter top dries, it deposits a thin ring of concentrated solute at the perimeter of the drop. Similar rings form for a wide range of surfaces, solutes, and solvents, provided the contact line is pinned to the surface. An old result of Maxwell can be used to partially explain these dense rings. The predicted rate of ring deposition is shown to agree quantitatively with experimental measurements.

  3. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.; Adanuvor, P.K.; White, R.E.; Enayetullah, M.A.; Srinivasan, S.; Appleby, A.J.

    1988-01-01

    Electrode kinetics of oxygen reduction on gold in molten lithium carbonate was investigated. Steady state cyclic voltammograms were obtained for the peroxide reduction at the gold electrode in Li{sub 2}CO{sub 3} melt, results were found to be in good agreement with the data in the literature. Impedance measurements were made as a function of frequency to evaluate the kinetics and mass transfer related parameters. Impedance data were analyzed using a Complex Nonlinear Least Square (CNLS) parameter estimation program and a graphical procedure based upon the Randles-Ershler equivalent circuit. Parameters estimated by both the methods are in good agreement. One of the proposed micro electrodes is a micro ring, which involves a gold film positioned tightly between two alumina roots. As an initial study, the stability of gold films, sputter-deposited on alumina substrates, in the Li{sub 2}CO{sub 3} melt was determined.

  4. Electrochemical hydrogenation of thiophene on SPE electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.

    2017-01-01

    Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.

  5. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.

    PubMed

    Padmaraj, Divya; Miller, John H; Wosik, Jarek; Zagozdzon-Wosik, Wanda

    2011-11-15

    Dielectric measurements of biological samples are obscured by electrode polarization, which at low frequencies dominates over the actual sample response. Reduction of this artifact is especially necessary in studying interactions of electric field with biological systems in the α-dispersion range. We developed a method to reduce the influence of electrode polarization by employing mesh instead of solid electrodes as sensing probes, thereby reducing the area of the double layer. The design decreases the electrode-electrolyte contact area by almost 40% while keeping the bulk sample capacitance the same. Interrogation electric fields away from the electrode surface and sensitivity are unaffected. Electrodes were microfabricated (600μm×50μm, spacing of 100μm) with and without mesh holes 7.5μm×7.5μm in size. Simulations of electric field performed using Comsol Multiphysics showed non-uniformity of the electric field within less than 1.5μm from the electrode surface, which encompasses the double layer region, but at greater distance the solid and mesh electrodes gave the same results. Mesh electrodes reduced capacitance measurements for water and KCl solutions of different concentrations at low frequencies (<10kHz), while higher frequency capacitance remained the same for both electrode types, confirming our hypothesis that this design leaves the electric field mainly unaffected. Impedance measurements at low frequencies for water and mice heart mitochondrial suspension were lower for mesh than for solid electrodes. Comsol simulations confirmed these results by showing that mesh electrodes have a greater charge density than solid electrodes, which affects conductance. These electrodes are being used for mitochondrial membrane potential studies.

  6. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  7. Which Disposable Chest Electrode?

    PubMed Central

    Hubner, P. J. B.

    1969-01-01

    Chest electrodes are preferred to limb electrodes for cardiac monitoring, as limb movements are not restricted and produce less interference of the E.C.G. trace. Eight types of disposable chest electrodes were investigated to compare their performance, skin reactions, cost, ease of application, size, and skin–electrode impedance. Elema-Schonander electrodes were found to be the most efficient and the most expensive. In their application care was required to avoid severe skin reactions. Dracard electrodes were simple to attach, worked well without severe skin reactions, and were cheap. They are recommended for routine use. Smith and Nephew electrodes, a type of “multipoint electrodes” which do not require electrode jelly, frequently produced severe skin reactions, making them unsuitable for monitoring for periods exceeding 12 hours. PMID:5801347

  8. Corrugated battery electrode

    NASA Technical Reports Server (NTRS)

    Mccallum, J.

    1974-01-01

    Performance of porous electrodes in batteries and other electrochemical cells is greatly improved when supports for active material have pores of uniform size, extending completely through electrodes, from side to side, with no interconnections between pores.

  9. FUEL CELL ELECTRODE MATERIALS

    DTIC Science & Technology

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  10. Improved biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1972-01-01

    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram.

  11. The CMG Nickel Electrode

    NASA Technical Reports Server (NTRS)

    Depaul, R. A.; Gutridge, I.

    1981-01-01

    The development and design of the Controlled Microgeometry electrode are described. Advantages of the electrode over others in existance include a higher number of ampere hours per kilogram and the ability to make them over a wide range of thicknesses. The parameters that control the performance of the electrode can be individually controlled over a wide range. Therefore, the electrode may be designed to give the optimum performance for a given duty cycle.

  12. Low resistance fuel electrodes

    DOEpatents

    Maskalick, Nichols J.; Folser, George R.

    1989-01-01

    An electrode 6 bonded to a solid, ion conducting electrolyte 5 is made, where the electrode 6 comprises a ceramic metal oxide 18, metal particles 17, and heat stable metal fibers 19, where the metal fibers provide a matrix structure for the electrode. The electrolyte 5 can be bonded to an air electrode cathode 4, to provide an electrochemical cell 2, preferably of tubular design.

  13. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  14. On the solar dust ring(s)

    NASA Astrophysics Data System (ADS)

    Mukai, T.

    Based on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grains alone. Preliminary analysis on the recent infrared data of the F-corona by Maihara et al. (1984) has suggested that the ring particles have different physical properties compared with the dust grains, which produce the background F-corona.

  15. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  16. Aerospace electrode line

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1980-04-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  17. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  18. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  19. Fuel cell electrodes

    DOEpatents

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  20. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  1. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  2. Microresonator electrode design

    DOEpatents

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  3. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  4. Minimal Size of Coffee Ring Structure

    PubMed Central

    Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing

    2010-01-01

    A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, Dc, for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, Dc can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size ~100 nm, the minimum diameter of the coffee ring structure is found to be ~10 µm. PMID:20353247

  5. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    PubMed

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  6. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  7. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  8. Surge in the Ring

    NASA Image and Video Library

    2016-08-29

    An ethereal, glowing spot appears on Saturn's B ring in this view from NASA's Cassini spacecraft. There is nothing particular about that place in the rings that produces the glowing effect -- instead, it is an example of an "opposition surge" making that area on the rings appear extra bright. An opposition surge occurs when the Sun is directly behind the observer looking toward the rings. The particular geometry of this observation makes the point in the rings appear much, much brighter than would otherwise be expected. This view looks toward the sunlit side of the rings from about 28 degrees above the ring plane. The image was taken in visible light with the Cassini wide-angle camera on June 26, 2016. The view was acquired at a distance of approximately 940,000 miles (1.5 million kilometers) from the rings and at a Sun-ring-spacecraft, or phase, angle of 0 degrees. Image scale on the rings at center is 56 miles (90 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20496

  9. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  10. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  11. Igniter electrode life control

    SciTech Connect

    Scott, J.C.

    1985-10-07

    The prevention of electrode material erosion by undercutting in the outer electrode shell of igniter electrodes of jet engine ignition systems is prevented by the application of an electrical insulation coating. The coating is applied to the surface of the outer electrode shell which faces the ceramic insulation around the center electrode where erosion patterns are known to occur. The insulation material is selected from electrical insulation substances such as oxides of aluminum, tungsten, magnesium, beryllium or zirconium by choosing a non-porous electrical-insulating substance with thermal-expansion characteristics approximately equalling those of the outer electrode shell. Since a typical outer electrode shell is composed of 446 stainless steel, an optimum choice for the electrical insulation coating is Al/sub 2/O/sub 3/ deposited with a coating thickness of between 5 and 10 mils.

  12. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  13. 1993 Evaluation of steel ring standards for magnetic particle inspection

    SciTech Connect

    Bates, B.; Hagemaier, D.; Petty, J.; Armstrong, C.

    1996-10-01

    The Ketos ring standard manufactured from AISI Type 01 (.90 carbon) tool steel has become part of certain US magnetic particle standards such as MIL-STD-1949. The rings are used to verify system performance and for sensitivity evaluation for magnetic particle materials. Some controversy exists concerning the use of the steel ring as a reference standard for the following reasons: inconsistencies in hole detectability have been noted between various rings caused by differences in magnetic permeability as a result of variations in annealing; the use of magnetic particle indication evaluation for ring standard certification is subject to variations in particle concentration, sensitivity, and visual subjectivity; and the proposed introduction of new materials in the manufacture of ring standards. This report describes an evaluation of rings manufactured of different materials and different annealed states. A suggested method for qualifying a newly manufactured ring as a certified reference standard is also described.

  14. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  15. Ring Details on Display

    NASA Image and Video Library

    2016-11-07

    This view from NASA's Cassini spacecraft showcases some of the amazingly detailed structure of Saturn's rings. The rings are made up of many smaller ringlets that blur together when seen from a distance. But when imaged up close, the rings' structures display quite a bit of variation. Ring scientists are debating the nature of these features -- whether they have always appeared this way or if their appearance has evolved over time. This view looks toward the sunlit side of the rings from about 4 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 283,000 miles (456,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 32 degrees. Image scale is 17 miles (27 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20506

  16. Saturn's rings - an overview

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2005-08-01

    Saturn's rings embody in their diversity the entire spectrum of ring properties seen across the outer solar system, and remain unique in fundamental ways. The Voyager flybys revealed their complexity in 1980-1981, while groundbased and HST observations have provided important new insights since that time. Since July 2004, when it skimmed only tens of thousands of km over the unlit face of the rings - collecting unique remote and in-situ observations as it entered orbit - Cassini has been fulfilling the long-held dream of understanding Saturn's rings in depth. As of this meeting, if all continues as planned, seven orbits designed specifically with ring observations in mind will have been completed - each providing even better geometric opportunities than an entire Voyager flyby (to a spacecraft with far more powerful instruments than Voyager). Even these represent only a fraction of what the complete mission will tell us about the rings. This talk will review the key properties of the rings, highlight the themes and new insights emerging from recent studies, and serve as a context for new results presented at the meeting. The key properties include the relationship of the rings to their close-in and embedded moons; the composition of the rings and its spatial variation; and the complex radial and vertical structure of the rings, as related to local particle sizes and mass density. The main themes are that several evolutionary processes cause all these to vary - we think substantially - with time, and that the rings may be much younger than Saturn. To achieve our goal of understanding the origin of the rings, we must start from an in-depth characterization of their current state, and peer back through their extensive evolution. Cassini observations, and their theoretical analysis, will ultimately make this possible.

  17. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  18. Experimental investigation of a thermionic converter with developed surface electrodes

    SciTech Connect

    Luke, J.R.; El-Genk, M.S.; Adrian, J.M.

    1997-01-01

    A thermionic converter with developed planar electrode surfaces is designed and tested. One of the electrodes has concentric circular grooves cut into its surface, while the other electrode surface is smooth. The grooves are 0.5 mm deep and 0.5 mm wide, having lands that are 1.0 mm wide. The experimental setup is flexible so that either the smooth or developed surface electrode can be operated as the emitter, with the other operating as the collector. The I-V characteristics and power output are compared for the two electrode arrangements. {copyright} {ital 1997 American Institute of Physics.}

  19. Tiny Mimas, Huge Rings

    NASA Image and Video Library

    2016-11-28

    Saturn's icy moon Mimas is dwarfed by the planet's enormous rings. Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas' mass. Cassini is expected to determine the mass of Saturn's rings to within just a few hundredths of Mimas' mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings. The rings, which are made of small, icy particles spread over a vast area, are extremely thin -- generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material. Mimas is 246 miles (396 kilometers) wide. This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016. The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20509

  20. Faint D Ring

    NASA Image and Video Library

    2015-04-27

    Not all of Saturn's rings are created equal: here the C and D rings appear side-by-side, but the C ring, which occupies the bottom half of this image, clearly outshines its neighbor. The D ring appears fainter than the C ring because it is comprised of less material. However, even rings as thin as the D ring can pose hazards to spacecraft. Given the high speeds at which Cassini travels, impacts with particles just fractions of a millimeter in size have the potential to damage key spacecraft components and instruments. Nonetheless, near the end of Cassini's mission, navigators plan to thread the spacecraft's orbit through the narrow region between the D ring and the top of Saturn's atmosphere. This view looks toward the unilluminated side of the rings from about 12 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 11, 2015. The view was acquired at a distance of approximately 372,000 miles (599,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 133 degrees. Image scale is 2.2 miles (3.6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18313

  1. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  2. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  3. Saturn's E ring revisited

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Klinglesmith, D. A.

    1980-07-01

    Images of the E ring of Saturn obtained by the image processing of photographs of the 1966 edge-on presentation of the planet's ring plane are presented. Two methods of image enhancement were used: scanning with an image quantizer operated in the derivative mode to enhance contrast and computerized subtraction of a circularly symmetric image of the overexposed Saturn disk. Further photographic and CCD observation confirming the existence of the ring extending to twice the diameter of the A ring, which was not detected by the Pioneer 11 imaging photopolarimeter, is indicated.

  4. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  5. Viscosity in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Shu, F. H.; Cuzzi, J. N.

    1982-01-01

    The technique of estimating the viscosity in Saturn's rings from the damping rate of waves observed to be propagating within the rings is discussed. The wavetrains of attempts using spiral density waves as a diagnostic suffer significant complications that compromise the interpretations. A method that considers the damping of spiral bending waves was used to deduce a kinematic viscosity of 260 (+150, -100) sqcm/sec for the middle of the A ring where bending waves are excited by the 5:3 vertical resonance with Mimas. This value implies upper limits on the particle velocity dispersion and local ring thickness of 0.4 cm/sec and 30 m, respectively.

  6. Ethoxyresorufin O-deethylase induction by TCDD, PeCDF and TCDF in ring-necked pheasant and Japanese quail hepatocytes: Time-dependent effects on concentration-response curves.

    PubMed

    Hervé, Jessica C; Crump, Doug; Giesy, John P; Zwiernik, Matthew J; Bursian, Steven J; Kennedy, Sean W

    2010-06-01

    Ethoxyresorufin O-deethylase (EROD) activity was measured in primary cultures of ring-necked pheasant (Phasianuscolchicus) and Japanese quail (Coturnix japonica) embryonic hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF) for 12, 24, 36 and 48 h. In ring-necked pheasant hepatocytes there was a significant time-dependent increase in the EROD-inducing potency of TCDD, PeCDF and TCDF (i.e. decrease of the EC50). In Japanese quail hepatocytes there was no time-dependent change in the EROD-inducing potency of TCDD, PeCDF and TCDF. There was no time-dependent change in the relative potency of PeCDF and TCDF (i.e. compared to the potency of TCDD) in ring-necked pheasant hepatocytes and of PeCDF in Japanese quail hepatocytes. The results indicate that the relative potencies of these compounds at 24h are representative of their relative potencies between 12 and 48 h. However, in Japanese quail hepatocytes, the relative potency of TCDF decreased in a time-dependent manner (up to 3.6-fold difference). These results suggest that the effect of time on the EROD-inducing potency of TCDD, PeCDF and TCDF in ring-necked pheasant and Japanese quail hepatocytes is compound- and species-specific, but experimental conditions could also be involved in the differences observed.

  7. A Perfect Electrode to Suppress Secondary Electrons inside the Magnets

    SciTech Connect

    Wang, L.; Fukuma, H.; Kurokawa, S.; Pivi, M.; Xia, G.; /DESY

    2006-07-19

    An electron cloud due to multipacting in the positron ring of B-factories and the damping ring of the International Linear Collider (ILC) is one of the main concerns. The electron cloud in the drift region can be suppressed by a solenoid. However, the solenoid doesn't work inside a magnet. Numerical studies show that there is strong multipacting in a dipole magnet of a B-factory positron ring. Electrons also can be trapped inside quadrupole and sextupole magnets. The electron cloud from dipole magnets and wigglers in the positron damping ring of the ILC gives a critical limitation on the choice of a circumference of the damping ring, which directly results in a choice of two 6 km rings as the baseline for the positron damping ring. Various electrodes have been studied using the program CLOUDLAND. Our studies show that a wire type of the electrode with a few hundred voltages works perfectly to kill the secondary electrons inside various magnets.

  8. Electrolytic treatment of methyl orange in aqueous solution using three-dimensional electrode reactor coupling ultrasonics.

    PubMed

    He, Pingting; Wang, Ling; Xue, Jianjun; Cao, Zhibin

    2010-04-01

    The treatment of wastewater containing methyl orange was investigated experimentally using a three-dimensional electrode reactor coupling ultrasonics and the effect of ultrasonics on the degradation was studied. The effects of cell voltage, original concentration of methyl orange, pH value and the concentration of electrolyte on the removal efficiency were considered. The experimental results indicated that the removal rate of methyl orange exceeded 99% and the removal of chemical oxygen demand (COD(Cr)) approached 84% under the optimum conditions. Using ultraviolet-visible spectrum analysis, a general degradation pathway for methyl orange was proposed based on the analysis of intermediate compounds. According to the ultraviolet-visible spectral changes during degradation of methyl orange, it can be presumed that the removal of COD(Cr) lags behind the removal of methyl orange because the structure of the benzene ring was more difficult to destroy compared with the azo double bonds.

  9. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-12-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  10. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Technical Reports Server (NTRS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  11. Modified spiral wound retaining ring

    NASA Technical Reports Server (NTRS)

    Lawson, A. G. (Inventor)

    1980-01-01

    A spiral wound retaining ring with angled ends is described. The ring is crimped at the same angle as the ring ends to maintain a constant thickness dimension. The angling of the ends of the ring and crimp allow the ends to be positioned closer together while maintaining enough clearance to enable insertion and removal of the ring. By reducing the separation distance between the ends a stronger ring results since the double layer area of the ring is maximized.

  12. Basin-ring spacing on the Moon, Mercury, and Mars

    USGS Publications Warehouse

    Pike, R.J.; Spudis, P.D.

    1987-01-01

    Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ?? 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ??) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ?? 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ?? 0.6)0.5D. The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences. ?? 1987

  13. DAΦNE operation with electron-cloud-clearing electrodes.

    PubMed

    Alesini, D; Drago, A; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, M; De Santis, S; Demma, T; Raimondi, P

    2013-03-22

    The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression.

  14. Microwave Observations on Saturn's Main Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimeng; Hayes, Alexander; Janssen, Michael A.; Nicholson, Philip D.; Cuzzi, Jeffrey N.; de Pater, Imke; Dunn, David; Hedman, Matthew M.; Estrada, Paul R.

    2016-10-01

    Despite considerable study, Saturn's rings continue to challenge current theories for their provenance. Water ice comprises the bulk of Saturn's rings, yet it is the small fraction of non-icy material that is arguably more valuable in revealing clues about the system's origin and age. Herein, we present new measurements of the non-icy material fraction in Saturn's main rings, determined from microwave observations obtained by Cassini Radar and EVLA.Our Cassini Radar observations in the C Ring show an exceptionally high brightness at near-zero azimuthal angles, suggesting a high porosity of 70%-75% for the particles. Furthermore, most regions in the C ring contain about 1-2% silicates while with an enhanced abundance concentrated in the middle C ring reaching a maximum of 6%-11%. We proposed that the C ring has been continuously polluted by meteoroid bombardment for 15-90Myr, while the middle C ring was further contaminated by an incoming Centaur disrupted by Saturn tidal force. Owing to the B ring's high opacity, the particles there are likely to have 85% - 90% porosity, with corresponding non-icy material fractions of ~ 0.3% - 0.5% in the inner and outer B ring, and ~0.1% - 0.2% in the middle regions. For the A ring interior to the Encke gap, the derived non-icy material is ~0.2% - 0.3% everywhere for porosities ranging from 55% - 90%. Finally, our results for the Cassini Division indicate a non-icy material fraction of ~1% - 2% similar to most regions in the C ring, except that the Cassini Division particles are more likely to contain ~ 90% porosity due to the high opacity there. Our results here further support the idea that Saturn's rings may be less than 150 Myr old suggesting an origin scenario in which the rings are derived from the relatively recent breakup of an icy moon.Furthermore, we calibrated and analyzed multi-wavelengths EVLA observation at wavelengths ranging from 0.7cm to 13cm. As the array operates in a wavelength regime where the absorption

  15. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  16. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  17. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  18. Inner B Ring Terminus

    NASA Image and Video Library

    2009-09-21

    This mosaic, part of a larger mosaic of images captured by NASA Cassini Orbiter just hours before exact equinox at Saturn, shows that the spiral corrugation in the planet’s inner rings continues right up to the inner B ring.

  19. Neptune's ring system.

    NASA Astrophysics Data System (ADS)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  20. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  1. Uranus Ring System

    NASA Image and Video Library

    1996-01-29

    This image captured by NASA's Voyager 2 in 1986 revealed a continuous distribution of small particles throughout the Uranus ring system. This unique geometry, the highest phase angle at which Voyager imaged the rings, allowed us to see lanes of fine dust. http://photojournal.jpl.nasa.gov/catalog/PIA00142

  2. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  3. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  4. Steroidal contraceptive vaginal rings.

    PubMed

    Sarkar, N N

    2003-06-01

    The development of steroid-releasing vaginal rings over the past three decades is reviewed to illustrate the role of this device as an effective hormonal contraceptive for women. Vaginal rings are made of polysiloxane rubber or ethylene-vinyl-acetate copolymer with an outer diameter of 54-60 mm and a cross-sectional diameter of 4-9.5 mm and contain progestogen only or a combination of progestogen and oestrogen. The soft flexible combined ring is inserted in the vagina for three weeks and removed for seven days to allow withdrawal bleeding. Progesterone/progestogen-only rings are kept in for varying periods and replaced without a ring-free period. Rings are in various stages of research and development but a few, such as NuvaRing, have reached the market in some countries. Women find this method easy to use, effective, well tolerated and acceptable with no serious side-effects. Though the contraceptive efficacy of these vaginal rings is high, acceptability is yet to be established.

  5. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  6. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  7. Lower esophageal ring (Schatzki)

    MedlinePlus

    ... narrowed area to stretch the ring. Sometimes, a balloon is placed in the area and inflated, to help widen the ring. Outlook (Prognosis) Swallowing problems may return. You may need repeat treatment. When to Contact a Medical Professional Call your health care provider if you ...

  8. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  9. Rings of Neptune

    NASA Image and Video Library

    1999-07-25

    These two 591-second exposures of the rings of Neptune were taken with the clear filter by the NASA Voyager 2 wide-angle camera on Aug. 26, 1989. The two main rings are clearly visible and appear complete over the region imaged.

  10. Illustration of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  11. Birth Control Ring

    MedlinePlus

    ... It? The birth control ring is a soft, flexible, doughnut-shaped ring about 2 inches (5 centimeters) in diameter. It is inserted into the vagina, where it slowly releases hormones — the chemicals the body makes to control organ function — through the vaginal wall into the ...

  12. A-ring Propeller

    NASA Image and Video Library

    2010-08-26

    A propeller-shaped structure, created by an unseen moon, can be seen in Saturn A ring and looks like a small, dark line interrupting the bright surrounding ring material in the upper left of this image taken by NASA Cassini spacecraft.

  13. Telemetry carrier ring and support

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor)

    1992-01-01

    A telemetry carrier ring for use in a gas turbine engine includes an annular support ring connected to the engine and an annular carrier ring coupled to the support ring, each ring exhibiting different growth characteristics in response to thermal and mechanical loading. The carrier ring is coupled to the support ring by a plurality of circumferentially spaced web members which are relatively thin in an engine radial direction to provide a predetermined degree of radial flexibility. the web members have a circumferential width and straight axial line of action selected to transfer torque and thrust between the support ring and the carrier ring without substantial deflection. The use of the web members with radial flexibility provides compensation between the support ring and the carrier ring since the carrier ring grows at a different rate than the supporting ring.

  14. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  15. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  16. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  17. Jupiter's Rings: Sharpest View

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  18. Jupiter Ring, With Orion

    NASA Image and Video Library

    2017-05-25

    As NASA's Juno spacecraft flew through the narrow gap between Jupiter's radiation belts and the planet during its first science flyby, Perijove 1, on August 27, 2016, the Stellar Reference Unit (SRU-1) star camera collected the first image of Jupiter's ring taken from the inside looking out. The bright bands in the center of the image are the main ring of Jupiter's ring system. While taking the ring image, the SRU was viewing the constellation Orion. The bright star above the main ring is Betelgeuse, and Orion's belt can be seen in the lower right. Juno's Radiation Monitoring Investigation actively retrieves and analyzes the noise signatures from penetrating radiation in the images of the spacecraft's star cameras and science instruments at Jupiter. https://photojournal.jpl.nasa.gov/catalog/PIA21644

  19. Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Technical Reports Server (NTRS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation. Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium).

  20. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  1. Omnidirectionally Stretchable and Transparent Graphene Electrodes.

    PubMed

    Hong, Jin-Yong; Kim, Wook; Choi, Dukhyun; Kong, Jing; Park, Ho Seok

    2016-10-04

    Stretchable and transparent electrodes have been developed for applications in flexible and wearable electronics. For customer-oriented practical applications, the electrical and optical properties of stretchable electrodes should be independent of the directions of the applied stress, and such electrodes are called omnidirectionally stretchable electrodes. Herein, we report a simple and cost-effective approach for the fabrication of omnidirectionally stretchable and transparent graphene electrodes with mechanical durability and performance reliability. The use of a Fresnel lens-patterned electrode allows multilayered graphene sheets to achieve a concentric circular wavy structure, which is capable of sustaining tensile strains in all directions. The as-prepared electrodes exhibit high optical transparency, low sheet resistance, and reliable electrical performances under various deformation (e.g., bending, stretching, folding, and buckling) conditions. Furthermore, computer simulations have also been carried out to investigate the response of a Fresnel lens-patterned structure on the application of mechanical stresses. This study can be significant in a large variety of potential applications, ranging from stretchable devices to electronic components in various wearable integrated systems.

  2. Copper(I) electrode function of two types of copper(II) ion-selective electrodes.

    PubMed

    Neshkova, M; Sheytanov, H

    1985-08-01

    The response of two types of solid-state copper ion-selective electrodes with homogeneous membranes of CuAgSe and Cu(2-x)Se has been investigated in copper(I) solutions, prepared electrochemically by insitu generation from a copper anode in chloride medium. The selectivity coefficient K(pot)(Cu+, Cu(2+)) both types of electrodes has been determined. It is 10(-5.7) for the copper selenide sensor, and 10(-6.2) for the copper silver selenide one. These values are very close to that calculated for an exchange reaction proceeding on the electrode surface. The similarity in K(pot)(Cu+ ,Cu(2+)) values for different chalcogenidebased sensors suggests a common potential-generating mechanism. High chloride concentration does not interfere with the electrode response towards Cu(I), but distorts the electrode response to Cu(II).

  3. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  4. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  5. Performance Characterization of Ion Thruster with Isolated Magnet Rings

    NASA Astrophysics Data System (ADS)

    Arthur, Neil; Foster, John

    2016-10-01

    Many ion sources use magnetic multipole confinement to increase the primary electron containment length. The magnetic circuit increases ion source efficiency and plasma density. A multipole source consists of rings or rows of magnets of alternating polarity. In multipole sources, the bulk of the discharge current is collected at the magnet surface, through the relatively narrow leak width. Ion engines for space propulsion are one application of multipole ion sources. Here we characterize a four ring, broad beam ion source under simulated beam extraction using typical performance metrics for ion engines while biasing the magnetic rings individually. By biasing the magnetic cusps, through isolated, conformal electrodes placed on the magnet rings, the current distribution to each individual cusp can be modified. The effect of ring bias on ion beam current, propellant utilization efficiency, and discharge losses is measured over a broad range of ring bias. Previous experiments have shown that the current distribution to the rings can be controlled, and this current distribution has tangible effects on the plasma properties and ion source operation. The goal is to gain insight into which magnetic ring current distributions will yield enhancements in engine performance.

  6. Enhanced Discharge Performance in a Ring Cusp Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2000-01-01

    There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster, a thruster discharge chamber with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Characteristics of this ring cusp ion discharge were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the magnetic cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.

  7. Electrode geometry for electrostatic generators and motors

    DOEpatents

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  8. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  9. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  10. Seal ring installation tool

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes (Inventor)

    2004-01-01

    A seal ring tool that allows an installer to position a primary seal ring between hub ends of pipe flanges that are being assembled together. The tool includes a pivoting handle member and extension arms attached to the pivoting handle member. The ends of the arms have side indentation type longitudinal grooves angled toward one another for holding the primary seal ring in place between the hubs of respective pipes that are to be attached together. The arms of the tool can also have flat sides that can be used to abut against an optional second larger seal that is supported within a groove in one of the hub ends so that the second hub end can then be moved against the other side of the primary seal ring. Once the seal ring is positioned between the pipe hubs, the pipe hubs can be moved about the seal ring due to the flat sides of the arms of the tool. The tool eliminates the chances of damaging and contaminating seal rings being installed within pipe hubs that are being attached to one another.

  11. Gored of the Rings

    NASA Image and Video Library

    2014-06-09

    Prometheus is caught in the act of creating gores and streamers in the F ring. Scientists believe that Prometheus and its partner-moon Pandora are responsible for much of the structure in the F ring as shown by NASA Cassini spacecraft. The orbit of Prometheus (53 miles, or 86 kilometers across) regularly brings it into the F ring. When this happens, it creates gores, or channels, in the ring where it entered. Prometheus then draws ring material with it as it exits the ring, leaving streamers in its wake. This process creates the pattern of structures seen in this image. This process is described in detail, along with a movie of Prometheus creating one of the streamer/channel features, in PIA08397. This view looks toward the sunlit side of the rings from about 8.6 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 11, 2014. The view was acquired at a distance of approximately 1.3 million miles (2.1 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 147 degrees. Image scale is 8 miles (13 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18270

  12. Electrode stabilizing materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  13. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  14. Amperometric Enzyme Electrodes

    DTIC Science & Technology

    1989-12-01

    and C. Lyons. "Electrode systems for continuous monitoring in cardiomuscula murgery," Ann. NY Acad. Sci.. 102 (1962). 20-45. [6]. 1. J. Updike mid G...Chemistry, John Wiley & Sons: New York (1980). 197-236. [2]. L D. Mell and J. T. Maloy, "A Model for the Amperometric Enzyme Electrode Obtained through

  15. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  16. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  17. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  18. Passive scalar transport mediated by laminar vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Rodríguez, G.

    2017-04-01

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances.

  19. Cyanex based uranyl sensitive polymeric membrane electrodes.

    PubMed

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods.

  20. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  1. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  2. Dynamics of planetary rings

    NASA Astrophysics Data System (ADS)

    Araki, S.

    1991-02-01

    The modeling of the dynamics of particle collisions within planetary rings is discussed. Particles in the rings collide with one another because they have small random motions in addition to their orbital velocity. The orbital speed is roughly 10 km/s, while the random motions have an average speed of about a tenth of a millimeter per second. As a result, the particle collisions are very gentle. Numerical analysis and simulation of the ring dynamics, performed with the aid of a supercomputer, is outlined.

  3. Theodolite Ring Lights

    NASA Technical Reports Server (NTRS)

    Clark, David

    2006-01-01

    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  4. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  5. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  6. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  7. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  8. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  9. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  10. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  11. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  12. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  13. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  14. A parallel dual-electrode detector for capillary electrophoresis.

    PubMed

    Dorris, Megan K; Crick, Eric W; Lunte, Craig E

    2012-09-01

    An approach to on-capillary dual-electrode detection for CE using a parallel electrode configuration has been developed. The parallel configuration provides two operating modes. In the first mode, one working electrode is held at an oxidizing potential and the second working electrode is held at a reducing potential. This results in redox cycling of analytes between the oxidized and reduced forms, enhancing sensitivity compared to single-electrode detection. In the second mode, both working electrodes are held at different oxidizing potentials. This mode provides electrochemical characterization of electrophoretic peaks. In the redox cyclying mode, signal enhancement of up to twofold was observed for the dual-electrode detection of phenolic acid standards compared to single-electrode detection. Variation in response of less than 10% from electrode to electrode was determined (at a concentration of 60 nM) indicating reproducible fabrication. LODs were determined to be as low as 5.0 nM for dual-electrode configuration. Using the dual-potential mode peak identification of targeted phenolic acids in whiskey samples were confirmed based on both migration time and current ratios.

  15. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  16. Scintillating C Ring

    NASA Image and Video Library

    2007-01-16

    Both luminous and translucent, the C ring sweeps out of the darkness of Saturn's shadow and obscures the planet at lower left. The ring is characterized by broad, isolated bright areas, or "plateaus," surrounded by fainter material. This view looks toward the unlit side of the rings from about 19 degrees above the ringplane. North on Saturn is up. The dark, inner B ring is seen at lower right. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 15, 2006 at a distance of approximately 632,000 kilometers (393,000 miles) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 56 degrees. Image scale is 34 kilometers (21 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA08855

  17. Ring of Stellar Fire

    NASA Image and Video Library

    2014-10-22

    This image from NASA Spitzer Space Telescope shows where the action is taking place in galaxy NGC 1291. The outer ring, colored red, is filled with new stars that are igniting and heating up dust that glows with infrared light.

  18. Obscured by Rings

    NASA Image and Video Library

    2012-08-29

    Saturn rings obscure part of Titan colorful visage in this image from NASA Cassini spacecraft. The south polar vortex that first appeared in Titan atmosphere in 2012 is visible at the bottom of this view.

  19. Outer B Ring Edge

    NASA Image and Video Library

    2004-12-03

    This image NASA Cassini spacecraft shows subtle, wavelike patterns, hundreds of narrow features resembling a record grooves in Saturn outer B-ring, and a noticeable abrupt change in overall brightness beyond the dark gap near the right.

  20. A-Ring Structures

    NASA Image and Video Library

    2010-09-23

    Several structures in Saturn A ring are exposed near the Encke Gap in this image captured by NASA Cassini spacecraft. A peculiar kink can be seen in one particularly bright ringlet at the bottom right.

  1. Ring Shadows on Janus

    NASA Image and Video Library

    2009-12-23

    Sunlight passing through the Cassini Division between Saturn A and B rings sweeps across and illuminates the surface of the moon Janus in this image captured by NASA Cassini spacecraft. Go to the Photojournal to view the animation.

  2. View of Saturn Rings

    NASA Image and Video Library

    1999-01-18

    This view shows some detail and differences in the complex system of rings. This was one of the first pictures obtained once NASA Voyager 2 resumed returning images Aug. 29, 1979 after its scan platform was commanded to view Saturn.

  3. Rings and Waves

    NASA Image and Video Library

    2013-09-30

    Saturn A ring is decorated with several kinds of waves. NASA Cassini spacecraft has captured a host of density waves, a bending wave, and the edge waves on the edge of the Keeler gap caused by the small moon Daphnis.

  4. Wisps Under the Rings

    NASA Image and Video Library

    2015-12-28

    Dione beautiful wispy terrain is brightly lit alongside Saturn elegant rings in this image captured by NASA Cassini spacecraft. The wisps are relatively young fractures on the trailing hemisphere of Dione icy surface.

  5. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  6. Analytical characterisation of a capacitively coupled plasma torch with a central tube electrode.

    PubMed

    Cordos, E A; Frentiu, T; Rusu, A M; Angel, S D; Fodor, A; Ponta, M

    1999-04-01

    A new type of radiofrequency capacitively coupled plasma torch is presented. The torch electrode geometry is coaxial with a tubular central electrode and one or two outer ring electrodes. The argon plasma is generated at 275 W radiofrequency power and 27.12 MHz and it has a very good stability and a low gas consumption of 0.4 l min(-1). The nebulized sample is introduced through the tubular electrode into the core of the annular shaped plasma thus achieving a better atomisation and a lower background. The limits of detection for 20 elements are in the range of ng ml(-1) and the dynamic range between 2.5 and 3.5. The best results are obtained with the torch with two outer ring electrodes.

  7. Atmospheric corrosion of lithium electrodes

    SciTech Connect

    Johnson, C.J.

    1981-10-01

    Atmospheric corrosion of lithium during lithium-cell assembly and the dry storage of cells prior to electrolyte fill has been found to initiate lithium corrosion pits and to form corrosion products. Scanning Electron Microscopy (SEM) was used to investigate lithium pitting and the white floccullent corrosion products. Electron Spectroscopy for Chemical Analysis (ESCA) and Auger spectroscopy in combination with X-ray diffraction were used to characterize lithium surfaces. Lithium surfaces with corrosion products were found to be high in carbonate content indicating the presence of lithium carbonate. Lithium electrodes dry stored in unfilled batteries were found to contain high concentration of lithium flouride a possible corrosion product from gaseous materials from the carbon monofluoride cathode. Future investigations of the corrosion phenomena will emphasize the effect of the corrosion products on the electrolyte and ultimate battery performance. The need to protect lithium electrodes from atmospheric exposure is commonly recognized to minimize corrosion induced by reaction with water, oxygen, carbon dioxide or nitrogen (1). Manufacturing facilities customarily limit the relative humidity to less than two percent. Electrodes that have been manufactured for use in lithium cells are typically stored in dry-argon containers. In spite of these precautions, lithium has been found to corrode over a long time period due to residual gases or slow diffusion of the same into storage containers. The purpose of this investigation was to determine the nature of the lithium corrosion.

  8. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  9. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  10. Layered electrode for electrochemical cells

    DOEpatents

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  11. Bending the Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's rings appear strangely warped in this view of the rings seen through the upper Saturn atmosphere.

    The atmosphere acts like a lens in refracting (bending) the light reflected from the rings. As the rings pass behind the overexposed limb (edge) of Saturn as seen from Cassini, the ring structure appears to curve downward due to the bending of the light as it passes through the upper atmosphere.

    This image was obtained using a near-infrared filter. The filter samples a wavelength where methane gas does not absorb light, thus making the far-off rings visible through the upper atmosphere.

    By comparing this image to similar ones taken using filters where methane gas does absorb, scientists can estimate the vertical profile of haze and the abundance of methane in Saturn's high atmosphere.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 938 nanometers and at a distance of approximately 197,000 kilometers (123,000 miles) from Saturn. The image scale is 820 meters (2,680 feet) per pixel.

  12. Nardo Ring, Italy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Nardo Ring is a striking visual feature from space, and astronauts have photographed it several times. The Ring is a race car test track; it is 12.5 kilometers long and steeply banked to reduce the amount of active steering needed by drivers. The Nardo Ring lies in a remote area on the heel of Italy's 'boot,' 50 kilometers east of the naval port of Taranto. The Ring encompasses a number of active (green) and fallow (brown to dark brown) agricultural fields. In this zone of intensive agriculture, farmers gain access to their fields through the Ring via a series of underpasses. Winding features within the southern section of the Ring appear to be smaller, unused race tracks.

    The image covers an area of 18.8 x 16.4 km, was acquired on August 17. 2007, and is located at 49.3 degrees north latitude, 17.8 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Barely Bisected Rings

    NASA Image and Video Library

    2016-09-12

    Saturn's shadow stretched beyond the edge of its rings for many years after Cassini first arrived at Saturn, casting an ever-lengthening shadow that reached its maximum extent at the planet's 2009 equinox. This image captured the moment in 2015 when the shrinking shadow just barely reached across the entire main ring system. The shadow will continue to shrink until the planet's northern summer solstice, at which point it will once again start lengthening across the rings, reaching across them in 2019. Like Earth, Saturn is tilted on its axis. And, just as on Earth, as the sun climbs higher in the sky, shadows get shorter. The projection of the planet's shadow onto the rings shrinks and grows over the course of its 29-year-long orbit, as the angle of the sun changes with respect to Saturn's equator. This view looks toward the sunlit side of the rings from about 11 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Jan. 16, 2015. The view was obtained at a distance of approximately 1.6 million miles (2.5 million kilometers) from Saturn. Image scale is about 90 miles (150 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20498

  14. NUCLEAR RINGS IN GALAXIES-A KINEMATIC PERSPECTIVE

    SciTech Connect

    Mazzuca, Lisa M.; Swaters, Robert A.; Veilleux, Sylvain; Knapen, Johan H.

    2011-10-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicates that the rings are in the same plane as the disk and are circular. From the rotation curves derived, we have estimated the compactness (v{sup 2}/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  15. Improvement of Dielectric Barrier Discharge Plasma Reactor for Ozone Generation by Electrode Shape

    NASA Astrophysics Data System (ADS)

    Shimizu, Masaki; Sato, Tohru; Kato, Shoji; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    An effect of electrode shape on ozone generation in dielectric barrier discharge reactor is described in this article. Three different shape electrodes were employed as ground electrodes. A plane electrode is 6 cm in width, and 20 cm in length. A trench electrode has large number of knife-edge rails. A multipoint electrode has large number of four-sided pyramid projections on the plane. A high voltage plane electrode is covered with 0.5 mm thickness alumina layer worked as dielectric barrier. The experimental results show that the breakdown for the multipoint electrode occurs at 7.0 kVpp. This value is lower than 8.4 kVpp that is the breakdown voltage of the plane electrode. The ozone yield increases from 80 g/kWh to 130 g/kWh by changing the electrode shape from the plane to the multipoint. The ozone generation efficiency decreased with increase of the ozone concentration.

  16. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2014-04-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings [5, 8]. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~ 100m in size) have been identified in Saturn's A ring through their propeller signature in the images [10, 7, 9, 11]. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring [6, 2]. In this paper we present our new results about by now classical A ring propellers and more enigmatic B ring population. Due to the presence of self-gravity wakes the analysis of propeller brightness in ISS images always bears some ambiguity [7, 9] and consequently the exact morphology of propellers is not a settled issue. In 2008 we obtained a fortunate Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS Persei Rev42 occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit [11]. We numerically investigated the possibility of simple moon

  17. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  18. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  19. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  20. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  1. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    NASA Astrophysics Data System (ADS)

    Han, Yiwei; Dong, Jingyan

    2017-03-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures.

  2. Micro-agar salt bridge in patch-clamp electrode holder stabilizes electrode potentials

    PubMed Central

    Shao, Xuesi M.; Feldman, Jack L.

    2015-01-01

    Maintaining a stable electrode potential is critical for patch-clamp measurements. The electrode potential of conventional patch electrode-holder assembly, where an Ag/AgCl wire is in direct contact with the patch pipette filling solution, is subject to drift if the pipette solution contains a low concentration of chloride ions (Cl−). We developed an agar bridge of 3 M KCl filled in a polyimide microtubing which forms an electrical connection between an Ag/AgCl wire and the pipette solution. We examined the offset potentials of the micro-agar salt bridge electrode assembly in parallel with a conventional electrode assembly in generic recording conditions (the pipette solution contained 5 mM NaCl). The junction potential between the Ag/AgCl wire and the pipette filling solution in the conventional electrode contributed to most of the offset potential drift observed during the course of 30 min recordings. The drift was up to 27.3 mV after several changes of the glass pipette. In contrast, the micro-agar salt bridge stabilized the electrode potential within typically 2 mV without affecting the patch electrode resistance, capacitance or noise level. Numerical simulations showed that Cl− diffusion from the agar bridge to the tip caused a negligible 0.4 μM Cl− concentration change at the pipette tip within 30 min. This method is easy to implement and provides long-term recording stability. The micro-agar salt bridge can fit in most commercial patch electrode holders and can be conveniently maintained. PMID:16916545

  3. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  4. Ring correlations in random networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  5. Coffee-ring effect beyond the dilute limit

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Ryu, Seul-A.; Kim, Hyungdae; Kim, Joon Heon; Park, Jung Su; Park, Yong Seok; Oh, Jeong Su; Weon, Byung Mook

    2015-11-01

    The coffee-ring effect, which is a natural generation of outward capillary flows inside drying coffee drops, is valid at the dilute limit of initial solute concentrations. If the solute is not dilute, the ring deposit is forced to have a non-zero width; higher initial concentration leads to a wider ring. Here we study the coffee-ring effect in the dense limit by demonstrating differences with various initial coffee concentrations from 0.1% to 60%. The coffee drops with high initial concentrations of real coffee particles show interesting evaporation dynamics: dense coffee drops tend to evaporate slowly. This result is different from the classic coffee-ring effect in the dilute limit. We suppose that the slow evaporation of dense coffee drops is associated with the ring growth dynamics. The coffee-ring effect becomes more significant in modern technologies such as self-assembly of nanoparticles, ink-jet printing, painting and ceramics. The complexity in evaporation dynamics of colloidal fluids would be able to be understood by expanding the coffee-ring effects in the dilute as well as the dense limits.

  6. Improved capacitive EKG electrode

    NASA Technical Reports Server (NTRS)

    Day, J. L.; Griffith, M. E.; Portnox, W. M.; Stotts, L. J.

    1979-01-01

    Light, compact electrode monitors heart signals through burn ointment and requires no electrolyte paste for coupling to skin. Innovation is useful because of its ability to monitor heart condition of burn victims.

  7. Improved capacitive EKG electrode

    NASA Technical Reports Server (NTRS)

    Day, J. L.; Griffith, M. E.; Portnox, W. M.; Stotts, L. J.

    1979-01-01

    Light, compact electrode monitors heart signals through burn ointment and requires no electrolyte paste for coupling to skin. Innovation is useful because of its ability to monitor heart condition of burn victims.

  8. Giant-electrode welder

    NASA Technical Reports Server (NTRS)

    Atkins, B. R.; Chihoski, R. A.; Yashiro, F.

    1979-01-01

    Welder produces spot-welds in place of rivets and saves time and money. Unit comprised of concical copper electrode base diameter of 11.5 ft is also capable of welding very thin, hard aluminum alloys.

  9. Electrode materials for biphenyl-based rectification devices.

    PubMed

    Parashar, Sweta; Srivastava, Pankaj; Pattanaik, Manisha

    2013-10-01

    An ab initio approach was utilized to explore the electronic transport properties of 4'-thiolate-biphenyl-4-dithiocarboxylate (TBDT) sandwiched between two electrodes made of various materials X (X = Cu, Ag, and Au). Analysis of current-voltage (I-V) characteristics, rectification performance, transmission functions, and the projected density of states (PDOS) under various external voltage biases showed that the transport properties of these constructed systems are markedly impacted by the choice of electrode materials. Further, Cu electrodes yield the best rectifying behavior, followed by Ag and then Au electrodes. Interestingly, the rectification effects can be tuned by changing the torsion angle between the two phenyl rings, as well as by stretching the contact distances between the end group and the electrodes. For Cu, the maximum rectifying ratio increases by 37 % as the contact distance changes from 1.7 Å to 1.9 Å. This is due to an increase in coupling strength asymmetry between the molecule and the electrodes. Our findings are compared with the results reported for other systems. The present calculations are helpful not only for predicting the optimal electrode material for practical applications but also for achieving better control over rectifying performance in molecular devices.

  10. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  11. 3D nanogap interdigitated electrode array biosensors.

    PubMed

    Singh, Kanwar Vikas; Whited, Allison M; Ragineni, Yaswanth; Barrett, Thomas W; King, Jeff; Solanki, Raj

    2010-06-01

    Three-dimensional interdigitated electrodes (IDEs) have been investigated as sensing elements for biosensors. Electric field and current density were simulated in the vicinity of these electrodes as a function of the electrode width, gap, and height to determine the optimum geometry. Both the height and the gap between the electrodes were found to have significant effect on the magnitude and distribution of the electric field and current density near the electrode surface, while the width of the electrodes was found to have a smaller effect on field strength and current density. IDEs were fabricated based on these simulations and their performance tested by detecting C-reactive protein (CRP), a stress-related protein and an important biomarker for inflammation, cardiovascular disease risk indicator, and postsurgical recuperation. CRP-specific antibodies were immobilized on the electrode surface and the formation of an immunocomplex (IC) with CRP was monitored. Electrochemical impedance spectroscopy (EIS) was employed as the detection technique. EIS data at various concentrations (1 pg/mL to 10 microg/mL) of CRP spiked in buffer or diluted human serum was collected and fitted into an equivalent electrical circuit model. Change in resistance was found to be the parameter most sensitive to change in CRP concentration. The sensor response was linear from 0.1 ng/mL to 1 microg/mL in both buffer and 5% human serum samples. The CRP samples were validated using a commercially available ELISA for CRP detection. Hence, the viability of IDEs and EIS for the detection of serum biomarkers was established without using labeled or probe molecules.

  12. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  13. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  14. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  15. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  16. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  17. Ring solitons on vortices.

    PubMed

    Kevrekidis, P G; Nistazakis, H E; Frantzeskakis, D J; Malomed, B A; Bishop, A R

    2001-12-01

    Interaction of a ring dark or antidark soliton (RDS and RADS, respectively) with a vortex is considered in the defocusing nonlinear Schrödinger equation with cubic (for RDS) or saturable (for RADS) nonlinearities. By means of direct simulations, it is found that the interaction gives rise to either an almost isotropic or a spiral-like pattern. A transition between them occurs at a critical value of the RDS or RADS amplitude, the spiral pattern appearing if the amplitude exceeds the critical value. An initial ring soliton created on top of the vortex splits into a pair of rings moving inward and outward. In the subcritical case, the inbound ring reverses its polarity, bouncing from the vortex core, without conspicuous effect on the core. In the transcritical case, the bounced ring soliton suffers a spiral deformation, while the vortex changes its position and structure and also loses its axial symmetry. Through a variational-type approach to the system's Hamiltonian, we additionally find that the vortex-RDS and vortex-RADS interactions are, respectively, attractive and repulsive. Simulations with the vortex placed eccentrically with respect to the RDS or RADS reveal the generation of strongly localized multispot dark and/or antidark coherent structures. The occurrence of spiral-like patterns in many numerical experiments prompted an attempt to generate a spiral dark soliton, but the latter is found to suffer a core instability that converts it into a rotating dipole emitting waves in the outward direction.

  18. Techniques of Electrode Fabrication

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Li, Xinyong; Chen, Guohua

    Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.

  19. Conducting polymer electrodes for electroencephalography.

    PubMed

    Leleux, Pierre; Badier, Jean-Michel; Rivnay, Jonathan; Bénar, Christian; Hervé, Thierry; Chauvel, Patrick; Malliaras, George G

    2014-04-01

    Conducting polymer electrodes are developed on a flexible substrate for electroencephalography applications. These electrodes yield higher quality recordings than dry electrodes made from metal. Their performance is equivalent to commercial gel-assisted electrodes, paving the way for non-invasive, long-term monitoring of the human brain.

  20. A superoxide sensor based on a multilayer cytochrome c electrode.

    PubMed

    Beissenhirtz, Moritz K; Scheller, Frieder W; Lisdat, Fred

    2004-08-15

    A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage.